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ABSTRACT - We study extension properties of Barsotti-Tate groups and we establish
diophantine inequalities involving heights of cycles with respect to logarith-
mically singular hermitian line bundles on arithmetic varieties. We apply these
results to bound heights of cycles on moduli spaces of abelian varieties, induced
by quotients of abelian varieties by levels of Barsotti-Tate subgroups, over
function fields over number fields. To achieve this aim, we combine our results
with an effective version of Rumely’s theorem on integral points on possibly
open arithmetic surfaces and with Faltings’ theorems on heights of abelian
varieties in isogeny classes.

1. Introduction

Let k be a field and A a g-dimensional abelian variety over k. For any
prime number [ different from the characteristic of k, the l-adic Tate
module is defined as

TA = lim A[I"1(%),
@

where A[n] denotes the n-torsion subgroup scheme of A and k an alge-
braic closure of k. It is well known that T}A is a free 7Z;-module of rank
2g. The action of the absolute Galois group G, := Gal(k/k) of k on the k-
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valued torsion points of A endows T;A with the structure of a Galois
module. Besides, the endomorphism ring End;(A) (consisting of the k-
endomorphisms of the abelian variety) is a torsion free Z-algebra of fi-
nite type. The Q-algebra End;(A) ®, Q is semi-simple (and conse-
quently, for any [ as above, the (Q;-algebra End;(4) @~ ; also), and the
action of End;(A) on T}A is compatible with the structure of G-module
on T)A.

THEOREM 1.1 (Tate’s conjecture for abelian varieties). Assume that k
1s finitely generated over its prime field. The following assertions hold:

a. TiA ®7, O is a semi-simple Qi Gyl-module;
b. the natural map

Endk(A) (2972 Zl — End’/,[[Gk](TlA)

18 an 1S0morphism.

Theorem 1.1 was proven by Tate himself when ¥ is a finite field [32], and
by Zarhin when k is a function field over a finite field [34, 35] (see also [22],
notably Chapter XII). Faltings established it in the number field case in his
famous article [12] (see also [13], [15], [30]). His result was extended to the
case of a field & finitely generated over Q in [15, Chap. VI] and [30, Exp. IX].
In all cases, the proof is based on the following proposition:

PRrOPOSITION 1.2 (Tate). Let A be an abelian variety over a field k. Let
[ be a prime number different from the characteristic of k. Suppose that A
satisfies the following property:

T(A/k) : for any l-divisible group {Gn}n20 with G, C A[l"], infinitely
many of the abelian varieties A/G, over k are isomorphic to each other.

Then

i. for every Q[Gyl-submodule W of T)A ®y, O, there exists u in
Endy(4) ®7, Q; such that w(T)A @7, Q) = W;
ii. Theorem 1.1 holds for the abelian variety A.

Proofs of T(A/k) have to deal with the difficulty of establishing fi-
niteness results for isomorphism classes of abelian varieties not endowed
with a polarization. A crucial contribution of Zarhin’s [35] has been to in-
troduce the so-called “Zarhin trick”, that allowed him to get rid of the (lack
of) polarization problems, and to establish the following result:



Semi-Abelian Schemes and Heights of Cycles in Moduli Spaces etc. 57

PRrOPOSITION 1.3 (Zarhin). Let k be a field, and | be a prime number
different from the characteristic of k.

Assume that, for every abelian variety A over k and any principal
polarization 1 over A (defined over kY, the following property is satisfied:

Z(A, Ak) : for any l-divisible group {G,},~, with G, a subgroup of
A[l"] lagrangian with respect to the Weil pairing attached to J, the quo-
tients A/G,, belong to a finite family of k-isomorphism classes.

Then Property T (A/k) and Theorem 1.1 hold for any abelion variety A
over k.

We refer to [32] and to [15, Chap. IV, Sec. 2] for discussions of the
reduction of the Tate conjecture to assertions 7 (A/k) and Z(A4, 1/k).

The method of Faltings for establishing Z(A, A/k) when k is a number
field combines results of Tate and Raynaud on Barsotti-Tate groups, and
some ideas from Arakelov geometry. If indeed K denotes a number field
and Oy its ring of integers, Faltings attaches some canonical height ~y(A)
to (the Néron model over Ok of) an abelian variety A over K. The Faltings
height is a counterpart of Zarhin’s geometric height used in [34], and a key
point in Faltings proof is a finiteness property a la Northcott for this
height [12, Sec. 3].

When £ is finitely generated over Q, the proof of Z(4,i/k) and of
Theorem 1.1 in [15, Chap. VI] and [30, Exp. IX] uses — besides Faltings
original arguments in the number field case — some results of Deligne
or Faltings concerning abelian schemes over varieties on fields of
characteristic zero ([8], [11]) that are established by Hodge theoretic
methods.

It is possible to avoid the use of Hodge theory in the proof of Z(A4, A/k)
when £ is finitely generated over some field k¢ by using Zarhin’s results on
bounded families of abelian schemes over (open dense subschemes) of a
normal projective scheme X over ky (here ky = Q, and ko(X) = k) in their
full strength version established by Moret-Bailly [22, Chap. XII] to show
that, with the notation used in Z(A4, 1/k) above, the quotients A /G, arise in
some bounded family. By considering the restrictions of these quotients to
suitable many closed points of X, and by using the validity of Z(4, A/k)
when k is a number field, one concludes to the finiteness of their iso-
morphism classes.

() Namely, such that the attached isogeny A — A from A to its dual abelian
variety is defined over k.
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In this note we sketch a variant to these diverse approaches to
Z(A,/k), in the situation where k is a function field of transcendence
degree 1 over Q. Our approach also avoids Hodge theoretic arguments, but
relies on higher-dimensional Arakelov geometry. It involves bounds on
heights of cycles in relevant moduli spaces, and consequently provides
some kind of “quantitative control” in the finiteness property asserted by
Z(A, A/k) or T(A/k), in the spirit of [30, Exp. VII, 4.4].

Actually our derivation of Z(A4, 1/k) provides us with an excuse to deal
with the following subjects, which constitute the core of the article:

1. extension properties of Barsotti-Tate subgroups of abelian sche-
mes with semi-stable reduction, over two dimensional regular
bases (section 2);

1. heights of cycles on arithmetic varieties, with respect to logarith-
mically singular hermitian line bundles (section 3). These heights
satisfy a Liouville type inequality (Theorem 3.2) and Northcott’s
finiteness property (Corollary 3.4);

111. a generalization to logarithmically singular hermitian line bundles
of a theorem of Zhang for heights of generie sequences of points in
arithmetic varieties (Theorem 3.5);

. atheorem of Rumely [29], and a refinement by Autissier [2], on the
existence of integral points on open arithmetic surfaces. This is
combined with the previous points and Faltings’ theorem [12] on
heights of quotients of an abelian scheme by the levels of a Barsotti-
Tate subgroup (section 4).

Most of our constructions might be extended to function fields of ar-
bitrary positive transcendence degree over (). For the sake of simplicity,
we have considered the case of transcendence degree 1 only. Observe also
that, by using the work of Zarhin and Moret-Bailly as discussed above, the
validity of Z(A, 1/k) when k is a function field of transcendence degree
larger than 1 over Q may be derived from its validity when & has tran-
scendence degree 1, combined with purely geometric arguments.

To our knowledge, the considerations in i—i1i, although not unexpected,
do not appear in the literature. The use made of them in v shows that they
may be of interest for diophantine geometry. More than the application to
the Tate conjecture over function fields, we believe that the interest of this
text lies in the tools we develop. We expect them to be useful in other
contexts. Finally, let us mention the related work of H. Tkoma [19], that
also avoids the use of complex Hodge theory by using instead the theory of
heights developed by Moriwaki [24].
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2. Barsotti-Tate subgroups of semi-abelian schemes

2.1. Let S denote a regular, integral and noetherian scheme of Krull
dimension 2. We denote its generic point by 7 and suppose its character-
istic to be 0. In the sequel, we fix a prime p and we deal with Barsotti-Tate
subgroups in the p-torsion of abelian schemes. Only basic notions con-
cerning Barsotti-Tate groups will be required. To shorten the exposition,
we refer the reader to Tate’s article [33] and Illusie’s exposé [30, Exp. VI]
for an introduction.

