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1. Introduction

The paper [T] by Taniyama contains several results in the arithmetic
theory of CM abelian varieties which have become well known. Moreover
the notion of a compatible system p = (p;) of l-adic representations is in-
troduced there for the first time. Under suitable conditions on p, Taniyama
proves an interesting formula for the alternating product of the L-func-
tions of the exterior powers of p: it is given by an infinite product of Artin
L-functions each of which modified by a change of finitely many Euler
factors. As an application, Taniyama obtains such a formula for the Hasse-
Weil zeta function of an abelian scheme over a localized number ring.

These infinite product formulas of Taniyama seem to be little known
but they motivated the works [JY] and [JR]. In [JY] Joshi and Yoga-
nanda show that the Hasse-Weil zeta function {; (s) = {(s —1)/{(s) of
G, = spec Z[T, T~']is an infinite product of Dirichlet L-series. This is a
special case of Taniyama’s formulas but they give an elementary direct
argument. In [JR] Joshi and Raghunathan express quotients of very
general Dirichlet series with Euler products as infinite products of
“twisted Dirichlet series”. The method is purely local. It applies in
particular to the Hasse-Weil zeta function of X x i, where X is a
scheme of finite type over 7. In this case the formula has a geometric
proof which was suggested by Serre, c.f. [JR] § 3. Joshi and Raghu-
nathan also obtain certain infinite product formulas for quotients of
automorphic L-functions. Recently these have been related to canonical
bases by Kim and Lee, [JY] Remark 2.21.
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In the present note we interpret Taniyama’s identity for the Hasse-
Weil zeta function of an abelian scheme A as a “horizontal factoriza-
tion”: We write A as an essentially disjoint union of horizontal prime
divisors corresponding to certain closed points P on the generic fibre
A=A® Q. The residue field of each point P is a number field
K = K(P) and {4(s) is essentially the product of the corresponding
Dedekind zeta-functions (x(s). To get an exact formula one needs to
change each (g(s) at finitely many Euler factors. Our method is similar
to the one suggested by Serre and used in [JR] § 3 and surely our
interpretation of Taniyama’s formula is known to Serre. We found it
before learning about [JR].

Section 2 contains a review of Taniyama’s formula in the context of [-
adic representations and a discussion of the examples coming from the [-
adic cohomologies of (i, and abelian varieties.

In section 3 we establish the “horizontal factorization” of the Hasse-
Weil zeta functions of a class of group schemes G containing all extensions
of abelian schemes by Tori. The method is geometric and elementary. For
Gy, and abelian schemes the factorization formulas are the same as the
ones in section 2 which follow from Taniyama’s theorem. This clarifies the
meaning of Taniyama’s formulas in these cases.

In section 4 we give some generalizations. In particular there are
“horizontal factorizations” for the zeta functions of arbitrary open sub-
schemes in PY over spec 7.

2. Taniyama’s product formula

We begin by recalling a result of Taniyama using the terminology
of [S] Ch. I which developed from [T]. Let K/Q be an algebraic
number field with ring of integers og and absolute Galois group
Gk = Gal(K/K). We fix algebraic closures and embeddings QO c C and
Q c Q; for each prime number [. Consider a strictly compatible
system of integral l-adic representations p = (p;) of Gg on free 7;-
modules E; of rank d > 1. Let S be the exceptional set of p. It is the
smallest set of places of K such that for p¢ S the representation p; is
unramified at p for each p)( [. The set S is finite. For a finite place p
of K and a place R of K extending p let Iy C Gy C Gk be the inertia
and decomposition groups at ¥ and denote by Fy € Gy /Iy the (ar-
ithmetic) Frobenius element. If p¢S,p{l the automorphism Fy, =
p(F'y) of E; is well defined. Let F), , be its conjugacy class in Aut£;.
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By assumption,
Py ,(T) =det1 — Fy,T|E;) and @Qp,(T)=det(Fy, —T |E)

are polynomials of degree d in Z[T] which do not depend on /. It follows that
detF} ,, is an integer independent of /. In this situation, Taniyama makes
further assumptions:

(I) There is a non-negative integer w independent of p ¢ .S such that all
zeroes of @y ,(T) in C have absolute value N pw/2,

(II) detFy, ,, is positive i.e. Py (1) = (— l)dade +...+1withag >0
for any p¢S.

