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A Note on the First Rigid Cohomology Group for
Geometrically Unibranch Varieties

NoBuo TSUZUKI

To Professor Francesco Baldassarri on the occasion of his 60™ birthday,
with much gratitude.

ABSTRACT - We prove a vanishing of the first rigid cohomology group for geome-
trically unibranch varieties with supports in a proper closed subset and apply it
to the full faithfulness problem of the restriction functors of overconvergent
isocrystals. As an application, we prove that the first rigid cohomology group is
pure of weight 1 for proper and geometrically unibranch varieties over a finite
field. We also establish a comparison result of rigid cohomology groups between
a geometrically unibranch variety and its normalization.

1. Introduction

By the recent development one can understand the rigid cohomology
for smooth varieties well. However, it is still difficult to understand it for
singular varieties. In this note we study the rigid cohomology for mildly
singular varieties. We prove a vanishing of rigid cohomology groups of
degree <1 for geometrically unibranch varieties with supports in a
proper closed subset and apply it to the full faithfulness problem of the
restriction functors of overconvergent isocrystals (see the full faithful-
ness problem in [31, Conjecture 1.2.1]). We calculate weights of Fro-
benius eigenvalues of the first rigid cohomology groups for geome-
trically unibranch varieties over finite fields. We also establish a com-
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parison theorem of rigid cohomology groups between a geometrically
unibranch variety and its normalization, more generally for universal
homeomorphisms. These results are p-adic analogues of the comparison
theorem of inverse images for universal homeomorphisms in etale co-
homology [1, VIII, 1].

1.1 — Results

First we recall the definition of the notion “geometrically uni-
branch”. Let us fix notation. For a scheme T over a spectrum Speck of a
field k and an extension [ of k, we put 7; = T Xgpecr Specl. For a scheme
T, Tieq (resp. Thor) denotes the reduced closed subscheme associated to
T (resp. the normalization of disjoint sum of the reduced closed sub-
schemes of irreducible components of 7' in the total function field). We
use the same notation R,eq and Ry, for the associated rings of a ring R
as above.

A scheme T is said to be geometrically unibranch if, for any point ¢ of T,
(a) Or,, + is integral, (b) the normalization (Or, , )ner Of O, ¢ is local, and
(c) the residue field of (Or,,, nor is @ purely inseparable extension of the
residue field of Or,_, ; [19, 0, 23.2.1]. If T' is a normal scheme over Spec k for
a field k, then T} is geometrically unibranch for any field extension [ of k
[19, IV, Proposition 6.15.6]. Moreover, if T' is geometrically unibranch, then
the canonical morphism 7', — T is a universal homeomorphism, that is,
the morphism of associated topological spaces of any base change is a
homeomorphism [19, IV, Definition 2.4.2, Corollaire 18.12.11].

Let K be a complete discrete valuation field of mixed characteristics
(0,p), V the integer ring of K, and k the residue field of V. Let jx : X — X
be an open immersion of separated schemes locally of finite type over
Speck (note that X might not be proper), Z a closed k-subscheme of X,
U =X\ Z with the open immersion j; : U — X, and M a convergent
isocrystal M on X /K overconvergent along X \ X (for simplicity, we say an
overconvergent isocrystal on (X, X) /K later). We denote the rigid coho-
mology for an overconvergent isocrystal M on (X, X)/K with supports in Z
by HI’,"igZ((X,)_()/K,M) (resp. Hli"igZ(X/K,M) if X is proper), whose defi-
nition is recalled briefly in section 2.1. Then there is a canonical long exact
sequence

1,

— HE(XX)/KEM) — -

- = I—I;’.gZ((X,)_()/K,M) — Hgg((X,)_()/K,M)HHlﬁg((U,)_()/K,jTUM)



A Note on the First Rigid Cohomology Group etc. 19

which is called an excision sequence [7, Proposition 2.5]. One of the main
results of this note is the following vanishing of rigid ecohomology groups.
The vanishing in the smooth case is known at least if X is proper over
Speck [7, Théoréme 3.8] [30, Theorem 4.1.1] (see the detail for a general X
in section 2.2).

THEOREM 1.1. (1) If U has a nonempty intersection with each con-
nected component of X, then Hgig (X . X) /K, M) =0.
(2) Let X =U, X, be the irreducible decomposition of X, and put
Xu=X,nX,,U,=UnX; and U,, = UNX,,. Suppose that
(i) U, 1s dense in X, for any A,
(i) U, , is dense in X, , for any A and uif X; , # 0,
(iii) X, is geometrically unibranch for any A.
Then the vanishing Hiig 4((X . X) /K, M) =0 holds.

Note that each of the three conditions (i)-(iii) in the Theorem 1.1 (2)
above is preserved by the base extension X; for any extension [ over k (see
[19, IV, Proposition 6.15.7] for the condition (iii)). We prove the theorem
above for a smooth X (to be self-contained) in Theorem 2.9 and for a
general X in sections 3 and 4.

By the excision sequence above and Theorem 2.13 and Corollary 2.14
we have

COROLLARY 1.2. With the same hypotheses of Theorem 1.1 (2), the
restriction map

HY (X, X)/ K, M) — H3(U, X)/K, i, M)
18 bijective, and the restriction map

Hy, (X, X)/K, M) — H},

(U, X/ K, jiy M)
s injective. In particular, the restriction functor from the category of
overconvergent isocrystals on (X, X)/ K to the category of overconvergent

isocrystals on (U, X)/K is fully faithful.

COROLLARY 1.3.  With the same hypotheses of Theorem 1.1 (2), suppose
that K admits a lift o of Frobenius. Then the restriction functor from the
category of overconvergent F-isocrystals on (X, X)/K with respect to o to
the category of overconvergent F-isocrystals on (U, X)/ K with respect to o
1s fully faithful.
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When X is smooth over Spec k, the full faithfulness results in Corollaries
1.2 and 1.3 were proved by a local study of p-adic differential equations by
K. Kedlaya in [21, Theorem 5.2.2] (see also [31, Theorem 4.1.1]).

In etale cohomology, the similar property of Corollary 1.2 for a nor-
mal scheme X follows from the surjectivity of the natural homomorphism
78 (U) — 7'8(X) of algebraic fundamental groups. The following theo-
rem is a p-adic analogue of the comparison of inverse images for uni-
versal homeomorphisms in etale cohomology [1, VIII, Corollaire 1.2,
Examples 1.3 (¢)].

THEOREM 1.4. With the notation as above, suppose X is geometrically
unibranch. Let g : Xpor — X be the canonical structure morphism, Xyor @
compactification of Xnor over X (take the normalization of X, for example),
W be the inverse image of Z in Xyor, and g*M the inverse image of M as an
overconvergent isocrystal on (Xuor, Xnor) /K. Then the natural homo-
morphism

g : H:igz((Xaj—()/Ky M) — Hr-igw((Xnorvm)/Ky g M)
18 an isomorphism for any r.

As an application, we have a following weight result for geometrically
unibranch varieties. The author ignores the corresponding result in the
l-adic theory in literatures.

THEOREM 1.5. Suppose k is a finite field of p° elements and that K
admits a lift o of Frobenius such that o = idg. If X is proper and geo-
metrically unibranch over Speck, then H. Il,ig(X /K) is pure of weight 1. Here
H 1fig(X /K) denotes the rigid cohomology of X /K for the unit convergent F-
isocrystal Oxp on X /K.

1.2 — Ideas and plan

In section 2 we recall some results on rigid cohomology, cohomolo-
gical descent for proper hypercoverings [13] [32] [33] (see Propositions
2.5, 2.6 and Theorem 2.7), and alterations. Especially, the long exact
sequence

0 — Hyyy 7 (X, X)/K, M)~ Hyyyy, (Yo, Yo) /K, Mo) — ker (d; ")

(%) - =
— HY (X, X)/K, M) — Hyy, (Yo, Yo) /K, M)



A Note on the First Rigid Cohomology Group etc. 21

where di: HY,y (Y1, YD) /K, My) — HY,y, (Y2, Y2)/K, M), induced
from the spectral sequence with respect to a proper hypercovering
(Y,,Y.) — (X, X)in Corollary 2.8 is one of the important tools we are going
to use (see the notation in Theorem 2.7).

In section 3 we study the connectedness of tubes for connected
schemes. The connectedness in Lemma 3.1 plays an essential role to prove
Theorem 1.1. We also show the invariance of rigid cohomology groups of
degree 0 for proper surjective morphisms whose geometric fibers are
connected in Theorem 3.6. This is one of the keys of this note.

In section 4 we prove Theorem 1.1 (2). In order to prove it we take a
regular alteration ¥ — X (Theorem 2.15) and consider Stein factor-
ization of ¥ — X. Starting from a smooth Y C Y, we apply the long
exact sequence () above with respect to the Cech hypercovering as-
sociated to each proper surjective morphism of the Stein factorization.
For the first morphism we use the invariance of rigid cohomology
groups of degree 0 for proper surjective morphisms with geometric
connected fibers, and for the second morphism we use a certain density
of a fiber product which follows from the geometrical unibranchness of
varieties in Proposition 4.3.

In section 5 we prove the coincidence of the categories of over-
convergent isocrystals and its rigid cohomology groups by inverse ima-
ges for a separated universal homeomorphism Y — X of finite type
(Theorem 5.2). Theorem 1.4 follows from these more general comparison
results. A key is to show that the constant bi-simplicial scheme gives a
resolution both of X and of Y as proper hypercoverings (Proposition 5.1).
Then we can apply A. Shiho’s proper descent of overconvergent iso-
crystals [29, Proposition 7.3] and proper cohomological descent of rigid
cohomology [32, Theorem 2.3.1]. In the case of convergent isocrystals the
proper descent and the above equivalence of categories was studied by A.
Ogus [26, Theorem 4.6, Corollary 4.10]. These comparisons are p-adic
analogues of those in etale cohomology [1, VIII, Théoreme 1.1, Corollaire
1.2, Remarques 1.4].

In section 6 we study Frobenius eigenvalues of Hrl,ig(X /K) for geome-
trically unibranch X and prove Theorem 1.5 in Theorem 6.3.

