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1. Introduction

Let K be a finite extension of Q,, with ring of integers O and fix for the
rest of this article a uniformizing parameter = of Ox. We denote by
S := Spec(Ok) and by M the log structure on S associated to the prelog
structure N — Ok sending n € N to 7" € Og. We denote by (S, M) the
associated log scheme.

Let X — S be a morphism of schemes of finite type (or a morphism of
formal schemes topologically of finite type) with semistable reduction, by
which we mean that there exists a log structure N on X and a morphism of
log schemes (or log formal schemes) f:(X,N)— (S,M) satisfying the
assumptions of section § 2.1.2. In particular f is log smooth.

Let now W :='W(Og/nOg) and we denote by O := W[Z] and by
O — Ok the natural W-algebra homomorphism sending Z to n. Write
P,(Z) € W[Z] for the monic irreducible polynomial of 7 over . It is a
generator of Ker(O — Ok). We denote by S := Spf(O) and by M the log
structure on S associated to the prelog structure N — O sending » € N to
Z" € O. Let us consider the natural diagram of log formal schemes

(X, N)
fl o
(S, M) — (8,MM).

We assume that there exists a GLOBAL deformation f: (5( N ) — (S' M )
of f. Such deformations exist for example if X is affine or if the relative
dimension of X over S is 1, but not in general.

Our main concern in this article is to:

1) Define Faltings’s logarithmic sites Xx and X associated to
f:(X,N)— (S, M) and Fontaine (ind continuous) sheaves on it associated
to the deformation f: (X, N) — (S, M): BY., Blzg, Ezg, Biog and Bigg.

2) Define the category Sh(Xg)ss of semistable (in fact arithmetically
semistable) étale local systems on Xx and study its properties; see § 2.4.4
and § 2.4.7.

3) Define in §2.4.7 a Fontaine functor Djj, from the category of semi-
stable étale local systems on X to the category of log filtered F-isocrystals
on X relative to O. More precisely these are Frobenius isocrystals (con-
sidering the Kummer étale site on (X, N) modulo p) relatively to the p-adic
completion of the divided power envelope of O with respect to the ideal
generated by p and P,(Z), with filtration on their base change via © — Ok
defined by mapping Z to =; see § 2.4.5.
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4) We prove the following comparison isomorphism theorem, see 2.33.
Suppose that L is a p-adic Kummer étale local system on X, which when
viewed as an étale local system on X is semistable. Assume that X is a
proper and geometrically connected scheme over Og. We have, see 2.33,

THEOREM 1.1. a) The p-adic representation H' (X%Et, L) of Gk :=
Gal(K/K) is semistable for all © > 0.

b) There are natural isomorphisms respecting all additional struc-
tures (i.e. the filtrations, after extending the scalars to K, the Frobenii and
the monodromy operators)

D (HIQXE, 1)) 2 HY((Xi/ 0o, Di (L))

Here, ngé(]@* is the Frobenius log isocrystal on X}, relative to W7
obtained from IDiaorg(L) by base change via the map O — W sending Z to 0.
Here, W is W with log structure defined by N — W given by sending every
n € N to 0. In particular, H' (X, /W), Diy (L)") is a finite dimensional
Ky-vector space, Ky = FracV, endowed with a Frobenius linear auto-
morphism and a monodromy operator. Its base change to K coincides with
the cohomology of the filtered log isocrystal U f‘;"g(L)XK given by base change
of Djg,(IL) via the map O — Ok, sending Z to 7. Thus these cohomology
groups are endowed with filtrations coming from the filtration on D, (L)x .

For the constructions in (1)-(3) the existence of local deformations of X
to O would suffice; namely the notion of semistable étale local systems and
the functor D, can be defined locally and then glued. On the contrary, it is
in (4) that we definitely need the existence of a global deformation X in
order to guarantee the finiteness of the cohomology of Frobenius iso-
crystals on the reduction of (X, N) modulo p relatively to Oy, a key in-
gredient to prove the theorem. We hope to be able to remove this as-
sumption in the future.

All these constructions are generalizations to the semistable case of the
analogue results in the smooth case. The comparison isomorphisms in the
smooth case were recently proved in [AI2] (after having been proved be-
fore in different ways and various degrees of generality by G. Faltings, T.
Tsuji, W. Niziol etc. see the introduction of [AI2] for an account on the
history of the problem to date.)

The proof of the comparison isomorphisms in the smooth case pre-
sented in [AI2] was in fact a result cumulating three sources:

i) [AI2] in which Faltings’ site associated to a smooth scheme (or formal
scheme) was defined (in that article K was supposed unramified over (,
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and so no deformation was required) and the global theory of Fontaine
sheaves on the site was developed.

ii) [Bri] where the local Fontaine theory in the relative smooth case was
worked out. In particular, if R is an Ok-algebra, “small” (in Faltings’ sense)
and smooth over Ok it was proved in [Bri] the following fundamental re-
sult: the inclusion R[1/p]— Buis(R) is faithfully flat.

iii) [AB] where (in the notations of ii) above) the geometric Galois co-
homology of Bis(R) was calculated.

The present article generalizes to the semistable case all three articles
quoted above as follows: in chapter 2 we develop the global theory, i.e., we
define Faltings’ logarithmic sites Xx and X% and the Fontaine sheaves on
it. In chapter 3 we work out the local Fontaine theory in the relative
semistable case generalizing [Bri]: we define semistable representations
and prove their main properties. The situation is more complicated than in
the smooth case, namely let &/ = Spf (R) be a small log affine open of (X, N)
and U = Spf(R) a deformatlon of it to (S M ) We define relative Fontaine
rings B““S(R) and Bm"X(R) which are both R[l /pl-algebras and together
generahze BCHS(R) to the semistable case. More precisely:

~ ~P.(Z
a) Let Ryax be the p-adic completion of the ring R[ 1(7 )

} as a subring

of R[1/p]. We prove that the inclusion Rpax [p7] <—>B{f)‘gx(§) is close to
being faithfully flat; see 3.31. More precisely we show:

i) If o = 1, see the assumptions on § 3.1 (i.e. we are in the semistable
reduction case) then in fact Ryax[p~!] %B{;‘;"(R) is faithfully flat.
ii) If o > 1 then the situation is more complicated, namely there exists

an algebra A (denoted A+ log . in the proof of theorem 3.31) such that

Rinax [pt]—Alp]— B{ggX(R) and having the properties that a faithfully
flat Romax [p~]-algebra C is a direct summand of A[p~!] as C-module and

the extension A[p~] <—>B{§§"(R) is faithfully flat. It follows that if a se-

quence of Ruax [p~!]-modules
0—M —M—M —0

becomes exact after base changing it to BmgX(R) then it was exact to start

with and that an Rmax[ 1]-module is finite and projective if it is so after
base changing to Bma"(R) These properties are what we call “close to
faithful flatness” and allow to prove that D of a semistable sheaf is an F'-

log
isocrystal.
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b) If we denote by Gr the (algebraic) fundamental group of Spm(Ry)
for a geometric base point, we compute the continuous Gg-cohomology

of Bfgés(R) with results similar to those in [AB].

c) Finally, if Gp is the (algebraic) fundamental group of R[1/p] for the
same choice of geometric base point as at b) above and if V' is a p-adie
representation of Gg then we prove: V is BC“S(R) admissible if and only if V'
is Bigy*(R)- -admissible if and only if the etale local system I, attached to the
representation V is semistable, in which case V itself is called a semistable
representation.

Moreover if V is a semistable representation then Dﬁff;(V) and D{ggX(V)
determine one another and D(V) provides ]Dlog(L).

lo

Using all these results in tie second part of chapter 2 we prove the
semistable comparison isomorphism (theorem 1.1 stated above).

We'd like to point out that T. Tsuji has a preprint [T2] where the theory
of semistable étale sheaves on a semistable proper scheme over Oy is
developed. On the one hand his work is more general than ours as he has
less restrictive assumptions on the logarithmic structures allowed and on
the existence of a global deformation over (S, M). On the other hand nei-
ther does the author prove in that article any faithful flatness result nor
does he derive comparison isomorphisms for the cohomology of the
semistable étale local systems defined there.

Finally, recent work of P. Scholze [Se] might lead in the future to results in
the direction of proving that de Rham étale sheaves are potentially semistable.

2. Fontaine’s sheaves on Faltings’ site

2.1 — Notations

Let p > 0 denote a prime integer and K a complete discrete valuation
field of characteristic 0 and perfect residue field k of characteristic p. Let
Kj be the field of fractions of W (k). Let O be the ring of integers of K and
choose a uniformizer = € O. Fix an algebraic closure K of K and write G
for the Galois group of K C K. In K choose:

(a) a compatible systems of n!-roots ni of o
(b) a compatible systems of primitive n-roots ¢, of 1 for varying n € I\

Define K, := K[n 1] and K = UnK’ Since 7™ — r is an Eisenstein
polynomial over Ok, then O, := OK[n i = Ok[T] / (T" 7) is a complete
dvr with fraction field precisely K.
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Let M Dbe the log structure on S := Spec(Og) associated to the prelog
structure w: N — Ok given by 1— 7. Let wg: Og[N] — Ok be the asso-
ciated map of Ok-algebras. For every n € N we write (S,,M,) for the
compatible system of log schemes given by S, := Spec(OK / n"OK) and log
structure M,, associated to the prelog structure N — Ok /7" Ok, 1+— . We
refer to [K2] for generalities on logarithmic geometry.

Write O := W(k)[Z] for the power series ring in the variable Z and let
No be the log structure associated to the prelog structure w,:IN — O
defined by 1— Z. We define Frobenius on O to be the homomorphism
given by the usual Frobenius on W(k) and by Z+— ZP. It extends to a
morphism of log schemes inducing multiplication by p on N. Let P,(Z) be
the minimal polynomial of 7 over W(k). It is an Eisenstein polynomial and
0p: O — Ok, defined by Z — =, induces an isomorphism, compatibly with
the log structures, O/(Px(%)) — Ok.

2.1.1 — The classical period rings

Write A5 for the classical ring of periods constructed by Fontaine
[Fo, & 2.3] and Ay the classical ring of periods constructed by Kato [K1,
§ 3]. More precisely, let E+ = hm O— where the transition maps are
given by ralslng to the p-th power Cons1der the elements p := (p pp )
7T = (n,m,-~-) and ¢:= (1,¢p,---). The set Egg has a natural ring
structure [Fo, § 1.2.2] in which p = 0 and a log structure associated to the
morphism of monoids N — E* given by 1 — 7. Write Aj¢ (Og), or simply
Ajpt, for the Witt ring W(EE}). It is endowed with the log structure as-
sociated to the morphism of monoids N — ‘\.‘V(Egﬁ) given by 1+ [7].
There is a natural ring homomorphism 6: \\“\.’V(]T]Z,;E) — @? [Fo, § 1.2.2]
such that 0([7]) = z. In particular, it is surjective and strict considering
on O the log structure associated to N — (’) given by 1 7. Its kernel
is prlnmpal and generated by P.([7]) or by the element ¢ := [p] — p.
Write Z for the ideal of “\\\’(173+ ) generated by [e]” — 1 for n € N and by
the Telchmuller lifts [x] for x € E such that 2@ lies in the maximal
ideal of (9

We recall that A.is is the p-adic completion of the DP envelope
of \\.V(]T:g?) with respect to the ideal generated by p and the kernel
of 0. Similarly, Ay, is the p-adic completion of the log DP envelope
of the morphism W(Eg}) R O with respect to the morphism
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0 ® 0p: W(Eg}) Ry O — (A’)K. In particular,
Ag = Aeris{(u — 1)},

by which we mean that there exists an isomorphism of A..s-algebras
from the p-adic completion Agis{(V)} of the DP polynomial ring over
Aeris in the variable V' and A, sending V to u —1 with u := [Zl]; cf.
[K1, Prop. 3.3] and [Bre, § 2] where the ring is denoted let. We
endow Agis and Aj,, with the p-adic topology and the divided power
filtration. We write Beys := Aeris[t™!] and Bieg := Aig[t™!], where
t :=log ([¢]), with the inductive limit topology and the filtration
Fil'Buis == Y. Fil"™Aqit™™ and Fil"Bjyg := > Fil" ™ Ajpqt ™.

meN meN
Let B be the classical ring of Fontaine defined as the completion of

W(Egﬁ)[p‘l] with respect to the ideal generated by ker  with the filtra-
tion defined by this ideal. Similarly, we construct B (O) as follows. Define
Aiy(O) as the completion of W (ITJEE) Ry O with respect to the ideal
(02 00) ! (p(?)g) and simply denote 0 ® 0p: A (O) — @E the map ex-
tending 0 ® 0. Then, we set Bj;(O) to be the completion of A (O)[p~!]
with respect to the ideal generated by ker 0 ® 0o, with the filtration de-
fined by this ideal. Define Bqg := Bl [t7!] and Bar(O) := B(O)[t]. We
extend the filtrations to Bgr and Bgr(O) as before. Note that
Bjp(0) = Bi;llu — 11 = B3 [Z — =]l where the filtration is the composite
of the filtration on B, and the (u — 1)-adic or (Z — m)-adic filtration;
cf. 3.15 (4). We have an inclusion Bj,, C Bqr(0O), strict with respect to the
filtrations. We also have the classical subrings Beisk = Beis ®k, K and
By x := Bst ®k, K of Bgr introduced by Fontaine; see [Fo, § 3.1.6] and
[Fo, Thm. 4.2.4]. Define Bj,, to be the image of the composite map
Sz Biog — Bar(O) — Bgr defined in [Bre, § 7], and given by Z—n. We
consider the image filtration which is the filtration inherited by Bggr. For
later use we remark

LemMA 2.1.  We have natural morphisms Beuisk C Bstx C Eog C Bgr,
which are Gg-equivariant, are strictly compatible with the filtrations and
mduce isomorphisms on the associated graded rings.

ProoF. The map f; is clearly compatible with Gx-action and the filtra-
tions. It sends P,(Z) to 0. In particular, Aiog/ (Pr(Z))Alog is an Aeis @iy Ok
algebra and contains the divided powers of the element [ﬁ] /7 — 1. In par-
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ticular, Ajog/ (Pr(Z)) contains the element log ([7]/7) which generates By as
B.is-algebra by [Bre, lemma 7.1]. See also [Fo, § 3.1.6]. This provides the
claimed inclusions. As the map B.,is — Bgr induces an isomorphism on the
associated graded rings, the claim follows. O

The rings Aeis and Ajg, and hence Buis and Byog, are endowed with a
Frobenius having the property that ¢(u) = ” and ¢(t) = pt and a con-
tinuous action of the Galois group Gx. Moreover, there is a derivation

az
d: Ajpg — Alog -

which is A linear and satisfies d((w — D) = (u — D"y ‘%Z; see [K1,

Prop. 3.3] and [Bre, Lemma 7.1]. Its kernel is A5 and the inclusion
Agis C Alg is split injective where the left inverse is defined by setting
(u — 1™ — 0 for every n € N. We let N be the Agis-linear operator on

Ajog such that d(f) = N(f) d7Z In particular, d and N extend to Bjy,. It is

proven in [K1, Thm. 3.7] that Fontaine’s period ring By, see [Fo, § 3.1.6],
is isomorphic to the subring of Bj,; where N acts nilpotently.

Biog-admissible representations. According to [Bre, Def. 3.2] a Q,-adic
representation V of G is called Bj,g-admissible if

(1) Dyog(V) := (Biog @0, V)G" is a free BGK -module;
(2) the morphism Biog @ yox Digg(V) —»Blog ®0, V is an isomorphism,
strictly compatible with the f'”ftratlons

In this case Dj,z(V) is an object in the category MF GK (p,N) of finite

and free Blo’é -modules M, endowed with (i) a monodromy operator Ny
compatible via Leibniz rule with the one on B , (ii) a decreasing ex-
haustive filtration Fil"M which satisfies Grlfﬁths transversality with re-

spect to Ny, and such that the multiplication map BY x M — M is com-

log
patible with the filtrations, (iii) a semilinear Frobenius morphism

oy M — M such that Ny o ¢y = peyr o Ny and det ¢y, is invertible in
G
Blog See [Bre, § 6.1].

Comparison with semistable representations. Consider the category
MFk(p,N) of finite dimensional Kj-vector spaces D endowed with (i) a
monodromy operator Np, (i) a descending and exhaustive filtration
Fil"Dg on Dk := D ®k, K, (iii) a Frobenius ¢, such that detp;, # 0 and
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Np o pp = pop o Np; see [CF]. Such a module is called Bg-admissible if
there exists a (O,-representation V of G such that D (V) := (V ®o, Bst)GK
is isomorphic to D compatibly with monodromy operator, Frobenius and
filtration after extending scalars to K. Consider the functor

T: MFg(p, N) — MF i (9, N)

log

sending D — T'(D) := D ®g, Bg’g‘ with monodromy operator Np @ 1+1® N,
Frobenius ¢, ® ¢ and filtration defined on [Bre, p. 201] using the filtration on
Dg and the monodromy operator. More precisely, the map f;: Biog — Bar
defined in 2.1 by sending Z to = induces a map B1 Bg{{ = K. This provi-
des amorphism p: T'(D) — Dg. Then, Fil"T(D) is deﬁned inductively on» by
setting Fil"T(D) := {« € T(D)|p(x) € Fil"Dg,N(x) € Fil"’lT(D)}.

ProposITION 2.2 [Brel. (1) The functor T is an equivalence of cate-
gories.

(2) The motions of B.g-admissible representations of Gx and of Bg-
admissible representations are equivalent. For awny such, we have
T(Dst(V)) = Dlog(v)-

Proor. (1) is proven in [Bre, Thm. 6.1.1]. (2) is proven in [Bre,
Thm, 33]. O

An admissibility criterion. We prove a criterion of admissibility very
similar to the ones in [CF]. Let M be an object of MF (,K (¢, N). The map

Biog — Bgr sending Z to n has image Blog by 2.1. Defme

N=0,p=1
VO (M) = (Blog Oyt M)
and
Vig®M) = (Buog @ pn M) JFil° (Biog @ pn M).
og 0g

Let

SD): Vi (M) — Vi (M)

log

be the map given by the composite of the inclusion log(M ) C Blog ® B M
and the projection Bj,g ® cK M — Blog ® cK M. We simply write Vlog(M)

for the kernel of 6(M). Then

ProrosITION 2.3. (1) A filtered (¢, N)-module M over ng s admis-
sible if and only if (a) Vieg(M) is a finite dimensional (,-vector space and
(b) o(M) is surjective.
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Moreover, if V = Viog(M) s finite dimensional as Qy-vector space then
it is a semistable representation of Gg and Dig(V) C M. The latter is an
equality if and only if M is admaissible.