ProrosiTioN 2.1. Let .7 be a semi-abelian scheme over S with
abelian generic fiber A, and {G,},, a Barsotti-Tate subgroup of
A[p™). Assume that, for every n > 0, there exists a finite flat group
subscheme 7, C 4 such that G, C 7y ,. Then there exists a big open
subset U of S (namely an open subset U such that codim(S \ U) > 2) and
an integer m > 0 such that:

. Gy, extends to a finite flat group subscheme &y, C 2 p"y;
1. the Barsotti-Tate group defined by Hy = Gyyin /Gy extends to a
Barsotti-Tate group {7}, over U;
wi. let B =2/ G2 Then T, is a group subscheme of Z[p"] for
all n > 0.

REMARK 2.2. 1. Let m > 0 be such that the assertion of the proposi-
tion holds. We claim that for any m’ > m, the analogous assertion obtained
by replacing m by m/' is also true. For this, it is enough to show that G,
extends to a finite flat group subscheme of . Z;, for every n > 0. Define
& man to be the kernel of the isogeny

Ay — B — B K.

It is a quasi-finite flat subgroup of . Z|;; containing £, and such that the
quotient &, 1,/ m is isomorphic to .77,,. Because ¥, and .77, are finite
over S, we infer that ¥, ., is finite as well.

11. After possibly replacing U by a smaller big open subset, one can
suppose that all the groups G, extend to finite flat subgroups of .7y.

(®) The quotient is well defined because S is regular and .7 is generically
abelian. This ensures the existence of relatively ample line bundle . Z/S [27, Cor. XI
1.16], and hence the quotient by a finite flat subgroup is defined [SGA III, 5.4.1].
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Indeed, we already saw that this is true for all » > m. On the other hand,
the finitely many remaining groups G,, n < m, extend to finite flat sub-
groups of .7y, for some other big open subset U’. For this, recall that
Gy C Py and 7, is a finite flat subgroup of Z. Thus, replacing U by
U n U’, we obtain a big open subset for which the claim holds.

The purity lemma [14, Chap. V, Lemma 6.2] will be needed in the course
of the proof of Proposition 2.1. We quote it for the convenience of the
reader.

LEmmA 2.3.  Let R be a regular local ring of Krull dimension 2. Write
S = SpecR, n for the generic point of S, s for the closed point of S,
U=S8\{s}andj: U=S forthe open immersion. The functor j. defines
an equivalence between the categories of locally free sheaves of finite rank
over U and over S. Moreover it is compatible with tensor product.

REMARK 2.4. It is important to bring the reader’s attention to the
following subtlety: the functor j. does not preserve exact sequences. Ac-
tually, de Jong-Oort show in [18, Sec. 6] that it is possible to find a regular
local scheme S of dimension 2 and generic characteristic 0, finite flat group
schemes G, H over S and a morphism ¢ : G — H which is a closed im-
mersion over U =S\ {s} but not over S. In particular, the schematic
closure of G, in H is not flat over S.

PrOOF OF PrROPOSITION 2.1. By Remark 2.2 and by the noetherianity
hypothesis, we may assume that S = Spec R is affine. The proof is then
divided into several steps.

STEP 1. We observe that the group scheme G, can be extended to a
finite flat group scheme &, over S, and that there exists a big open subset
U, of S such that &, is a subgroup scheme of . Z|;;,. This is easily ob-
tained from finite flat closures along codimension 1 closed subsets and
Lemma 2.3.

STEP 2. The next point is an adaptation of Tate’s trick ([33], proof of
Proposition 12 and Lemma 2.5 below) to construct a candidate to the de-
sired Barsotti-Tate group from suitable quotients of the group schemes &,.

Let k,n > 0 be integers. The intersection V = U, N Uy, is a big open
subset of S. We have inclusions

Ty € Ty € Ay
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so there is a well-defined quotient & ,,y7/ <) y. This is a finite flat group
scheme over V. By Lemma 2.3 this group scheme uniquely extends to a
finite flat group scheme over S, to be denoted .77 *". If now V denotes
another small enough big open subset, then we have a map between well
defined quotients

yk+n+1 v p 'yikﬁ’n‘v
<{) (()
7 k+1|V 7 k|V

induced by multiplication by p, which is an isomorphism over the generic
point. By the purity lemma this morphism extends in a unique way to a
morphism of group schemes

kintl P o ken
T = e,

Remark that p is surjective. Indeed p is clearly finite and is dominant too,
because the involved groups are flat over S with reduced generic fiber
(recall that the characteristic of # is 0, so Cartier’s theorem applies to the
generic fibers, showing they are reduced). Furthermore, p is an iso-
morphism over the generic fiber. The conditions of Lemma 2.5 below (Ta-
te’s trick) are fulfilled: it follows that there exists an integer m > 1 such that
the morphism

k2 P okl
A1 — Ky,
is an isomorphism for & > m. Therefore, for every n > 0, the n-th compo-
sition
gyl LN '7?//’;1;4“1

m+n

is an isomorphism as well.
Define the finite flat group scheme over S

Ty = T,

m

The natural inclusions among the groups .7, restricted on suitable big
open subsets extend to a compatible system of morphisms

n+k . o o7
Iy, : .],//n — L75n+k.

Let us fix an integer n > 0. For some big open subset V of S (depending on
n) we have a chain of inclusions

Z1lvC . C i VE Ay .
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The following diagram commutes:

n

' 9, ’ P 9, /
77 — “m4n+1|V m+4+n+1|V __ ap
"///ll—}-ll" - T g 72 == ‘//Il+l|"

Im|V
lr.

],/HIA—II%—I = {//rn+n+l \"4 o ('4]m+]\\' - »//il‘

4 f y 7 Y773
”1""”“ (“;m +n|V '4111\\'

The morphism 7 is the natural projection. It follows from the diagram
that the kernel of multiplication by p" on .77, iy is the same as the
kernel of 7, namely .77,y. Furthermore we have a closed immersion
induced by p”

. '—%nJrl\V
Wy

— 7/1‘[]

We actually see that gy is an isomorphism. Indeed, uy is an isomor-
phism on the generic point #, so uy; is dominant. Let W be a big open
subset such that zﬁ“ s Hyw — H w18 a closed immersion. Up to
shrinking V we may assume that V C W. Then the isomorphism gy,
extends to an analogous isomorphism uyy, in a unique way, by the purity
Lemma 2.3.

STEP 3. We show that ¥, and {7,},., are the desired group
schemes, after restriction to a suitable big open subset of S.

Let U C S be a big open subset such that ., C .7y. To simplify the
notations, let us replace S by U. There is a well defined quotient semi-
abelian scheme .% = . 7/%,, over S. By definition, for every n, over some
big open subset V we have .7y C 7, v/ v This inclusion uniquely
extends to a morphism

Ton 'Vy)WH*’IZ

7 C .7,

I m
by the purity Lemma 2.3. Moreover, the relation &, = hy,1 0 /" 1 holds. In
particular, if 7, is a closed immersion over a big open subset W, then /1 is
a closed immersion over W,, as well.
Let us now choose a big open subset W,, such that #; and #,, are closed
immersions when restricted to W,,. We claim that %, 1w, is a closed im-
mersion as well. Indeed we have a commutative square
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123%%
H =

ntbl Wy o
B, AW
liln +1 (hl
i/
Bw p" .
|Wn '/ﬁ .
'//n Wn 7 |H "

It follows that the arrow l~zn+1 is a closed immersion. We thus have a well

defined quotient semi-abelian scheme
(/7' _ '%)‘mz/'ygﬂf‘wn
&4 n — - - ~

Im Ay

and a natural isogeny

q: Bw, — .

By construction and uniqueness of extensions over S, the kernel of the
isogeny g is a finite flat group subscheme of .7y, isomorphic to .7, 1w, ,
and the morphism %, is a closed immersion over W,.