In section 7 we give an example such that the natural homomorphism
H%g((X,X')/K,M) - H%g((U,)?)/K,j}]M) is not surjective in the case
where X is not geometrically unibranch. Hence, for the full faithfulness of
the restriction functor jTU, some conditions on X are needed in general. We
also give an example such that the restriction functor jTU is not essentially
surjective in the case where X is normal.
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2. Preparations

Let jx : X — X be an open immersion of separated schemes locally of
finite type over Speck, Z a closed subscheme of X, U = X \ Z with a ca-
nonical open immersion jyy : U — X, and M an overconvergent isocrystal
on (X,X)/K. Let L be an extension of K as complete discrete valuation
fields and [ the residue field of L. For a commutative diagram

Yy &%

gl b

X =5 X
JIX

over Speck such that jy is an open immersion of separated schemes of
locally of finite type over Spec!, we denote by g*M the inverse image of M
as an overconvergent isocrystal on (Y,Y)/L.

2.1 — Fundamental tools in rigid cohomology.

We recall several fundamental tools, which we will use later, in rigid
cohomology.

We recall the definition of the rigid cohomology H. rig Z((X X) /K, M) on
(X,X)/K with supports in Z for an overconvergent isocrystal M on
(X,X)/K, which is defined by P. Berthelot [5, Section 2]. In the case where
X is embedded as a closed subscheme into a separated formal scheme P
locally of finite type over Spf V which is smooth around X, it is defined by
the hypercohomology

Hi (X X0/ K, M) i= RUTAXLp, LM 50 i@, )
Here j;( is an exact functor of overconvergent sections along X \ X and I TZ is
an exact functor of overconvergent sections with supports in Z defined by
the kernel of the epimorphism jj,( — j}] on the category of sheaves of
Abelian groups on the tube ]1X[» of X in Raynaud’s generic fiber Px as-
sociated to P. By definition we have ]X[» = ]X,.a[» and the identity

rngred((XledaXred)/K M) 1'1gZ((X’X)/K7M)'

REMARK 2.1. (1) When one begins with the pair (X, X), one can find,
locally on X, a closed embedding of X into a formal scheme P over Spf V as
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above, and can define overconvergent isocrystals and rigid cohomology on
(X,X)/K by the simplicial construction using an open covering of X in
general [7, 1.5 Remarque 4] [13, Section 10.5, 10.6]. All the definitions do
not depend on any choices.

(2) When one considers the “full” rigid cohomology, i.e., over-
convergent along “full boundaries” (namely “X” is proper over Speck),
one can find, locally on X, an open immersion jx : X — X for a proper
scheme X over Speck with an embedding into a formal scheme P over
SpfV which is smooth around X. Then one can define an over-
convergent isocrystal and rigid cohomology on X/K by the simplicial
construction using an open covering of X as in the previous remarks.
Note that, for a separated scheme X of finite type over Speck, there
always exists a completion X by Nagata’s compactification [22] [23]. In
the full boundaries case we use the notation Hyj, ,(X/K, M) instead of

rng((X X)/K M)

In this note we always begin with a pair (X, X), however, the results also

hold in the case of overconvergence along full boundaries.

ProrosiTiON 2.2 (Finite scalar extensions) [7, Proposition 1.8]. For a
Jfinite extension L of K, let | (vesp. f: X; — X) denote the residue field of L
(resp. the extension of base fields). Then, for any r, we have a canonical
1somorphism

rng;((XlaXl)/L f M) =~ 151gz((X77)/K, M) R L

REMARK 2.3.  One can find base change theorems of rigid cohomology
for an arbitrary scalar extension L of K in [33, Theorem 8.1.1] and [4,
Corollary 5.5.2].

ProPosITION 2.4 [7, Proposition 2.5]

(L) If Z is a disjoint swm of closed subschemes Zy and Zy of X,
then Hy, ,((X, X)/K,M) = Hy,p (X, X)/K.M)e H',, (X,X)/K,M) for
any 7.

ngz

(2) (Excision sequence) If Z; is a closed subscheme of Z over Speck,
then there is a canonical long exact sequence

- > Hl,g (X, X)/K.M) — Hy 7 (X, X)/K M) — HngZ\Zl((X\Zl X)/K, ]X\Z M)

- H’&Z((X X)/K,M) —

We recall some spectral sequences which we will use later (see [33,
Sections 2, 5, 7]).
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PROPOSITION 2.5 (Cech spectral sequence for open coverings)

(1) Let {Y;};c, be an open covemng of X over Speck indexed by a
totally order set A, put Yim gy = ﬂl oYﬂz» Yigizy =X N Y/o/h 7, With the
structure morphism f;,),..;, : YAO;,I gy — X, cmd Winiyozg =240 Yi.om g
Then there is a spectral sequence

E‘{" - @ HT oh /q((Y}OAI /q7 Y}oil Aq)/K f/L

To<h o<y rigW, Ay M) =
HE (X, X)/K, M.

017

() Let {Y;},.4 be an open covering of X over Speck indexed by a to-
tally order set A, put Y .., = ﬁgZOY;,i with the structure morphism
Jioi-tg * Yogiyzg = Xy and Wip, 0 = Z 0 Y55, Then there is a spectral
sequence

B = ;o<116<9m<) H;IgW, 3y iq (Y- 7q’X)/K Luin- 7M) =

HE (X, X)/K, M.
PROPOSITION 2.6 (Mayer-Vietoris spectral sequence). Suppose X is
separated of finite type over Spec k, and let {Y ;} be a finite closed covering

of X over Spec k. Then there is a spectral sequence
E (IIT = ® H ;dlgW

o<l <-<lyg

(Yiggeigs Y igig i)/ K, Sz, M) =

041"4q

HZ&Z((K}?)/K,M)?
where Y 5.0, = Y5 Yoty =X NY 5.0, with the structure
morphzsm f)v(],b1 gyt Ylo/q gy X, and WA-O)L]“‘)vq =7ZN Y;VOMH%Q.

A simplicial scheme 7, over S is a contravariant functor from the
standard simplicial category to the category of schemes over S, and de-
notes it by 7. — S. A simplical scheme 7', — S is said to be a proper hy-
percovering if the canonical morphism 7y — S is proper surjective and if
the canonical morphism 7, — coskq(TEq))qH is proper surjective for any
q. Here T is the truncation of 7', until the ¢-th stage (g-truncation) and
cosk, is the right adjoint of the g-truncation functor. We often use a
spectral sequence with respect to a Cech hypercovering associated to a
proper surjective morphism, which is defined as follows. A Cech hyper-
covering T, — S associated to a proper surjective morphism 7' — S con-
sists of its g-th stage Ty = T xg --- xg T (the fiber product of g + 1 copies
of T over S) and standard face and degeneracy morphisms. Indeed,
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coskq(Tﬂq))qH = Ty+1 in this case. Hence, the associated Cech hypercov-
ering T, — S is a proper hypercovering.

THEOREM 2.7 (Spectral sequence for proper hypercoverings) [32,
Theorem 4.5.1].  Suppose that X is separated of finite type over Speck.
Let §,: Y. — X be a proper hypercovering over Speck, ¢o:Y, — X
(resp. Wy — Z) the induced proper hypercovering by the inverse image,
and M, the inverse image of M as an overconvergent isocrystal on
(Y,,Y,)/K by g, Then there is a spectral sequence of rigid cohomology
with supports

E{" = Hjyyy (Y, Y /K, M) = HY(X.X)/K,M).

COROLLARY 2.8. With the notation as in Theorem 2.7, there is a long
exact sequence

0— H°

% (X . X)/K M) — B — ker(dy’ : By* — EY°) —

Hiigz((XJ_()/K, M) — E(l).,l.

Note that all the properties of rigid cohomology above are functorial in
M, (X,X), Z and hypercoverings (Y,,Y,) — (X, X). Moreover, when M is
an overconvergent F-isocrystal, natural homomorphisms between rigid
cohomology groups commute with Frobenius.

2.2 — Cohomological purity

In the case where X is smooth over Speck, Theorem 1.1 has been al-
ready known as cohomological purity by the Gysin map at least when X is
proper ([7, Théoréme 3.8] [30, Theorem 4.1.1]). In general the author can
not find a direct proof in literature.

THEOREM 2.9. Suppose that X is a smooth scheme separated of finite
type over Spec k and denote the least codimension of generic points of Z in
X by e. Then

H}y (X, X)/K, M) = 0

for r<2e.

Proor. Suppose e > 1. Replacing k by a finite extension, we may
assume that X is geometrically integral by Propositions 2.2 and 2.6.
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After replacing k by a finite extension of k again, there is an open
smooth subscheme of the reduced closed subscheme Z,.q. Hence we
may assume that (X,Z) is a smooth pair such that Z is pure of codi-
mension e by Propositions 2.2 and 2.4. Since (X, Z) is a smooth pair, Z
is, locally on X, an intersection of all irreducible components of a strict
normal crossing divisor of X [16, II, Théoreme 4.10]. Hence we may
assume that there is a strict normal crossing divisor D = U;_, D; of X,
where D; is an irreducible component, such that Z = n¢_; D; by Pro-
position 2.5. We denote the Zariski closure of D; and Z in X by D; and
Z, respectively, and put ;:D;NDeN---ND; — X to be the closed
immersion.

Applying the Cech spectral sequences with respect to a certain open
covering of X and a certain open covering of X in Proposition 2.5, we may
assume that X is affine and X is an open subscheme which is defined by
g # 01in X for some g € I'X, O3).

LEmma 2.10. With the notation as above, there is_ an affine formal
scheme X = Spf A of finite type over Spf V such that X is an irreducible
component of (X Xgpry Spece k)yeq and X is smooth over Spf V around X.