(2) The functors Vl(())g and Vﬂ)g on the category MF BOK (p,N) are exact

og

and the morphism o(M) is not an isomorphism if M # 0.

Proor. (1) Let (D, p,N,Fil*Dg) be afiltered (p, N)-module over K, cf.
21 As in [CF, § 5.1 & 5.2] we define V(D) := (Bg ®x, D)V~ and
st(D) = BdR KK DK/FII (BdR (297¢ DK) We let 5(D) Vt(D) — Vslt(D) be
the natural map.
First of all we claim that the proposition holds replacing the category
M]:B]GK (p, N) with the category of filtered (¢, N)-modules over K and
og

Vﬁ)g(M ), i = nothing, 0, 1 with Vs'ft(D). Indeed, it is proven in [CF, Prop. 4.5]
that the (Q,,-vector space V(D) is finite dimensional if and only if for every
subobject D' C D we have ty(D’) <ty(D’) (these are the Hodge and
Newton numbers attached to D, respectively). Moreover, it is also shown
in loc. cit. that in this case V(D) is a semistable representation of Gg
whose associated filtered (p, N)-module is contained in D. It coincides with
D if and only if dimg, Vst(D) = dimg,D. It follows from the proof of [CF,
Prop. 5.7] that, if V(D) is finite dimensional, then dim, V(D) = dimg,D
if and only if 6(D) is surjective. The claim follows for filtered (¢, N)-mod-
ules over K.
Since B]ggo BN=0 = B, it follows that V(D) = 10g(T(D)) Since
log(T(D)) (Blog ®Kr DK)/Fll (B]og QK DK) and Gr* Blog = Gr°Bgr by
2.1, we deduce that the complexes J(D): Vt(D) — Vslt(D) and
(T(D)) 10g(T(D)) — Vﬁ)g(T(D)) are identified. Thus, via the equiva-
lence of categories T of 2.2, claim (1) follows from its analogue for filtered
(p, N)-modules over K discussed above. This concludes the proof of (1).
To prove (2) it suffices to show the exactness of V3 and V2 and the fact
that J is not an isomorphism for non zero objects on the category of filtered
(p, N)-modules over K. This is proven in [CF, Prop. 5.1 & Prop. 5.2]. O

2.1.2 — Assumptions

Fix a positive integer «. We assume that we are in one of the following
two situations:

(ALG) (X, N) is a log scheme and f: (X,N) — (S, M) is a morphism of
log schemes of finite type admitting a covering by étale open subschemes
Spec(R) C X, by which we mean that Spec(R) — X is an étale morphism,



142 Fabrizio Andreatta - Adrian Iovita

of the form:

OxlP] & R
T T
Ok[N] 2 Ok,

where (1) P := P, x Pywith P, := N%and P}, := Nb, (ii) the left vertical map
is the morphism of Og-algebras defined by the map on monoids
N — P =P, x P, givenby n— ((n,...,n),(0,...,0)), (i) y, is the map of
Ogk-algebras with N 5 1+ 7%,

We require that the morphism Og[P]®o,~) Ok — R on associated
spectra is étale, in the classical sense, and that the log structure on
Spec(R) induced by (X,N) is the pullback of the fibred product log
structure on Spec((’)K[P] QokIN] OK). We further assume that for every
subset J, C {1,...,a} and every subset J, C {1,...,b} the ideal in R
generated by yp (NJ“ X NJD) defines an irreducible closed subscheme
of Spec(R), that the ideal of R generated by yp(P,) is not the unit
ideal and that the image of the monoid O -y (Py) is saturated in
R ®OK OE

(FORM) for every m € N we have a log scheme (X,,N,) and a
morphism of log schemes of finite type f,: (Xu, Nu) — (Sn, M,,) such that
(Xn, Nn) is isomorphic as log scheme over (S,,, M,,) to the fibred product of
(X1, Nus1) and (S, M,,) over (Syi1,Myi1). Write Xgom for the formal
scheme associated to the X,,’s. We require that étale locally on X; the
formal scheme Xt — Spf(Of) is of the form

Ok /m"Ok|P] =3  R/7"R
T T
O[\'/’/T"O[\' [N] i? O}(/W”OK.

where the left vertical map and v, are defined as in the algebraic case and
Wr,, induces a morphism Og[P] ®o, ) Ok /7" Ok — R /"R which is tale
and the log structure on Spec(R/7"R) induced from (X,,, Ny) is the pull-
back of the fibred product log structure on Spec(Ox[P] ®@o,n Ok /7" Ok).
As in the algebraic case we require that for every subset J, C {1,...,a}
and every subset J, C {1,...,b} the ideal of R/nR generated by
YR (\"’ X N"”) defines an irreducible closed subscheme of Spec(R/nR),
that the ideal of R generated by y, (P,) is not the unit ideal and that the
image of the monoid O% -y (Py) is saturated in R ®¢, O.
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We deduce from 3.1 that

(i) in the algebraic, respectively in the formal setting, (X,N) (re-
spectively (X,Z,Nn)) is a fine and saturated log scheme;
(ii) f (resp. f) is a log smooth morphism.

In the algebraic case, by abuse of notation we write X for (X, M). An
object U = Spec(R) € X" with induced log structure satisfying the re-
quirements above will be called small.

In the formal case we write X,y for the rigid analytic fibre of X¢om. The
inverse limit of the log structures N, defines a morphism of sheaves of
monoids from the inverse limit Ny, = olgLnnN,l to Ox,,,.. It coincides with

the inverse image of N; via the canonical map Oy, — Ox,. We call it the
formal log structure on Xgyy,. We also write X or (X, N) for the inductive
system {(X,,Ny)}, . It follows from our assumptions that Xpm, is a
noetherian and z-adic formal scheme. An étale open Spf(R) — Xiorm sat-
isfying the requirements above is called small. By assumption we have a
covering of Xt by small objects. For any such small affine Spf(R) of X¢rm
we also have z-adic formally étale morphisms

Spf (Ok[P1®0,Ok) L SPf(R) — Xtorm,

where ® stands for the n-adic completion of the tensor product, with the
property that the formal log structure Ny, on Spf(R) is induced by the
formal log structure on the fibred product Spf (OK[P]QA@OK[N] (’)K). We call
any such diagram a formal chart of (Xtorm, Niorm ).

FExample: Assume that X is a regular scheme with a normal crossing
divisor D C X. Then étale locally on X we can choose local charts yp sat-
isfying the conditions above. For example, for every closed point of X one
can take P and yj étale locally to be defined by a regular sequence of
elements generating the maximal ideal at « so that D is defined by part of
such a sequence. In this case also the ideal generated by wr(P}) in R is not
the unit ideal and the conditions above are satisfied.

2.1.3 — Continuous sheaves

Given an abelian category A admitting enough injectves we consider
the category A"~ of inverse systems of objects of A indexed by N. It is also
abelian with enough injectives. Given a left exact functor F' from A to an
abelian category B we have a left exact functor F: 4~ — B sending
(Copex — (F(C)), <, and its i-th derived functor R (F™) is canonically
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(RiF)\\. If projective limits exist in 3, one can derive the functor
Feont; AN _ B sending (Cy),ex— lim F(C,). We refer [AIl, § 5.1] for
details. e

We also consider the category Ind (A) of inductive systems of objects
in A indexed by 7, i.e. (Amyh)he% with y,: A, — Aj.1. Consider a non
decreasing function «:7 — 7. Given objects A := (A;,7;),., and
B := (B}, 4)) iz, We define a morphism f: A — B of type u to be a collection
of morphisms fi:A; — Byg such that fi 10y, = I diof;. We

a()<j<ali+1)

denote by Hom”(A4,B) the group of homomorphisms of type «. We say
that two morphisms f and ¢ of type o (resp. ff) are equivalent if there
exists N € N such that f; composed with B, — Bmax),gi)+n and g;
composed with Bp;) — Bmax i), g+~ coincide. One checks that this de-
fines an equivalence relation. We define a morphism A — B in Ind(A) to
be a class of morphisms with respect to this equivalence relation.

One can prove that Ind (A) is an abelian category. If B admits
inductive limits and F: A — B is a left exact functor, we define
R'F: Ind(A™) — B by R'F™((Ay,7,)) = lim R'F"(A;). Then the

family {R"F¢"}  defines a cohomological d-functor on Ind(A).

2.2 — Faltings’ topos
221 — The Kummer étale site of X

The notations are as in the previous section. Both in the algebraic and in
the formal case we write X¥¢* for the Kummer étale site of (X, N).

In the algebraic case the category is the full subcategory of log schemes
endowed with a Kummer étale morphism (Y, Ny) — (X, N) in the sense of
[1L, § 2.1], i.e. morphisms which are log étale and Kummer or equivalently
log étale and exact. The coverings are collections of Kummer étale
morphism (Y;, N;) — (X, N) such that X is set theoretically the union of the
images of the Y;’s. One verifies that this defines a site; see loc. cit.

In the formal case the objects are Kummer étale morphisms
{9n: (Yu, Ny,) — (X, N}, such that g, is the base change of g,,,; via
Xy, Ny) — (Xyi1,Nyyq1) for every n € N. We simply write ¢g: (Y, Ny) —
(X, Nx) for such inductive system of morphisms. The morphisms from
an object (Y,Ny) — (X,N) to an object (Z,Ny):= {hy:(Z,,Nz,) —
(X, N.)} e are collections of morphisms {t,: (Y,,,Ny,) — (Z.,Ngz,)}, .
as log schemes over (X,,, N,,) such that ¢, is the base change of £,,; via
Xy, Ny) — Xy41,Nyyp) for every n € N. We simply write ¢: (Y, Ny) —
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(Z,Ny) for such an inductive system of morphisms. The coverings are
collections of Kummer étale morphisms {(Y;, N;) — (X, N)}, such that X,
is the set theoretic union of the images of the Y; ;’s. This defines a site. Due
to the characterization of log étale morphisms in [K2, prop 3.14] the natural
forgetful morphism of sites X*¢* — X¥! sending g: (Y, Ny) — (X, N) to
¢1: (Y1,Ny,) — (X1, Ny), is an equivalence of categories.

LEMMA 2.4.  Let (Y, H) € X*¢t. Then,

1) Y (resp. Spec(R) if Yiorm = Spf(R) in the formal case) are Cohen-
Macaulay and normal schemes;

() (Y, H) (resp. (Spec(R), Htorm) if Yeorm = Spf(R) in the formal case)
are log regular in the sense of [K3, Def. 2.1].

Proor. We provide a proof in the algebraic case. Since f: (Y, H) —
(X,N) is Kummer étale, in particular it is log étale. Since f: (X,N) —
(S, M) is log smooth the composite (Y, H) — (S, M) is log smooth. Recall
that (S M ) is Spec(Ok) with the log structure defined by its maximal ideal.
In particular it is log regular. Arguing as in [T1, Lemma 1.5.1] we deduce
from [K3, Thm. 8.2] that also (Y, H) is log regular. Due to [K3, Thm. 4.1] the
scheme Y is then Cohen-Macaulay and normal. This proves the claims in the
algebraic case.

For the proof in the formal case we make some preliminary remarks in
the algebraic case. Let y € Y and set « to be its image in X. Write H, and
N, for the stalk of the sheaves of monoids H and N and put H, := H, / Oy
and N, :=H,/ Oy .- Since the log structures are fine, H, and N, are f1—
nitely generated and we have inclusions H, C H and N, C ng The
morphism (Y,H) — (X,N) being Kummer etale the 1nduced map
1:N, — H, is injective and there exists an integer n invertible in Oy, such
that nH, C N,. Since N" is a finite and free Z-module we can find a
splitting of the group homomorphism N&° — Nip which composed with the
inclusion N, C N provides a chart P — N ina neighborhood U, of x cf.
[K2, Lemma 2. 10] Proceeding similarly with H we can find a splitting of
HY —>ng Since the local ring Oy, is taken with respect to the étale
topology and nis invertible in Oy 4, the group Oy, is n-divisible and we can
take the splitting compatible with the first sphttmg of N — N, N Com-
posing with the inclusion H y C HY , We get a chart Q —>Hina nelghbor-
hood V,, of y compatible with P — N via the map of sheaves f~1(N) — H.

To check that R is Cohen-Macaulay in the formal case it suffices to
prove that the complete local ring of R at every maximal ideal y is Cohen-
Macaulay at the image x of y in X. To prove that it is normal it further
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suffices to show that R is regular in codimension 1. Due to the assumptions
and the proof in the algebraic case, (1) and (2) hold if Spf(R) is a formal
chart of (X, N), i.e. f is the identity map. In the general case, using the
considerations above, we have

Oy = Ox, &7, Z1Q)]

where P — @) is a morphism of monoids as above. By the construction of the
chart P, we have that P* = {1}. We conclude from [K3, Thm. 3.2] that
Ox.. = RILPILT:,...,T,1/(0) for R = W (k(x)) and 0 = p modulo the ideal
(P\{1},T1,....T.). Then, Oy, = RIQILT}, ..., T.1/(0). Since Q is satu-
rated and Q* = {1} by construction, also OY y 18 of the same form. The proof
of [K3, Thm. 4.1] applies to deduce that Oy . is Cohen-Macaulay and regular
in codimension 1. This concludes the proof of (1) and (2) in the formal case as
well. O

In the algebraic case consider the presheaves Oy. and Nyw: respec-
tively defined by

Xkt s (U,Ny)—TI'(U,0y),  X*'>(U,Ny)— I'(U,Ny).

Similarly, in the formal case for every h € IN define the presheaves OXket
and N Xt

X5 (U,,Ny,), — I'(Uy, Oy,), x5 (U,,Ny,), — I (U, Ny,).

We write Othet and N ket for the presheaves defined as hm OXket and
lim N Xt respectively.

o0—MN

PrOPOSITION 2.5. (1) In the algebraic case the presheaves Oxiet, Oyt
and Nxwe are sheaves and Nyw — Oxie 1S @ morphism of sheaves of
maultiplicative monoids such that the inverse image of Oy 18 identified
with Oy

(2) In the formal case the presheaves OX};et, O;fifet and N ket for every
h € N and the presheaves Oxet (9}};@ and N it Q7 sheaves. Moreover,

N Xkt = Oxket ond Ny — Oxket s a momohzsm of sheaves of multi-

form form

plwatwe monozds such that the inverse image of Oxket (resp. Oxket ) is
identified with Oy (resp. Oxe ).

PrOOF. An unpublished result of K. Kato implies that the Kummer
étale topology is coarser than the canonical topology. This implies the
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claims that the given presheaves are sheaves, see [Il, § 2.7(a)&(b)]. The
other properties are clear. O

2.2.2 — The finite Kummer étale sites Utket

Let U € X* and let K C L C K. In the algebraic case we let U be
the site of finite Kummer étale covers of U, endowed with the log struc-
ture defined by N; see [Il, Def. 3.1]. As remarked in [Il, Rmk. 3.11] a
Kummer étale map Y — Uj, inducing a finite and surjective morphism at
the level of underlying schemes, is a Kummer étale cover. Viceversa [II,
Cor. 3.10 & Prop 3.12] implies that any Kummer étale cover Y — Uy, is
Kummer étale and induces a finite and surjective morphism on the un-
derlying schemes.

In the formal case we proceed differently. If K C L is a finite extension,
let Uy, be the rigid analytic space associated to Ufm.m@oK Oy, and let Ug‘et be
the site whose objects consist of finite surjective morphisms W — Uy, of L-
rigid analytic spaces such that

(1) W is smooth over L;
(2) for every formal chart

Spf(OK[P]®0K[x]OK> 2z Spf(R) — Utorm,

the induced morphism W x, Spm(R ®o, L) — Spm(Ok[P1Ro,nL)
defines a finite and étale morphism of rigid analytic spaces over the open
subspace of Spm(L{P}) given by Spm (L{P#P}).

The morphisms are morphisms as rigid analytic spaces over Uy,. The
coverings are collections of morphisms W; — W, for ¢ € I, whose images
cover W set theoretically.

REMARK 2.6. (i) If W — Uy is a finite morphism of rigid analytic
spaces, then for every formal chart of U the map

p:W xy, Spm(R ®0, L) — Spm(R @0, L)

is finite by [FdP, Th. II[.6.2] so that it is of the form Spm(B)—
Spm(R ®o, L) for a R ®o, L-algebra B which is finite as a R ®o, L-
module. Then, p is finite and étale over Spm(L{Pe}) if and only if
R ®o, L{P#®} — B{P®} is a finite and separable extension of algebras.
Since this condition can be checked on K-points, this holds if and only if
R ®o, L[P?] — B[P#] is finite and étale in the usual sense.

(ii) Let W — Uy, be a finite morphism of L-rigid analytic spaces with W
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smooth over L. Then, condition (2) holds if and only if there exist formal
charts of Uy Which cover Usym and for which condition (2) holds.

(iii) We remark that the definition in the algebraic case coincides with
the one provided by the analogues of requirements (1) and (2). Indeed,
given U € X¥* and W — U}, a Kummer étale cover, W — Uj, is Kummer
étale. Thus, W — Spec(L) is log smooth, and in fact smooth as the log
structure on L is trivial. The analogue of condition (2) holds thanks to [K2,
Prop. 3.8]. Viceversa assume that W — Uy, is a finite surjective morphism
satisfying conditions (1) and (2). Let z: U} — Uy, be the locus of triviality of
the log structure and let j: W° — W be its inverse image in W. As Uy, is log
regular, see 2.4, the log structure on Uy, is defined by Oy, N l*(OUZ) C Oy,
thanks to [K3, 11.6]. As W is smooth Ow N j.(Ow.) C Oy defines a fine and
saturated log structure on W, cf. [I1, § 1.7]. Using this log structure we get
amap of log schemes W — Uy, and, as W — Uy, is finite and surjective, it is
exact and log étale, i.e., Kummer étale.