Let us finally fix a big open subset U of S such that %, is a closed im-
mersion over U. Then the preceding argument shows that %, is a closed
immersion for all n. Furthermore we have isomorphisms

iU ~
Hy ]/n\U 1)U

induced by multiplication by p”. We conclude that the family {7},
constitutes a Barsotti-Tate group contained in .%|;. This completes the
proof. |

LEmMA 2.5 (Tate’s trick). Let S be a normal, integral and noetherian
affine scheme S = Spec R, of generic characteristic 0. Let {Xi},.~, be a
family of finite flat schemes over S, with reduced generic fibers, endowed
with surjective morphisms ny, : Xj1 — Xj, that become isomorphisms over
the generic point of S. Then there exists an integer m > 1 such that my, is an
isomorphism for every k > m.

Proor. First of all, we may assume that the schemes Xj are non-
empty. Indeed, in the empty case the conclusion trivially holds. Let Dy, # 0
be the affine R-algebra of Xj. If F' is the fraction field of R, all the F-al-
gebras Dj, ®g F can be identified to a fixed finite F-algebra D, for instance
D, ®g F. This s so because 7 is an isomorphism over the generic point 7 for
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all £ > 1. Observe that D is a separable F-algebra, because it is reduced by
assumption and F' has characteristic 0. The maps 7y, are surjective and the
schemes Xj, are flat, so the Dy, form an increasing sequence of rings. The R-
algebra Dy, contains R as a subring, since X}, is flat over S and non-empty.
By definition F' - D, = D. The finiteness condition says that Dy, is integral
over R. Hence the ring

r=\JD:

is anintegral extension of R with F' - I' = D. Therefore, I" is contained in the
integral closure of R in the separable F-algebra D. Since R is noetherian
and integrally closed, it follows that I is a noetherian R-submodule of D.
Consequently, the increasing sequence D;, of subrings of I” stabilizes. Let
m > 0 be an integer such that D, = Dy for all kK > m. Then 7y, is an iso-
morphism for k > m. O

REMARK 2.6. 4. The assumption that the schemes X are reduced
cannot be dropped in the preceding statement. Otherwise, one can con-
struct a counterexample. For instance, let us consider a strictly increasing
infinite sequence of free R-modules of finite constant rank r,

EiSEG . ...
Define finite R-algebras Dy, by
D, =R@E);, witha® =0 for x € Ej.

The schemes X;, = Spec D;, are not reduced but satisfy all the other hy-
potheses of the lemma. By construction, the conclusion of the lemma is not
satisfied: the sequence {D;}, does not stabilize.

11. As we already recalled in the proof of Proposition 2.1, when the
schemes X, are finite flat group schemes over S, they are automatically
reduced over the generic fiber. This is the case since the generic char-
acteristic of S is 0, and due to Cartier’s theorem: a finite group scheme over
a field of characteristic 0 is always reduced. Therefore, in this situation
Lemma 2.5 applies.

2.2. We now discuss an application of Proposition 2.1 to the following
particular setting. Let S be a local, henselian and integral scheme of di-
mension 2, whose closed and generic points we denote y and # respectively.
Let U = S\ {y} be the unique strict big open subset of S. Consider a semi-
abelian scheme ..Z — S with abelian generic fiber A. We can decompose



Semi-Abelian Schemes and Heights of Cycles in Moduli Spaces etc. 65

the quasi-finite flat groups . Z[p"] over S as
Ap"] = A p"1U Ly,

where ﬁ,’f}gn] is the maximal finite subgroup and L,, has an empty special
fiber [22, Chap. IV, Sec. 1]. These are open and closed flat subschemes of
A p"]. Moreover this construction is functorial in S, with respect to
morphisms of local henselian schemes.

Suppose in addition that S is noetherian, complete (hence excellent),
and regular (hence normal), of generic characteristic 0, and that a Barsotti-
Tate subgroup {G,}, of A[p>]is given. The groups G, extend to quasi-
finite flat closed subgroups ., C.7Z[p"]y over U, with inclusions
&'y C Zpi1. We will be concerned with the pull-back of 5, to the generic
points of morphisms f : T — S, where T is a trait.> In other words, if x is
the generic point of T and f (1) € U, then we can define the pull-back ¢, ,

of &, to w. This extends to a quasi-finite flat subgroup scheme of the base
changed semi-abelian scheme . Zp. Let it be &, r. Therefore we can take
the finite part

/an/[]O"]T /wT

We are interested in the behavior of the family {%, Thye

PROPOSITION 2.7. There exist a finite sequence of blow-ups S — S
(centered over the closed point), a big open subset V of S and a positive
integer ny > 1 such that, for every morphism f:T — S, where T is a
trait, which factors through V and sends the generic point €T to U,
the quotients g ety T/ - < mr define a Barsotti-Tate subgroup of
A 5?,,“;. The conclusion remains true if one replaces ny by a larger
integer.

Proor. We first define the finite part of /&, over U. It is the finite flat
closed subgroup of .-Z[p"]; defined by

Tu= G0 APy

This family may not constitute a Barsotti-Tate group. However there is a

(®) We define a trait (in a non-standard manner) as a 1-dimensional, local,
henselian, regular and noetherian scheme.
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sequence of closed immersions

7 7 _

Ty P Tuyg P P =
n+ly L nn < RSN '%117-

((/ )

22
7 nn u{nfl,q

Because & 1,,is anoetherian scheme, this sequence stabilizes at some point.
Therefore, for some integer ny, the groups {Q,, := SC;LHLO,” / f;”m,,}% form a
Barsotti-Tate group. Observe these groups extend to closed subgroups of
the quotient semi-abelian scheme . Z;; /%, but they may not extend over
S. By a variant of Gabber s lemma [18, Thm 2.1, Rmk. 2.2], there exists a
sequence of blow-ups S — S centered over the closed point y such that
Ay S, extends to a semi-abelian scheme .7 — S.* We can and (for later
purposes) we will assume that we have effected at least one blow-up. Re-
mark that the base S is still regular, integral and noetherian of dimension 2
and generic characteristic 0. By a theorem of Raynaud [27, p.130], [14,
Chap. I, Prop. 2.7], the natural commutative diagram of isogenies

,(4[-

N

.ﬂ(~ S 7o) |l
extends over S.” The kernel of the extended isogeny . 73 — . is a quasi-
finite flat closed subgroup of'. A p" [p]s, hence finite. It is an extension of .77,
over S anNd we use the same notation for it. Thus, we can write
B = Ay Gy, Observe now that

/n+ng 1 %[pn-wo]
Qw = 2 = (/ )
7 o, 7 ng

and the last quotient is a finite flat subgroup of .. Hence Proposition 2.1
applies to the semi-abelian scheme .77 and the Barsotti-Tate subgroup
{Qu},, of #[p>],. Namely, there exists a big open subset V of S and an
integer m > 0 such that Q,, extends to a finite flat subgroup <, of %y, the
quotients @y 4n /@y extend to finite flat subgroups .7, of . %y /<, and the
sequence {7, }, defines a Barsotti-Tate group.

(*) In this version of Gabber’s lemma, it is only required that S be quasi-
compact, excellent, reduced and normal. This is satsified under our assumptions.
(®) For Raynaud’s theorem we only need normality of S.
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Let now f : T — S be as in the statement, with V given by the pre-
ceding construction. Because the generic point x is sent into U, we can
pull-back &, over U to the generic point. By the functoriality of the
finite part construction with respect to morphisms of local henselian
schemes, this coincides with the previously constructed f:/’n‘,ﬂ. Further-
more, because f factors through V, the preceding discussion for the
quotients @Q,../Q. shows that, putting n; =mno+m, the family
{f:/’thT/ fj//‘m‘T} defines a Barsotti-Tate subgroup of ,/ZT/.‘:/;%T.G We
stress the important fact that the index n; does not depend on the
morphism f.

For the last claim of the proposition, we refer to Remark 2.2. O

REMARK 2.8. It follows from the proof that we may suppose that the
sequence of blow-ups S — S is non-trivial: namely, it consists of at least one
blow-up.