Proor. Let B be a smooth V-algebra of finite type such that
X = SpecB ®y k. Such a ring B exists by [15, Théoreme 6]. Let C be a
polynomial ring of finite variables over V with a V-algebra surjective
homomorphism C — I'(X, Oy) and a V-algebra homomorphism C — B
such that the diagram

C - TI'(X,0%)
l l
B — TI'(X,0x)

is commutative. Fix a lift g € C of the element g. Since g is invertible in
I'(X, Ox), we may assume that the image of g in B is invertible. Replacing C
by a V-polynomial ring adding variables which goes to generators of B
multiplied by suitable powers of g, we may assume that the V-algebra
homomorphism C[1/g] — B is also surjective. Let (f1, - - -, f;) be the kernel
of the surjection C[1/¢g] — B and choose a nonnegative integer n such that
all ¢"f’s are included in C. Define A by a p-adic completion of
C/(@"f1,---,¢"f,) and put X = Spf A. Since X is open and X is closed in
X Xgpry Speck, X is an irreducible component of (X Xgpfy Spec k)yeq-
Moreover, X is smooth over Spf ) around X by construction. O
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Let us continue the proof of Theorem 2.9. Since the Zariski closure of X
in (X xgpey Speck)eq is X, we can replace X by (X xgpry Speek)yeq.
Applying the Cech spectral sequence with respect to a certain open
covering of X in Proposition 2.5, we may assume that each irreducible
component D; of D is defined by a single equation #; =0 in X for an
element 7; € A. Then the desired vanishing follows from the lemma below
since HngZ(Z/K7 rM) = HITig(Z/K, M) = 0 for »<O0. O

LEmMA 2.11. With the notation above, we have a sequence of iso-
morphisms

Hl, (X, X)/K.M) = H;2(DyD)/K ;M) = -

=~ H%((DinDyN---NDe, DiNDeN---ND,)/K, 1;M

Proor. Let us put Y=Dy, Y=Dy, 1=4:Y =X, h=hy, Y=
Spf A/(h), and denote Raynaud’s generic fiber of ) by Vk. Then there is a
natural closed immersion Y — ) such that ) is smooth around Y, and ]I_/[y
is a closed rigid analytic subspace in ]X[y which is defined by % = 0. We
denote the closed immersion by ik : 1Y[y — ]1X[y. Then i is an affinoid
morphism. Moreover, for any open subscheme 7" in X, we have (i) if Vis a
strict neighborhood of 177 y in X[, then V N ]Y[y is a striet neighborhood
of ITNY[yin ]?[y, and (ii) if W is a strict neighborhood of |7 N Y[y in
]?[y, then there is a strict neighborhood V of 17T[y in ]X[y such that
WoVn ]?[y (use standard strict neighborhoods in [6, Examples 1.2.4]
to prove (1) and (ii)). It implies that there exists a natural transformation
JT - @K*J TnY*

Let j;Q' (log YVx) be a logarithmic de Rham complex of 1X[ v over
K, which is overconvergent along X \ X with a logarithmic pole along the
divisor # = 0. Since X is smooth around X and (X,Y) is a smooth pair,
there is a strict neighborhood V of 1X[y in ]X[y such that V N ]Y[y is a
smooth divisor of the smooth rigid analytic space V. Hence the logarithmic
de Rham complex jT.Q‘ L x(log V) is a complex of sheaves of locally free

(’)] Xi. -modules of ﬁnlteYrank By taking residues with respect to dh/h we
have homomorphisms

M®]} } ]X ]X[ /K(IOgyK)HlK*(lM@?‘ ]7 ]YQ]Y[ /K)[ 1]

1— (]
jX\ZM®‘ O, ]X\Z ]X[ /K(logyK) B lK*Oy\Z’ M® 24, Oy ,jY\ZQ]Y[ /K)[ 1]

Ix\z

of complexes of jX \x1,-modules and of ]X\ZO])—([ -modules, respectively,
where [a] means the a-th shift of the complexes, such that the natural
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diagram
A & T e o 2y Sulak o e e
M ® ;O _1_\,QT_“‘,,\,(I%),\) L (M ®tom, _1,,szﬂ_ﬁ.,\,)[ 1]
| l
.t s . Vo) . -
Jx\zM ® 31\ 200 ~/,\"\Z$2',.,\':‘\.,01\'(1”& Vi) I/\,(]) \zt"M @ 5t §5 /Y'a,ZQj.)‘{)-/l\')[ 1]

is commutative. These diagrams fit into the commutative diagram with
short exact rows

“ -1 P y
0 — M&y o ixrin - M@t o 3x sy /x(l0BVK)
l !
-t AL -t .4 . -4 S
0 — Jy\zM Db\ zO% 1 InzWxex —  IxzM B\ 2O 1x Jx\ 25k (108 Vi)
w M By o Iy x)l=1] > 0
l
T
— ”"'(J)"-,.z’ M ""1;»z""s-' _}) / ) [ 1] — 0,

where both first arrows in horizontal rows are natural inclusions. The
natural inclusions
4 e -
My 00 Ix Pz, x108YVE) = Jx M@y o0

Xy

+ o

T °
= TeM Oy o Ty e,k

Ixv )Xy

induce isomorphisms
_ _ 4
RrAX[y, M D0 x5, (108 Vi)

= REOX L M @5 o Tz, 108 Vi)

X[y

= RF(])?[X,J;(\YM ® O .7

Q
a1, I g )

by [10, Theorem 1.1.1, Remarks 1.1.2.4] since all exponents of differential
operator along Y are 0. If 7' is an open subscheme of Y, then Rig, K = i, E
for any coherent sheaf of jTTO]y[X—modules [13, Theorem 5.2.1]. Hence we
have an isomorphism
~ T 0] ~ V| T T ®

RF(]X[%LZ(M@]} O, 7k Q]X[ /K)) ~ RIAQYL, LM ®j§<9]y Qm /K))[ 2].
Applying this isomorphism for smooth pairs (X, D;),(D1,D1NDy),---,
Di1NDen---ND, 1,DiNDsN---ND,) successively, we have obtained
the assertion. O

REMARK 2.12. (1) The comparison between logarithmic and usual rigid
cohomologies were discussed in [2, Theorem Al], [3, Theorem 3.1], [27,
Theorem 2.4.9], [30, Theorem 3.5.1] and so on. In each of them the locally
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freeness of sp, M is assumed, where sp : Px — P is the specialization
morphism. In [10, Theorem 1.1.1] they do not assume the locally freeness.
(2) The Gysin isomorphism (Lemma 2.11) was studied in more general
contexts when X is proper in [7, Théoréme 3.8] and [30, Theorem 4.1.1].
(3) In this paper we need only the vanishing of H?,igZ(X /K, M) and
Hrl'igZ(X /K, M) for a smooth X. These follows from Kedlaya’s fully faithful
theorem of the restriction functor from the category of overconvergent
isocrystals on (X,X)/K to that of overconvergent isocrystals on
(X\ Z,X)/K [21, Theorem 5.2.1] and the comparison theorem between
hom (resp. ext) groups and rigid cohomologies in the next section 2.3.

2.3 — Hom and Ext

We recall the relation between the Hom group (resp. the extension
group (Yoneda’s Ext group)) of the category of overconvergent isocrystals
and the rigid cohomology group HY;, (resp. Hy,).

T_HEOREM 2.13. Let M and N be overconvergent isocrystals on
X, X)/K and MY a dual of M.

(1) [6, Proposition 2.2.7] There is a natural isomorphism
Hom(M,N) ~ H’ (X,X)/K,.M" ®;,_N).
ne IxO
Here Hom means a K-vector space of homomorphisms in the category of

overconvergent isocrystals on (X,X)/K.

(2) [12, Proposition 1.2.2] There is a natural isomorphism
Ext(M,N) = H;ig((X,}_()/K,MV ®i o N).
IxYx
Here Ext means a Yoneda’s Ext group in the category of overconvergent
isocrystals on (X, X)/K.

By the definition of overconvergent F-isocrystals and [6, Proposition
2.2.7] we have

COROLLARY 2.14. Suppose that K has a Frobenius o. Let M and N be
overconvergent F-isocrystals on (X, X)/ K with respect to a, M" be a dual
of M, and

Cl-F;M,N)=

Vi 4oy 1-F Voo 4 e
ConeM™ @100 N @0 Ixzyx — M 500 N ®o IxPixy)
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where F is the Frobenius on the de Rham complex induced from that of
MY ® 7}\( o N.

1X(
(1) There is a natural isomorphism
Hom(M,N) = H(X[,C(1 — F;M,N)[ — 1)),

where Hom means a K?-space of homomorphisms in the category of
overconvergent F-isocrystals on (X,X)/K and K° = {a € K|o(a) = a}.

(2) There is a natural isomorphism
Ext(M,N) =~ H'(JX[,C(1 — F;M,N)[ — 1)),

where Ext means Yoizeda’s Ext group i the category of overconvergent
F-isocrystals on (X, X)/K.

Moreover there is an exact sequence of K?-spaces:

1-F

0 — Hom(M,N) — H?ig((X,)i()/K7 MY ®j)’(0p—([ N) — H?j.g((X,X')/K,Mv ®j;(0p_q N)

1 . 1-F -
— Ext(M.N) — Hy(X.D/EM' @0 N) = Hy(XD/EM @ N).

2.4 — Alteration.

We recall a theorem of the existence of regular alteration by A.J. de
Jong [20, Theorem 4.1 and its proof 4.5]. The following statement is what
we need in this note.

THEOREM 2.15.  Suppose that X is separated of finite type over Spec k.
Then there is a projective surjective morphism g :Y — X such that Y is
reqular and g is generically finite. Moreover, there exist a purely in-
separable finite extension L of k and a projective surjective and generically
etale morphism Y' — X, such that Y' is smooth over Specl.

3. Connectedness.

3.1 — Connectedness and rigid cohomology groups of degree 0

A rigid analytic space W is connected if there is no admissible covering
{Vi}),e/l of W such that (UleAl V)N Usedy V)= @, Usen, V; ?é ?® and
Ujes, V) # 0 for a disjoint sum A = Az [] A2 [9, 9.1.1]. An affinoid variety is
connected if and only if it is connected with respect to the Zariski topology
[9, 9.1.4, Proposition 8].



A Note on the First Rigid Cohomology Group etc. 31

LEMMA 3.1.  Let T be a separated scheme of finite type over Spec k with a
closed immersion T — P of separated formal schemes of finite type over
Spf V such that P is smooth around T.

(1) Supposethat k is algebraically closed. 1T[p is connected if and only
if the de Rham cohomology groups H°(IT[p, i, k) of degree 0 is a K-
vector space of dimension 1.

(2) If T is connected, then the tube 1T[p is a connected rigid analytic
space.