Given a finite extension K ¢ L ¢ L’ C K the base change from L to L’
provides a morphism of sites Ukt — Uket. For arbitrary extensions
K c L C K, we then get a fibred site U over the category of finite ex-
tensions of K contained in L in the sense of [SGAIV, § VI.7.2.1]. We let
U iket be the site defined by the projective limit of the fibred site U!; see
[SGAIV, Def. VI.8.2.5].

REMARK 2.7. For example, one has the following explicit descrip-
tion of Uket, The objects in Utket consist of pairs (W, L) where L is a
finite, extension of K contained in K and W € Uet. Given (W, L) and
W',L) define Homya«(OW,L),(W,L)) to be the direct limit
liin Homy,» (W @y L, W@ L") over all finite extensions L” of K,

contained in K and containing both L and L/, of the morphisms
W @p L' — W ®p L" as rigid analytic spaces over Up,.

2.2.3 — Faltings’ site

Let K C L C K be any extension. Let Ey, be the category defined as
follows

i) the objects consist of pairs (U,W) such that U € X*** and
W e Ulket;

i) amorphism (U, W) — (U, W) in E¥, consists of a pair («, 5), where
o lf{{’ — U is amorphism in X*** and f: W' — W x 7, Uy is a morphism in
Ut
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The pair (X,Xy) is a final object in Ex,. Moreover, finite projective
limits are representable in Ex, and, in particular, fibred products exist:
the fibred product of the objects (U', W) and (U”,W”") over (U,W) is
(U xy U", W' xw W") where W’ xy W is the fibred product of the base-
changes of W and W” to (U’ xy U ”)fet over the base-change of W to
(U xy U”)%et. See [Err, Prop. 2.6].

We say that a family {(U;, W;) — (U, W)}, is a covering family if
either

®) {U; — U}, is a covering in X%t and W; = W xy,, U, for every
vel.

or
B U; = U for all i € I and {W; — W},_, is a covering in U'ket,

We endow EYx, with the topology Tx, generated by the covering fam-
ilies described above and denote by X, the associated site. We call Ty,
Faltings’ topology and X; Faltings’ site associated to X. As in [Err,
Lemma 2.8] one proves that the so called strict coverings of (U, W) (see

definition 2.8 below) are cofinal in the collection of all covering families of
(U,w).

DEFINITION 2.8. A family {(Uy, W) — (U, W)}, jc; of morphisms in
Ex, is called a strict covering family if

a) For each i € I and for every j € J we have an object U; € X*** and
isomorphisms U; = U;; in Xket,
b) {U; — U}, is a covering in XTket,
ﬂ(c) For every i € I the family {W;; — W xy, UZ-‘K}jeJ is a covering in
U,

This is not Faltings’ original definition of the site given in [F3]. We
refer to [AI2] for a discussion of the differences between the two ap-
proaches and motivations for our definition.

224 — Continuous Funectors
For K ¢ L c K we let
vxﬁL:Xket—>%L, 2'X7LZXet—>3€L

be given by vx 1 (U) := (U,Uy) in the algebraic case and by vx (U) :=
(U U K), viewing Ug as an object of U%et, in the formal case and similarly
for zx 1. We simply write vz, and zr..
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Define
ﬂ: .’/{K — ‘%E

by BU,W) = (U,W @k K) (resp. J(U, W) equal to (U, W) viewed in Xz)
in the algebraic (resp. formal) setting.

Assume we are in the algebraic case. Let X be the p-adic formal scheme
associated to X and denote by X;, Faltings’ site associated to the formal log
scheme X. We then have a morphism

VL 33[1 _)3314;

sending (U, W) to (ff , W'E ). Here W|[A] is defined as follows. Let K ¢ M
L L

be a finite extension, contained in L, where W — Uy, is defined. Let
W — Ujp be the associated finite Kummer étale morphism of analytic
spaces. Then W\E is defined by restricting it to the open immersion

U u C Uy We simLply write y if there is no confusion.

It is clear that the above functors send covering families to covering
families and commute with fiber products. In particular they define con-
tinuous functors of sites by [SGAIV, Prop. I11.1.6]. They also send final
objects to final objects so that they induce morphisms of the associated
topoi of sheaves.

REMARK 2.9. We provide an alternative presentation of the mor-
phisms above for an arbitrary extension K C L C K.

For every finite extension K ¢ M in L, let X, (resp. X;;) be Faltings’
site associated to X (resp. X) over M. Let y3;: Xy — %M be the morphism
defined in 2.2.4. Given finite extensions M C M’ of K in L we have a natural
morphism of sites Xy — X (resp. wpp p: Xy — X)) given by
(U,W)— (U,W @y M'). Moreover, we have yy, o uy i = U a1 © -

Let I;, be the category opposed to the category of finite extensions
of K contained in L. Then 3/%. (resp. %,) are fibred sites over I;, via the
morphisms % (resp. u) and y,: X, — X, defines a coherent morphism of
fibred sites; cf. [SGAIV, § VI.7.2.1]. TAhen X, and X, are isomorphic to
the projective limit site of X, and X. and y; is induced by 7,; see
[SGAIV, Def. VI.8.2.5].

2.25 — Geometric points

Following [Il, Def. 4.1] we define a log geometric point s to be the
spectrum of an algebraically closed field k& with log structure M; such that
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multiplication by n on M;/k* is a bijection for every integer % prime to the
characteristic of k. A log geometric point of (X, N) is a map of log schemes
from a log geometric point to (X, N). For any such point x — (X, N), we let
(X2, N.;) be the log strict localization of X at « as in [I1, § 4.5]: by definition
it is the log strictly local log scheme defined as the inverse limit of (U, Ny)
(resp. (Uform7Nf0rm)) over the Kummer étale neighborhoods U of «.

For a field extension K C L in K we define a geometric point of X7, to be
a pair (x, y) where « is a log geometric point of X and y is a log geometric
point of (X, N,) over L.

Given a presheaf 7 on X, we define the stalk 7, of 7 on X to be the
direct limit lim F(U, W) over all pairs ((U,'),(W,')) where U is affine, «’
is a log geometric point of U mapping to « and ¥’ is a log geometric point of
W specializing to ' and mapping to y. As in [Err, Prop. 3.4] on proves that
there are enough geometric points in X, i.e. that a sequence of sheaves is
exact if an only if the induced sequence on stalks is exact for all geometric
points (x, ).

2.2.6 — The localization functors

Let U be a small connected affine object of X* and write
U = Spec(Ry) in the algebraic case and Ugyy, := Spf(Ry) in the formal
case. Let Ny be the induced log structure (Ny, .. in the formal case).

Recall that R is an integral domain. Let Cy be an algebraic closure
of Frac(Ry) and let ‘Cl{}g = (Cy,N¢) be a log geometric point of
(Spec(Ry),Ny) over Cy. Let Gy, be the Kummer étale Galois group
nll"g (Spec(Rylp11), 'Cll(}g), see [11, § 4.5], classifying Kummer étale covers
of Spec(Ry[p~'1). It follows from 2.6 that both in the algebraic case and in
the formal case the category U%et is equivalent to the category of finite
sets with continuous action of Gy;,.. Write (R7, Nyy) for the direct limit of all
the finite normal extensions By C S, all log structures Ng on Spec(Sg) and
all maps (Ryx,Nyx) — (Sk,Ns) — (Cy,N¢) such that (Ryx, Ny k) —
(Sk,Ng) is finite Kummer étale. Then we have an equivalence of cate-
gories

Sh(U%) — Rep(Guy),
from the category of sheaves of abelian groups on Uk to the category

of discrete abelian groups with continuous action of Gy,, defined by
F+ lim F((Sk, Ns)). Composing with the restriction

Sh(Xx) — Sh(U%') — Rep(Guy )
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we obtain a functor which we simply write as 7 — F(Ry, Ny ), called lo-
calization functor. We also write

Sh(¥k)" —Rep(Gu).  F = (Fu),—F(Ru.Nu) = lim 7, (Ru. N).

More generally we fix an extension K ¢ L ¢ K. Write Ry ®o, L :=

[1 Ry, with Spec(Ry;) connected and let Ny;; be the induced log struc-
i=1

ture. Fix a log geometric generic point 7; = Cll‘}i of (Spec(Ry ), Ny ;) over
Cy. Write (Ry;, Ny ;) for the direct limit of all finite normal extensions
Ry S taken over all morphisms (Ry;, Nyi) — (S,Ns) — (Cy i, Ne)
such that (Ry i, Ny,) — (S,Ny) is finite Kummer étale. We let Gy, . be

the Galms group of Ry, CRUZ Eventually, put Ry := HRU7 and
Ny = H N v.i and =

i=1

n
= H Gu, .-
i1

For later purposes for L = K and for every i write (R i, Ny, as the
direct limit of the Kummer étale covers (R ;, Ny ;) — (S, Ng) (mapping to

1
(Cyi,Nc)) of theform S = Ry ; ®K[Nb ] [—NW] for varying n € N. We

let Ry o = HRUOOlandNUQO: HNUQN LetHU_ be the group of
i=1 i=1

automorphisms of Ry ias Ry o ;-algebra. Let

n
=[THu.
i=1

Let Rep(Gy,) (resp. Rep(gUL)A) be the category of discrete abelian
groups (resp. the category of inverse systems of finite abelian groups in-
dexed by IN) with continuous action of G, . It follows from 2.6 and [I1, § 4.5]
that it is equivalent to the category of sheaves (resp. projective limits of
sheaves) on UfL]‘et. As before we have natural functors called localization
Sfunctors

Sh(X,) —Rep(Gy,) and  Sh(X.)" — Rep(Gr,)"

defined as follows. If G € Sh(X;) is a sheaf of abelian groups its
localization is G(Ry,Ny) = &' ,G(Ry;,Ny;) where G(Ry;,Ny;) =
lim G(U, (Spec(S), Ng)) over all (Ry;,Ny;) — (S,Ns) C (Ry;,Ny,) as
before.
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227 — The computation of R'vent
Let K ¢ L C K. Let F be a sheaf of abelian groups on X;,.

ProposiTION 2.10.  The sheaf RivX,Ly*(]-' ) is isomorphic to the sheaf on
Xket gssociated to the contravariant functor whose values on an affine
connected open U € X*et is HZ (Gu,,F(Ru,Ny)).

Analogously, the sheaf R'zx 1,.(F) is isomorphic to the sheaf on X
assoctated to the contravariant functor whose values on an affine con-
nected open U € X is H (Gy,, F (Ry,Ny)).

Proor. The proof is as in [Err, Thm. 3.6]. O

Assume that we are in the algebraic case and that X is proper over Ok.
Let X be the associated formal scheme. For every sheaf [. on X, we have a
natural morphism

H (%L, 1L) — H' (X1, (L)).

ProposiTION 2.11.  Let 1. be a torsion sheaf on X;. Then, the mor-
phism above is an isomorphism.

Proor. We first show how to reduce to the case that L is a finite
extension of K in K. Due to 2.9 the sites X, and X, are identified with the
projective limit site of the sites X, and X, fibred over the finite extensions
of K contained in L. Furthermore y; is induced by y,. It follows from
[SGAIV, § VI1.8.7.1] and [SGAIV, § VI.8.7.3] that

H' (X, L) = im H (Xy, L

Xy )
and

H'(%1,77,(1)) = lim H' (Xar, 75 (L ).

where the direct limit is taken over the category of all finite extensions
M of K contained in L. Since yZ(L)|¥ =~y (L] 3€M)’ if we show that for
M

every M the map H' (X, 1) —>Hi(.%M,y}‘w (L)) is an isomorphism for
every torsion sheaf I on Xy, the map H'(X;,1.) — H' (SAEL, 75 (L)) is also
an isomorphism for every torsion sheaf L. on X;. We are then reduced to
prove the proposition for K C L a finite extension contained in K.
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Consider the commutative diagram
Sh(X,) 2= Sh(xy)

2R, Lx | 2X.Lx |

Sh(Xe) - Sh(X*).
We have compatible spectral sequences
HY (X, RP2x 1,.(L)) = HP"(Xg, L)

and

HY(X* Rlzy, (7(L) = B Xk, (L),

It suffices to prove that the natural map HY(X®, RPzyx..(L))—
H? (Xet szA (y*(L))) is an isomorphism. Due to [Ga, Cor. 1] and the fact

that X is proper over O this follows if we show that the natural map

v (RPzx 1.(L) = RV ("(L)

is an isomorphism This can be checked on stalks at geometric points
x € X;. Let (’)X @ (resp. (’)})‘( ) be the henselization of Oy, (resp. OA ) Due

to 2.10 it suffices to prove that the map from the Kummer étale covers of
Spec(OX_x ®0o, L) to the Kummer étale covers of Spec(OSE ®o, L), given
’ ,x

by base change, is an equivalence. In both cases the number of their con-
nected components is finite and equal to the degree of the maximal un-
ramified extension K’ of K contained in L. It thus suffices to show that their
Galois groups, by which we mean the product of the Galois groups of the
connected components, are isomorphic. Such Galois groups are isomorphic
to [K’ : L] times the Galois groups of Oxm ®o,, L and O§ ®o,, L respec-
tively, which classify finite and normal extensions which are separable over
the locus where the log structure is trivial. By construction in both cases the
log structures are defined by regular elements Yi,...,Y; € Ox,. Hence,
such Galois groups are extensions of the Galois groups of (’)?( » ®0, L (resp.
of (’)h ®@K, L) by the product of the inertia groups (= 7)) at each of the
prlme ‘ideals defined by Y; for those ¢ € {1,...,b} such that Y; is not a unit.
Hence, we are reduced to prove that the Galms groups of (’)f,‘( « ®o, Land of
(’)A ®0K, L coincide. It suffices to show that the Galois groups of (95; x[ p~1]

and of (’)h [p 1 coincide. This follows from [El, Thm. 5]. O
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For every U € X* affine connected define H*(Gy, ) to be the o-
functor obtained by deriving the functor associating to an inverse system

of discrete Gy7, -modules {A, },, . the group lim A,gﬁ. Consider an inverse
00N,

system of sheaves F = {F,}, € Sh(Z{L)‘\ of abelian groups. Define

bl (F) to be the sheaf associated to the contravariant functor sending
U € X*, affine connected, to H'(Gy, , {F.(Ry)},,). One can also consider
the sheaf RZDZfL‘t(f ) obtained by deriving the functor 7 — Olclpn VL, +(F).

Then, proceeding as in [Err, Lemma 3.5] and [AI2, Lemma 3.17] one can
show there is a functorial homomorphism of sheaves

fi(F): Hiy (F) — Rl . (F).

The next proposition, analogous to 2.10, provides a criterion under which
the above morphism is an isomorphism. Assume that L = K and that
{Fn}nen is a sheaf of Ayp-modules (resp. of {Of/p" Ox},-modules). For
every small U € X® we write Ry, as in 2.2.6 and RU,O@,O} to be the nor-
malization of Ry in Ry . K C Ry[p~t]. We write

Huy = (RBolp Y Ruwolp ™M), T = (Rusollp VROK).

We then have an exact sequence

0—’HU}—’QUE—’FU?—>O'

As in 2.2.6 we define ]:(RU,OC‘OE) = olc{r_n?7 Fa (RU-,oo-,Og)- They are I'y_-
modules. ’

Given an Aj,s-module or an O module, we say that it is almost zero if it
is annihilated by any element of ideal Z of Aj,¢ (resp. the maximal ideal of
Og) (see § 2.1.1 for the notation).

PROPOSITION 2.12. Assume that for every small U € X° and every
n € N the following hold:

(1) the cokernel of Fni1(Ry) — Fn(Ry) is almost zero;

(2) for every q > 1 the group H!(Hy_, F «(Ry)) is almost zero;

(3) the cokernel of the transition map F .1 (R U-oo,OE) — F W(RUW,@?) 18
almost zero;

4) for every covering Z — U by small objects in X*¢* and every q > 1the
Chech cohomology group H'(Z — U, F\,(R U002 Oy B 7)) is almost zero.

Then, the morphism f;(F) has kernel and cokernel annihilated by any
element of T (resp. any element of the maximal ideal of Og).
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Proor. Wefollow the analogous proof givenin [AI1, Thm. 6.12]. See also
[AI2, Lemma 3.19]. In (4) the notation F,, (RU,OC,OE ®r, Rz) stands for the

following. Write RU.oo,o} as a direct limit of normal Ry Ox-algebras W, finite
and Kummer étale after inverting p. Then 7, (R U00.0- Oy B 7) is defined to
be the direct limit limy F,,(Z, W), over all W’s, denoting by W the object of
Z%t obtained from W via the continuous map of sites U%t — Z%t. Note that
Rzﬁooyog[pfl] is a direct factor in Ry 0. ®r, Rz [p~!], the group Iz _isa
quotient of 'y and Ry 0. ®r, Bz [p1] = Ind?ZR Z,0,0, 18 the induced
representation as I'y_-module. Hence

I'y_
Fo (RU,OO,OE ®RU RZ) = Indfjf]:n (RZ,oo‘OE)~
K

Without loss of generality we may assume that X = U. Via the equivalence
of Ulf_(th with the category of finite sets with action of Gy, we get a sub-

topology U, C Ulﬂ{‘et associated to the category of finite sets with action of
I'y... Let %ocE C Xy be the subcategory consisting of pairs (V, W) where
VeXktand W e V;—{m is obtained from an object in U, via the continuous
map of sites Ufft — Viet It is closed under fibred products and we endow it

with the 1nduced topology The map vy factors as vz = ff o o via the con-
tinuous morphism of sites

oz Xket ‘%ocK’ U~ (U, UE)

and the continuous morphism of sites defined by the inclusion
B X wE X%. We can then compute vﬁ?nt as the composite of o€t o -
2.1.3 for the notatlon We get a Leray spectral sequence

Rlotiont (R]ﬂ* (Fn )ne\“) — RH]'U;_(OT(fn)-

Note that R'A. (F)uen = (RB.(F))

neN’

Step 1: We claim that the group R'S,(F,,) is almost zero for i > 1.
For V e X*¢t affine and F a sheaf on Xz we have

Ty_ S
Indrig H’(Hy_, F (Rv,Nv)) = .(F)(Ry 0, ®r, Rv),

as representations of I” Uszs functorially in V. As in [Err, Lemma 3.5] one
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argues that for every ¢ we have a map
Tug ri 5 N i
IndFVfH(HVX, f(Rv, Nv)) —R ﬂ*(f)(RU,:x:,OE QRy Rv).
K

A geometric point (x, %) of X defines a geometric point of X _ z. Arguing as
in [Err, Thm. 3.6] one proves that the map above induces an isomorphism
. Iy_ . S
between the stalk R'f, (F),, and linr‘} Ind rZK H (HVX’ F(Ry,Ny)), where
xre z
the direct limit is taken over all affine neighborhoods V' of x. Since we have

enough geometric points, this and Assumption (2) imply that Riﬁ* (Fp)is
almost zero for every » and every i > 1.