CONSTRUCTION 2.9. Let us place ourselves under the assumptions of
Proposition 2.7. We consider a particular class of morphisms f : T — S,
obtained as follows. Recall we assumed that S is obtained after at least one
blow-up. Therefore we have a decomposition

S ilu(ﬁ')
S

where B, (S) is the blow-up of S along y. The image in Bl,(S) of the ex-
ceptional divisor of = is a finite closed subscheme F' over y. The big open
subset Bl,(S) \ F' of B, (S) naturally embeds into S. We may form

2.1 W=Vn@BL\®)\F).

This is a big open subset of Bl,(S). A morphism f : 7 — S that factors
through W C Bl,(S) also factors through V' C S.

2.3. We now apply the considerations in 2.2 to semi-abelian schemes
over arithmetic surfaces.

(%) Compare with the discussion in [15, pp. 134-136].
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— e Bly (%)

f(Spec 61)

: Spec Ok

Fig. 1. The data in Theorem 2.10.

Let K be a number field, Ok its ring of integers, S = Spec Ok. Let .2"
be a proper arithmetic surface over S, namely a regular, flat and proper
scheme over S, with geometrically irreducible generic fiber of dimension 1.
Suppose given a semi-abelian scheme .7 — %/, where 7/ is a big open
subset of .Z" with generic point 7, namely the complement of a finite set
{P;},c; of closed points in .2". We assume that . 7, is abelian. Let D C 7/ be
the divisor of bad reduction of . Z. We decompose D = H + V into hor-
izontal and vertical components. Define 7" = %\ D. Let {¥,}, be a
Barsotti-Tate subgroup of .Z[p>],-. For every non-zero prime p of O
such that V, =V N.2", # 0, we choose a closed point y, € V, \ H. This
provides a finite collection of closed points Y = {yy},.,. Introduce
Sy, = Spec O ;. We still denote ¥, its closed point. The Barsotti-Tate
group {,}, can be base-changed into a Barsotti-Tate group over the
generic point of Sy. Let us denote by W, the big open subscheme of
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Bl,,(Sy) provided by Construction 2.9 applied to these data (see equation
(2.1)). We have morphisms

$, : Bl (S,) — Bly(%)

which lift the natural morphisms S, — 7. Let F\, = ¢,(Bl,,(Sy) \ Wy),
which is a finite closed subset of Bly(%). By construction, Y N H = 0 and H
can be seen as a divisor in Bly(%2). Write V,, for the strict transform of V.
We then define the open subset of Bly (%)

2.2) 7 =Bly(2)\ (H ulJ @ u f/p)).

per
There is a natural inclusion of open subsets 7 C 77". An important feature
of this construction is that the structure map Bly(%") — S is surjective
when restricted to 7.

Let now f : Spec O;, — 7" be an integral point of 77" (in other words, L
is a finite extension of K, Oy, its ring of integers, and f a morphism of
schemes over SpecOx)”. In particular it provides an integral point of
72\ H. For every prime q of Oy, lying above p € &, f induces a morphism
fa: Spec@—rzT — Sy which factors through W,. We also obtain by base
change a semi-abelian scheme . 7, over Oy, , and extended quasi-finite flat
subgroups &, 4. Take the finite parts f:/’nﬂ. By Proposition 2.7, there exists
an integer n;, which depends on Y but not on f, such that the quotients
{';/)nﬂzl,q / .?,M },, define a Barsotti-Tate group. For any other prime g not
lying above 2, the analogous conclusion, with the same index 1y, is trivially
true. Indeed ¢ is sent by f into 7" and {¥,},, is assumed to be a Barsotti-
Tate subgroup of the abelian scheme . 7.

We summarize the preceding observations into the following theorem.

THEOREM 2.10. Let %" — Spec Ok be an arithmetic surface and .7 a
semi-abelian scheme over a big open subset 7/ of %", generically abe-
lian. Let D be the divisor of bad reduction in 7/ and decompose
D = H +V in horizontal and vertical components. Put 7" = 74\ D, and
choose a closed point y, € VN.2°y \ H for every p in &, the subset of
Spec Ok \ {0} defined by the p such that V.N.2°y # 0.

Then, given a Barsotti-Tate subgroup {5y}, of .77, there exists an
mteger ny > 0 such that for every integral point f : Speec O, — 7% factor-

(") Because the structure morphism %" — S is surjective, Rumely’s theorem
([29], [23]) will ensure that there exist infinitely many such points (for varying finite
extensions L of K).
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g through 77 defined by (2.2), we have:

1. the 1mage of [ is disjoint with the horizontal component H; in
particular, the pull-back f*.7 is a semi-abelian scheme over Oy,
generically abelian.

1. For every prime q of Oy, lying above one of the primes p in &,
denote by 7, the base change of .7 to Spec 6;, induced by f. Let
Cnq be the quasi-finite flat subgroup of .7, extending the base
change of &), to the generic point of Spec 6;1, and .‘;’/}M its finite
part. Then the family {.‘;/;Hm,q/g;h }, defines a Barsotti-Tate
subgroup of .4,/ SZ/'T,ZI.

3. Some diophantine inequalities for heights

In this section we discuss some generalities and diophantine inequal-
ities for heights of cycles in arithmetic varieties, with respect to hermitian
line bundles whose metrics are of some logarithmic singular type. This
kind of heights will appear in later considerations, when dealing with
minimal compactifications of moduli spaces of abelian varieties. The ar-
ithmetic intersection formalism leading to these heights has been devel-
oped by Burgos-Kramer-Kiihn [6]. Their finiteness property has been
explored by the second author of the present article in [16]. A diophantine
inequality, generalizing results by Zhang [36] in the spirit of Faltings’
lemma [12, Lemma 3] on heights defined by means of metries with loga-
rithmice singularities, has been established in some unpublished work by
the first author [4]. Here we provide the precise statements and some
details.

3.1. We introduce the heights and formulate the finiteness property
we will need. Let .2 and %/ be arithmetic varieties over the ring of integers
Ok of a number field K, namely, projective and flat schemes over Spec Ok.
We make the following geometric assumptions:

e the generic fiber 7/, is smooth over K;

e there is a surjective morphism ¢ : 2/ — .#" the restriction of which to
the generic fiber induces an isomorphism %/ \ px!(F) = .2 \ F,
where F is a Zariski closed subset of .2'x and D = gz (F)yeq is a di-
visor such that D(C) has normal crossings.
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In particular, U = .2°g \ F is contained in the regular locus .2 "® and

U = [] U0
aK—C
is a complex quasi-projective manifold. Let 4 be a line bundle on .Z2" and
|| - I a smooth hermitian metric on *#y, invariant under the action of
complex conjugation. We denote by 4 = (| - ||) this singular hermitian
line bundle in the sense of Arakelov geometry.

DEFINITION 3.1. We say that £ is a pre-log-log hermitian line bundle,
with singularities along F', with respect to ¢, if the pull-back singular her-
mitian line bundle ¢*# is a pre-log-log hermitian line bundle on %/, with
singularities along D [6, Sec. 7], [16, Sec. 3]. Similarly, one defines the notion
of continuous or smooth hermitian line bundle on .%".

Under the pre-log-log assumption, according to [6, Sec. 7], there is a
well defined height function /- on algebraic cycles on 77 whose flat ir-
reducible components intersect D properly (or equivalently, are not con-
tained in D) over 7. We refer to loc. cit. for details, as well as to [16, Sec.
6]. We observe that the constructions of height functions in these refer-
ences extend to non-necessarily regular arithmetic varieties, with smooth
generic fibers. We refer to [5, Rmk 2, p. 941] in the case of smooth her-
mitian metrics and to [7, Sec. 4.3] for the general case.

The theory of heights with respect to semi-positive continuous hermi-
tian line bundles is developed in [21, Sec. 5]. We will only need the case of
an ample line bundle # on .Z" endowed with a continuous metric || - ||; with
semi-positive first Chern current (after pull-back to ). Then, ¢* <1 is an
integrable hermitian line bundle on ¥, in the sense of [21, Def. 4.7.1], and
the height function hw*71 is defined. The integrability property requires an
easy proof, that we give in Lemma 3.7 below.