(III) For p¢S with p |l and any place | p view E; as a Gy-module.
Then there are l-adic representations

PGy — Aut(E?) and  pft: Gy — Aut(E)

on free 7;-modules EY and Elét with the following properties:

(1) There is an exact sequence of Gy-modules
0—>E? — K —>Elét —0.

(2) The representation pft of Gy is unramified.

(3) The eigenvalues of plét(Fgg) in Q; are exactly those zeroes of Qy (1)
under the fixed embedding Q c Q; which are l-adic units.

The representation spaces E? and Elét depend on p. In particular their
ranks may vary with p. Condition (III) needs to be checked for one place

| p only.
Consider the L-function of p

L(p,s) = [[ Po,(Np™ .
pés

By assumption it converges locally uniformly in Res > 1 + % More gen-

erally, the L-function of A’'p converges in Res > 1+ % In the theorem

recalled below, Taniyama expresses the alternating product of the L-series
L(A'p, s) as an infinite product of modified Artin L-series. They are defined
as follows: Consider the free Z-module £ = [] £; of rank d. It is a module

l
under the Galois group Gg. For a place p¢ S of K and a place %3 | p we also
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need the 7-module

E, = HEZ X HE;’at

pil pll

with its Gy-action via p; and plét. For any integer n >1 the finite
7./n = 7/n7-modules E(n) = E/nk and E,(n) = E\,/nE, carry Gg- resp.
Gy-operations and for p )( n we have Ey,(n) = E(n). By Ey(n)" and E(n)" we
denote the subsets of elements of order n in E\,(n) resp. E(n). They are G-
resp. Gg-invariant. For p¢ S and v > 1, Taniyama defines

W, (") := Tr(Fy | CLE,()°]) .

This is independent of the choice of %3 | p and it follows from the Chinese
remainder theorem that for coprime n, m we have

(1) Vi (0") = v, (D), (07) T PES

We may also consider the Artin representation of Gg on C[E(n)*]. For its
character we have in particular:

P, (") = Tr(F | CLEM)']) .
This shows:
(2) w,(0") = @, (") for all p ¢ S with p 1 n.
The L-function of y,, is defined by the formula

Ly, 9 =exp Y i@ Ny

pgS v=1

= [[ det@ — FyuNp~* | CLE, (D" .
pES

The Artin L-function of ¢,, is given by the formula

o~ 2n (P
L(p,,s) = expz Z”TN;) 5
p¢ES v=1
= ] det(1 — FyuNp~* | CLEG)' D" .
p¢S
The Euler-factors of L(y,,,s) and L(g,,s) are the same for all p¢ S, p/n.
Hence L(y,,, s) is an Artin L-series up to finitely many Euler factors. Ta-
niyama’s result is the following, [T] Theorem 3. For the reader’s con-
venience we sketch a proof.
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THEOREM (Taniyama). Under the previous assumptions the following

equality holds in Res > 1+ d%v

d d—i >
3) [TzAp, o =T L, -

1=0 n=1

Proor. Taking logarithmic derivatives on both sides we are reduced to
showing that for any p ¢ S we have an equality where the sum on the right is
finite

d oo
G =1D=> y,0") forv>1.
i=1 n=1
Here A1, ..., Aq are the zeroes of @, ,(T). Since y,,(b") is multiplicative in n
we need to see that
d 00
@ G- =T S ).
i=1 1 k=0

Here the sums on the right should be finite and equal to 1 for almost all /.
The left hand side is in Z and an elementary argument using assumptions
(I) and (IT) shows that it is positive. As for the right hand side, if p )( {we have
a commutative diagram

1k

0 E E; E,(IF) ——=0
J{F{xl l[-j’él il{'{,l
1k k
0 E, E; E,(I*) —0.

By assumption (I) the middle and left vertical maps are injective with finite
cokernels of [-power order. The snake lemma gives an isomorphism

Ker (Fy — 1| Ey(I")) = Coker (Fy — 1 | By .