The de Rham cohomology group H"(1T[p, 2y, /) in the theorem above
is just the rigid cohomology group Hr’fig((T, T)/K, Oypp) for the unit con-
vergent isocrystal Oypy.

Proor. (1) Since a constant function is horizontal with respect to
connection, the dimension of H*(1T'[», Q]'T[P / %) over K is at least the cardinal
of connected components of ]7[p. Hence, if ]T[p is not connected, then
dimg H°(1T[p, e k) > 1

Suppose that ]7[p is connected. Let ¢ be a closed point of T'. Since P
is smooth over the spectrum of the algebraically closed field k, the
completion 67; along t is isomorphie to the ring V[[xy, - -,,]] of for-
mal power series in n variables over V for some n. Hence the tube It
is an open unit ball of dimension » over K, and HO(]t[p,Q].t[P /K) =K.
Let s be an element of the kernel of the restriction homomorphism
H'(OT(», Qi x) — H(t[», tip/x)- The homomorphism Oy, — Oy,
of convergent isocrystal on (7,7)/K induced by the above section s
(Theorem 2.13) has a nontrivial kernel. Since the category of over-
convergent isocrystals is Abelian [6, Corollaire 2.2.10] and a con-
vergent isocrystal is locally free by [6, Proposition 2.2.3], the kernel
should be Oy, by the connectedness of T[p. Hence s is 0 and we have
dimg H'(IT[p, Q) = 1.

(2) It is sufficient to show the connectedness of 1T[p = ]Tyealp for
each irreducible component of 7. For any extension L of K as complete
discrete valuation fields such that W is the ring of integers of L and the
reside field of W is [, the canonical morphism 7; — T is surjective and
the canonical morphism 179[p,, — 1T[p is continuous and surjective. Here
Pw = P xgpry Spf W as formal schemes. Hence we may assume that k is
algebraically closed and T is integral.

First we assume that T is smooth over Speck. We may assume that
T is affine. Then there is an affine integral scheme T which is smooth of
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finite type over SpecV by [15, Théoreme 6]. Since the affinoid ring of
the p-adic completion 7 of T is an integral domain, so is the affinoid
ring of the affinoid variety 17[7 = 7k and hence ]T[; is connected by
the remark just before Lemma 3.1. Consider a natural commutative
diagram

78
/ l \,

Pra

pr
P e P XSpf v T =

of formal V-schemes such that 7' is embedded into P xgpry 7 diagonally.
Since the rigid cohomology is independent of choices of embeddings, the
morphism pr; and pr, induce isomorphisms

H(TTp, Dy, ) — H U7, Dy ) = HUTT7, Dy, -

PegyrT/K
Applying (1), we have dimg H'(T[», Qi x) = dimg H'OT[r, Qi ) =1
Hence ]T[7 is connected again by (1).

Now we prove the assertion in general cases. By applying the
existence of regular alteration (Theorem 2.15), there is a projective
surjective morphism X — 7T such that X is integral and smooth over
k. Since X is projective over T, there is a smooth projective formal V-
scheme Q over P with a closed immersion X — Q such that the
diagram

X - Q@
l |
T — P

is commutative. Since Q is smooth over Spf V around X, 1X[ is connected.
The continuity and surjectivity of the canonical morphism 1X[o — 17T[p
imply that 17[p is connected. O

Let jx : X — X be an open immersion of separated schemes locally of
finite type over Speck. Let us denote by H;’ig((X ,X)/K) the rigid ecoho-
mology on (X, X)/K for the unit overconvergent isocrystal j}((’)m.

ProOPOSITION 3.2. Suppose that k is algebraically closed. Then the
dimension of Hl?ig((X, X)/K) as a K-vector space is the cardinal of
connected components of X.
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Proor. It is sufficient to prove dimg llg((X X)/K) =1 when X is
connected. Let {X;} be an open covering of X and suppose
dimg Hglg((X/,X)/K) =1 for any . Then HY ((XA,X)/K) is generated by
the identity homomorphism j _]X Oz — ]X O by Theorem 2.13. By gluing

and Proposition 2.5, Hﬂlg((X,,,X)/K) is generated by the identity homo-

morphism j;ZO w7 — _]X ‘Opz; since X is connected. Hence we may assume
that X is affine and of finite type over Spec k. Then one can find a closed
immersion X — P over Spf V such that P is a separated formal scheme of
finite type over Spf V which is smooth around X. Since a constant function is
an overconvergent section, the assertion follows from Lemma 3.1. O

COROLLARY 3.3. Let U be an open subscheme of X such that U N'Y # ()
for each connected component Y of X. Then the restriction map

HY (X, X)/K) — Hy, (U, X)/K)

rig rig

1s bijective.

ExaMPLE 34. Let K= 0Q,(n) with #’1=—p, k=F, X=X=
Spec klx, y1/(xy), X1 ={x=0}CcX, Xo={y=0} CX, U=X\X; and
embed X in P= L\ with coordinates x,y. We define a convergent
isocrystal M on (X, X)/K by a free Oxp,-module of rank 1 with a
connection

V(1) = — ndy.

Then, M |]X1[p is a convergent isocrystal on (X7,X;)/K which is Dwork’s
isocrystal corresponding to an additive character, and M|y, is isomorphic
to the unit object OXZ[P on (Xz,X5)/K. Hence H?ig((X,X)/K,M) =0 and

Hg((U X)/K, j = K. It means that the hypothesis of Corollary 3.3
is not enough for the coincidence between Hgig((X ,)_()/K,M) and
H?,ig((U ,)_()/K , jEM ) in the case with coefficients. O

3.2 — Rank of overconvergent isocrystals.

If one fixes a closed embedding X — P over Spf V such that P is smooth
around X, then any overconvergent isocrystal on (X, X)/K is a locally free
j)T(O])—([P-module of finite rank on the tube 1X[ [6, Proposition 2.2.3]. It is
independent of the choice of embeddings. Moreover, the notion of rank
depends only on X:
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PRrROPOSITION 3.5. Let X be a separated scheme locally of finite type
over Spec k. Then the rank of a convergent isocrystal on (X, X)/ K is stable
on each connected component of X.

ProOF. Since the problem is local on X, we may assume that X has a
closed embedding into a smooth formal scheme over Spf). Since any
convergent isocrystal is locally free on the tube, the assertion follows from
Lemma 3.1 (2). O

3.3 — Proof of Theorem 1.1 (1).

We may assume that X is connected and U is nonempty. Take
seE Hﬂig((X,}_()/K,M) such thatjz,(s) = 0, then we will prove s = 0. Since s
determines a homomorphism 7 : j;((’)])—([ — M as overconvergent isocrystals
on (X,X)/K by Theorem 2.13, the kernel ker(y) is an overconvergent
isocrystal. Indeed, the category of overconvergent isocrystals is Abelian
[6, Corollaire 2.2.10]. By the hypothesis of s we have ker(;y)hU[ =~ Oyyr.
The connectedness of X implies that the restriction map ker(y)|y; — Ox;
is an isomorphism since ker(z)|yy; is of rank 1 on X by Proposition 3.5.
Hence s|jx; = 0. Since the restriction functor from the category of over-
convergent isocrystals on (X,X)/K to the category of overconvergent
isocrystals on (X, X)/K is faithful [6, Corollaire 2.2.9], we have s = 0. This
completes a proof of Theorem 1.1 (1). O

3.4 — Invariance of rigid cohomology groups of degree 0.

THEOREM 3.6. Let

v 25 ¥
gl 19
X - X
JX

be a commutative diagram of separated schemes locally of finite type over
Spec k such that jx and jy are open immersions, g is proper surjective and
G is proper on the Zariski closure of Y in Y. Suppose that the geometric fiber
g~ (%) is connected for any geometric point x of X which is above a closed
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point of X. Then, for any overconvergent isocrystal M on (X,X)/K, the
natural morphism
g Ho(X, X)/K, M) — H}

rig

(Y,Y)/K,g"M)
18 bijective.

Proor. We may assume that g is proper surjective and g~ *(X) =Y.
The problem is local on X and X by Cech spectral sequence (Proposition
2.5). Hence we may assume that X is of finite type over Speck. Let
g.: Y, —Xbea Cech hypercovering associated to the proper surjective
morphism 7 :Y — X and put Y, =g, (X) with the structure morphism
e : Yy — X.

Applying the spectral sequence to the hypercovering (Y,,Y,) — (X,X)
(Theorem 2.7), we have

d%

HW (X, X)/K, M) = ker(Hp, (Yo, Yo) /K, Mo) = Hy,((Y1,Y1)/K, M)

rig rig

where pr;:Y; — Yo=Y is the i-th projection for i=0,1 and
d® = prj — pr;. In order to obtain a desired natural identification, we
need d° = 0. Hence, it is sufficient to prove that the morphism

A H?.ig((Yl,Yﬁ/K,Ml) — H?.ig((Y,Y)/KJ*M)

induced by the diagonal 4: Y — Y is injective because pr, o 4 = pr; o 4.

Let s € Hy, (Y1, Y1)/K, M)) be a horizontal section of M; on ]Y [ such
that 4*(s) = 0. Then s determines a homomorphism 7 : j'Y1 (’)]?1[ — M, as
overconvergent isocristals on (Y1,Y;)/K by Theorem 2.13. Since the ca-
tegory of overconvergent isocrystals is Abelian [6, Corollaire 2.2.10], the
kernel ker(#) of 7 is an overconvergent subisocrystal of j;l (9]?1[. In order to
prove s = 0, it is sufficient to prove the rank of the restriction ker(;)|,y ; of
ker(n) on (Y7, Y1)/K is always 1 on Y; since the restriction functor from the
category of convergent isocrystals on (Y1,71)/K to the category of over-
convergent isocrystals on (Y7, Y;)/K is faithful [6, Corollaire 2.2.9]. Since
the canonical morphism Y, ; — Y1, where k is an algebraic closure of &, is
surjective, we have only to prove the assertion in the case where k is al-
gebraically closed.