Step 2: The computation of Ria™f (F,,).
For every ¢ and n €N consider the contravariant functor
on X £ associating to every affine connected V € Xkt the

group C'(I' U B(Fu)(Ry o0 @R, Ry)) of continuous maps Fi[]*;—>
F (RUW@E ®r, Rv). Assumption (4) implies that the associated sheaf
Ci(F Uz /)’*(}"n)) has values on every affine connected V € X*¢* equal to
the continuous maps I 1,];1 — Fu(Rv.0. @R, Ry), up to multiplication
by any element of the ideal Z of Ay (resp. of the maximal ideal of Ox).
For V € X* affine connected we have

B (F V) = lim Fo(Ru0; ©ry Ry)' 'S

In particular up to multiplication by any element of 7 (resp. of the maximal
ideal of O%) we have a long exact sequence

0— o, (B(F)) — C* (L, Bu(F)).

For every V € X** affine connected the group o (C (I v B(F0))(V)
coincides with the continuous cochains C' (r U hm Fu(Ru o, 0 ORyy Ry)).

To conclude the proof of the proposition it sufﬁces to show that the higher
direct images R'o™" of C'(I'y_, f.(Fy)), ., are almost zero. We use the
spectral sequence

im® (Ro.C" (Iu, B.(FW)))

neN
= Ritipeont(ch (Fug: BAF) yers)-

Arguing as in [Err, Lemma 8.5 & Thm. 3.6] one proves that for any sheaf 7
on X % and any geometric point x of Xkt the stalk Ra, (F), is the limit

lirg H/ (r v F (RU,OC,O} ®r, Rv)) over the affine connected neighborhoods
xre
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V € X*¢ of . Up to multiplication by any element of 7 (resp. of the maximal
ideal of O%) the group H’ (F U c(r Ups Fu(RU 000 Ry RV))> coincides
with the cohomology of H’ (F U},,) of the module of continuous maps
F’fj; — Fa (RUA,OCA,@E ®g, Rv), which is zero for j > 1. We deduce that
Rio.Ct (r v, B, (F,)) is almost zero for j > 1. We are left to prove that
lim® (OC*Ch (r U, B, (]—‘n))) is almost zero for i > 1. This follows using

Assumptions (3) and (4); we refer to the proof of [AIl, Prop. 6.15(ii)] for
details. O

2.3 — Fontaine’s sheaves

In what follows we will use the following convention. Let S be a site
and let A be a sheaf of commutative rings with identity on S such that
the presheaf of units A" is a sheaf. We need the notion of logarithmic
geometry in this general setting. We refer to [GR, § 6] for the detailed
re-elaboration of [K2]. A prelog structure on S is a sheaf of monoids M
and a morphism of multiplicative monoids «: M — A. A log structure is a
prelog structure such that « induces an isomorphism o 1(A)" = A*. The
forgetful functor from the category of log structures on A to the cate-
gory of prelog structures admits a left adjoint. We say that a log
structure is coherent (resp. fine, resp. fine and saturated) if there is an
open covering {U;}; of S such that M|, — A|;, is the log structure
associated to a morphism of presheaves of multiplicative monoids
P, — .A|Ui such that P; is a constant presheaf on S |U7_ and I'(U;, P;) is
finitely generated (resp. finitely generated and integral, resp. finitely
generated, integral and saturated) for every i. We refer to [GR] for
details.

It A={A,}, € Sh(S)" is a continuous sheaf of rings, a prelog struc-
ture (resp. a log structure on A) is a continuous sheaf of monoids
M ={M,}, and a morphism « = {a,},:M — A of continuous sheaves
such that each o,,: M,, — A, defines a prelog structure (resp. a log struec-
ture) on A,. Also in this case the category of log structures admits a left
adjoint. We say that a log structure is coherent (resp. fine, resp. fine and
saturated) if there is an open covering {U;};.; of S such that
M|y, — Auly, is coherent (vesp. fine, resp. fine and saturated) for every
n € N and every ¢ € I.

Given sheaves (or continuous sheaves) of rings A and A’ as above and
prelog structures «:M — A and o': M’ — A, a morphism of prelog
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structures is a morphism of sheaves of rings f: A — A’ and a morphism of
monoids g: M — M’ such that ¢/ o g = f o a. A morphism of log structures
is a morphism as prelog structures. We say that (f, g) is exact if M’ is the
log structure associated to the prelog structure o/ o g: M — A'.

Examples: 1t follows from 2.5 that:

(1) in the algebraic case Ny — Oyw defines a fine and saturated log
structure on Oyuet.
(2) in the formal case N ket — Ot for h € Nand N it — O define

form

alog structure on Oy« (resp Ot ) which is fine and saturated.

2.3.1 — The sheaves Oy and (7)_:5

Fix an extension K ¢ L C K. In the algebraic case we define the pre-
sheaf of Or-algebras on Ey,, denoted Oy, , by

Ox,(U,W) := the normalization of I"(U,Oy) in I'(W, Oy).

In the formal case the definition is the same replacing I"(U, Oy) with
I'(Utorm, O, )- We also define the sub-presheaf of 1 (k)-algebras Of, of
Oy, whose sections over (U, W) € Ex, consist of elements x € Oy, (U, W)
for which there exist a Kummer étale morphism U’ — U and a morphism
W — Uy over Uk such that x, viewed in I"(W, Oy ), lies in the image of
I'(U',O). Then we have.

ProPOSITION 2.13.  The presheaves Ox, and O are sheaves. More-
over, Oy, isisomorphic to the sheaf vy j, (Oxet) in the algebmzc case and is
isomomhw to the sheaf vy, (OXlkcet ) in the formal case.

ProoF. We prove the statements in the algebraic case. The proof in the
formal case is similar and left to the reader. We first prove that Oy, is a
sheaf. Let {(U,,W,;) — (U,W)},; be a strict covering family. We set
Uyp = U, xy Ug and W, := Wm xw Wp ;. We have the following com-
mutative diagram

0 — Ox,(UW) L [.08UaWai) 2 Tiai ) Oxi(Uass Wasis)
| l !
0 — TW,0w) — Il:T(WaisOw..) — i) T (Wasiss Oagij)

Since {U, — U}, is a covering in X*° and for every o, the family



160 Fabrizio Andreatta - Adrian Iovita

{W,i — W xy U,}; is a covering in (W xy U“,M)fket it follows from
[Ni, Prop. 2.18] that the bottom row of the above diagram is exact.
Moreover the vertical maps are all inclusions therefore f is injective, i.
e. Oy, is a separated presheaf. The rest of the argument proceeds as
in [AI2, Prop. 2.11].

Since (U, Uy) is the initial object in the category of all pairs (U’, U;)
admitting a morphism (U,W)— (U’,U;) in Xp, we conclude that
Vi1 (Oxie) is the sheaf on Xy associated to the presheaf P(U,W):=
I'(U, Op). In particular, we have a natural surjective map of presheaves
P — Of inducing a morphism v} 5, (Ox) — OF. One proves that such
morphism is an isomorphism as in [AI2, Lemma 2.13] using that
P(U,W)=rU,Oyp)is normal for every U and W by 2.4. O

Denote by (ADXL the inverse system of sheaves of (p-algebras
{Ox, /p"Ox, }, € Sh(XL)".

It follows from 2.13 that each Oy, /p"Ox, is a sheaf of
Vi 1, (Oxiet /p"Oxie ) algebras so that we get morphisms of monoids
vy (Nxie ) — Ox, /p"Oz, which are compatible for varying n € N.
Proceeding as in [K2, § 1.3], one obtains for every = an associated log
structure Ny, , — O, /p" Oy, characterized by the fact that the inverse
image of (Ox,/p"O%,)" is (Ox,/p"Ox,)". We define

Z/\\[&"L = {NXL,’H/} - (//\)%L

to be the induced log structure. By construction it is fine and saturated. For
later purposes we register the following result:

LEMMA 2.14.  Frobenius ¢ is surjective on Ox, /pOx,. For L = K its
kernel is pt/P Oy, /pOx,

B PREOF. LIsing y 2.2.6 it suffices to prove that Frobenius is surjective on
Ry /pRy — Ry /pRy with kernel pY/?Ry; /pRy;. This follows from 3.6 and
the normality of Ry;. O

The sheaves W,r. For s € N we define W, := W, (O%L /pO;gL) as
the sheaf of sets (Ox, /pOxL)S with ring operations defined using the
Witt polynomials. Let Ny, be the following log structure. For s =1 we
let Niz be the log structure associated to the log structure
Nz, 1 — Wi = Oz, /pOx,. For general s let N, 1, be the fibred product
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of monoids
‘\‘.5.11 —— Ol'l, /I)OIL

l |

A\vl.L — 0_1‘,‘/])01‘,‘-

where ¢* is Frobenius to the s-th power. Since the map ¢ is surjective
by 214 the map ¢*:Ng;,— Ny is surjective with kernel
1 +pi%(935,l /pOx,. If U € X*¢* is a small affine open, we have a chart
P = Nt — Nz, 1l .y, provided by our Assumptions (§ 2.1.2). The
surjectivity of ¢° implies that it can be lifted to a map of monoids
P — Ny, which provides a chart of Ny, locally over (U, Uy) (compare
with [T1, lemma 1.4.2]). We conclude that Ny, is a fine and saturated
sheaf of monoids.

Let Nw,, — W, 1, be the log structure associated to the prelog struc-
ture defined as the composite of Ny7, — Oy, /pOyx, with the Teichmiiller
lift OggL/p(’)}gL — W\VS’L. Let

B ¢4 R —— +
N“L ‘Ainf,L

in Sh(¥.)" be the inverse system of sheaves of W(k)-algebras {Wn,ﬁL}n
with the log structures {Nvy,, } . The transition maps are defined as the
composite of the natural projection W,,_; ;, — W, 1, and Frobenius on W, 1,
and the map induced by the natural morphisms Ny, ; — Nk, s for ¢ > s.
Arguing as before, one proves that for every n the log structure Ny, , is
fine and saturated. Note that A;;; and Ny, are endowed with a Frobe-
nius operator, denoted by ¢, and that A;LL is a continuous sheaf of W(k)-
algebras. We remark that if L = K Frobenius is an isomorphism on AL
by 2.14.

The localizations. Let U € X*® be a small affine open with underlying
algebra Ry. Then, the localizations of the above defined sheaves in the
sense of 2.2.6, are

(1) Ox, (Ry) = Ry;

@Ry — (AD%, (Rv). Moreover, the localization of {Ny, ,,}, defines on
Ry, via this isomorphism, the same log structure as the one associated to
the prelog structure yp, : P — Ry — Ry defined in § 3.1.

3) ‘W(E*) = Aif]fﬁL(RU) where E* = lim Ry /pRy is the projective

limit taking Frobenius as transition map. Moreover, the localization of
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{N+,,}, defines on \W(IN‘]*) the same log structure as the one associated to
the map of monoids v (&) P'— W(E") defined in § 3.1.4.

Statement (1) is clear. In statements (2) and (3) we have natural
morphisms due to (1). The proof that they are isomorphisms follows as in
[AI2, Prop. 2.15] and the key ingredient is Faltings’ almost purity theorem
in the semistable case for Ry (see 3.3). The statements concerning the log
structures follow as by construction Ny, ,, and Nyy,, locally on (U, Uy)
admit charts compatible with wp and 7 (E*) respectively.

232 — The morphism @

One has a natural morphism of continuous sheaves with log structures
O, := {@L,n}n: (A;rrlf,DNV\'L) - (@«35L7N35L)’

which is strict, i.e. it is such that the log structure N x,, is the one associated
to Ny, via Or. For every n € N the morphism 6y, is the morphism of
sheaves associated to the following map of presheaves c,,. For every object
(U, W) of Xy, if we put S = Ox, (U, W), then

-1
(U, W)W, (S/pS):=(S/pS)"— S /p"S, (50,51, +8u_1) Z A

=0

where for every s € S/pS we denote by § a (any) lift of s to S/p"S. One
proves that ¢, (U, W) (30, S1y..- ,sn,l) does not depend on the choice of the
lifts s; of s;, that ¢, defines a map of presheaves and that ¢, ; modulo p" is
compatible with c,,; see [AI2, § 2.4]. Since the log structure on S/p"S is the
inverse image of the log structure on S/pS, then ¢, is compatible and strict
with respect to the log structures. Moreover, if we assume that p/?" "' € S,
then, ¢, := [pl/ P 1] —p is a well defined element of W,(S/pS) and it
generates the kernel of ¢,: W,,(S/pS) — S/p™S. For the proof we refer to
loc. cit. Thus,

~

COROLLARY 215 We have Ker(@ A __%E) =& Ayg as

sheaves in Sh(X+ K)

2.3.3 — The sheaf A},

Recall from [AI2, § 2.5] thvat a W(k)-divided power (W(k)-DP) sheaf of
algebras in Sh(X ) or Sh(%L)‘\ is atriple (F,Z,7) consisting of (1) a sheaf of
‘W(k)-algebras F € Sh(X;;) (resp. an inverse system of sheaves of W(k)-
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algebras {F,} € Sh(?ﬁM)x), (2) a sheaf of ideals 7 C F (resp. an inverse
system of sheaves of ideals {Z,, C F,}), (3) maps y;: Z — T for ¢ € N such
that for every object (U, W) the triple (]—" UMW, ZU,W), V(u.vv)) (resp. for
every n the triple (F,,U, W), Z,({U, W), ¢ w)) is a DP algebra compatible
with the standard divided power structure on the ideal pW(k) in the sense
of [BO, Ch. 3]. Given a sheaf of ¥ (k)-algebras G and an ideal 7 C G (resp.
an inverse system of sheaves of W(k)-algebras G and ideals 7 C G) the
‘W(k)-divided power envelope of G with respect to 7 is a W(k)-divided
power sheaf of algebras (F,Z,7) and a morphism G — F of sheaves (or
inverse systems of sheaves) of W(k)-algebras, such that 7 maps to Z, which
is universal for morphisms as sheaves (or inverse systems of sheaves) of
W(k)-algebras from G to W(k)-divided power sheaves of algebras F' such
that 7 maps to the sheaf of ideals of &' on which the divided power
structure is defined.

Let A and A’ be (continuous) sheaves of W(k)-algebras on X endowed
with fine log structures M — Aand M’ — A’. Letf: (A, M) — (A, M')be a
morphism of sheaves of rings with log structures such that the morphism
A — A is surjective. We call the W(k)-log-divided power envelope of
(A, M) with respect to f to be

(1) a W(k)-divided power (continuous) sheaf of algebras (F,Z,7) on X
and a fine log structure H — F;

(2) a strict morphism of log structures (F,H) — (A, M’) such that
FJT = A’ as (continuous) sheaves of rings;

(3) a morphism of log structures (A, M) — (F, H) such that the com-
posite with (F, H) — (A', M) is f;

@) (F,Z,y,H) is universal among objects satisfying (1), (2) and (3).

Similarly, we call the log envelope of (A, M) with respect to f to be a
(continuous) sheaf with log structures (£,J) such that (2) and (3) hold and it
is universal for such properties.

LemMa 2.16. The W(k)-log divided power envelope (resp. the log en-
velope) of (A, M) with respect to f exists.

Proor. We argue as in [K2, Prop. 5.3]. Assume that the log envelope
(&,J) of (A, M) with respect to f exists. Then, the W(k)-divided power en-
velope of € with respect to the kernel of the morphism £ — A’ exists by [Be,
Thm. 1.2.4.1] and, together with the log structure defined by ./, it is the
'W(k)-log divided power envelope of (A, M) with respect to f. In particular,
the latter exists.
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We next prove that, under the assumption that M — A and M’ — A’
are fine, (£, J) exists. Due to the universal property it suffices to prove that
(&,J) exists locally on X, cf. [AI2, Lemma 2.23]. Let V := (U, W) € X such
that (M, A)|, and (M, A')|, admit charts P — A, and P' — A'|;, with P
and P’ constant sheaves of monoids, integral and finitely generated.
Possibly after shrinking V we may also assume that f is induced by a
morphism of monoids o:P — P'. Let @ := (ocgp)_l(P’) C P, Let £:=
Al ®7ip1 Z[Q] with the log structure J associated to the morphism of
monoids @ — &, g— 1 ® q. Then, we have natural morphisms of sheaves of
rings with log structures (M, A)|, — (£,J) — M, A’)|V and the latter is
exact by construction. We leave to the reader to check that (£,J) has the
required universal property. O

The sheaf AY: . Let AY.

eris- arisL = {Atis Ln Fen b€ the W(k)-divided power
envelope of A with respect to Ker(@y). It is endowed with a Frobenius

operator induced by Frobenius on Ajpp, and with a decreasing filtration

Fil" AZISL for n e 7., defined by the divided power ideal, where we put
Fil* L\(Z'IS L cns L for n < 0.

The sheaf Aé\lzgﬂL. Let ©¢ 1, be the morphism of continuous sheaves with
log structure

Oor =01 ® 00: Ai;f,L Qi O — (AQ,%L.