By definition, y(p”) is the number of elements of order I* in the group on
the left. Hence w; (p") = 0 for large k and we have:

> wu(p") = |Coker (Fy, — 1 | Ey)|
k=0

= |det(Fy — 1| Ep|;”

d
[Tvi-»
=1

-1
l
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For prime numbers [ with p | [ we argue similarly replacing £; by Elét. This
gives

> wv) = |det Py — 1| Ef|;
k=0

By assumption (III 3) the eigenvalues 4; which do not occur among the
eigenvalues of F'y; on E?t are those with positive [-valuation. For them 4; — 1
is an [-adic unit and therefore we have

00 d
> v =TG-
k=0 1=1

in the case p | [ as well. Again the sum is finite. Equation (4) now follows
from the product formula. O

-1
l

In order to understand Taniyama’s formula better, note that the Artin
L-series L(gp,,s) is a product of finitely many Dedekind zeta-functions:
Decompose the Gg-set E(n)” into orbits

En)" = HGKP
P

where P runs over a set of representatives in E(n)" of the Gg-orbits. Let Kp
be the fixed field of the stabilizer of P in Gk i.e. Gk, = (Gg)p. Then we have

CLEM)T = ) CLGxP = €D ClGx/Gr, ]
P

P
G
= @ Indaip(l) )
The formalism of Artin L-series [N] Ch. 7, § 10 now implies the formula

(5) L((onvs) = H é’Kp,S(S) .
P

Here (k, s(s) is the Dedekind zeta function of Kp without the Euler factors
for primes above S.

We now discuss the cyclotomic character and following Taniyama also
the representation of Gk on the Tate-module of an abelian variety.

The group Gg acts on T;G,, = m M (K). The corresponding re-

presentations p; : Gx — GL1(7G,,) = Z; form a strictly compatible sys-
tem p = (p;) with empty exceptional set S. We have P, ,(T) =1 — NpT.
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Hence conditions (I) and (IT) are satisfied with d = 1,w = 2. Condition (III)
holds WithE’f’t =0 andE? = T)G,,. The L-function of pis L(p, s) = {g(s — 1).
We have E, = [] T1G, and hence E,(n) = . (K) where ny is the biggest

!
prime to p factoijof n. It follows that £,(r)* = () hence y,, (") = 0if p | n and
that Ey,(n)" is the set of primitive n-th roots of unity in K if p In.
For p {n choosing a primitive 7-th root of unity ¢, the map v+ (), gives
a bijection (7./n)* = E,(n)". Multiplication by Np on the left corresponds
to the operation by Fy on the right. It follows that

w,(p") = Tr(Fy | CLEy(n)"])

= Tr(Np" | C[(Z/n)*])
= Y Zdp).
xe("/jn\)x

Here we have used the decomposition of the regular representation of
(7./n)* into the direct sum of the characters y of (7/n)”. Setting

(6) Li(y,8) = H A — y(Np)Np=)!
pin

we therefore find the formula

(7) Lw,s)= [[ LxG.s).

)(E(Z//BX
Taniyama’s theorem therefore implies the following relation:

o0

(8) k(s —1)/{k(s) = | H Lk(y,s) inRes>2.

—

n=1 -
1€(Z/n)*

For K = Q,adirect proof of this formulais given in [JY]. We can make formula
(5) more explicit in the example. The set E(n) is the set of n-th roots of unity.
The Gg-orbits on E(n) are in bijection with the set |, x| of closed points P of
the finite group scheme y,, Kk = spec K[T]/(T" — 1) and Kp is the residue field
of P, a finite extension of K. Thus the G-orbits on E(n)" are in bijection with

|'u;;,K| = ‘:un.,Kl \ U |ﬂd,K
i

According to (5), we have

(9) L((ﬂnas): H é/Kp(S)‘

Pelu;, il
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The L-functions L(gp,,, s) and L(y,,, s) have the same Euler factors for p )( n.
For p | nthe Euler factor of L(y,,, s) equals 1. Accordingly we modify (x,(s)
for P € |uy x| by removing the Euler factors for primes dividing n. Let
{k,(s) be the resulting zeta function

le,(s)=[[@-Ng ™™

9n

where q runs over the prime ideals of the ring of integers in Kp. Then (9)
implies the formula

(10) Ly, = ] .