Let us denote by Z, 7(:#") the free abelian group of p-dimensional cy-
cles on .%", whose flat irreducible components intersect the open subset
U=2k,\F of 2. We similarly define Z, ,1¢)(#/). To a pre-log-log
(resp. smooth, ample continuous semi-positive) hermitian line bundle %,
we attach a height function

h—: @B Zyu(2)—R
p

characterized by the following properties:

e h— is Z-linear;
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. h(pﬂ—//(z) = h—(p.2), where ¢, is the usual push-forward morphism
of cycles

0.: D2y v — B Zp(2).
p P

If z € Z, y(2) is a cycle such that deg,, zx # 0, its normalized height
is defined by
h—(2)

"7 = R Qldeg, 2

Some properties of these height functions, such as compatibility with
change of ground ring, are straightforward consequences of the corre-
sponding properties for T

The next statement is adapted from [16, Thm. 1.3], and may be seen as a
Liouville type inequality for the approximation of /' by cycles on /.

THEOREM3.2. Let %, ¥, ¢ : ¥/ — . be as above, and £ a pre-log-log
hermitian line bundle on . %" with singularities along F, with respect to ¢.
Assume that £ is ample over 2" and that the first Chern form c¢(¥) is
semi-positive on U(C). Then, for any smooth hermitian metric || - ||, on £
with semi-positive first Chern form (after pull-back to 7/), there exist real
constants o, f,y > 0 such that, for every effective cycle z € Z, y(£"), such
that deg 2k # 0 we have:

%(70 (Z) +y> 0
and

I @) = I, @) < 0+ flog (7, (2) + ).

REMARK 3.3. Since the line bundle .4 is ample, there exist smooth
metrics on % with semi-positive first Chern form. For example, one may
consider a very ample power #” and use the restriction of the Fubini-
Study metric on the sheaf O(1) of the projective space P(H’(.2", “NY). For
this particular metric || - ||y, a multiple of the height /- is the restriction to
cycles on .2" of the usual Faltings height on P(H(2", #™)). Any other
height for a pre-log-log metric (and in particular for a smooth metric) on ¥
then differs from h70 by an archimedean factor, expressed by integrals of
so-called Bott-Chern secondary forms.

Proor or THEOREM 3.2. The proof follows the lines of [16, Sec. 6.2],
with several simplifications. The idea is to adapt the argument due to
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Faltings, for heights of points, to the higher dimensional situation [12,
Lemma 3], to reduce to an application of Jensen’s inequality. We sketch the
proof and refer to loc. cit. for more details. First of all, by assumption £ is
ample. After possibly replacing it by some positive power, we find global
sections s1,...,8, € HY(2", ¥) such that

F(C) = (divs)(C) N ... N (div s, )(O).

One may suppose that the cycle z is flat, integral and properly intersects
divs; over C. By the definition of the height, one is reduced to bound in-
tegrals of the form

/ 0 (Nler D er@* ZoY, i+j = dimzg.

9 1(z(C))

Here we wrote || - || = ¢7/?|| - ||,, and we note that the integral has to be
computed on a suitable resolution of singularities of p~!(2(C)). Recall that
zx meets properly div s;, that the metric || - | has logarithmic singularities,
and that the first Chern forms are semi-positive. After a rescaling of the
smooth metric, we may thus replace |¢*(f)| by loglog ||¢*s1]|, Z. This re-
scaling can be made independently of z. (Observe that, by comparison to loc.
cit., there is an important simplification in this step. Namely the positivity
assumption made on the first Chern forms allows to avoid the decomposi-
tion result in Theorem 4.3.%) Now, one proceeds to decrease the exponent .
For this, we first write

(9™ %) = e1lp* %) + dd°f
on ¢~ 1(U(C)). One is reduced to bound integrals of the form
[ togtoglotsly? dd e et 7o)
C(®))

In this situation, one can apply Stokes theorem. Taking into account the
following relation of differential forms outside F(C)

i Olog lsiflg” A Dlog [s1flg” _er(Fo)

2n (log ||s1]lo*)? log [[s1]|o®

—dd° loglogHSng2 =

(®) With the notations of [16, Thm. 1.3], this explains that we can take » = 1.
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the positivity of the Chern differential forms, and elementary bounds be-
tween functions with logarithmic singularities, one reduces to bound in-
tegrals of the form

i 1 _ L i .
- I ————— ) Adloglle*si||;2ei (e D) er(p Zo) .

# l(z/(._» <<log||¢*sl||02>“2> '
(7 ©

Such integrals are treated in loc. cit., Lemma 5.5. After reducing the ex-
ponent ¢ to 0, the main term to bound is an integral of the form

loglog ||¢*s1 | “e1(p* Z o).

9 1(=(C))

By Jensen’s inequality, this is bounded in terms of

o e Zp)?
log / 1og||¢sl||olm'
- LKk

9~ 1(C)

Finally, by the definition of the height and the existence of a universal lower
bound for normalized heights with respect to ample smooth hermitian line
bundles, this last term is bounded by log (h70 (2) + 7), where the constant y
only depends on the smooth metric || - ||,. This completes the proof. O

COROLLARY 3.4. Let < be an ample pre-log-log hermitian line bundle
on %" with semai-positive first Chern form. Then, given a real number A > 0,
there exist finitely many effective cycles z € Z, y(#") with h—(2) < A and
deg,, 2z < A

Proor. After possibly replacing 4 by a high power, we may assume
that % is very ample. Then, using a projective embedding and the Fubini-
Study metric on projective space, we can construct a smooth hermitian
metric on %, say || - ||, with positive first Chern form and, more im-
portantly, such that the height 2 is the restriction of some usual Faltings
height for the ambient projective space. Then the finiteness property is an
immediate consequence of the comparison theorem above and the finite-
ness property for 2 proven by Bost-Gillet-Soulé in [5, Thm. 3.2.5]. O

3.2. We now proceed to some generalization of Zhang’s inequality
[36, Thm. 5.2], [1, Thm. 2.4] for the height functions with respect to pre-
log-log hermitian line bundles. This will be applied to prove bounds for
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cycles in moduli spaces of abelian varieties, in terms of heights of con-
veniently chosen integral points.

THEOREM 3.5. Let . #, ¥, ¢ : &/ — % be as above. Let Z be a pre-log-
log hermitian line bundle on 2" with semi-positive first Chern form. As-
sume that .~ is ample and the unbounded locus of the metric is exactly
F(C).° Then there is an mequality

3.1) hor(2) < dsup inf ho(2),
VCU xeV(K)

where d is the Krull dimension of 2" and the supremum runs over all open
Zariski subsets V of U=.2"x \ F. Moreover the right hand side of the
mequality is a finite quantity.

REMARK 3.6. In the statement of the theorem, the normalized height
of an algebraic point « € V(K) has to be understood as follows. The point x
induces a 1-dimensional horizontal cycle z in .2". Then we put

h(@) : = h(2)
h—(2) o h—(2)

T [K:Qldeg,,2x K@) : QI

To prove Theorem 3.5, we will truncate the pre-log-log hermitian metric
and work with continuous hermitian metries with semi-positive first Chern
current. We will need two lemmas.

LEmMA 3.7. Let || - ||; (vesp. || - ||) be a continuous (resp. pre-log-log)
hermitian metric on the ample line bundle Z, whose first Chern current is
semi-positive. Assume that || - ||; < || - || on U(C). Then:

i. 9" £ is an integrable hermitian line bundle;
1. for every effective cycle z € Z, y(£") we have the inequality

h(@) < b, 2.