Let AlZg,L = {AlzgﬁL,n } e be the continuous sheaf defined as the ¥ (k)-log
divided power envelope of Ajl; | ®uw) O with respect to @p 1. It exists due
to 2.16. We have a natural morphism AcvriS’L — AlZg,L compatible with log
structures.

If L = K, the sheaf Acvrisi (resp. AZ gK) is a sheaf of A.s-algebras
(resp. Ajpg-modules) where A.,is and Ay, are the classical period rings of

Ok. We further have the following properties which are proven as in
[AI2, Prop. 2.24, Lemma 2.26, Prop. 2.28]:

Frobenius: The Frobenius map ¢:W, — W, defines maps

.A\CrISL — \CHSL and ¢: Alvog’L — AlZg,L which are compatible with the

morphism Ams L

— Alvog,L'

Filtration: We have a decreasing filtration Fil" Ay, for n € 7, de-
fined by the divided power ideal and compatible with the filtration on
AY

cris,L*
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Extension of scalars: We have natural isomorphisms f* (Acm k) =
ACVHS z and f* (Alog k) = Av % compatible with log structures, Frobenius

and divided power structures and with the morphism Acm L— Alog Le

Explicit description: We have natural isomorphisms

v ~ AV ~
ﬁ\CI‘lSK \me D) Aeris: Axlogf = A\me Sk Alog

compatible with the divided power structures, log structures and Frobe-
nius and such that the morphism Acvris — AIZ oK is induced by the natural
morphism Aeis — Ajog. In particular,

. .. az .
(1) the Agis-linear derivation d: Ao —>A10g7 defines on AZ oK 0
A(Zis z-linear derivation '

az
LAV \v _aZ
d: Aklog,l_{ Alog‘f VA
which is surjective and satisfies Av. N AV
log. K ’
(2) the inclusion /‘X %z C Av % is split injective with left inverse de-

fined as the morphlsm Whlch is the identity on L\V _ and sends (u — )™

s.K
to 0 for every n € N\
(3) the inclusion /&V %z C Av % 1s strict with respect to filtrations;

Localization: For U a small object of X*¢* with underlying algebra R
we have

AZFiS’L(EU) ~ AV (Rp), Alog L(Ry) = Alog(RU)

compatibly with the action of Gy, , filtrations, Frobenius where AZ—is(RU)
and Alvog(RU) are defined in 3.4.

2.34 — The sheaf Aj,q

Fix the following notation. B

(ALG) For every n € N we write S, := Spec((’)/ (P,Z(Z))") with the log
structure M,, defined by . N

(FORM) For every n € N we write S,, := Spec(O/(p, Px(Z))") with the
log structure M,, defined by .

In both cases we assume that a global deformation of (X, M) to O exists.
More precisely, we assume that for every n € N we have a log scheme
()an, Kfn) and log smooth morphism of log schemes of finite type
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f: ()?”Lﬁ”l — (§n,1171n) such that (}Z'n,f\}'@ is isomorphic as log scheme
over (SJZ,MW) to the fibred product of (X,1,N.:1) and (S,,M,) over
(Sn+17M7l+1)-

REMARK 2.17. Since (X, M) is log smooth over (S, N) (resp. (X1,S7) is
log smooth over (S;, N7)) it follows from [K2, Prop. 3.14] that such a de-
formation of (X, M) to O always exist Zariski locally on X. For example, it
exists if X is affine and in such a case any two deformations are isomorphic.
It exists also if X is of relative dimension 1 over S;.

Given a small object U € Xket for every n € N we let (f]mltln)
(Xn, N, n) be the unique Kummer étale morphism deforming the morphism
U — X. Write (Uform,Hform) for the formal scheme with log structure
defined by (Un,H Jwexe I Utorm = Spf(R) we call a formal chart of
(Utorm, Htorm) @ chart

\\\'\\,‘((k)[P]@‘\\\V(k)[A\V]O Vi —>E,

inducing a chart of U as in 2.1.

The sheaves (AD)I%P and (u;? Define the sheaf Oy % O Xket by setting
05 () == T'(U, 0 ). Let (O, /p"Og,) o € Sh(X*)™. Let

9)2',": O}?,n/pno}?,n - OX/pOX

be the natural surjective map of sheaves of rings. It 1nduces a strict
morphism of log structures for every n. Let (O3 ” /p"O% n) neN € Sh(xketyN

be the continuous sheaf defined as the W(k)-log divided power envelope of

O ,,/p"Ox. n with respect to the kernel of 0Oy > see 2.16. Write

@EP = 010131%(0}?77%/1)"0}2’%) . Then,

ODP X®OO< n(Z)>7

where the completion is taken with respect to the (p, Z)-adic topology (or
equlvalently the p-adic topology). In partlcular if U is a small obJect of Xket
and if B is the algebra underlying Ufom, we have (’)DP(U ) = Rs in the
notation of 3.30.

Let d be the relative dimension of X over Og. For every integer

0<i<dlet a)Nn/S"(U) (resp. coX /\\(k)(U)) be the module of global sections
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of thg sheaf of logarithmic Kihler differentials of (Un, n) relative to
(Sn, M,) (resp. (k). Let o, € Sh(X )™ (resp. ol % i € Sh(xket)™)

be the continuous sheaf ( %5, ) e (resp. (! O (k>)W o)

The sheaf Ajog 1. Let O ; be the morphism of continuous sheaves with
log structure '

Oy, = 0L @y, (0)?)3 Ai;f,L Qwy Vx 1, (O)}) — @%L

Define Ajog 1, := {Alog.Lin},cn 35 the W(k)-log divided power envelope of
Ajn 1, @wa Vi, (Og) with respect to Oy ;. It exists due to 2.16. It is en-
dowed with a decreasing filtration Fllzﬁ\log‘L for ¢ € 7, defined by the DP

ideal, where Fil’ A\lzg‘L = Alzg‘L for ¢ < 0. By construction we have a natural
morphism AZ&L — Alog,L, compatible with the filtrations.

Eaxplicit description. Let U be a small object of X*¢* and we fix com-
patible charts

v WEPIDwgop© — R, vr: WEIP] @wypng Ok — R

for the log structure on Ufwm = Spf ( ) (resp. on U = Spec(R) in the al-
gebraic case and of Ugyy = Spf(R) in the formal case). Recall that
P =N%x N’ Letey,...,e., be the standard generators of P and write

X l//R(eZ) Xi=wple) V1<i<a Y vi(eay)), Y; = ypea ) V1<j<b.

Let Z, — Ug be the object in U%et with underlying algebra
1 , B
R xwypy Wk) [ﬁ P} iy Ky (ep). Write S, := Oy, (U, Z,) and Rk .=

vy (05)(U, Z,). Write X = Xil/p in S,,/pS, and [X;,] equal to the
Teichmiiller lift of X;, for i=1,...,a. Similarly put Y;, = Yl/?’" in
Sn /pS, and [Y;,] equal to the Telchmuller lift of ¥;,, forj=1,...,bin

W, (S, /pSy). We also have the element 7, € S, /pS, and we write [ﬁpn]
for its Teichmiiller lift. Then:

PROPOSITION 2.18.  The kernel of the map W, (Sy/pSn) @ NG Rk _,
Su/p"Sy defined by O, is the ideal (,,[X Xin]®1-1 ® X;, [Yin] ®
1—1®Y) for 1<i<a and 1<j<b or the ideal (&, [Ty]®
1-107,[X;,|®1-1®X,;,[Y;,|®1-11®Y,) for 2<i<a and
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1 < j < b. In particular,

" AV
Alog Linlw z,) = Alog,L.,n@?ﬁ =1, Ve — L, — 1, wp, — 1)

X; Y,
with v; ::Mfori: 1,...,a and w; :_%forj_ 1,...,b.
i J
Proor. It follows from 2.3.2 that modulo ¢, the kernel of @, on
W, (Sn /pS,q) Qv (k) Ekun is the kernel of Sn/p”Sn Q) ﬁk““ — Sﬂ/pnsn
The first claim follows by an explicit computation, cf. 3.14.
The second part of the proposition follows as in [AI2, Lemma 2.30,

Thm. 2.31]. O

Extension of scalars. We have a natural isomorphism f* (Alog’K) o
Alogi compatible with log structures and divided power structures and
with the morphism AIZgL — Alg L-

Frobenius. For U a small object of X*¢* as above let F;; be the unique
homomorphism Fy: R—R inducing Frobenius modulo p and compatible,
via the chart Ve with the map W(k)[P] — W(k)[P] given by Frobenius on
‘W(k) and multiplication by p on P. This produces a Frobenius Fyy on
% 1.(O%)|w v,)- Together with Frobenius on Ay, it defines a Frobenius
on Afyr, ®wa Vi1, (Og) ., compatible with the log structures. Using
2.18 one proves that it extends to a Frobenius morphism ¢;; on Ayog L7 17,)
compatible with Frobenius defined on Alvog,L and with the log structures.

Localization. For U a small object of X*¢t write U := Spf (E) with in-
duced log structure. Using 2.18 one proves that

Alzg’L(I_‘EU) =~ AlZg (EU),

compatibly with action of Gy, , filtrations, Frobenius. Here, Ajog (i% v) is the
ring, with log structure, defined in § 3.4.

2.3.5 — Properties of Alvog and Ay

For T = O or T = W(k) consider the continuous sheaf v} ; (% /T) of

locally free v} ; (Ox) = O‘{; -modules over X;,. The de Rham complex on X,
for every n € N defines a de Rham complex v§ (% /T) on Xz,. We then

get a complex Aj ;1 @i Vy (w}z/T).
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Convention: In order to simplify the notation, for every sheaf of (’)}?2—
modules & and any sheaf of Og-modules M we write £€®o. M for
£ ®O;HL ,U;(,M (M)

One can prove as in [AI2, § 2.7] that the de Rham complex above ex-
tends uniquely to a complex

v 1 Vi, 9
AlogL, — Aog L B0y D% r Alog L ®og Y

Using the deseription given in in 2.18 we have that V1, is AlzgﬁL—linear and
sends (v; — D™ to —(v; — D" Uy, logX for 1=2,...,a and sends
(wj — D™ to —(w; — D" Yw,d log Y; for j=1,...,b. Slmilarly, Lo is
/&ms . -linear and sends (v; — )™ to —(v; — )[’7 l]v dlog X; fori=1,.

and sends (w; — D" to —(w; — D" Hw d logY forj=1,...,b. Moreover

PROPOSITION 2.19.  Writing Vg := Vi and V' := Vi, and V := V! we
have that:

i. for every r e N the sequence 0— Fil" AlvogL — Fil" Ajg 1, <,

=1 V2 . 3 .
Fil" xlog L ®0~ X/O — FiI'™ /&logL ®(9 X/O Vi—s ... 18 ex-
act;
. r Vvt
V. for every r e N the sequence 0— Fil AcmL — Fil"Aye1, —
V\\(k) vff\ (k)
Fil" ! Ajgg 1. ®0, @ Fil" % Ajpg 1. ®0,, @2 - is ex-

X/\\(k) X/ Wk

act;

. the natural inclusion ‘AlZg,L C Ag L, tdentifies Ker(V) with Alvog’L;
ii’. the natural inclusion ALy, C Awgl identifies Ker (Vi) with
Aa ris, L ’

1. (GI‘lffIthS transversality) we have Vp (Fil" (A1) C Fil" ! (Atog.L.)

®o, a)}?/T for every r;

w. the connection Vr: Ajog 1, — Alog L. R0y O 18 quasi-nilpotent;

X/

v. let U be small and choose a Frobenius Fg on a formal chart of
[~]f0m. Then, Frobenius ¢;; on Apg 1] u.u,) 1S horizontal with respect
tO VT|(UUL) 7:.6., vT'(U,UL) [¢] (ﬂU = (¢U®dFL7) o VT'(U,UL)'

Proor. The proof is formal and follows from the explicit description
given in 2.18. We refer to [AI2, Prop. 2.37] for details. O
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2.3.6 — The sheaves Blvog and Byog

In this section we denote by A any one of \ms Ly 4 \lz L or Ay . For
every integer r define the continuous sheaf AW) =7 (r)® 7,4\ (thought of
as “At~"”) with filtration Fil' A(r) := Zp(1)®7, Fll”TA for ¢ € 7. Let the
(local) Frobenius ¢,: A(r) — A(pr) be defmed by p~" times the (local)
Frobenius on A (coming from the fact that ¢(t) = pt). This makes sense

pl
since p~! = (p — 1)! t— € Agis - t7P so that p~" is a well defined element of
A(pr). Let the connectlon

H—l

Vil o): Asog, L(N®o o 9% 0

X/O — AlogL(N®0o .0

be the one obtained from the one Ay, L0, ® X 10" . One defines V7§¢(1k)(r) ina

similar way.

Asin[AI2, § 2.8] one proves that, given integers » > s, multiplication by
t"~* provide morphisms i, A(s) — A(r) which respect all the above
structures and satisfy ,, o 1, s = 1, for integers « > r > s. Define

\Y%
Bcrls Lo Blog,L’ Blog,L

in the category Ind(Sh(%M) ) of inductive systems of continuous
sheaves as the inductive systems of the sheaves ACHSL(T) (resp.
AIOgL(T‘) resp. Alg1.(r)) with respect to the morphisms 7., for s <.
cris,L? FllnBlog,L
and Fil"By,;, defined by the inductive systems Fil" %\XISL(T‘),

They are endowed with a descending filtration Fil"BBY.

FllnA10g L(r) (resp. Fil"Aye1,(r) for varying r € Z. Moreover, By |,

and Blog,L (resp. BiogLlyy,) for U € X*' small) are each endowed
with a Frobenius defined as the inductive limits of the Frobenii ¢,. We
also get de Rham complexes

1 2

v, v
Blog,, — Blog L. ®0, — Biog,L ®0 o

X/T X

for T = O or T = W(k). As in [AI2, Lemma 2.41] one proves the following:

LEMma 2.20. (1) Multzplzcatwn by p is an isomorphism on Fil"BY.
FllnBlog L Blog s Fll Blog L and Blog L.

cris,L»

BY,

CI’lS Ly

2) For every reZU{- oo} putting Fil~ “BIOgL = BlogL and
Fil” *Biog 1, = Biog,r, and Vi = Vi, we have exact sequences of inductive



Semistable Sheaves and Comparison Isomorphisms ete. 171

systems

1 2
0— Fil'BY, | — Fil Biogr, ~ Fil' ' Biog 1, ®0, 0k 0 Y,

Fil" *Blog1, ®0, 0%,

and
2
Wk)

X /% (k) -
Fil" *Biog 1 R0,

\\ (k)

0—FiI'BY. ., — Fil" BlogL — Fil?_lBlog,L ®O (/J

cris,L
X /W (k)

(3) for U € X** small, Frobenius ¢, on Blog-,L|(U7UL) s horizontal with
respect to V| 17, and induces Frobenius on B]Zg Lo,y

@ for UeX* small, By,;Ry)= 10g(RU) and  Biog L (Ry) =
Blog(IN%U), as defined in § 3.4, compatibly with Frobenius, filtrations, Gy, -
action and connections.

2.3.7 — The sheaves BlogK and RlOgK

Recall from § 2.1 that we have a natural map f;: Bl — Bar, With image
Biog, sending Z to .. Let Ay, be the image of Ajoy. Define Klzg,i and Elzg_g
as the quotient AE K ® Ay Ay and BIZ K @B, Biog, respectively, with

image filtration. Due to § 2.3.3 we have isomorphisms
AV At T Y _ o~ At yel
Mgk = Ay O Ao Buogk = Ay ®wa Blog

in Sh(Xz)" and in Ind(Sh(X%)") respectively. These isomorphisms pre-
serve the filtrations. Similarly, define

A, == A I ®Alog Zlog, B B

log. K log, & ©Big BlOg

log,i = log,

with image filtration. As f,(0) = Ok, we have O 80 Alog = Ox ®@0g Alog -
In particular A& z and IBlo g are OX®0KA10g, resp. OX®0KBlog -modules.

Due to 2.19 and 2 20 they are endowed with connections relative to Alog,
resp. Blog and the filtrations satlsfles Griffiths’ transversality. Set

Fil" A g = =A, o & and similarly for AIOgK, B, & and BlvogK

LemMA 2.21. (i) We have Emsi ®k, K C Eogi.
(ii) Using the notation of 2.18 we have

— —v
AjgEnl w2, = Alog,Kn<vz‘n =1,V — L, — 1, — 1);
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ces i Ay i"A v
(i) The de Rham compleves 0— Fil" Ay, g —Fil" A\ g —
Fil' Ry g G0c @jo, — - and  0—Til Ty, g —Fl'B g —

Fil"! EogK ®oy w}(/OK — -+ are exact for r € Z,U{—oo};

Proor. () It follows from 2.1.

(ii) It is the analogue of 2.18. The details are left to the reader.

(iii) The fact that we have sequences follows from 2.19(i) and 2.20(2).
The exactness follows from (ii). O

2.3.8 — The monodromy diagram

az oL —0.