PG‘H:L.K

Using (8) and the relation CGWK (s) = Lg(s — 1)/Lk(s) we get

(11) OE | (7308
P

Here P runs over the closed points of (G, x which are torsion i.e. correspond
to Galois orbits of torsion points in Gy, < X).

The second example, due to Taniyama in [T] section 18 will be dis-
cussed more briefly. Let A/K be an abelian variety of dimension g > 1
and let S be the set of places where A has bad reduction. Let A be the
extension of A to an abelian scheme over specog \ S. Then S is the
exceptional set of the strictly compatible system p = (p;,) where p, is the
representation of Gx on the Tate module T/A = (li_mkAlk(K). Conditions
(I) and (IT) are known to be true with d = 2¢g and w = 1 by the work of
Weil [Wel.

As for condition (II1) let K, be the completion of K at the place p. Let
K, be the algebraic closure of K, in the completion of K with respect to a
given place R of K above p. We write o, and 0, for the respective rings of
integers. The residue field k, = 0g/p = 0,/b0, has Np elements and
ky, = D, /LD, is an algebraic closure of k,. Now assume that p¢ S and
p | I. The connected-étale exact sequence of the [-divisible group A(l) of
A over oy,

0— AN’ — A — AD)* —0
gives an exact sequence of Tate-modules with Gy = Gal (Kp /Ky)-action

0 — T(AD") — T)A — TYA @ ky) — 0.
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Setting EY = T(A()") and

Eft = T A @ ky) = lim AGey)y

the conditions in (III) are verified.
For a scheme X of finite type over spec 7 there is the Hasse-Weil zeta
function of X

(x(s) = H (1—-Nz ™)' forRes>dim¥ .

velX|

Here |X] is the set of closed points of X and for « € X the number of ele-
ments in the finite residue field «(x) is denoted by Nx. Using the basic
relation

29 ) ;
(12) Lats) = [[Ld'p )Y,
1=0

Taniyama’s theorem gives the formula

(13) () = [[ L) -

n=1

We do not work out L(y,,s) completely but only L(p,,s) which has
the same Euler factors for p{n. We have E(n) = A4,(K) and E(n)" is
the subset of A4, (K) of elements of order n. The Gg-orbits on A, (K)
are in bijection with the closed points P of A, and Kp is the residue
field of P. Set

AL = 14a\ U 1Al -

dln
d#n

Then according to (5) we have the formula

L(¢nv8) = H CKP,S(S) .

Pe|A;|

For P € |A}] let ZKP, s(s) be modifications of {x, s(s) at the Euler factors of
primes p | % such that we have

Ly,,9) = [] lkos® -

PElA;|
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Then Taniyama’s formula becomes

(14) La) =[] Lrps(®) -
P

Here P runs over the closed torsion points of A.

3. Horizontal factorizations for group schemes

In this section we give a simple geometric proof of a generalization to
certain commutative group schemes G of equations (11) and (14) which
concerned G, resp. A. The set of closed points of G will be essentially
partitioned into the set of closed points on the horizontal prime divisors in
G obtained by taking the closures in G of torsion points P on the generic
fibre of G.

For a finite set S of maximal ideals in og set U = spec ok \ S. Thus
U = spec g s where

DKS = {5 | f,9 € og,p{g for D%S} :

We consider commutative smooth separated group schemes G of finite type
over U for which the n-multiplication is finite and flat for all » > 1. For
simplicity we call such group schemes “good”. Thus G, and A above are
good but G, is not. Every extension of an abelian scheme over U by a torus
is good. In fact there is the following statement which was suggested by the
referee together with an outline of the proof:

PRrOPOSITION 1. For a “good” group scheme G over U with connected
generic fibre G = G ® K there is an open subscheme O # V C U such that
Gy = G xy V is an extension of an abelian scheme by a torus.