Let x be a closed point of X, and Y, (resp. Y1,) the fiber of g: Y — X
(resp. g1 : Y1 — X) at x. Since the intersection Y7, N A(Y) is nonempty, the
rank of ker(i)|yy, 4 18 1 by the hypothesis of s. Since Y, is connected, so
is also Y7, and 4(Y) meets any connected component of Y;. Hence the rank
of ker(n)|y,; is 1 on Y7 by Proposition 3.5. This completes a proof. O
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4. Proof of Theorem 1.1 (2)

4.1 — The case of proper coverings with geometrically connected fibers

Let us fix the situation in this and the next sections, 4.1 and 4.2. Let
UcXcX be a sequence of open immersions of separated integral
schemes of finite type over Speck with Z = X \ U (U might be empty in
section 4.1), and g : Y — X a proper and surjective morphism of integral
schemes over Speck, Y,V and W and the inverse images of X, U and Z in
Y, respectively. We denote the structure morphism by ¢:Y — X. Let
g.: Y, — X be a Cech hypercovering induced from the proper surjective
morphism g : Y — X, and Y,, (resp. V., resp. W,) the inverse image of X
(resp. U, resp. Z) in Y, by g, and denote the structure morphism by
ge : Yo — X. Consider a spectral sequence

EY = Hyw, (Yy, Y) /K, M) = Hi' (X, X)/K, M)

with respect to the proper hypercovering (Y,,Y,) — (X, X) in Theorem 2.7.

PROPOSITION 4.1. Suppose that each geometric fiber g~ '(z) is con-
nected for any geometric point x of X which is above a closed point of X.
Then E° = EV" and E%° = B =0 for any ¢ > 1. In particular, the
natural morphism g* Hrl,igz((X X)/K,M) — H1 i (Y, Y)/K,g*M) is in-
jective. Mm”eover if furthermore H, lgW((Y Y) /K, g* M) = 0, then we have a
vanishing H, Z((X X)/K, M) = 0.

Proor. What we want is to prove that the edge homomorphism

B’ = HYyy, (T KM 5 IO B (¥ T y) K M)

1] rlgW +1
is 0 if q is even and is bijective if q is odd. Note that

q.0 * * q+1. ..
di” =DPrg. gqn ~Plog.gqn T (=D Pross o

where pr, : Y .1 — Y, is the ?-th projection for ? = (1,2,---,¢,q¢ + 1), -,
0,1,2,---,q). Since the natural commutative diagram

0 — Higw, ((Ya, Y )/ K, My) - HY((Ye,Yq)/ K, M) — HY ((Ve,Y o)/ K, M)
d'l"“ l 11('\?‘), l d’,’.‘f:
0 — Higw,,, ((Yor1,Yes1)/K,Mg1) —  Hpg((Yos1,Ye41)/ K, Mas1) = Hpg((Vas1, Y q1)/ K, Mgs1)

arising fiom the spectral sequences of rigid cohomology groups on LX .X)
and (U, X) with respect to the proper hypercoverings (Y,, Y,) — (X, X) and
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(V.,Y.) — (U, X) has exact horizontal rows, it is sufficient to prove that dgfol
and d?, 01 are 0-maps if ¢ is even and are bijective if ¢ is odd. If one denotes by
4,:Y — Y, (vesp. 4;11:Y — Ygu1) the diagonal morphism, one has
pr, o dgy1 = A, for any ?. Since g:Y — X is proper with a connected
fiber at any geometric point above a closed point of X by our hypothesis,
so are gq : Yy — X and gg41 : Y441 — X. Hence, by applying Theorem 3.6,
both 47 and 4y, are Dbijective, all pr;: HY (g, Y)/K,M,) —
H ((Y +1 Y, g+1) /K M ¢+1) for 7 coincide with each other and are bijective.
It implies that dgf’ 1 isa0-map if ¢ is even and is bijective if ¢ is odd. The same
holds for d‘{] 1- This completes a proof. O

4.2 — The case of finite coverings
Keep the notation as in the previous section 4.1.

PRroOPOSITION 4.2. Suppose that U is not empty, X is geometrically
mntegral, the function field k(Y) of Y is a finite separable extension of the
Junction field k(X) of X, and Y is the integral closure of X in k(Y). If X is
geometrically unibranch, then Ef Hngw ((Yg, q) /K, M,) =0 for any
q > 0. In particular, the natural homomorphism

Hl}igZ((X7 Y)/I(a M) - Hﬁlgﬂ/((x ?)/K7 g*M)

1s njective. Moreover, if furthermore H gW((Y Y)/K g*M) =0, then we
have a vanishing Hngz((X X)/K M) =

Proposition 4.2 above follows from Theorem 1.1 (1) and Lemma 4.3
below.

LEmmA 4.3. 'V, is dense in Y,

LEMMA 4.4. Let Y’ be the mtegml closure of X in lc(Y)®1~<X>q+1 for a
nonnegative integer q, whm‘e E(Y)%r® " is a tensor product of ¢ + 1 copies
of k(Y) over k(X). Then the natural morphism hy Y(; — Y, is surjective.

PROOF OF LEMMA 4.3 ASSUMING LEMMA 4.4, Since &(Y)“«®7"! is a finite
direct product of finite separable extensions of k(X), Y(; is a finite disjoint
union of integral closures of X in some finite separable extensions of k(X).
Hence, if V7 is the inverse image of the nonempty U in Y, the topological
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closure V’ dof Vé in Y(; is Y’ itself. Since hq(V’ C1) is included in the topo-
loglcal closure h (V’)Cl of h (V’) in Y, and A, is surjective by Lemma 4.4,
Vo =hy(V') is dense inY,. O

Proor or LEMMA4.4. First we reduce the assertion to the case where k
is algebraically closed and X is normal. Let k be an algebraic closure of k.
Consider a natural commutative diagram

Yy = Y

l L

Y;; — Y:1~ A ((va)nur)q+l
l l l

b = Xf 2T (XE)nor

where Y’ is the integral closure of X7 in the tensor product lc(Y)‘@MX)q+1 of

q+1 coples of k(Y) over k(X) and (04 )mr)q+1 is a fiber product of ¢ + 1
copies of (Y)nor over (Xp)yor- Remember that X is geometrically integral
and k(Y)is a finite separable extension over k(X) by our hypothesis. Hence

(resp k(y)%xﬂ“) is a finite disjoint union of integral schemes such that
each component is isomorphie to each other (resp. a disjoint sum of finite
separable extensions over kX~ k) such that each direct summand is iso-
morphic to each other).

LemMa 4.5.  The morphism ((Yﬁ)nor)q+1 — Yq.E wn the diagram above is
surjective.

ProoF. Let yo,¥1,---,¥, be points in Y such that all yo,1,---, 9,
go to x in X; by Y; — X;. Since X; and Y; are again geometrically
unibranch [19, IV, Propositions 6.15.6, 6.15.7], there exist unique points
Yoo > Yg € Ynor and a' € (Xp)nor such that yg, -+, y; and o’ are above
Yo, -, Yq and , respectively. The uniqueness implies that all yg, -,y
go to &' by (Ypnor — (Xpnor- Hence, we have the surjectivity. O

Since Yq— — Y, is faithfully flat, it is surjective. In order to prove the
surjectivity of h, Y — Y,, we have only to prove the surjectivity of
(Y k) — (Y3 )m)q+ Hence we may assume that & is algebraically closed
and X is nor'mal

For a scheme S of finite type over Speck, denote by S the set of closed
points of S. Then the residue field of s € Sy is k because k is algebraically
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closed. Since a finite morphism is closed, we have hq((Yé)O) C (Yg). We
have only to show hq((Yé)O) = (Yy)o since the subset of closed points is
dense in the case of schemes of finite type over a field. The claim
hq((Yé)g) = (Yy)o and hence Lemma 4.4 follow from the lemma below. [

LEMMA 4.6.  Let (A, m) be a normal local domain with a fraction field
E such that k= A/m is algebraically closed, F' a finite separable ex-
tension of E, and B the integral closure of A in F. For a nonnegative
integer q, let B®A%™1 be a tensor product of q+ 1 copies of B over A,
Foettl g tensor product of q+1 copies of F over E, C, the integral
closure of A in F®s0*1 and h:SpecC, — Spec B®49*1 the structure
morphism induced by the natural A-algebra homomorphism B#a4+! —
F2e01 Then h((Spee Cy)p) = (Spec B¥47T1),,

Proor. Let F” be a Galois closure of the finite separable extension
F/E, B' the integral closure of A in F”, and C;, the integral closure of A in
(F")®#9*+1 Consider the natural commutative diagram

SI)CC (v{/[ - S[)CC (B/) ®aq+1
! !
SpecC, — Spec B®44t1,

Since the natural morphism Spec B’ — Spec B is surjective and since the
surjectivity is preserved by any base change, it is sufficient to prove the
assertion for the morphism Spec €, — Spec (B’ )®49*1 Hence we may as-
sume that the extension F'/E is Galois.

Suppose that the extension of F'/E is Galois with Galois group G. Then B
is stable under the action of G. Let 11y = 11, 1o, - - - , n,- be all maximal ideals of
B. Then mt = n; N A for any ¢ and (Spec B)y = {e(11) | ¢ € G} [24, Theorem

r

4.7.7]. Since B/mB is a finite k-algebra, we have (B/mB),eq = [[ B/n;. The

i1
surjectivity ((B/mB)yeq)™ ™ — (B/mB)* ™), 4 implies that B#¢+! has
exactly 77! maximal ideals. Moreover, any maximal ideal of B®44*! is gen-

q

erated by " 1(g;(1n)) for some oy, ---,0, € G, Where 1; : B — B®47* lis an
j=0

inclusion into j-th component of the tensor product. Say 1,, ..., to be the

q
maximal ideal generated by » 1;(g;(1)).
=0
Since F/E is Galois, we have F®r?*'= [ F, , where
PrrPg€G
F),..p, = F and the identification onto the (py,- -, pq)—cqomponent is given
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by F®ratl Fpp, @@a1®- @ag— aopl‘l(al) . ~p;l(aq)). Then

Co= Il By, where B/,l,, =B in F) ..,. Let o), ., be a
pl"”queG
maximal ideal of C; corresponding to the maximal ideal a(11) of (py, - - - s Pg)-

component B, .., =B, then (Spec Cy)y = {a(q)ph...,pq |o,p1,- -, pg € G}
If we denote the (py,---,p,)-component of h# : B9t — C, by
hjiﬁpq : B®agtl B,,...p,» then we have

(hi Py ) (U(n)/;l ) = Nopio,p,0

Therefore, h((Spec Cy)y) = (Spec B¥4171),. O

4.3 — First reduction

Let us start to prove Theorem 1.1 (2). Let us take an open covering
{Y;},., of X over Speck by a totally order set A such that Y, is separated
of finite type over Speck, and consider a Cech spectral sequence associated
to the covering as in Proposition 2.5. Since the hypotheses (i) - (iii) in
Theorem 1.1 (2) is local conditions, each (U NYj,..;, .Y}, ., ) satisfies the
hypotheses (i) - (iii) if Y},..;, # (0. Hence, Theorem 1. 1 eY) 1mphes qu =0
for any q. In order to prove H,((X,X)/K,M) = 0, it is sufficient to prove
E?’l = 0. Therefore, we may assume that X is separated of finite type over
Speck and X is dense in X.