Consider the exact sequence 0 — Ox— — o} v~ %0

. . ; WA
It induces for every 7>1 an exact sequence 0—>w§/10/\7 —
a)éz /W(k)—wa;2 /O—>0. This implies that the following sequence of

complexes is exact for every n € Z U {—oo}:

o w1 47 . .
0— Fil" lBlog.’L ®0§ w)?/iﬂ VAN 7 — FllnBlogAL ®0§ w)z/‘\\\,(k) —

Fﬂnﬁlog,L ®O§ 60;? —0,

/O

,L‘ 7: . .
where W 10 and % W are set to be 0 for 1<0 and we define
Fil"Biog 1, = Biog1, for n = —oo. Taking the homology and using lemma 2.20
we get the exact sequence (of complexes)

cris, L

0— Fil" By, %Z [ — 11— Fil"BY,, , — Fil"By, ;, —0.
A pVv A pVvV : dz
We let N:Fil"By, 1, — Fil"By, 1, be the morphism defined by d = N A
Then,

(i) we have No¢p = pp o N on B1vog,L;

(ii) N is surjective on Fil"BY - with kernel Fil"BY .
og, K cris,K

Indeed, it follows from 2.19 that Acvmi is the kernel of the monodromy

operator on AIZ oK We deduce that Ecvris % 1s the kernel of the monodromy

operator N: Blvogﬁ—)BlvogK' Moreover, the monodromy operator N is
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surjective on Fil'Alv0 oK and, hence, on Fil* BIZ K by the explicit description

of A ¢ givenin§ 2.3.3. By loc. cit. the inclusion A}, = € A = isstrict so

that the kernel of N on Fil"BlV _is FiI"BY. _ as claimed. |
og,K cris, K

)

2.3.9 — The fundamental exact diagram

Let us assume that we are in the formal case. The following commu-
tative diagram called the crystalline fundamental diagram of sheaves has
exact rows:

0 — Q — Fi’BY. . —5% BY. . — 0
n n [
0 — (BY. ! — BY_ % BY_ — o
cris, K cris, K cris, K

We refer to [AI2, § 2.9] for the proof.
We now consider the following diagram called the fundamental dia-
gram of sheaves:

@

0 —s ::::l’ s ll](lBV , r‘_—; ) ﬁV S .“Vv ‘ 1.\'::;\ Vv ‘ =
< cris,K log, K cris. K log K
n N ) I
(N,1-py

5BY . M40 By o

K K

Feris,K log.K

= V.o=1 - (p—1,N)
0— BY¥ BY > BY o

LEMMA 2.22. Both rows in the fundamental diagram are exact se-
quences.

Proor. Since N o ¢ = pg o N, the rows define sequences. It follows
from 2.3.8 that (BY, )"~ = BIVO;gNgO*V’ZI, and similarly for Fil’, and that N is

surjective on IBIZ oK This and the exactness in the erystalline fundamental

diagram imply the exactness on the left and on the right of both rows in the
fundamental diagram.

Since N is surjective on BX B to prove the exactness at Bl

\Y Y
oz @ B

log,.K

of the second row it suffices to show that ¢ — 1 sends BlvogNK: % which is

BY. _, surjectively onto BV =~ BY. _. This follows from the exactness
cris, K log K cris, K

in the middle of the second row of the crystalline fundamental diagram. We

deduce that the second row in the fundamental diagram is exact. The

exactness of the first row is proven similarly. O
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2.3.10 — Cohomology of Bjog and By,

Let (’)geoo to be the image of (’)X®OBlog — v_“tIF%logK with image fil-
tration, considering the composite of the filtration on By, and the P,(Z)-
adic filtration on O3 . Due to 3.42(3) it is a direct factor in Oy ®OBlog- The

aim of this section is to prove the following result. Write Fil~ B

B & and Fil"*B,_ eK = B, ¢ with the notation of § 2.3.7.

log,K =

PROPOSITION 2.23.  For every r € 7. U {—oo} we have:

0 ifj>1
J. cont 7R ) —
R (Fil', ) Fi' 0% if j = 0.
»10g

Stmalarly
0 ifj>1

Riw cont (Fll’ By, K) { Fil" (sze,?og ®5, Eog) if j = 0.

Proor. Weprove the first statement. Lemma2.24, § 2.3.4 and 3.39 imply
that R/ vﬂ’nt ( Ajgg &(m)) is annihilated by a power of ¢ifj > 1. Fromloc. cit. and

3.42 (3) we also get the statement for+ = — oo and for R% C"“t (Fll’ ) For
the statement concerning the vanishing of R/v "Om(Fﬂ’"BIO K) for ] >1we
argue as in § 3.5.4. As t annihilates Gr” A z(m), we conclude that
Rlv ;gitFﬂ’" (A, gK(m)) is annihilated by a power tfv of t depending on m and r.
Hence, the image of R/ v%’itFil’”(AlogK(m)) in R v%oitFil”‘N (Alogi(m +N))
is 0. We are then left to prove that the kernel of the map
RISMFI" (A, g0+ N)) — R FilY (A g(m + N)) is annihilated
by a power of p. Proceeding by 1nduct10n on N, it suffices to show that the

cokernel of R0 Fil" (A, g(m)) — R T0@MGr" (A, g(m)) is annihi-
lated by a power of p. The latter cohomology g"roup can be computed using 2.24
which implies that Riv! %OfktGr (Alogi(m)) =~ Hg, (G Alog,K(m))- It is suffi-
cient to prove that for every ¢ € N the cokernel of the composite map

Gt (FI" A, g0m)) — RWEFIL (A, g(m) — Hy (G A ()

is annihilated by a power of p. This is proved in 3.57.
The second statement is proved similarly. O



Semistable Sheaves and Comparison Isomorphisms ete. 175

In the proof of proposition 2.23 we used the following lemma:

LeEMMA 2.24.  The assumptions in 2.12 hold for the sheaves (a) (A%g}; (b)
log z(m) foreverym € 7; (¢) F = Gr" A\10g %
z(m) for every m € 7; (e) F = Gr'A.

=(m) for every mand r € 7; (d)

z(m) for every m and r € 7.

log log,

Proor. See §2.3.7 for the definition of A z(m). Proceeding as
in [AI2, Prop. 3.18] one reduces to the proof for O;g_ and the sheaves
W sE S € N, using 2.18 in cases (b) and (c) and using 2.21 (ii) for

cases (d) and (e). For Oot_ and W —= the proof follows arguing as in
[AI1, Thm. 6.16(A)&(B)]. O

Let U € X**' be a small object and let ¢ be a Frobenius on Biog k|7 17,)-

LEmMma 2.25. There is a power s of the Frobewius morphism on
v " ((Biogx) \w.uy)> depending on the prime p, which factors via the nat-

wral inclusion O [p~1][; € v ((Biogx) lwr.ur)- I fact s =1 forp >3
and s =2 forp = 2.

Proor. This follows from 2.20 and 3.40. O
2.4 — Semistable sheaves and their cohomology

As before we fix an extension K ¢ L C K.

Qp-adic étale sheaves. By a p-adic sheaf L. on %Et we mean a continuous
system {L,,} € Sh(¥.)" such that L, is a locally constant sheaf of Z/p"7-
modules, free of finite rank, and L,, = L,,;1/p"L,+1 for every n € N. It is
an abelian tensor category. Define Sh(%L)U to be the full subcategory of
Ind(Sh(X7 b ) consisting of inductive systems of the form (I..);c, where L.
is a p-adic étale sheaf and the transition maps I. — I. are given by mul-
tiplication by p. It inherits from the category of p-adic sheaves on X}, the
structure of an abelian tensor category.

24.1 — The functor Diego
Given a p-adic sheaf [ on X3 define

D%)Z)(H )= vK * (T["®/P]P)log K)
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It is a sheaf of (’)geo —modules in Sh(X*), see § 2.3.10 for the notation. We
get a functor

Df: Sh(¥g) , — Mod (057 ).

log -
Then,
) T)ﬁ)z)(L) is endowed with a decreasing filtration Fll”]Dﬁ)Zo(L) =
vg. (L@z, Fil"B), —) forn € 7;
2) DgeO(L) is endowed with a connection
VLQ\‘\’(I{:) Di;(L) Dﬁfg‘o(ﬂ—‘) ®ON X/\\ k)
defined by vz, (1® Vi) where Vi, is the connection on By, s

(3) for every U small and a choice of Frobenius on Uy, We have a

Frobenius operator ¢y, ;;: D (L)|;; — Diogr.(1)|; defined as vz ,(1® ¢y)

where ¢;; is the Frobenius on B, | v,

2.4.2 — Geometrically semistable sheaves
A Qp-adic sheaf . = {IL,,},, on X is called geometrically semistable if

i. there exists a coherent Oy ®oAjog-submodule D(L) of Dgeo( ) such
that:

(a) it is stable under the connection Vi we) and Vi, wlp, is in-
tegrable and topologically nilpotent on D(IL);

(b) DEC(L) 2 D(L)® 4, Buog;

(c) there exist integers & and n € N such that for every small affine
U the map "¢, ;; sends D(L)|;; to D(L)|;; and multiplication by ¢"
on D(L)|; factors via t"ep; .

ii. DIy (L) is locally free of finite rank on X*°* as 0% g—module.

oz ) Brogk — L®7 B
X log

is an

iii. the natural map oq,: DY (L)®( log K

isomorphism in the category Ind(Sh(Xg)").
We let Sh(X %), be the full subcategory of (,-adic étale sheaves on X

consisting of geometrically semistable sheaves.

2.4.3 — The functor Dfj,
Assume that X is a small affine so that a Frobenius F'y on (A’)}I%P and ¢ on

Biog x are defined. We get a map vk . (Biogx ) — @}]%P[pfl] induced by ¢*;
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cf. 2.25. Given a p-adic sheaf . on X define
ADPr, -1
Dipg (L) := v . (L®7 Biog, K) . (B Oz [p1

Then, D5, (L) is a sheaf of O2F[p~'l-modules in Sh(X*®). As in [AI2,

Lemma 3.3] one can prove that the sheaf D7 (L) is endowed with an action
of Gxg and

S

®7)K,* (Blog.K)

" (L) = (DE(1L)) %

~ADPr, —
log O)? [p 1]-

log

It follows that Dij, defines a functor

D . Sh(%[{) )—>1v[0da£)P

log*
X
Moreover,

1) Dlog(L) is endowed with a decreasing filtration Fll"DlOg(L) for
n € 7, given by the inverse image of vK*(L®Z FlllBlogK) via the map
Digg(L) — v+ (L&, Brog x ) induced by ¢* on Byog k;

2) Dlog(L) is endowed with a connection

V'[ 1;\\\V(k): Dﬁ)rg(ﬂ,,) — ‘log(v[”) ®ON X/\\ k)
defined by vz,.(1® Vi) where Vi, is the connection on Bpgy. We
write

V1,0t Djgg() — Dig, (L) @0 X/O

for the connection induced by the connection V}, on Brog,Ls

(3) we have a Frobenius operator ¢ : Df‘(fg(L) —>ID10g(L) defined as
v1,(1 ® ) where ¢ is the Frobenius on By, x. By construction it is com-
patible with the Frobenius F'; on OD

Localization of (0-adic étale sheaves. Let Rx be the algebra underlying
the affine (formal) scheme X and let RX be a deformation to O as in 2.17.
The localization I,,(Rx) is given by a free Zp/p"Z-module with continuous
action of Gx, which we denote by Vx(L,). Write Vx(I) = hm Vx (L),
Define

log log

L~ Gx-
DE (Vy (L)) = (Vx(L) ®7, BCHS(RX)) '

and

cris . cris; o Gxg o’ D -1
e (Vx(L) 1= (Va(L) @7, Bip @) " &g, Rx sl p™'),
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as in § 3.6. Since Ry islp!] = @gp[p—l](X), see § 2.3.4, it follows from
2.20 that

DES(LICX) — DES™(Vy(L)),  DE(LIX) > D (Vy(L)
g g g g

as R X,Cris[p’l]—modules compatibly with Frobenius, filtrations, connections.

2.4.4 — Semistable sheaves

As in the previous section we assume that X is a small affine. Following
[O, Def. 1.1] we denote by Coh (O)I%P@y,p Qp) the full subcategory of sheaves
of @gp—modules isomorphic to F®y, (Q, for some coherent sheaf F' of (/’\)}I%P—

modules on X*¢t. A Q,-adic sheaf L, = {I,,},, on X is called semistable if
i. D (L) is in Coh(OF ®7,0,);

ii. the natural map oog 1. Diy, (L) @, Blogk — L®7, Biogx is an iso-

DP
X

morphism in the category Ind (Sh(Xx)") of inductive system of continuous
sheaves.

We let Sh(Xk)ss be the full subcategory of (,-adic étale sheaves on Xx
consisting of semistable sheaves.

PrOPOSITION 2.26. The following are equivalent:

1) 1L is semistable (resp. geometrically semistable);

2) for every small object U of X** the representation Vi (L) is semi-
stable (resp. geometrically semistable) in the sense of 3.60 (resp. 3.65);

3) there is a covering {U;}; of X by small objects such that Vi, (L) is
semistable (resp. geometrically semistable).

In particular, if . is a semistable sheaf on Xk then p*(L) is a geomet-

rically semistable sheaf on X% and Dﬁfg(’ () =p( lOg(L)®O op Oie‘f )-

Proor. We refer to [AI2, Prop. 3.7] for the proof of the equivalences of
(1), (2) and (3). The last assertion follows from this equivalence and 3.7. O

245 — The category of filtered Frobenius isocrystals

Let O.s be the W(k)-divided power envelope of O with respect to the
kernel of the morphism of W(k)-algebras O — Ok sending Z to n. It is
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endowed with the log structure coming from O. Following [K2, § 5], con-
sider the site (Xo/ Ocﬁs)i:‘:;, where X, := X xo, Spec(Ok/pOk), consisting
of quintuples (U, T, Mr,1,0) where

(a) U — X, is Kummer étale,

(b) (T,Mr) is a fine log scheme over Ogis (With its log structure) in
which p is locally nilpotent,

(¢) U — T is an exact closed immersion over Oy,

(d) ois DP structure on the ideal defining the closed immersion U C T,
compatible with the DP structure on Ogs.

We let Crys(Xy/O) be the category of crystals of finitely presented
Ox,/0.:,-modules on (Xo/ Ocris)ﬁfls, cf. [K2, Def 6.1].

Given a crystal £ let &, be the crystal &, :=&/p"E. It defines a
O)I%P /p”O)I%P-module, endowed with integrable connection V,, relative to

Oeris /P" Oeris; see [K2, Thm. 6.2]. Let £ := lim &, be the finitely pre-
o0—N

sented sheaf of @gP-mOdules on X},‘et with the connection ng relative to
Ocris'

Let Isoc(Xy/O) be the category of isocrystals, i.e., the full subcategory
of the category of inductive systems Ind(Crys(Xo/O)) consisting of the
inductive system £ — £ — £ — --- where (1) € is a crystal and the tran-
sition maps £ — £ are multiplication by p; (2) £¢[p~!] is a finite and

projective sheaf of (AD)]%P [p~!]-modules locally on X,

The absolute Frobenius on X and the given Frobenius ¢, on O define a

morphism of sites
F: (XO/Ocris)if;S - (XO/Ocris)f;:~

Let FIso(X(/O) be the category of F-isocrystals consisting of pairs (€, )
where £ is an isocrystal and ¢: F*(£) — £ is an isomorphism of isocrystals.

We have two natural maps of W(k)-algebras endowed with log struc-
tures:

1) Ouis — Ok, sending Z to ;

i) Ouis — W(k)", sending Z to 0. Here W(k)" is W(k) with the log
structure associated to N — W (k) given by 1+— 0.

Both maps are compatible with log structures and divided powers,
considering on Ok and on W(k) the standard DP on the ideal generated by
p. Given a crystal £ we denote by Ex (resp. £7) the base change of £ via the
map (i) (resp. (ii)); see [BO, Prop. 5.8]. In particular, £x defines a sheaf of
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@X—modules endowed with an integrable connection V¢, relative to Okg.
Similarly, for an isocrystal £ we let £x, be the finite and projective sheaf of
Ox ®o, K-modules obtained by base change of £. It comes equipped with
an integrable connection Vi, defined by V¢,. Base changing £ via the
map (ii) we obtain an isocrystal £" in Isoe(Xp/Ok). As the map (ii) is
Frobenius equivariant, if £ is a Frobenius crystal or isocrystal, then £ is
also a Frobenius crystal (resp. isocrystal). Summarizing, given an iso-
crystal £ € Isoc(Xy/O) we get a composite functor

Isoe(Xp/O) — Coh(OF ®,,0,) — Coh(Ox@0,K), € Eg Ex,-

Define FIso" /(X /), called the category of filtered Frobenius isocrystals,
to be the category whose objects are triples (€, ¢, Fil"Ex, ) where

(a) (£,9) is an object of FIso(Xy/0);

(b) the connection ng on &y lifts to a connection Vgi;x\«(k) relative to K
such that Frobenius is horizontal with respect to Vgi;\‘v(jg);

(¢) Fil"€x, is an exhaustive and descending filtration by finite and
projective Ox,-modules on Ex, satisfying Griffiths’ transversality.

It is naturally a tensor category.

Cohomology of isocrystals. Consider an object £ € Isoc(Xy/O). Define
Hi((Xo/OmS)IC(ZS,S) using the formalism of 2.1.3 for the cohomology of
inductive systems. It is a Ouis[p~']-module. If £ is an F-isocrystal, it is
endowed with a Frobenius ¢ ;. Define

Y ((Xo/ O €)™

as the image of the Ogis-linearization ¢g; @7, = Oeris-

Let £; be the associated coherent @)I%P—module with connection Ve... It
follows from [K2, Thm. 6.4] that we have a canonical isomorphism

H'((X0/Ois) gy - €) = Hi (Xo. (€5 Vi) [7]

as Ouis [p~']-modules. Recall that by assumption Ve, is the composite of

iacti 1 1
Ve w and the surjection DOk vy Px 0" The exact sequence

az

1 1
0_’0)?7 — D% " %0 —0

and the connection Ve wi define a long exact sequence of cohomology
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groups
Hig (X0, (E¢, Viva)) [P — Hig (X0, (€, Ve, ) [p7'] —
. oz
ar (X0, (€x, Ve ) [p7'] 5 -

In particular, H' ((X0/Oeris) fjf:, &) is endowed with a logarithmic connection
V¢ relative to w}oms vy = Oeris -

The relation with rigid cohomology. Frobenius on O extends to a map
Ouis — Ouis Which factors via the natural map f:Ogis — Omax =

WiZ) {Pﬂ(Z )

}; see 3.59. Let ¢: Opax — Ogis be the induced map. Let

)N(max =X ®0Omax, Where the completed tensor product is with respect
to the p-adic topology. Let &5 = SX@A@o Onax be the base change

of £ via f. The connection Vi) (resp. Vgi) defines a connection

cris

Vg)?ma w (resp. Vgim). Since £ is an F-isocrystal, the base-change

5§7m3x®0m&x0cris[p71] is isomorphic to Ey[p~'] as (A’))I%P[pfl]—modules
with connection so that we get a natural map of O.js-modules

o HéR (Xma.xa (gf,max’vé‘)?_max)) ®Omax Ocris [pil] - HER (Xk7 (5)?’ vs}?)) [pil] .
The connection V) defines a connection V' on

fiR (Xma)n (g)?,max’ Ve, )) [p_l]

X max

and o is horizontal with respect to the connections on the two sides.