Proor. By assumption G is a commutative, connected smooth alge-
braic group over the perfect field K. According to a theorem of Chevalley
there is a canonical exact sequence of algebraic groups over K

(15) 0—H—G25A—0.

Here H is affine, connected and smooth and A is an abelian variety. See [C],
Theorem 1.1 for a modern proof of Chevalley’s theorem. Now we apply the
theory of [EGAIV3] § 8,9 and in particular the remark at the end of 8.8. It



Horizontal Factorizations of Certain Hasse-Weil Zeta Functions ete. 101

follows that the sequence (15) extends to an exact sequence of commutative
group schemes over an open subscheme ) AV c U

(16) 0—H—Gy — A

with the following properties: The commutative group scheme H is
smooth affine and of finite type over V with connected fibres and A is
an abelian scheme over V. Reasons: The extensions H and A of H and
A to group schemes over a suitable V may be assumed to have con-
nected fibres because of [EGAIV3] Lemma (9.7.1). The properties
“affine” of H/K and “proper” of A/K extend to H/V resp. A/V by

[EGAIV3] Théoréme (8.10.5). In order to see that G —% A extends to a
faithfully flat morphism Gy ., A after shrinking V we use [EGAIV3]
Proposition (9.6.1). It implies that the set of points p € V where =, is
surjective is constructible in V. Since it contains the generic point
specK of V it contains a non-empty open subset of V. We may
therefore assume that n:Gy — A is surjective, and also flat by
[EGAIV3] Théoréme (11.2.6) since ng is flat. Thus we have an exact
sequence of group schemes

(17) 0—H— Gy — A—0.

The structure theory of commutative affine connected algebraic groups
implies that there is a K-isomorphism H =~ T xx H, where T is a torus
over K and H, a commutative unipotent algebraic group, c.f. [DG] IV § 3
Théoréme 1.1. If H,, is non-zero G contains G, x as a closed subgroup. As
before this inclusion may be extended over an open subset of V. Hence
there is a point p € V' C U with Gy, a closed algebraic subgroup of Gy, .
Let n = charky. Then we have

‘\;a,kp = (‘G’a,kp)n C (gkp)n .

This is a contradiction because for good G the group scheme G, is finite for
anyn > 1. Hence H,, = 0 and H =~ T is a torus. Over a finite extension L /K
the torus H ® L is isomorphic to (i, ;. Arguing as before we see that
possibly after shrinking V there is a finite étale covering of V over which H
becomes isomorphic to a product of (5,,’s. Hence H restricted to V is a
torus. O

We now fix a “good” group scheme G over an open subscheme
U = specog \ S as above. Then G, is a finite flat group scheme over U. For
b € U the reduction G, ;, = G, ® ky is an étale group scheme over k, if
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p{/n. For p | n we have the connected-étale sequence

0— g?@,kp — Gn, — gﬁfkp —0.

It splits since g;‘f,?p is a closed subgroup scheme of G, ., because k,, is perfect

and the composition

red ét
gn,k“ - gn,k,, - gn,k,,

is an isomorphism, c.f. [Wa] 6.8. The unit section of G is a regular immersion
by [L] 6 Proposition 3.13. Hence G, — G is a regular immersion as well, the
n-multiplication being flat. It follows that G, is purely one-dimensional. See
[L] 6 Proposition 3.11 for both assertions. The irreducible components of G,,
are therefore the closures in G of the closed points P of G, x = G, @ K. Let
Cp = {P} be the irreducible component of G, corresponding to P with its
induced reduced structure. Over U, = U\ S, with S, ={p|n} the
scheme G, is finite and étale. Hence the regular purely one-dimensional
scheme G,, xy U, is the disjoint union of the restrictions of the Cp to U,

(18) G xv Un =[] Cp xv Us .
P

Let Kp be the residue field of P, an algebraic number field. Since Cp — U is
finite and U = spec 0k s is affine, Cp = spec Ap is affine as well. The ring
Ap is an order in 0g, s and since Cp xy U, and hence Apg, is regular we
have ok, sus, = Aps,. We therefore find

(19) Cp xy Uy, = specog, sus, -

Noting that Cp xy U, is even étale over U, it follows that the extension of
number fields Kp/K is unramified at all maximal ideals p¢ S U S,,.