ProoF. Let .Z be a hermitian ample line bundle on %/, with a
smooth hermitian metric whose first Chern form is strictly pos_itive. Fg
every integer N > 1, the continuous hermitian line bundle go*((,%"l)N QA

(®) These hypotheses could be slightly weakened, but this formulation is enough
for our purposes.
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is ample on the generic fiber and has strictly positive first Chern cur-
rent. By [21, Thm. 4.6.1], ¢*(Z1)Y ® _7Z is admissible [21, Def. 4.5.5] and
there exists an increasing sequence of smooth metrics || - ||, uniformly

converging to the metric on ¢*(4; )® 7, and with semi-positive first
Chern forms. In particular, in the case N =1, it follows that ¢* ¥ =
("1 ®.2)® 7 s integrable, thus proving <. Also, as the sequence is
increasing, these smooth metrics are smaller than the pre-log-log metric
on ¢*(# )® 7, which has positive first Chern current. From this and
the definition of helght easily follows the inequality

—() < I (2)

(A P (MR Ay

for z € Z, y(#") effective. The right hand side of the inequality converges
toh (TN »7() by [21, Thm. 5.5.2]. Working on the definition of height,
we thus obtain

N, @) < Nh,,— (2) + O™,

where the O term only depends on several arithmetic intersection numbers
on z. The assertion i now follows by dividing these heights by N¢ and
letting N converge to co. O

LemMA 3.8. The statement of Theorem 3.5 holds for continuous her-
mitian metrics || - ||; on % with semi-positive first Chern current.

ProoF. The original argument of [36] can be adapted to this case,
because % is ample and the curvature current of #; is semi-positive. For
this, one needs to refer to the version of the arithmetic Hilbert-Samuel
theorem proven by Randriambololona [26]. Observe that this work already
deals with the case when the generic fiber .2k is just reduced, non-nec-
essarily smooth. By construction, the arithmetic intersection number in the
dominant term of the main theorem in loc. cit., coincides with our height
with respect to . O

We are now ready to prove Theorem 3.5.

Proor oF THEOREM 3.5. It suffices to show the inequality with £ re-
placed by some positive power #” . Thus we can suppose that  is very ample
and that there exists a global section s € H(.%", %) with F(C) C (div s)(C).

Endow £ with a smooth hermitian metric || - ||, with semi-positive first
Chern form and such that ||s||, < 1. Write || - || = ¢ 9/?|| - ||,- Observe that

the condition dd’p*(g) + c1(p* %) > 0 and the surjectivity of ¢ guarantee
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that g is locally bounded above. Since .2°(C) is compact, g has a global
upper bound. Because the inequality we aim to prove does not change after
rescaling the metric, we can suppose that g < 0. Since || - || admits loga-
rithmic singularities along F(C), there exists a positive constant A such
that —g < Aloglog ||s||, 1. For every integer j > 3, define

g; = max{g, —Aloglog j}.

Because we assume that the unbounded locus of g is exactly F(C), the

functions g; are continuous on .#2(C). Because the maximum of two psh

functions is already psh, we have dd‘p*(g;) + ¢1(p* %) > 0. It is clear that

the sequence g; decreases towards g. We define the continuous metries on .2
-1y = e %21 lo.

They form an increasing sequence pointwise converging to || - || on U(C),
with semi-positive first Chern currents. By Lemma 3.7 we know that
(3.2) h7@) < h (2)

for any effective cycle z € Z, 7(2"). Observe that by Lemma 3.8, this
already guarantees the finiteness of the right hand side of inequality (3.1).

To establish (3.1), we reason by contradiction. Suppose the inequality
(3.1) does not hold. Then, for some ¢ > 0 we can find a generic sequence of
points {x;};-, in (2" \ div (s))(K) with

(3.3) dh—(y) < hr(2) — e

By Theorem 3.2 and (3.3) we deduce that {570 (1)}, is bounded above by
some constant B. On the other hand (3.2) applied to .2 and (3.3) give

(3.4) dhz () < dl () = Al ) + ez (2) = 6.
Fix k > 1 and let L be a field of definition of x;. There are inequalities

~ ~ 1 gi—¢
hoz () = b @) = =57 > S ()

o:L—C 2
_ 1 max{0, —g — Aloglog j} @)
[L : Q] o:L—C 2 ’
<4 3" max{0,loglog [ls]ly" — loglog j}(@y.,)
B Z[L : Q] o:L—C , ’ !

A 1 1 ~1
< — —_— .
<% log (1 T ogj L 0] U;LE log [|sllo (%k.,a)>

C
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To derive the last inequality, we made use of the Jensen’s formula, again

inspired by Faltings [12, Lemma 3]. By definition of height and because
h70 (x) < B, we finally obtain

h A h— ()
h<77_(90k) (ack) < — 5 log (1 + /07>
A B
<Zlog1+—).
=2 ( " log j)
Fix j > 3 large enough so that
A B e
—1 1 <=
Og( " 10gy> = 2d

Together with (3.4), we derive

3.5) dh (o) < b (2) — %

for every point of the generic sequence {xy},. But for the continuous metric
| - 1l;, Zhang’s inequality holds (Lemma 3.8). Hence (3.5) provides a con-
tradiction, and the proof is complete. O

3.3. As an illustration of the preceding constructions, in the final part
of this section we present the geometric framework to which the theory of
heights will be applied in the sequel.

Let ¢ be a positive integer with ¢ = /14, where /1, {5 > 3 are relatively
prime. We first construct a suitable model over Spec 7[{,] of the minimal
compactification of the fine moduli space of principally polarized g-dimen-
sional abelian varieties with level £ structure. We will appeal to the arithmetic
minimal compactifications of Faltings-Chai [14, Chap. V, Thm. 2.3, Thm. 2.5].

LEmma 3.9. There exists a normal integral scheme A;.,f’ proper over
Spec Z[{,], and an ample line bundle w on Ag »» characterized by the fol-
lowing properties:

1. the restrictions of A;/ and w to Spec Z[{,,1/¢] coincide with the mini-
mal compactification and canonical ample line bundle of Faltings-Chaz;

ii. the restriction of Ay, to SpecZ[{;,1/¢;] admits a natural finite
morphism to A, g (1=1,2), eoctendmg the canonical morphism Ay ¢ — Ay ;s

111. the restriction of w to Spec Z[{,,1/¢;] arises as a pull-back of the
canonical line bundle of Faltings-Chai on A, ., by the natural morphism,
fori=1,2
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Proor. We may assume g > 2, since the result easily follows from
Deligne-Rapoport [9, Chap. V, Sec. 4] when g = 1. Let us first construct
A, satisfying the requirements of the lemma. We recall that there is a
natural finite and étale morphism of fine moduli schemes

(3.6) Agy— Ay, [1/0].

The notation A, ,[1//] means we inverted the primes dividing ¢ in the
structure sheaf of A, . In particular A, is obtained by normalization of
A, ,[1/0]1in the function field of A (. We define Al )z as the normalization of
A, in the function field of A, . By construction, thls is a normal integral
scheme proper of finite type over Spec 7[{,,1/¢;]. Moreover the natural
morphism 7; : A( — A, is finite because the base is an integral normal
scheme and we are in generic characteristic 0. We also define o; = 7} w;,
where ; is the canonical ample sheaf on A, of Faltings-Chai [14, Thm. 2.5
(1)]. It will be enough to show that the restrlctlons of the A(” (resp. w;) to
Spec Z[{,,1/¢] coincide with the arithmetic minimal compactlflcation A;[
(resp. the canonical sheaf @ on 4, ). This will also give the necessary gluing
condition.
We claim that the arithmetic minimal compactification A;.e (of Faltings-
Chai) is obtained from A;&[l /¢]1 by normalization too. This follows from the
Koecher principle. Indeed, recall that by construction

A}, = Proj (@ T'Ayy, co®k)> :
k

where A, is any arithmetic toroidal compactification and @ its canonical
semi-ample sheaf [14, Thm. 2.5 (3)]. The Koecher principle [14, Prop. 1.5 7]
asserts that the restriction morphism

F(Zg,éa w@k) I F(Ag,(fa w@k)

is an isomorphism. In the application of the Koecher principle we used the
assumption g > 2. Finally, from the finite étale canonical projection
morphism (3.6) we derive an integral inclusion of algebras

% D1/ 0,070 = D Ty ™),

This establishes the claim. Therefore, since A“)Z is constructed fromA . by
normalization, we obtain a chain of finite morphlsms

AD/a A, — AL 11/0.
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The morphism p; is birational, since Z;’}[l /¢] and A;k both contain the open
subset A, . Because A, is known to be normal, we can invoke Zariski’s
main theorem to deduce that p;, OA(,) e OAN Because p; is finite, we

finally infer that p; has to be an 1sornorphlsm All in all, we can glue the
schemes A;f) into a single scheme Ag’[ over Spec Z[{,] with the desired
properties. A similar argument applies to the sheaves w; and @;, and shows
that we can glue the w; into a single sheaf w as expected.