PROPOSITION 2.27. Assume that X 1is proper over Ok and let
(&,9,Fil"Ex,) € FIso™(X/0).

cris —div
8) @ .

(1) The map o is injective with image Hi((Xo / Ocﬂs)bg ) ;

(2) the connection V¢ ; is horizontal with respect to Frobenius g ; on

H' ( (XO/Ocris)lcsi:» 6);

3) the module H' ((Xo/Ocris) oy €)™ is finite and free as Oas[p~']-
module and the Ouis|p~!|-linearization of g ; is an isomorphism;

(4) the base change of H' ((Xo/ Ocﬁs)if:, S)W_div via Ouis — K, sending
Z to m, is isomorphic to Hig (Xo, (Ex, VgXK)) as K-vector space;
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(5) the base change of Hi((XO/(’)ms)lc;S,E)("_div Vi Ogis — W),

sending Z to 0, coincides with Hi((Xk/‘\\V(kﬁ)fj:,5*) as Ko-modules,

compatibly with Frobenius. The residue of V¢; defines a milpotent
operator Ng;, called the monodromy operator, which satisfies
Neiop=ppoNg;;
(6) there is a unique isomorphism
, . i , ) .
H' ( (XO/Ocris)f;;sa €)¢ = H' ( (X/c/“v\\ (k)+)f;;Sa €+) Qw(k) Oeris

compatible with Frobenius and inducing the identity modulo Z. Moreover,
via this isomorphism one has Ve; = Ne;, @ 1 +1 Q d.

Proor. (2) Follows from the fact that Vg}?;mk) is horizontal with re-
spect to Frobenius on &.

(5) The formula relating N¢; and ¢ ; follows from the fact that ¢, ; is
horizontal. '

Claims (3)-(6) follow 1£ we prove claim (1) and the analogue (3'), (4') ete.,
of (3), (4) ete. for Hig (Xmax, (€ pmax» Vg )) [p71]. For (6) note that by
construction o commutes with Frobenius on the two sides.

(3") First of all, Hiy ()meax, (5)Z,maxv Vgim)) [p~!] is finite as Opax [p~!]-
module. This follows from the Hodge to de Rham spectral sequence using

that the cohomology of & % max @05, a);?m 1O is coherent since Xp.x —

Spf(Omax) is proper and Op,x is noetherian. Secondly, since it is endowed
with a connection V' with respect to the derivation on Oy,ay, it is a projective
Onmax | p~*]-module by [Ka, Prop. 8.8].

(4)-(5") Since £ .. [p7'] is a projective Oy [p~']-module, the for-
mation of

H(iiR (Xmax» (gf,max’ V‘S‘N_mu)) [pil]

X

commutes with base-change from Onu[p~']. In particular,
ar (Xmas, (€5 pmax: Ve, ) [P71] coincides  with  Hig (X, (Exi, Vey, )
modulo P(Z)/p and with H' (X, /W(k)+)f;‘§, &™) modulo Z (by [K2, Thm.
6.4]).
(3') (continued) The Frobenius structure on & defines a Omax[p~']-
linear map

F: HziR (XmaXa (gf,max’ vg)?,ma)) ®(¢5mu Onmax [p_l} -

HflR (}?max’ (gf,max’ vf}imax)) [pil] :



Semistable Sheaves and Comparison Isomorphisms ete. 183

The base change F; of F via any map of W(k)-algebras Opax[p~'] —
Ky, with Ky C K a finite unramified extension, is the map induced by
Frobenius on the cohomology of the isocrystal over X ®o,,. K defined
by (5)?,max’ Ve, ) @0, Kj- In particular, Fi; is an isomorphism. Since
the maximal ideals of Opax[p~!] defining an unramified extension of K
are dense in Spec(Omax[p~']) and since F is a map of projective
Omax|[p~']-modules of the same rank, we conclude that F' is an iso-

morphism.

(6)) Let y:H'(Xi/ W) )yt €) 10— Hyg (X (€ e Vg, ) )71
be any map of Ko-vector spaces inducing the identity modulo Z. Its image

spans Hyg (Xmax, (€ Ve, ))p'1as Omax[p~!]-module in a neighbor-

max’ " C¥ max
hood of the maximal ideal defined by Z = 0. Possibly after composing y, with a
power of F' we may assume that it spans it as Opax [ p~*]-module. Write

y=Y FloyoFy,
n=0

where F' and F\ are the two Frobenius morphisms. Fix a basis B

of Hi((Xk/V\,"(lcﬁ)f;:,5*)[10‘1] as Ky-vector space and take se& N

such that detFy € p~*W(k). The image of B via F oy oFy!—y, is

. . LS
contained in 2WHQR(XMX, (Egamax,Vg)?_max)) for some k€N so that

the power series F"oyp oFy" —F" 1oy o Fy @=D js contained in
Zpﬂ . - Zpﬂ

W éR (XmaX7 (g)?’max, vS}?.max)). Note that W € Omax and pn — h/+

(n —1)s — oo forn — oo. Thus,y = F o yy0 Fgt —pg+ > (F" 0 yg 0 Fy" —
n=1

F'loyo Fy <"’D) converges and y is well defined. By construction
Foy=yy0Foandy= Id modulo Z. This implies that the image of y spans
Hag (Xmax, (€3 Ve, max))[p‘l] as Omax|p~'|-module. Hence, y(B) is a

X max’
basis as well which provides the analogue of the isomorphism in (6).

Given two such morphisms y and ) one argues that y—y =
F™(y —y)F~! and the latter converges to 0 for n — oo so that y =7.
For the last formula in (6') it suffices to show that Vg;oy—yo
(Ng;-dlogZ +d) =0. The difference is 0 modulo Z and the composite
with Fy has on the one hand the same image, since Fy is an isomorphism,
and on the other hand is 0 modulo ZP. Iterating this process we conclude
that it is zero modulo Z?" for every » and, hence, it must be 0.



184 Fabrizio Andreatta - Adrian Iovita

(1) Consider the commutative diagram

~ . , ) F&Ouns P T % W )
Hijp (Ximax, (L‘:\'.m..v Ve ) ®Opmax Oeris % Hijg (Xmaxs (€5 max: Ve J) ®Omax Oeris

X max

a ®% Ois | la
”:|]¢(-\'A~ (8\'~T."\)) :I‘ IJ -’::1”“ (@} ris ;‘. ”"“((.\'Au (8\4T:‘\ ))l[' I
The Ouis [ p~*]-linearization of ¢ ; factors via o as Frobenius on &5 factors
via £ % max . Moreover, F' @ O is an isomorphism by (3’). We deduce that
o ®? Oms is split injective. Since the map o ®% O is injective and Fro-
benius ¢ on O is injective, we conclude that o is injective and the lin-
earization of Frobenius on its image is an isomorphism. The proposition
follows. O

2.4.6 — A geometric variant

Let X := X x¢, Spec(O%/pOz). Let ()?O/Alog)if; and ()?O/Acris)g;
be the site defined by replacing O with Ay, with its log structure and di-
vided power structure (resp. with A.4 with trivial log structure). Let
A = Ajpg Or Aeyis. Then, proceeding as above, we let Crys(Xo/A) be the
category of crystals of finitely presented Oy  ,-modules on (Xo /A)IC;;;S
leen a crystal € let €4 be the finitely presented sheaf of Oy RoA-modules
on Xi° 0 » * endowed Wlth connection V relative to A, defined by the inverse
limit 5‘(XOCX”®@A/1)”A)' Write B := Biog or Buis. Put £ = E¢lt™ 1,

Let Isoc ()_(0 /A), the category of isocrystals, be the full subcategory of
the category of inductive systems Ind(Crys(Xo/A)) consisting of the in-
ductive system & — £ — £ — -- - where (1) £ is a crystal and the transition
maps £ — £ are multiplication by ¢ (not by p as before!), (2) £5 is a finite
and projective sheaf of Ogeo -modules on X * with connectlons VEN re-
lative to B. If B = By, cons1der the map f;: Biog — Blog sending Z to T
defined in 2.1. Write &y, := &5 . @By, Blog, itis a OX®0KBlog—module with
connection Vy, relative to Blog obtalned from VEN

The category of F-isocrystals FIso (Xo /A) con51sts of pairs (€, p) where
€ is an isocrystal and ¢: F*(£) — £ is an isomorphism of isocrystals.

Consider on Ox®o,Blog the filtration Ox®o, Fil*Bj,, defined by the
filtration on Eog C Bgr induced by the filtration on Bgg. Define by
Flso™(X [Alog), called the category of filtered Frobenius isocrystals the
tensor category whose objects as triples (5 , 0, Fil"&XK) where

(a) (£, ¢) is an F-isoerystal on (Xo/. Ams)f;":;
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(b) Fil"Ex,, for n € 7, is a descending filtration by (’)X@)mk)Eog—mod—
ules on &y, such that
@) Fil"(Ox&uwioBiog) - Fil"Ex, — Fil'" " Ex,,
(ii) the graded pieces are finite and projective Ox®o, Cp-modules,
(iii) it satisfies Griffiths’ transversality with respect to the connec-
tion VXK.

Cohomology of isocrystals. Consider an object £ € Isoe(Xo/Awis). As
before we view £ as an inductive system of inverse systems {&,}, €

Ind (Sh(()?o /Alog)f;;S) ) and we define
HY((Xo/Awog)sg - €)

using the formalism of 2.1.3. It is a Bj,g-module, endowed with a Frobenius
¢¢.i» and we have a canonical isomorphism
Ve vd cris 1 ~
H((Xo/Ouis) g -€) = Hon (X (€, Vi, )

as Bje-modules. Note that HQR (X0, (Ex¢, Vx)) is an Bjyg-module with a
filtration, the Hodge filtration, compatible with the filtration on Eog. The
surjective map £y~ — £y, induces a morphism on cohomology, compat-
ible with flltratlons ‘and Gx-action,

H' ((Xo/Otsis) g - €) — Hi (Ko, (€x, Vi ))-

24.7 — Properties of semistable sheaves

We now drop the assumption that X is a small affine and deal with the
general case. Let [ be a Q,-adic sheaf . = {L,,},, on Xx. We say that it is
semistable if there exists a covering {U;};.; of X by small objects such that
Ll v, 1s semistable in the sense of 2.4.4. For every i we write Dj, (1), for

the (’)}I%P[p 1]|U7_/—module with connection, Frobenius and filtration asso-
ciated to L|y; 7, in 2.4.3. It follows from 2.26 and 3.64 that we have a ca-
nonical isomorphism Dig, (L), |y, = Digg (L)l 7,00, for every i and j € 1,
as ODP[p ly, qu,-modules compatlble with connections and filtrations. In
particular the modules l[)log (L) 1 € I glue to a coherent ODP[p’l] module
Dipg (L) endowed with connection and a filtration Fll.Dlog( .). Moreover
for the same reason, for every small object U € X*¥* we have that
Diog (L) [y s the (AQ)]%P[ p~11|;;-module with connection and filtration defined
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in 2.4.3. In particular once chosen a lift of Frobenius F'; on lNJform we also
get a Frobenius ¢;,;; on Di, ()|

PROPOSITION 2.28.  Assume that L. is semistable. Then,

1) Dig, (L) is a projective (AQDP[pfl] module of finite rank;

@) Gr" D, (L) :=Fil"Df (L) /Fil" D, (L) are projective Ox @y K-
modules of finite rank;

() the connections Vi ey and Vi, o are integrable and topologically
nilpotent (with respect to the special fiber Xo) and satisfy Griffiths’
tramsversality with respect to the filtration,

(4) for every small object, Frobenius ¢, ; on JDﬁfg(L) | is horizontal
with respect to the conmnections Vi, wa) and Vi, o restricted to U and is
étale i.e., the map

oL ®1: Dig, (L) v &5 @DP O — Digg (L)

1s an isomorphism of @gp [p~t]-modules;

(B) for every n € 7 the morphism

Gr'oog: D) Gr'Dif, (L) ®oyex Gr'Blogk — Gr' (L@z, Bigk),

a+b=n

induced by oog 1, is an isomorphism in Ind (Sh(X K)N). In particular, o 1,
1s strict with respect to the filtrations and it is compatible with Frobenii
and connections;

(6) the map Di’gg(L)@)ng O)g?‘iloog — Dﬁ;‘)(L) is an isomorphism, strictly

geo

compatible with the filtrations and D; (L) is a direct summand in

log
‘ﬁfg(L)@@o Biog compatible with the filtrations. See § 2.3.10 for the no-

tation. It is isomorphic to Dig,

cris

(L)@OCﬁsBlOg if Xk 1s geometrically con-
nected over K;

(7) there exists a coherent (’)DP—submodule D(L) of Dlog( ) such that:

(7.1) it is stable under the connectzons and V1w |pe,) 1S integrable

and topologically nilpotent,

(7.ii) Df‘;g(L) =~ D)7, Qy,

(7.iii) there exist integers h and n € N such that for every small U
the map p"o, ; sends D(L)|; to D(L)|, it is horizontal with
respect to Vi ;7~\~\V(k)| pay ond multiplication by p" on D(L)|,
factors via p'ey .
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Proor. (1) follows from 3.60.

(2)-(4) follow from 3.61 after restricting to small open affines of X.

(5) The fact that Gr"wog 1, is an isomorphism follows from 3.22(3) for
DdR(V) 3.29(4) and 3.61(4). The compatibilities with Frobenius and con-
nections are clear.

(6) the first claim follows from 3.67. The second follows from the fact
that (’)f?e‘fog is a direct summand in O3 ®0Bi,g and is isomorphic to it if X is
geometi'ically connected over K due to 3.42(3).

(7.1) and (7.ii) hold after restricting to small open affines of X due to
3.6.2. Claim (7.iii) holds by (4). Since X is a noetherian space and can be
covered by finitely many small affines, the claim follows. |

COROLLARY 2.29. If I is a semistable sheaf on Xk, there exists a
unique filtered Frobenius isocrystal (€, 9, Fil*Ex,) such that

@) TDlog(H ) =2 Eg, compatibly with the connections;

(ii) Fil"Ex, is defined by the image of Fil*Dig, (L) via the isomorphism
in (i). Moreover, Fil"Ex, and Gr'Ex, = Fil"Ex, /Fil" ™ Ex, are locally free
Ox,-modules of finite rank and the filtration on TDlog(I[) 1s uniquely
characterized by the fact that its image in Ex, is Fil*Ex, and it satisfies
Griffiths’ tranversality with respect to Vi, sy
_ (i) for every small affine U, writing R for the algebra underlying
Utorm, the isomorphism in (i) restricted to U is compatible with Frobenii,

the one on Dig,(L)|; given in 2.4.3 and the one on Ex|y; defined by the
Frobenius Fi; on R.

Proor. The existence of an isocrystal £ such that (i) holds follows from
2.28(7). The uniqueness follows from the characterization of crystals on
(Xo/ (’)cm)cm in terms of @EP—mOdules given in [K2, Thm. 6.2].

(ii) provides the definition of the filtration. The fact that it satisfies
Griffiths’ transversality, that it consists of locally free @XK -modules and that
its graded quotient also consist of locally free (AQXK -modules and the fact that
we can recover the original filtration on Dj,, (L) follow from 3.61 and 3.22(2).

(iii) the required property and 2. 28(4) deflne ¢y on Egly, up to mul-
tiplication by p, and hence on the crystal £[;;, by [K2, Thm. 6.2]. We are left
to show that the ¢|;’s glue for varying U’s. This follows from 3.64. O

By abuse of notation we simply write

:Sh(Xk) , — Flso™(X/0)

log
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for the induced functor. We let FIso™ (X / (’))adm, the category of so called
admissible filtered Frobenius isocrystals be its essential image. Let
&:= (€ ¢,Fil"Ex,) be a filtered Frobenius isocrystal. Define

Viog(©) = Fil’ (0 (€)@ onr Brogix) """ € Ind (ShXx)™).

Here, we endow Ex with the filtrations provided in 2.29(i) and
Vi (E¢)® e Blog x With the composite filtration.
X

PROPOSITION 2.30.  The functor Dit,: Sh(¥Xx)  — Flso™ (X /Oy de-
fines an equivalence of categories with left quasi-inverse Vyog. Moreover,

() if L and Il are semistable sheaves, then also L ®z, L is semistable
and D?(fg (L ®'/4p Ll) Dlog(L) ®0DP Dlog(L/);
(ii) if L is a semistable sheaﬁ then also 1.V is semistable and
Diog (L") = Digy(L)";
(iii) if L is a semistable sheaf, then (L) is a geometrically semistable
sheaf on Xy in the sense of § 2.4.2 and

DEZ(5°01)) 2 B (DR (10O, )

as filtered Frobenius isocrystals on Xy relative to Aqis 1 the sense of
§ 2.4.6.

In particular, Sh (% K)ss and FIsoFﬂ(X / (’))adm are tannakian categories
and D, defines an equivalence of abelian tensor categories.

Proor. It follows from 2.3.9 and the definition of semistable sheaf
in 2.4.7 that we have isomorphisms of functors Vo5 © Djg, = Id and Djg, o

log —
Vieg = Id considering the categories Sh(%K)SS and FlIso™(X/0)m
respectively. In particular the functor is fully faithful. Being essen-

tially surjective by definition of FIso(X/ (’))adm we conclude that TDlog is an
equivalence of categories.