The closed points of G are contained in the closed fibres Ok, =0® ky for
maximal ideals p¢S. A closed point x of G, corresponds to a finite
Gal(ky /ky)-orbit in Gy, (kyp) = G(ky). Since ky, is finite, the group G(ky) is a
union of finite abelian groups and hence every element has finite order. It
follows that we have an equality

n=1

For any group scheme H over a scheme we denote by H,, the open sub-
scheme of H,, of points of order n:
M, =Ha \|JMHa -

dln
d#n
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With this notation we get the disjoint decomposition:

o0

gl =TTlg.I-

n=1

This implies the formula
(20) Cgls) = H Cg:(s) .
n=1

By equations (18) and (19) we have

(21) G, xu Uy = H Spec 0k, Sus,
Q

where @ runs over the closed points of order » in Gk.
Hence

(22) RO | SR THOR
Q

103

Changing the finitely many Euler factors at primes dividing » suitably one

gets modifications ¢ K5 0f (k, 5 for which the formula

Lg,(8) = [ [ Lrgs®)
Q

holds. Then (20) becomes an equation

(23) o) = [ Ckps(s)
P

where P runs over the closed torsion points of Gg. This gives a simple
geometric explanation for equation (14). To make these modifications more
explicit we now discuss the zeta-function of G, in more detail. In the de-

composition

(24) gg;(s) = H Cg;@ku (s)

p¢S

the factors at primes not dividing » are understood by formula (22). Let now
p¢ S be a prime with p | n. We have G ® k, = (G,.1,)". Since ky, is perfect,

Qi;e,fp is a closed subgroup scheme of G, ;;, and we have

% red _ oHredx red ~ 6t
(gn ® kp) - gn,kn and gn.kp = gn,kp :
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For the p-factor in equation (24) we therefore find

(25) Cg:@kp (s) = Cgﬁ; (s) = ngc; (s) .

Consider the connected-étale sequence for the group scheme G, , =
Gn Xy Oy

0 /
0— gn,on - g%ﬁn - gfzt,ou —0.

The closed points of gf;f,% are in bijection with the closed points of g;ifK“ =
GEt,, @0, Ky because the Galois orbits on gf;fpv(Kp) = Gét, (ky) = G&, (key)
are the same. Her}ce the closed points of g;f;g» are in bijection with the
closed points of Qf;fK” of order n. Therefore the finite product of Euler
factors defining Cg;l@kp (s) can also be described in terms of the generic
fibre QfLFKv. For G = A an abelian scheme over U this is the geometry
behind Taniyama’s definition of the Euler factors of L(y,,, s) over primes p
dividing n.

ExamMPLE. Consider G = iy, o, over U = spec 0k and thus G, = p,, -
The fibres of G, over primes p | n are empty because in this case the order
of u,(ky) is less than n and so there are no points of order n. It follows that
G, =G, x Uy. By formula (22) we have

(26) (g xu,(8) = H CKq.5,(9)
Q

where @) runs over the closed points of order » in G, k. The zeta function
4 Ko.S, (s) is the same as the modified Dedekind zeta function Z Ko (s) obtained
by removing all Euler factors in (i, (s) over primes dividing n. It follows
that we have

(27) Lo.(5) = [ [ Lk, ®)
Q

and therefore by (20) with P running over the closed torsion points of G, x

(28) Oy ) = H EKP(S) .
P

Thus we obtain equation (11) again. One can make G, explicit as follows.
Consider first the case K = Q. The primitive roots of unity of order » in Q"
are all conjugated by G. Hence G = Gy, ¢ has exactly one closed point @
of order n. It corresponds to the maximal ideal generated by the cyclotomic
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polynomial @, (T)in Q[T, T~1]. Its residue field is the cyclotomic field Q((,,).
Formula (21) therefore gives:

(29) ﬂ;)z = /ﬁlz x Uy, = specZ[1/n,{,] = spec Z[1/n][T]/(®,(T)) .