To finish the proof, we have to justify that properties i-ii? characterize
A g0 @nd . Let us show that any scheme X fulfilling the same properties
comc1des with A, as constructed above. The characterization of w will
then be stralghtforward Such a scheme X contains A ([1 /¢] as a dense
open subset, by assumption. Furthermore, the open subset X[1/¢;]1is finite
over A;.e,[l /4], extending the natural projection A,, — A, ,,[1//]. By the
very construction of A” /[1 /¢;] as a normalisation of A it follows there is a
sequence of finite morphlsms

(2

A 11/00 5 X161 — A,

The first arrow p is birational and finite, and X[1/¢;]is normal. By Zariski’s
main theorem p has to be an isomorphism. Since this is true for ¢ = 1,2, we
conclude that X =4 ,. O

We now proceed to explain how to place ourselves in the situation of 3.1.
For this, let us introduce a projective smooth arithmetic toroidal com-
pactification Zg,/, defined over Spec Z[{,,1/¢]. Such compactifcations exist
as schemes by [14, Chap. V, Sec. 5]. There is a natural surjective morphism
p: Ay — A;/ over Z[(,,1/¢]. By taking the closure of its graph in a pro-
jective space over Z[{,], we see there exists a projective and flat scheme
over Spec Z[{,], still denoted Zgj, and a proper morphism Zg/ — A;,z ex-
tending ¢ to Spec Z[{,]. We will use the same notation for the extended
morphism. Alternatively, by [14, Chap. V, Thm. 5.8], we know that, over
718, 1/4], Ag ¢ can be obtained from A’ 4. 8s the normalization of a blow up
along a closed subscheme 7T CA Then one may take the schematic
closure of T in A* over Z[{,], and the normalization of its blow-up. We
point out that the extended scheme Ag ¢ may not be smooth over Spec 7Z[{,],
but this is not required in the constructions of 3.1.

By [14, Chap. V, Thm. 2.5 and Sec. 4], the ample line bundle o on A
carries a natural singular hermitian L? type metric, whose singularities are
of logarithmic type along F' = Ag_l \ Ag¢. By [25, Thm. 3.1], [7, Thm. 5.3],
the resulting hermitian line bundle @ is pre-log-log in the sense of Defi-
nition 3.1. We may thus consider the height function &z obtained by the
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procedure of § 3.1, with respect to ¢ : 4, — A;k. An important feature we
will use is summarized in the following lemma.

LeEmMa 3.10. Let B be an abelian variety over a number field L, with
a principal polarization and level £ structure. Let z be the cycle it de-
fines in A;,z’ and let hp(B) denote Faltings canonical height of B. Then
we have:

hp(B) = hip(2).

Proor. The proofis an adaptation of [14, p. 169], and we just sketch the
main lines. To simplify the notations, we assume that the ¢; are prime.
Observe that B has semi-stable reduction over Spec O;,, and has level ¢;
structures too. One can define heights on A;, ¢, With respect to the natural
hermitian line bundles @;. These heights however take values in R/Q log ¢;,
because the base rings are Z[{,,,1//;]. As in [14, p. 169], one shows that

R

3.7 hp(B) = hai(zi) m w7

where z; is the cycle defined by B in 4/ ,. By functoriality properties of
heights, one also has

R
Qlog¥;’

(3.8) ho(@) = hg,(z;) in

Because ¢; and ¢ are relatively prime, equations (3.7)-(3.8) imply the
equality of real numbers

hi(B) = Iig(2),

as was to be shown. O

Let us now briefly describe how we will apply the results in 3.2. Let .2
be an arithmetic surface and A a non-isotrivial’® abelian variety over
K(Z"). We assume that A comes equipped with a level ¢ structure and a
principal polarization. Then, A has semi-stable reduction at codimension 1
points of .#". Therefore, it extends to a semi-abelian scheme . Z — 7%, for
some big open subset 77 of .2". Associated to . Zx — %'k there is a clas-

(1% In our setting, by isotrivial we mean an abelian variety over .2k that has
constant Néron model after a finite extension of .2 .
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sifying map
Y J{K —>A;é.

Observe that y is finite over its image, since we assumed that A is non-
isotrivial. Let us denote by £ the Zariski closure of the push-forward cycle
7.2 k. Observe that because A is abelian, 2 non-trivially intersects the
open subscheme A,,. Given a generic sequence of integral points
P, : Spec Oy, — 77/, mapping the generic point into the good reduction
locus, we obtain a generic sequence in Z(K) \ F(K). Let us assume, for
simplicity, that 2 is reduced (latter we will consider the general case).
Then by Theorem 3.5 and Lemma 3.10, we derive the inequality

3.9) h(Z) < liminf hp(P,. 7).
n

We may thus obtain bounds for the height of Z from bounds on the
Faltings heights of the semi-abelian schemes P;.Z over number fields.
These considerations will actually be carried out for families of cycles
provided by quotients of A by the levels of p-divisible groups. A crucial step
will be to choose suitable integral points so as to get uniform bounds for
their Faltings heights.

REMARK 3.11. For a given sequence of integral points, the right hand
side of (3.9) may actually be infinite. An example is given by the universal
generalized elliptic curve over the regular modular curve X(¢), and the
generic sequence of CM points.!! For this reason, to produce sequences for
which the limit is finite, we will apply Autissier’s effective version of Ru-
mely’s theorem, with control on the heights [2].

4. Heights of cycles in moduli spaces of abelian varieties

As an application of the results of the preceding sections, we show how
to uniformly bound the heights of the cycles induced by the quotients of an
abelian variety by the levels of a Barsotti-Tate subgroup, over the field of
fractions of an arithmetic surface. The bounds we provide imply the fi-
niteness of this family of abelian varieties, up to isomorphism. According to

(*Yy In particular, this ruins the hope of obtaining Duke’s equidistribution of
Heegner points [10] by Arakelov theoretic means, in the style of Szpiro-Ullmo-
Zhang [31].
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Proposition 1.2, this gives another proof of Tate’s conjecture for abelian
varieties over finitely generated fields of transcendence degree 1 over Q.
Actually, by Zarhin’s trick (¢f. Proposition 1.3) and a standard Galois
descent argument, it will be enough to treat the case of principally polar-
ized abelian varieties with a sufficiently high level structure.

Let ¢ be a positive integer which is a product of two relatively prime in-
tegers /(1,0 > 3. Let .2 — Spec Og be an arithmetic surface and A an
abelian variety over K(.%"), endowed with a level ¢ structure and a principal
polarization. To exclude trivial cases, we assume that A is not isotrivial. Fix a
prime p not dividing ¢, and let {G,, }, be a Barsotti-Tate subgroup of A[p™]
defining a Lagrangian subspace of T)A ®7, (J;,. The quotient abelian vari-
eties A/G,, are non-isotrivial and inherit level ¢ structures and principal
polarizations. For every n, A/G,, has semi-stable reduction at codimension 1
points of 2". They all extend to semi-abelian schemes over .2 'k, with common
bad reduction by the Serre-Tate theorem. We may consider the induced
classifying maps y, : .4’k — A, , which are finite onto their images by non-
isotriviality. We denote by Z,, the Zariski closure of the direct image cycles
72 k. These are 2-dimensional effective cycles in A;[, possibly with mul-
tiplicity, flat over Spec Z, which meet the open subscheme 4, . In this sec-
tion we derive uniform bounds for the degree and the height of the cycles Z,,
with respect to o, following the strategy outlined in 3.2.

We begin by bounding the multiplicity and degree of Z,,.

LEmMa 4.1.  The multiplicity of the cycle Z,, in A;_’ , and its degree with
respect to wo,) are bounded independently of n.