Let X = U;, X, be the irreducible decomposition over Speck. If one
puts X; = X NX,, then X; # 0 for all # and X = U; X, is the irreducible
decomposition since X is dense in X. Replacing k by a finite extension, we
may assume that all irreducible components are geometrically irreducible
by Proposition 2.2 and [19, IV, Proposition 6.15.7] (the stability of the
condition (iii) by extension of base fields). Consider the Mayer-Vietoris
spectral sequence in Proposition 2.6 which is associated to the irreducible
decomposition. By our hypothesis (ii) Theorem 1.1 (1) implies Ei’o =0.In
order to prove H rig Z((X X)/K,M) =0, it is sufficient to prove EO L_o.
Hence we may assume that X is geometrlcally irreducible. Note that the
rigid cohomology is determined only by the reduced structures. Therefore,
we may assume that X is geometrically integral, U is nonempty, and X is
geometrically unibranch.

REMARK 4.7. If X is separated of finite type over Spec k, one can relax
the hypothesis (ii) of Theorem 1.1 (2) to the hypothesis:
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(iiy U;, has a nonempty intersection with each connected component
of X; , if X, , # 0.

Because the “of finite type” hypothesis is required to apply the Mayer-
Vietoris spectral sequence (Proposition 2.6).

4.4 — Applying alteration

Let us continue the proof of Theorem 1.1 (2). Since we may replace the
base field k by a suitable finite extension by Proposition 2.2 and the sta-
bility of geometrical unibranchness by extension of base fields [19, IV,
Proposition 6.15.7], we may assume that there is a proper surjective and
generically etale morphism g : Y — X over Speck such that Y is geome-
trically integral and smooth over Speck by Theorem 2.15.

By applying the Stein factorization to g:Y — X [18, III, 4.3], the
morphism g is a composite of two morphisms

g: Y-Y - X
such that
B (i) Y is the integral closure of X in the function field k(Y) such that

Y — X is finite [/24, Theorem 4.7.7] and generically etale;
(ii) Y — Y is proper birational.

We denote by Y', V' and W’ (resp. Y,V and W) the inverse images of
X,U and Z in Y (vesp. Y), respectively, and by ¢':Y’ — X and
¢ : Y — X the structure morphisms. Since Y is smooth and V is dense in
Y, we have Hll.igW((Y, Y)/K,g*M) = 0 by Theorem 2.9. Since any geo-
metric fiber of Y — Y’ is connected by Zariski’s main theorem [18, III,
Théoréme 4.3.1], we have Hll,igW,((Y’,Y/)/K, (¢)*M) =0 by Proposition
4.1. Finally, applying Proposition 4.2, we have the desired vanishing
H}igz((X,)_()/K,M) =0.

This completes a proof of Theorem 1.1 (2). d

5. Comparison for universal homeomorphisms

5.1 — Resolution by proper hypercoverings

In this section 5.1 the base scheme S is locally Noetherian. Let X and
Y be separated schemes locally of finite type over S, ¢g: Y — X a uni-
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versal homeomorphism of finite type, g : Yo — X the Cech hypercover-
ing induced from the proper morphism g : ¥ — X, C(Y), (resp. D(Y)..) a
simplicial scheme (resp. a bi-simplicial scheme) such that C(Y), =Y for
any ¢ (resp. D(Y),, =Y for any ¢ and r) and any face map (resp. any
degeneracy map) is the identity map idy. In other words, C(Y), (resp.
D(Y),.) is the constant simplicial (resp. bi-simplicial) scheme. Since the
diagram

i(ly

where 4, and 4, are the diagonal morphisms, is commutative for any face or
degeneracy map 7, the first projection

D(¥)e — Y.

is a morphism as a bi-simplicial object over a simplical scheme over S,
that is,

D(Y)ge —= D(Y)re
| !

is a morphism of simplicial schemes for any morphism # : Y, — Y, in the
standard simplicial category.

PROPOSITION 5.1. With the notation as above, the diagonal closed
mmmersion 4, : Y — Y, is surjective. In particular, D(Y),. — Yq is a Cech
hypercovering associated to the proper surjective morphism Y — Y, for
any q.

Proor. By definition of universal homeomorphisms 4, is a homeo-
morphism by induction on gq. Since 4, is a closed immersion, the fiber
product of finite copies of Y over Y, is isomophic to Y by the diagonal
morphism. Hence D(Y),, — Y, is a Cech hypercovering associated to
4,:Y =Y, O

By Proposition 5.1 we have a commutative diagram
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D(Y )ee
Wz Ny
(%) Ye C(Y)e
ge | l

of diagram of schemes over S, where D(Y),, — Y. (resp. D(Y),, — C(Y),)
is the first (resp. second) projection, such that all of D(Y),, —
Y, DY),, — C(X),,C(Y), —Y,and Y, — X are proper hypercoverings.

5.2 — Comparison theorem
Now we return to the case of characteristic p > 0. Let S be a separated
scheme locally of finite type over Speck, and © a separated formal scheme

locally of finite type over Spf V. Let

, Jy
Y N

4
gl 19
X — X

be a commutative diagram of separated scheme locally of finite type over S
with structure morphisms f : X — Sand % : Y — S such that both jx and jy
are open immersions, ¢ is of finite type, and g is proper on the Zariski
closure of Y in Y. When one is given X, X and Y, one can find Y if X is quasi-
compact by the compactification in [14, Theorem 4.1]. The definition of
overconvergent isocrystals on (X, X)/Sg and its relative rigid cohomology
is found in [18, section 10].

THEOREM 5.2. Supposethatg : Y — X is a universal homeomorphism.

(1) The nverse image functor g* from the category of overconvergent
isocrystals on (X,X)/Sk to the category of overconvergent isocrystals on
(Y,Y)/Sk gives an equivalence of categories. When V and © admit
compatible lifts o and oz of Frobenius, then the similar equivalence holds
for overconvergent F-isocrystals with respect to oz.

(2) The natural homomorphism

9" R'frigeeM — R'hyigz,.g"M
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between relative rigid cohomology s_heaves is an isomorphism for any
overconvergent isocrystal M on (X,X)/Sg. In particular, if S = Speck
and © = Spf'V, the natural homomorphism

9" Hy (X, X) /K, M) — Hyy (Y, Y) /K, g"M)

1,

s an isomorphism for any closed subscheme Z of X with W = g~ 1(Z).

In order to prove (1) of the theorem above we review Shiho’s proper
descent for overconvergent isocrystals [29, Proposition 7.3]. An over-
convergent isocrystal M, on Y..Y.) /©k is a collection of an over-
convergent isocrystal M, on (Y,,Y,)/Sk for all ¢ such that there is an
isomorphism u(y) : #*M, = M, for any morphism 5 : X, — X, in the
standard simplicial category which satisfies the conditions (i) u(én) =
umpn*(w(€)) and (i) u(iqu) = idMq. An overconvergent isocrystal on M,,
(resp. M,) on (D(Y)e,, D(Y),.)/Sg (resp. (C(Y),,C(Y),)/Sk) is also de-
fined similarly. Because the descent data [28, Section 5] is involved in the
conditions (i) and (ii). Hence, Shiho’s proper descent is as follows by Pro-
position 5.1.

THEOREM 5.3 [29, Proposition 7.3].  Both inverse image functors

overconvergent isocrystals overconvergent isocrystals
< on(X,X)/Cx > - < on(Y.,Y.)/Cx )
overconvergent isocrystals
( on(D(Y)ee, D(Y).a)/ Sk )

are equivalences of categories.

Shiho assumed that the hypercovering is a “strongly” Cech proper
hypercovering, that is, 5~1(X) = Y and g is proper and surjective. But one
can relax the hypothesis because the category of overconvergent iso-
crystals does not depend on the choice of compactifications. More pre-
cisely, if one takes another X " with a commutative diagram

T/
7 ,I\' Z L h
X

such that j% is an open immersion and /4 is proper, then the category of
. N\~ N\~
overconvergent isocrystals on (X,X)/©g and that on (X,X)/Sg are
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equivalent (resp. the natural homomorphism R'fig .M — R, I{ig BK*M/ of
relative rigid cohomology sheaves is an isomorphism, where M’ is the
inverse image of M and the direct image of ' means the one for (X ,)_(/)
over ©g) [6, Théoreme 2.3.5] [13, Proposition 10.2.11] (resp. [13, Proposi-
tion 10.5.3]).

Now we prove Theorem 5.2. Since the equivaleces of categories of
overconvergent isocrystals on (Y,Y)/Gg, (C(Y).,C(Y),)/Sk and
(D(Y)..,D(?),.)/ ©g is clear. Hence, the assertion (1) follows Theorem
5.3 and the commutativity of the diagram (x) in section 5.1. The
assertion (2) follows from the proper cohomological descent of rigid
cohomology [32, Theorem 2.1.3] and the above remark of the in-
dependence of the choices of compactifications. For the rigid coho-
mology with supports, the excision sequence in Proposition 2.4 is also
applied. O

REMARK 5.4. One can prove the comparison as above by this method
(see [16, IX, Théoréme 4.10]) in any reasonable cohomology theory fur-
nishing the expected properties including proper descent of sheaves and
proper cohomological descent, for example, Betti cohomology, etale co-
homology and so on.