The latter description for o, isthe one used in [JR] Example 3.1. Equation
(29) also follows from the fact that @; and @, are coprime in Z[1/n][T] if
d #eand d | n and e | n, use e.g. [A]. In any case, one has

Cﬂ;.‘/’ (S) = ZQ(CH)(S)

and therefore

(G, (8) = H Z‘Q(C,Y,)(S) .
n=1

In the general case base change gives
Hy o, = SPeCZ[1/1,(, 17 0k = spec 0x[1/n][T1/(Du(T)) .

Thus the fibre over K decomposes into finitely many points @ corre-
sponding to the irreducible divisors of @, over K. We can form their
modified Dedekind zeta functions Z Ko (s) and from them obtain Gimog (s) by
formula (28).

4. Generalizations

For a scheme X which is separated of finite type over U = specog \ S
and a group scheme G/U as before we have

|X xp G| = H|X xu Gyl -
n=1

Hence

Cﬂix[;g(s) = H C.’EXUQ; (S) .

n=1

Using the decomposition (21) we find

X %y Gy xu Un =[] X ®ugs kg0, -
Q

Hence the zeta-function of X x 7 G, is up to the Euler factors for p | # equal
to the product of the zeta functions of X ®,, ; 0 Kq.SUS, -
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For G = G, over U = spec 7 we have
X x il = X @ ZI1/n,C,]

and hence

COE | (ST OF

n=1

In [JR] section 3 the zeta function of X ® Z[1/n, {,]is further decomposed
into a product of zeta-functions of X twisted by Dirichlet characters.

More general schemes

Consider an open subscheme & ¢ PV = PY. We will describe a way to
get a horizontal factorization of the zeta function of /. Setting ¥ = PV \ 14,
the formula

Cx () (s) = (pn(s) = L(s)(s = 1) -+ - Ls = N)

then gives information on the zeta function of the projective scheme X.
Using the standard decomposition

PY = ANIT... 1 A°

we have
N

(30) Gus) = T Guran(s) -
M=0

For I = {O,I}M and 1€/ set A;=A; x...xA;, where Ag=0,x =
spec Z and A; = G,. Then we have

AM =TT A

el

and hence

(31) Gy ®) = [ [ Cura, @) -
iel

Using the canonical isomorphism 4; = G/ where [i| =141 +... + iy we
will identify &/ N A; with an open subscheme of Glﬁb‘. Thus we may assume
that U itself is an open subscheme of G = GY for some N. From the de-



Horizontal Factorizations of Certain Hasse-Weil Zeta Functions ete. 107

composition
6l =111
n=1
we obtain
U =TTwng,
n=1
and hence

Cu(s) = H Cung; (5) -

n=1
Next, note that
g;;: H'u;: X"'Xﬂ;\z’

Jjedn

where J,, is the set of N-tuplesj = (j1, . . ., jn) of divisors of # whose smallest
common multiple is 7. Thus

(32) Cung: (s) = H Cum(ﬂ_;lx..x,tzv)(s) .
jedn
We have seen that u = spec Z[1/v,{,] where {, is a primitive v-th root of
unity. This gives
Z/{ﬂ(ﬂ; X ... Xﬂ;\l)zu@Z}‘zj

where
R; = Z[{1®y, ... @y Z[§ 1 ®7 Z[1/n]
is an étale 7Z[1/n]-algebra. We have

specR; = H spec 0k, [1/n]

where o runs over the maximal ideals of Q({;) ® ... ® Q((j, ). They corre-
spond to the orbits of the diagonal G-action on s} Q) x...x l‘fw(@)' It
follows that

(33) Qi e ) = [ [ a9

where U, =U Nspecog,[1/n] is an open subscheme of specog, [1/%].
Hence, up to finitely many Euler factors, {, (s) is the Dedekind zeta-
function (x, g, (s). Thus, combining formulas (30)-(33), we obtain the desired
horizontal factorization of {;,(s).
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