Proor. We denote by .7, (resp..7)the semi-abelian scheme over .2k
extending A,, (resp. A), and  _,, /-, (resp. ®_,; ) the determinant of the
dual of the relative Lie algebra of . Z, over .% k. By construction, we have

degw()(g)zn = deg y;wQ(Q)
=degw 4, /7

To explain the last equality, we must remark that the morphism .2’y — A;’ ’
factors through A, , and that there is a universal semi-abelian scheme over
Ay 0, Hence, by uniqueness of the semi-abelian extension of 4,, it fol-
lows that the pull-back of the universal semi-abelian scheme to .2k is in-
deed isomorphic to .Z,. This justifies the equality. Now, because the nat-
ural morphism .7 — . 7, is étale (we are in characteristic 0), we have

deg W 4,2k = degw 2| 2k
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But this is an equality of strictly positive integers. Indeed, the non-iso-
triviality assumption is equivalent to degw /.-, > 0 [14, Chap. V, Prop.
2.2]. It follows from these observations that the multiplicity and degree of
2, are bounded independently of . O

We now construct suitable sequences of integral points in the cycles
Zy. Let 7 be a big open subset of .2 to which A extends. Denote by
% — 7 the extended semi-abelian scheme. Let D be the divisor of bad
reduction and 7" = %2\ D. In principle, the Barsotti-Tate group {G.},
might not extend to a Barsotti-Tate subgroup of .7 ;. However, by
Proposition 2.1, this will be true after possibly shrinking 77 (into a big
open subset) and replacing A by A/Gy, and G, by Gy /G, for some
m > 0. The effect of this on the family {£,},, is just to exclude a finite
number of cycles. Therefore we can suppose that m = 0. We are now in
the situation of 2.3 and Theorem 2.10. We employ the same notations. In
particular, we have the finite subscheme Y C 7, the blow-up Bly(%"),
the open subset 77" of Bly(%/) and the integer n; for which Theorem 2.10
holds.

The quotient A/G,, extends to a semi-abelian scheme over a big open
subset Q of Bly(2"). After a finite sequence of blow-ups centered over
Bly(%2") \ @, we obtain an arithmetic surface .Z" over which A/G,, extends
to a semi-abelian scheme .7 — .2". Observe that 77" N Q naturally embeds
as an open subset of .2". Moreover, because Q is big in Bly(.2"), we still have
that the projection 77" N Q — Spec Ok is surjective.

PRrROPOSITION 4.2. There exist a real constant C and an infinite
sequence of integral points P : Spec O — 2" (L a varying extension of
K) such that:

i. P sends Spec L into 7'k, and hence P*A/P*G, is defined;

1. we have

hp(P*A/P*Gy) = hp(P*A/P*G,,) < C
for every n > ny.
Proor. For every integral point P : Spec Oy, — 7", Theorem 2.10 1
and Faltings’ theorem as stated in [15, Chap. IV, Sec. 3, (3.1)] give
hp(P*A/P*Gy) = hp(P*A/P*Gy,), n>mny.

Therefore, it is enough to produce an infinite sequence of integral points P
of 77" for which hp(P*A/P*G,,) is bounded independently of P.
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We apply Autissier’s effective version of Rumely’s theorem [2, Thm.
4.2.3]. To fulfill the hypothesis of loc. cit., we need an arithmetic surface of
generic genus > 1 and a good height. We satisfy these requirements by
fixing the following data:

e a covering n : .27 — .2, where 2"y is an arithmetic surface of gen-
eric genus > 1, defined over Spec Ok, K C K'. We write .%; = n*.%.

o A continuous hermitian metric || - ||, over @G with semi-positive
FAYEA

first Chern current and with | - ||, < || - ||. Here || - || is the natural pre-log-

log L? metric. The metric || - ||, can be build from || - || by truncation and

rescaling, as in the proof of Theorem 3.5.

Then, h; . is a good height in the terminology of loc. cit.'? By
21/271.0

Lemma 3.7, we see that for every algebraic point P € 2/"1(?) in the good
reduction locus of .%1, we have

hp((m o P)*.%) = hp(P*.71)

1) =l -~ P

<hz - (P).
511210
Introduce Q1 = 7 H QN W) C Z 1. This is an open subset surjecting to
Spec Og. We recursively apply Autissier’s theorem, starting with ©; and
taking as height Az . . This produces an infinite sequence of integral

#1270

points P : Spec O, — Q; (L a varying extension of K’) such that
hs ~ (P)<C,

511210
for some real constant C that only depends on the hermitian line bundle

o, o and the singular fibers of 2. Projecting these integral points
PAVE AN

back to 2 N 7" and taking into account (4.1), we obtain the desired infinite
sequence of integral points. O

THEOREM 4.3. The family of abelian varieties up to isomorphism
{A,},/ ~ s finite.

(**) The required positivity of w = on vertical curves is ensured by [14,
Chap. V, Prop. 2.2]. S
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Proor. First we establish the finiteness of the cycles Z,,. Fix a family
of integral points { Py}, as in proposition 4.2. This family induces a family of
integral points in Z,,, that we denote by {P;:‘)} & The non-isotriviality as-
sumption ensures that this sequence is infinite. By Theorem 3.5, Lemma
3.10 and Proposition 4.2, we obtain for n > ny

hs(Z i rea) < 2lim inf ha(P™)
= 2liminf by (PLA/P;G,)
= 2liminf b (PLA/PiG,) < C.

Moreover we proved that the multiplicities of the cycles £, are
bounded (Lemma 4.1). Therefore the heights h5;(Z,) are bounded.
Because the degrees of the 2, with respect to wq(, are bounded as
well, by Corollary 3.4 we derive the finiteness of the family {Z,},.
Unfortunately this is not enough to conclude, for we have to show that
the morphisms y, : #'x — A, , arise in a finite family.

For every n, let us define I',, as the closure of the graph of y, in
2 xA;‘M. It will be enough to bound the degree and height of the
cycles I',, with respect to an ample pre-log-log hermitian line bundle on
2 X Ay,

We introduce O(P;) on.%", whose underlying line bundle is attached to
the integral point P; as above and whose metric is fixed, smooth and with
positive first Chern form. We take Z = p;O(Py) @ psm on 2" x A, ,.
Because O(P;) is only known to be generically ample, % does not strictly
fulfill the requirements of Corollary 3.4. However this may be solved
after a change of model, as in [5, Prop. 3.2.2 (ii)]. This will only alter the
height by a quantity controlled by the degree of Z, with respect to wq,),
hence bounded. We leave to the reader the task of writing down these
details.

The degree of I',, with respect to £k is the degree of 2, with respect
to wg(,), hence bounded. For the height, we compute according to the
definition and applying the projection formula. We find

ho () =deg(I'y | &(7))
= higps(2) + hi(Z,) + 2.deg(Iy | &1(p; OPDe (psam)).

The first term does not depend on %, while the second one is bounded by the
finiteness of the family {Z,},. For the last term, the definition of height
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pairing gives

deg(I",, [e1(p;OP))e, (pi@)) =

[K(Py) : Olhp(PLA/PiGy) — / p;og [1])es (p3).
I,(C)

Here 1 is the canonical rational section of O(P;). The Faltings height
of P{A/P;G, is bounded by C for n > n;. For the archimedian factor,
we recall that because .7 — .7, is étale, we have w /s ~® /7.
At the level of metrics, this isomorphism is an isometry up to a
constant (given by the rank of G,). Therefore, the first Chern dif-
ferential forms satisfy

pre1(paoc) = 1@ 4, /.7 )
=c1(® s 2.0)

and we conclude

/ pidog [|11]Dei(pio) = / log |[1]|e1(@®, /.27,0),
I 20)

which does not depend on %. This completes the proof of the theorem. O

REMARK 4.4. 4. The constant C in Proposition 4.2, and involved in
the proof of Theorem 4.3, can be made explicit. For this, one has to
combine other variants of Rumely’s theorem, as for instance in [2, Sec.
4.6], and universal lower bounds for Faltings heights of abelian vari-
eties over number fields (in unpublished work of the first author, see
also [3]). B

1. It would be interesting to show that the heights hg(Z,) stabilize for
n big enough, by working directly on the definition of height.
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