6. Application to Frobenius eigenvalues

Let K be a finite extension of the field Q, of p-adic numbers with
residue field k¥ of p® elements. Suppose that K admits a Frobenius
endomorphism o, i.e., a continuous lift of the absolute Frobenius en-
domorphism a+— aP on k such that the s-th iteration ¢° of ¢ is the
identity on K. We fix an isomorphism between an algebraic closure K
of K and the field C of complex numbers. For integers w; < we, [w1,ws]
denotes the set of integers w with w; < w < we.

Let V be a K-vector space of finite dimension with a K-linear bijective
endomorphism @ :V — V. We say that (V,®) is mixed of weights in
[w;, wz] for some integers w; < wy if, for any eigenvalue o of @, (i) « is an
algebraic number and (i) there is an integer w € [w;,ws] such that the
complex absolute values of all conjugations of o over Q are p**/2. We say
that (V, @) is pure of weight w if (V, @) is mixed of weights in [w, w].

Let X be a separated scheme of finite type over Speck, H ;fig(X /K) the r-
th rigid cohomology group for the unit overconvergent isocrystal j&(’)ﬁ[

where X is a compactification of X over Speck. Let F: H},(X/K) —
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Hlfig(X /K) be the Frobenius endomorphism which is induced by the ab-
solute Frobenius on X. Then H;"ig(X /K) is a finite dimensional K-vector
space and F' is a o-linear bijective endomorphism [32, Theorem 5.1.1]. The
s-th iteration F** of F' is K-linear.

THEOREM 6.1 ([11] Theorem 1.2 for proper cases and Section 2 for open
cases). Suppose that X is smooth and purely of dimension d over Spec k.
Then (H Qg(X /K), F®) is mixed of weights in [r, min{2r, 2d}]. Moreover, if X
is proper over Speck, then (Hy,(X/K),F*) is pure of weight r.

For a general X we do not know even the vanishing of usual rigid
cohomology group Hy, (X/K) for r>2dimX. We only know that
H;‘ig(X /K) = 0 for sufficient large » [33, Proposition 6.4.1]. Note that the
weights for rigid cohomology with compact supports was already studied
in [25, Theorem 15.11].

THEOREM 6.2 [32, Corollary 5.2.3 for proper cases]. If X is of dimen-
ston <d, then (H;Zig(X /K), F*¥) is mixed of weights in [0, min{2r,2d}].
Moreover, if X is proper over Speck, then (Hf,‘ig(X /K), F*) is mixed of
weights in [0, 7].

PrOOF. One can construct a proper hypercovering Y, — X (resp. when
X is proper over Speck) such that each Y, is smooth (resp. proper smooth)
over Speck of dimension < d and one has a spectral sequence
BT = H,(Yy/K) = HZ;;(X/K)
in Theorem 2.7 (see [33, Theorem 7.1.2]). The assertion follows from The-
orem 6.1. O

In geometrically unibranch cases the weights of Frobenius in the first
rigid cohomology is close to that for smooth cases.

THEOREM 6.3. Suppose that X is geometrically unibranch. Then
(H%ig(X /K), F*) is mixed of weights in [1,2]. Moreover, if X is proper over
Speck, then (Hll.ig(X /K), F*¥) is pure of weight 1.

In the next lemma the base field k is arbitrary of characteristic p > 0.

LEmMMA 6.4. Letg: Y — X be a proper surjective morphism of schemes
separated of finite type over Speck. Suppose that X is geometrically uni-
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branch. Then the natural homomorphism

g H. (X/K)— H:

rig rig

Y/K)
18 1mjective.

We will give an example which tells us the natural homomorphism
g Hrlig(X/K) — H%ig(Y/K) is not bijective in Example 7.2.

Proor oF LEMMA 6.4. Note that we may replace the base field k by a
finite extension of k by Proposition 2.2. Let X be a compactification of X
over Speck. Since X is geometrically unibranch, one can deal with the
problem on each irreducible component of X. Hence, we may assume that
X is geometrically integral.

Taking the reduced closed subscheme of an irreducible component of
Y, we may assume that Y is also integral by Propositions 2.2 and 2.6. By
the functoriality of inverse images on rigid cohomology groups we may
assume that Y is normal and there exists a compactification Y of Y over
X such that Y is also a normal integral scheme by Nagata’s compactifi-
cation [22] [23]. Let

Y -Y X
be the Stein factorization of Y — X. Then Y is normal and is finite over X
. B4 X5 <7 . .
by the nol'r/nahty of Y,and Y — Y has a connected fleI/‘ at each geometric
point of Y. Put Y’ to be the inverse image of X in Y. If we consider a
spectral sequence

E" = H,

1 (Ye/K) = HL'(Y'/K),

rig

with respect to the Cech proper hypercovering Y. — Y’ associated to
Y — Y, then we have E% = Ego = 0 for ¢ > 1 by the proof of Proposition
4.1. Thus Hl}ig(Y’/K) is a subspace of Hl{ig(Y/K). Hence, we may assume
that Y — X is generically finite.

Since X is geometrically integral, there exists an open dense subscheme
of X which is smooth over Speck. By applying the existence of regular
alteration in Theorem 2.15, there is a proper surjective and generically
finite morphism Y’ — Y such that Y’ is smooth over Speck if we replace k
by a finite extension again. Hence we may assume that Y is smooth over
Spec k. Hence there exists an open dense affine subscheme U of X which is
smooth over Spec k such that the inverse image V of U in Y is finite and
flat. By comparing rigid cohomology with Monsky-Washnitzer cohomology
and using a retraction map of Monsky-Washnitzer cohomology with re-
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spect to the finite flat morphism V — U, the natural homomorphism

rlg(U /K) — Hlllg(V/K) is injective [7, Proposition 3.6].

If we put Z=X\U and W = Y \ V, then there is a natural commu-
tative diagram

]Illinz(l\'/]\') — H]'],, (X/K) — Hl‘l, (U/K)
l l )
H w(Y/K) — Hi(Y/K) — HL(V/K)
Wlth exact rows, and HL gZ(X /K) =0 by Theorem 1.1 (2). Therefore,
ng(X/K)*)Hl (Y/K) is injective. O

PrOOF OF THEOREM 6.3. By Theorem 2.15 there is a proper surjective
morphism ¢ : Y — X such that Y is smooth over Speck since k is perfect.
Hence the assertion follows from Theorem 6.1 and Lemma 6.4. O

7. Examples

7.1 — An example in non geometrically unibranch case

ExamMPLE 7.1 Let p be an odd prime number, K = Q,, k =17, and
o =idg, the Frobenius endomorphism. Let X =X be a plane curve
defined by xpa = a3 + a2y in the projective plane P} over Speck, where
Xo,%1,%e are homogeneous coordinates, and Z = [1 0:0] € X. Then
U=X\Z= Gy Let Y=Y be the normalization of X. Then Y is
isomorphic to the projective line and the inverse image W of Z in Y
consists of two distinet k-rational points s,¢. Hence X is not unibranch.

Using the Poincaré duality with respect to U [8, Théoréme 3.4] and the
excision sequence of rigid cohomology with compact support

0— Hflgc(U/K) — H?.ig(X/K) — mg(Z/K) — H},lgc(U/K) —

(see [7, Remark 3.9]), we have
KO0) ifr=0,1,
X/K)=<¢ K(—-1) ifr=2

0 otherwise.

rlg

Here K(a) means the a-th Tate twist of F-isocrystal on Speck/K, i.e.,
Frobenius acts by multiplying by p~*. By applying the excision sequence of
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rigid cohomology and by using the argument of weights, we have

K(0) ifr=1,
Hy,X/K)=q K(-DoK(-1) ifr=2
0 otherwise.

Let M be an extension of Ojx; by Ojx; which corresponds to a nontrivial
element of the image of H}, ,(X/K) — H};,(X/K). Then M is a convergent
isocrystal on X /K, which is not split on X /K, by Theorem 2.13. Since j;]M is
split on (U, X)/K, the natural restriction map

HY (X /K, M) — H,

rig

(U/K ji;M)
is not surjective. O

The reason why the proof of Theorem 1.1 (2) does not work in the case
above is as follows. By taking an irreducible decomposition, there is a
surjective closed immersion Y1 = Y[ (s,0)[[(¢,s) — Y1 =Y xx Y, where
Y is embedded diagonally into Y;. Hence, V1 =V xy V = U is not dense in
Y;. Moreover, there is a proper hypercovering Y, — X which is defined by

f’q:YH H a.

ae{s, 1

a#(s,8),(t, - t)
Hence, we have HiigZ(X/K) =E = E’;"o = K(0). One can also find an F-
isocrystal M on X /K such that M is not split on X/K and jEM is split on

(U,X)/K as an overconvergent F-isocrystal by Corollary 2.14.

7.2 — An example of a normal case of dimension 2

We give an example such that the restriction functor j;] from the ca-
tegory of overconvergent isocrystals on X/K to the category of over-
convergent isocrystals on U/K is not essentially surjective.

EXAMPLE 7.2 Let p be a prime number with p # 3, K = Q,, k = IV, and
o = idg, the Frobenius endomorphism. Let X = X be a surface defined by
x3 = wy22(x1 — x2) in the projective space ]Pz over Speck of dimension 3,
where xg, a1, 2,43 are homogeneous coordinates, Z=[1:0:0:0] € X,
and U= X \ Z. Then X is normal since X is a complete intersection with
the only singular point Z of codimension 2 by Serre’s criterion of normality
[19, IV, Théoréme 5.8.6].
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Let us take an open covering U = U; U Uy, where U; is defined by
x; # 0. Then U (resp. Uy) is a product of A} and E \ {P} (resp. E \ {Q}),
where A,lc is the affine line, ¥ is an elliptic curve defined by the homo-
geneous equation 23 = xy(x — y), and P; (resp. Ps) is a k-rational point
[0:1:0] (resp.[1:0: O]) of E. Moreover, U; N U, is a product of Ak and
E\ {P1,Ps}. Since H;, (U;/K) = rlg(E\ {P;}/K) =~ HL. (E) for i = 1,2

rlg g
and

oﬁHWmﬁm

rlg(E\ {P17P2}/K) _>K(— 1) — 0

is exact by the Kiinneth formula [8, Théoreme 3.2] and the excision se-
quence in Proposition 2.4, we have

KO ifr=0,
E/K) ifr=1
Hy UK — { B0 =1
K(-1) ifr=2
0 otherwise

by the Cech spectral sequence associated to the covering above in Propo-
sition 2.5. Using the Poincaré duality with respect to U [8, Théoréme 2.4]
and the excision sequence of rigid cohomology with compact support, we
have

K(0) ifr =0
0 ifr=1,
K(-1)  ifr=2
HgX/K) = HQE%X—D ifr =3,
K(-2)  ifr=4
0 otherwise.

Hence the natural restriction map
Hll,ig(X/K) — Hll,ig(U/K)

is not surjective. Since a nontrivial element of H. 1hg(U /K) corresponds to an
overconvergent connection on an extension of the unit object by the unit
object by Theorem 2.13, the restriction functor j}] is not essentially sur-
jective.

Let g: X — X be a desingularization obtained by a blowing up along
the reduced closed point Z. Then the exceptional divisor Z = §‘1(~Z) is
isomorphic to the elliptic curve E. Applying an excision sequence for X and
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U:X’\Z,we have
K(0) ifr=0,
H}ig(E/K) ifr=1,
K(-1)®oK(-1) ifr=2,

HyX/K) =47 .
Hrig(E’/K)( —-1) ifr=3,
K(-2) if r =4,
0 otherwise

by the weight reason. Indeed, H%ig(X /K)(Q) is generated by the cycle classes
corresponding to 7 and the strict transform 2’ (= ]P,lc) of X \ U;. Hence the
natural homomorphism g* : H},(X/K) — HL,(X/K) is not bijective. ~ [J

In etale cases A. Grothendieck’s purity, ni‘lg(X \ 2) =, ni‘lg(X ), holds
for a pair (X, Z) consisting of a locally complete intersection X and a closed
subscheme Z of codimension > 3 [17, X, Théoréme 3.4]. The case of the
second example does not satisfy the assumption of Grothendieck’s purity
theorem because Z is of codimension 2.

Acknowledgments. The author expresses his gratitude to Professor K.
Kato, who asked me the injectivity of the restriction map in rigid coho-
mology groups of degree 1. In the early first version of the paper the au-
thor studied normal varieties in our main theorem. However, Shiho poin-
ted out that the normality is not stable by an arbitrary base change of base
fields and the suitable condition is geometrically unibranch. The author
thanks Shiho for valuable suggestions and conversations. The author also
thanks the referee for reading the manuscript carefully and to suggesting
an improvement of Theorem 1.1 (1).

REFERENCES

[1] M. ARTIN - A. GROTHENDIECK - J. L. VERDIER, Theorie des topos et
cohomologie etale des schemas (SGAJ), Lecture Notes in Math., 269, 270,
and 305, Springer-Verlag, Heidelberg, 1972/3.

[2] F. BALDASSARRI - P. BERTHELOT, On Dwork cohomology for singular
hypersurfaces, Geometric aspects of Dwork theory. Vol. I, II, pp. 177-244,
Walter de Gruyter GmbH & Co. KG, Berlin, 2004.

[3] F. BALDASSARRI - B. CHIARELLOTTO, Algebraic versus rigid cohomology with
logarithmic coefficients, Barsotti Symposium in Algebraic Geometry, Per-
spect. Math., 15, Academic press, San Diego, CA (1994), pp. 11-50.



52 Nobuo Tsuzuki

[4] V. G. BERKOVICH, Integration of one-forms on p-adic analytic spaces, Annals
of Math. Studies 162, Princeton University Press, Princeton, NJ, 2007.

[5] P. BERTHELOT, Géométrie rigide et cohomologie des variétés algébriques de
caractéristique p, Introductions aux cohomologies p-adiques (Luminy, 1984).
Mém. Soc. Math. France (N.S.) No. 23, 3 (1986), pp. 7-32.

[6] P. BERTHELOT, Cohomologie rigide et cohomologie rigide a supports propres,
Premiere partie, preprint, 1996.

[7] P. BERTHELOT, Finitude et pureté cohomologique en cohomologie rigide, With
an appendix in English by Aise Johan de Jong. Invent. Math. 128, no. 2 (1997),
pp. 329-377.

[8] P. BERTHELOT, Dualité de Poincaré et formule de Kiinneth en cohomologie
rigide, C.R. Acad. Sc. Paris Sér. I Math. 325, no. 5 (1997), pp. 493—498.

[9] S.BoscH - U. GUNTZER - R. REMMERT, Non-archimedean analysis, Grundleh-
ren der Mathematischen Wissenschaften 261, Springer-Verlag, Berlin, 1984.

[10] D. CARro - N. Tsuzuki, Overholonomicity of overconvergent F-isocrystals over
smooth varieties, Annals of Math. 176, no. 2 (2012), pp. 747-813.

[11] B. CHIARELLOTTO - B. LE STUM, Sur la pureté de la cohomologie cristalline, C.
R. Acad. Sci. Paris Sér. I Math. 326, no. 8 (1998), pp. 961-963.

[12] B. CHIARELLOTTO - B. LE STUM, F-isocristaux unipotents, Compositio Math.
116, no. 8 (1999), pp. 81-110.

[13] B. CHIARELLOTTO - N. Tsuzuki, Cohomological descent of rigid cohomology
for étale coverings, Rend. Sem. Mat. Univ. Padova 109 (2003), pp. 63—215.

[14] B. CoNRAD, Deligne’s note on Nagata compactifications, J. Ramanujan Math.
Soc. 22, no. 3 (2007), pp. 205-257.

[15] R. ELKIK, Solutions d’équations & coefficients dans un anneau hensélien,
Ann. Sci. Ecole Norm. Sup. 6 (1973), pp. 553—-603.

[16] A. GROTHENDIECK, Revétements étale et groupe fondemental (SGA1), Lecture
Notes in Math. 224, Springer-Verlag, Heidelberg, 1971.

[17] A. GROTHENDIECK, Cohomologie locale des faisceaux coherents et theoremes
de Lefschetz locaux et globaux (SGA2), Augmenté d’un exposé par Michéle
Raynaud. Séminaire de Géométrie Algébrique du Bois-Marie, 1962. Advanced
Studies in Pure Mathematics, Vol. 2. North-Holland Publishing Co., Amster-
dam; Masson & Cie, Edlteur Paris, 1968.

[18] A. GROTHENDIECK - J. DIEUDONNE, Eléments de géométrie algébrique 111,
Etude cohomologique des faisceaux cohérents, Inst. Hautes Etudes Sci. Publ.
Math. 11 (1961), pp. 5-167; 17 (1963), pp. 5-91.

[19] A. GROTHENDIECK - J. DIEUDONNE, Eléments de géométrie algébrique 1V,
Etude locale des schémas et des morphismes de schémas, Inst. Hautes Etudes
Sci. Publ. Math. 20 (1964), pp. 5—259; 24 (1965), pp. 5-231; 32 (1967), pp. 5-361.

[20] A. J. DE JONG, Smoothness, semi-stability and alterations, Inst. Hautes
Etudes Sci. Publ. Math. 83 (1996), pp. 51-93.

[21] K. KEDLAYA, Semistable reduction for overconvergent F-isocrystals, I: Uni-
potence and logarithmic extensions, Compositio Math. 143, no. 5 (2007), pp.
1164-1212.

[22] M. NAGATA, Imbedding of an abstract variety in a complete variety, J. Math.
Kyoto, 2 (1962), pp. 1-10.

[23] M. NAGATA, A generalization of the imbedding problem of an abstract variety
m a complete variety, J. Math. Kyoto Univ. 3 (1963), pp. 89-102.



A Note on the First Rigid Cohomology Group etc. 53

[24] M. NAGATA, Flield theory, Monographs and textbooks in pure and applied
mathematies 40, Marcel Dekker Inc. New York and Basel, 1977.

[25] Y. NARKAJIMA, Weight filtration and slope filtration on the rigid cohomology
of a variety in characteristic p > 0, to appear in Mém. Soc. Math. France.

[26] A. Ocus, F-isocrystals and de Rham cohomology II — convergent isocrystals,
Duke Math. J. 51, no. 4 (1984), pp. 765—850.

[27] A. SHIHO, Crystalline fundamental groups. 11. Log convergent cohomology
and rigid cohomology, J. Math. Sci. Univ. Tokyo, 9, no. 1, (2002), pp. 1-163.

[28] A. SHIHO, Relative log convergent cohomology and relative rigid cohomology
I, preprint, 2007. http://arxiv.org/abs/0707.1742v2

[29] A. SHIHO, Relative log convergent cohomology and relative rigid cohomology
11, preprint, 2007. http://arxiv.org/abs/0707.1743v2

[30] N. Tsuzuki, On the Gysin isomorphism of rigid cohomology, Hiroshima
Math. J. 29, no. 3 (1999), pp. 479-527.

[31] N. Tsuzuki, Morphisms of F-isocrystals and the finite monodromy theorem
Sfor unit-root F-isocrystals, Duke Math. J. 111, no. 3 (2002), pp. 385-418.

[32] N. Tsuzuki, Cohomological descent of rigid cohomology for proper coverings,
Invent. Math. 151, no. 1 (2003), pp. 101-133.

[33] N. Tsuzuki, Cohomological descent in rigid cohomology, Geometric aspects
of Dwork theory. Vol. I, I1, pp. 931-981, Walter de Gruyter GmbH & Co. KG,
Berlin, 2004.

Manoscritto pervenuto in redazione 15 Novembre 2011.







<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 15%)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (Euroscale Coated v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.5
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends false
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Impact
    /LucidaConsole
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages true
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 150
  /MonoImageDepth 8
  /MonoImageDownsampleThreshold 2.66667
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /ENU (Use these settings to create PDF documents suitable for reliable viewing and printing of business documents. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /NOR <>
    /SVE <>
    /KOR <FEFFc5c5bb34c6a90020bb38c11cb97c0020ac80d1a0d558ace00020c778c1c4d558b2940020b3700020c801d569d55c00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c9002540875284e8e55464e1a65876863ff0c53ef4ee553ef9760573067e5770b548c6253537030028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
    /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef69069752865bc6aa28996548c521753705546696d65874ef63002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
    /ITA <>
  >>
>> setdistillerparams
<<
  /HWResolution [150 150]
  /PageSize [595.000 842.000]
>> setpagedevice