The fact that Sh(Xg) _, is closed under tensor products and duals follow
from 2.26 and 3.63. The fact that Djj, commutes with tensor products and
duals also follows from the description of Dj (L) on small affine formal
subschemes given in 2.4.3 and from 3.63. Clalm (iii) has been proven in 2.26
and 2.28(6). The Frobenius structure is defined for Dﬁeg? (f*(L)) only on
small affines and is compatible with the one on Df‘gg(L) This compatibility
allows us to define a global Frobemus structure on D> (#*(L)) inherited

log
from the Frobenius structure on D& (L). O

log
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24.8 — Cohomology of semistable sheaves

THEOREM 2.31.  For . a semistable sheaf on Xk there is a canonical

isomorphism of d-functors from Sh(Xg)ss:
i \v4 ~ TTi cris
H' (g, L ® Blog.ﬁ) 2 H'((X0/Oris) g » Dy (1),

of Biog-modules, compatible with action of Gg, Frobenius, monodromy
operator N and strictly compatible with the filtrations. In fact for every
r € 7 we have isomorphisms of Ajg-modules which are Gg-equivariant
and compatible for varying r’s and with the previous isomorphism,

H' (¥, L @ FiI'BY &) = H(X*, FiI" " DE2(L) @0, o

log 3?/0)'

Here we write L for *(L.) by abuse of notation. We identify Dj’(L)

< g
with the Frobenius crystal Diy, (L)& e O;g;;)og using 2.30(iii). In particular,
we have an isomorphism v

i cris 1 ~ 1t ( vk ) I
H((Xo/Ocrie g - DER(L)) 2 HI (X', DEX(L) @0,

w??/o)

as Bjog-modules. Note that L. ® Blvo e is quasi-isomorphic to the com-

plex L ® B, oK D0y 0% 10
eo0 °

Blogf ®0§Lg Dﬁ)g ) ®0§ CO)?/O

2.30(iii). Thus the fact that we have isomorphisms of Bj,-modules as

claimed in the Theorem is a formal consequence of 2.20.

by 2.20 which is quasi-isomorphic to

by definition of semistable sheaf and

The filtrations. The filtration on H'(¥z, L ® BZ gK) is defined as the

image of H'(Xz,L@Fil'BY o). The filtration Fil'H'((Xo/Ou)pr,

DEP(L)) on H' ((Xo /oms)f;:, D (L)) is defined as the image of H'(X*<,

Fi r"Di‘;fg‘)(lL,) ®o, % ) o)' Due to 2.20 we are left to prove that R%%’iV

(L FiIVB10g z) vanishes for every j>1 and every r € Z. Note that

L@ Fil' By, g = Fil' (DE(L) 80 By ) which s FII' (Dify(L) 05, By )
’ X

by 2.30(ii)). We are reduced to prove the vanishing of R-’v%“ltFil”

(Difg(ﬂd) B p Blog,i) foreveryj > 1andeveryr € 7. As D, (L) = Fil” Diog (L)

for h-small enough, we conclude that R/ vﬁ_{oﬁt (Fil"Dig, (L) ®pr FﬂtBlogK) is 0
X

for every s < hand every t € 7 thanks to 2.23. Using 2.28(2) and proceeding
by induction on s we get the vanishing for every s and ¢t € 7. We conclude
using 2.28(5).
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Galois action. The Galois action on HfiR (xet, Fil’"Df)ego(L)) is induced by
the Galois action on ng(L). The Galois action on Hi(%g, L® Fil’"BZ gi)
arises via the isomorphism f"(L&Fil" Ay, k) = LoFI"AY . The ver-
ification of the compatibility with Gg-action is formal; see [AI2, Thm. 3.15]
for details.

Frobenius: The Frobenius on H' (‘%R’ L®z, Blvo . E) is induced by Fro-

benius on BIZ oK Frobenius on Hi((XO / Ocris)f:gs, l[)lgo‘;o(L)) is defined by
Frobenius on Dﬁg(L) defined in 2.30(iii). The proof of the compatibility of
the isomorphism with Frobenius is as in [AI2, Thm. 3.15]. We refer to loc.

cit. for details.

Monodromy: The monodromy operator N on H' (%K,LQ@BXgK) is

YA
defined by the BY. _-linear derivation BY _ — BY —d— induced by the
cris,K a7 log,K log K 7
‘W(k)-linear derivation © — (97 on O.

The monodromy on H' (X, Digg (L) @0 o} 0) is defined by taking
the long exact sequence in cohomology associated to the short exact se-

quence

daz
180 o—1 )44 geo e .
0— Dlog (L) ®0§ wX/O A 7 I Dlog (14)®0}?w;?/‘\«(k) — ,[){gog (1 J@@)?w)?/a —0

of complexes deduced from 2.3.8, relating the derivations V|, sy and Vi, o.
It provides for every ¢ a map Ny ;:

' , dz
i (XKt DEX(L) ®o, w-}?/o) — I (et Dy (1) ®o, w){/z) - =
. dz
S ket ) geo Cd i
HE (X, DG (L) ®o, w)?/o) 7

The verification of the compatibility in 2.31 with the monodromy operator is
a formal consequence of the following exact sequence of complexes, see
2.3.8,

PIAEZ — Bl ®o, Wl — BiogL Qo W — 0.

00— By 0 %50 Z X X /W(k)

A variant: We use the notation of § 2.4.6. Let (D§'(L)x,, V:Dge‘)(:[,,)XK) be

IOg log

I[)ﬁ)ego(L) ®B,, Blog- It is a sheaf of Ox®o,Big-modules with connection
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relative to Blog and filtration satisfying Grlfflths transversahty See loc.
cit. Recall that in § 2.3.7 we have defined BlOgK as B & ©Bug Biog and

similarly for IBI g K-

THEOREM 2.32. We have an isomorphism of d-functors:
. v )
H' (:}’E’ L& Blog,i) = ziR <Xket (D{go? (L)ka Vi[)ﬁ]e;(ﬁ[ ')XK)> 5

for L a semistable sheaf on Xg. The above isomorphism is Byg-linear,
compatible with action of Gg and strictly compatible with the filtrations.

Proor. This is a variant of 2.31 using the quasi-isomorphism of com-
plexes

L@Fil' By, g = Lo Fil' "By, ®o, 0% o,
provided by 2.21, the isomorphism

L@ Fil' By, 2 Fil' (B, g ©or Dy (1)) = Fil' (B, g @0 Dify(Lx,)

and the vanishing of R/ veont (Fil" Elog z) for j > 1 and the fact that forj = 0

it coincides with Fil” (Oie‘l) ® A Blog), Droven in 2.23. O

24.9 — The comparison isomorphism for semistable sheaves in
the proper case

We assume that we are in the formal case and that there exists a
proper, geometrically connected and log smooth morphism X2& —
Spec(Og) whose associated p-adic logarithmic formal scheme is
f: X — Spf(Ok). The main result of this section is

THEOREM2.33. Let I, be a semistable sheafon Xx. Then H' (X, L) isa
semistable representation of Gy for every 1 > 0 and

Dy (H! (¥, 1)) = H' (X W00 g s D (1))

compatibly with Frobenius and monodromy operators and filtrations
after extension of scalars to K. Such an isomorphism is an isomorphism of
S-fumctors on the category of semistable sheaves. Moreover, H' (X%, -) sat-
isfies Kiinneth formula for semistable sheaves on Xk and Dy commutes
with the Kiinneth formula.
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The map of sites u: Xx — X}}et, sending (U, W)+— W sends covering
families to covering families, commutes with fibred products and sends the
final object to the final object. In particular it is continuous and the push-
forward defines a morphism u,: Sh(Xf}) — Sh(Xk) which extends to
inductive systems of continuous sheaves. It is an immediate verification that
it sends Q,-adic sheaves on X5, defined in a way similar to § 2.4, to Q,-adic
sheaves on X k. Given any such sheaf [, we write I, by abuse of notation, also
for its image u..(L) in Sh(X1),,. We get a map H' (Xz,L) —H (X%eﬂ L).

THEOREM 2.34. '([FS, Thm. 9]) The map above induces an .isomomoh-
ism H' (X, L) = HZ(X%‘“, L) of Gg-modules. In particular, H' (X%, 1) is
finite dimensional as Qp-vector space.

REMARK 2.35. Faltings’ proof uses Poincaré duality for locally constant
sheaves on X% and on X;—{t If X is smooth over Ok, one has a more direct

proof suggested in [F3, Thm. 9]. Via a Leray spectral sequence argument, it
amounts to prove that the higher direct images of (,-adic sheaves with
respect to the maps Sh(X§!) — Sh(X***) and Sh(¥}) — Sh(X*t) coincide.
This is worked out in detail in [AI1, Prop. 4.9] if X has trivial log structure
and in Olsson [Ol] in general.

Let L be a semistable sheaf. Write

Di(L) s= H (X3 /W) ) Dt (L)),

It is a finite dimensional Kj-vector space since f is assumed to be proper.
Moreover, thanks to 2.27, we have

Hi((XO/Ocris);::a ]Dﬁfg(L))widiv = Dz(L) ®‘\‘V(k) Ocris [pil] ’

where ¢ — div stands for the image of Frobenius linearized. The above
isomorphism is compatible with the Frobenii and with the logarithmic
connections relative to O.s-modules. Consider the natural morphisms

@)
H ((Xo/Ocris) e, DI (L) " B0us By —=  HH((Xo/Ocris) e, DER(L))?

log ’ log

u,_l ")',

Hij (Xo, (D3, (L) x4 Ve (1)x, ) ® Buog —> Hig (T... (Digg (L)xks Vreow)x, )) ~

div

Here the top row is deduced from the isomorphism

DE(L) 2 D10, Buog
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which follows from 2.28(6) and the assumption that X;‘gg is geometrically
connected over K. It is compatible with the Frobenii, connections V¢, ; rel-
ative to B, ﬁltratio_ns and Gg-actions. The bottom row is defined by the
natural map Bj,g — B, defined in 2.1, which induces the map Oeis — Ok.
It is a morphism of filtered Elog—modules. Let C..is be the complex
) .pv Y v
Caris: NV, 1 —po): Blog,K o2 BcriS,K - IBlog.K
and let Cj,g be the complex

) Y Y v
Clog: (N,1 - po): Blog,K @ Blog,K — Blog,K'

PROPOSITION 2.36. (1) The derivation Ny, ; on H' ((Xo/ (’)Cﬁs)f;:, ]Df)egf’(L)),
defined in § 2.4.8, is surjective with kernel isomorphic to H' (%K, L® B;,S K)
as Bis-modules, compatiblg, with Frobenii. The same result applies to
H' ((X0/Ouris) g » Dl (1)

(2) For every i we have exact sequences

0— H' (X%, L ® Caris) — H'((Xo /Ocris) g » Divg (L)) @
Ny,;=0 Ny i,1-pg)

H'((X0/ Ois)og s Dl (L) ™" 5 HI((Xo/ Ot g s Dfsr (1) — 0

and
0— H'(¥g, L ® Ciog) — H'((Xo/Oaris) g » Ve (1)) &
(N1i,1-pg)

HY((Xo/Ocris) g » D (L)) 25" H (X0 /Ouric) g » Dcr (1)) — 0.

In particular, the natural map H' (X%, L ® Cais) — H' (X%, L ® Ciog) is
myjective for every i.

() The morphisms y. and 7. are isomorphisms and 7i is strictly
compatible with the filtrations.

(4) The morphisms o; and f; in (2) are surjective.

'Proor. We identify the cohomology group H'(Xz, L ® Byg) with
H'((X0/Oris) 5 + Ditg (1)) using 2.31. Let (£,V) be the module with
connection on )?max associated to DI (IL); see 2.27. As explained in 2.4.5
and using that the isomorphism Dy, (1)&0,,; Biog = Dy, (L) provided by

log
2.28(6), we conclude that we have an isomorphism

cris

H' ((Xo/Oaris) g - DESO(L)) = Hig (X, E8Biog)

compatible with the connection relative to B.s. Frobenius on By, factors
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via the natural map f: Biog — Bmax and g: Bax — Blog S0 that the image of
Frobenius on Hi((Xo / Ocﬁs)f;:, Dﬁ:’(L)) factors, using the identifications
above, via

iR (Xk, EB 0, Brog) = H'p (Xk, £) @0, Brog-

The last isomorphism comes from the fact that Hp (X, €) is a finite Opax-
module and Opax — Amax is almost flat by 3.32. We conclude from 2.27 that
7% is an isomorphism. The proof that ! is an isomorphism is similar using
the isomorphism

D?gg(][/f)XK @O}(Elog = Dﬁ)z)(I")Xxv

of filtered Ox® o, Big-modules endowed with a connection relative to By,
obtained via the base change B,z — Bio (inducing the map O — Ok
sending Z to 7).

(1) The derivation N: BIZ K BZ K is surjective. Its kernel is Bst,K
v

etisK C Ezg,i is split injective; see 2.3.3. Identifying

H'((Xo/Ouris) g » Dl (1) with H' (¥, L ® BY ) and using that the map
induced by N on the latter is split surjective for every i, the first part of the
claim follows. Since N o ¢ = pp o N and ¢ is an isomorphism on Bcvris,i’ we
conclude that N preserves the image of Frobenius and the last part of the
claim follows.

If (3) holds, then since N is nilpotent on D;(IL.) and it is surjective on B,

the monodromy operator is surjective on Hi((Xo / Ocris)f;:, I)i?(L))WdW.
This concludes the proof of (1).

(2) The given short exact sequence, beside the exactness on the left
and on the right, is obtained from the long exact sequence relating the
cohomology of L ®Ceis and L ®Cye with the cohomology groups

H (¥, L@ BY ) identified with H'((Xo/Ouris)yog » Dise(1)). The con-

necting homomorphisms Hi((Xo / (’)ms)lc;:, ng’(h)) — H*H! (X7, L ® Ceris)

and H' ((Xo/ Ocﬁs)igs, Dﬁf;(L)) — H (X%, .®Ciog) are zerofor every i due

t0 (1). As H' ((Xo/Ouris) g » Diger (1)) V™" coincides with H' (¥, L @ BY, o)

and the inclusion B

by (1), the conclusion follows.

(3) We prove that 7! is strict on filtrations, i.e. that it induces an
isomorphism on the various steps of the filtrations. We argue as in the
proof of [AI2, Prop. 3.25]. Since X is proper and algebrizable over Ok, by
GAGA there exists a Oy module o, with logarithmie and integrable
connection V algebrizing the coherent @X—module D(L) ®0... O (see

cris
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2.28 for the definition of D(L,)). Its base change £k := £, ®o, K alge-
brizes Dy, (L) ®o,,, K, viewed as a module with connection on the rigid
analytic space Xk, so that the filtration on l[)log(L,)XK =D log(L) R0
defines unique filtrations Fil*€g on £k and Fil*Ep, := Fil*€x N Ep, on
Eo, satisfying Griffiths’ transversality. By GAGA and 2.27 we have iso-
morphisms

cris

HY (X /WY ) DR (L)) @ K = Hig (X3¥, £x)

and Hip (X, (Dﬁ)‘;‘)(L)XK, v‘[)ﬁ]e;(i[,,)XK)) ~Hip (X?{lg, EoxBoyBuog), as filtered
Bog-modules. B
It then suffices to prove that the isomorphism of Bj,e-modules

9i: fiR (Xfflg’ EK) QK Elog - HfiR (X;{Iga Eox ®Oxglog)

is striet with respect to the filtrations. As in the proof of [AI2, Prop. 3.25]
one shows by a direct computatlon that this holds for i = 2d and £ = Q% < /K
where d = dimXy and Q% /k are the usual Kéhler differentials. In this
case both groups are isomorphic to B]og( — d) where ( — d) stands for the
shift in the filtration by d. Let X3%° C X% be the maximal open subset
where the log structure is trivial. The morphism of filtered Eog—modules

dR'(Xa] £°,Ex) @k Blog_}HdR'(Xalg 50K®0K310g)

of compactly supported cohomology is compatible with the previous one and
Poincaré duality. By [S, Prop. 2.5.3] Poicaré duality provides an iso-
morphism

i (X3, £x) — Homy (3 (X35, €x), K(— o))
of filtered K-vector spaces, strict with respect to the filtrations. Then,
i (X3, Ex) @x Buog — Homy (3 (X2, €x), Buog( — )

is a strict isomorphism of filtered Elog—modules. Since it factors via g;, also g;
must be strict with respect to the filtrations.

(4) As yi and 7! are isomorphisms and o; is surjective by 2.27(4), it
follows that also f; is surjective. O

Consider the diagram obtained by tensoring [ with the fundamental
exact diagram (1) in § 2.3.9. Taking the long exact sequence in ecohomology,
we get a commutative diagram of (Q,-modules endowed with continuous
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action of G, whose rows are exact:

e Hi(Xg, L) . H(Xz L@ Fi'BY ) » Hi(Xg,L ® Ceris)
(3) . l J

e — n'(,t,\.:. ?-.“';‘\‘) > H'((Xo/Oeris) 1y » Dfe (L)) » H (X, L ® Ciog)
Here we have used the above 2.31 to identify H1(3€ L@Blvg K) =
Hi((Xo/Oms)lC;S, )ﬁ;’(L)) compatibly with monodromy operators, Fro-
benii and Gg-action.

Recall that

Di(L) @way Bl‘)g =~ H' ( (XO/ Ocrls)lczés ) Di‘iego(L)) roa

compatible with monodromy operators, Frobenii and Gg-actions. It is also
compatible with filtrations where the latter is endowed with the filtration
induced from H' ((Xo/ OCHS)IC;;S7 Dﬁ)ego(L)). Then, with the notation of 2.3, we
have:

PropositioN  237. (1)  The isomorphism  D;(1.) @w) Blog

H'((Xo/ Ocﬁs)f(gs, )ﬁ)ego(L))q' W is compatible with filtrations, monodromy
operators, Frobenit and Gg-actions.

(2) We have a homomorphism of Gg-modules
1 \v i =V
H (% Le IF%crm K) _l) H (&Ev L& Blog,ﬁ) /’
10177 . i =V
Fil'H'(Xg, Lo Bl z)  Fil'H (¥, LoBy,g)

cris,K

(D (L) @wa) log)

where 1 1s injective and p is an isomorphism.
. 1 »V.0=1 1 cris
®3) The image of u;: H' (X%, L. ® Bcri:K ) — H'((Xo/ Ocm)log , Dﬁfgo(L))
1s contained in D;(IL) @y Bog and its tmage is

10g (D (L) ®wa Blog) = (Di(L) Rwiky Blog)N:O,qz:l

which coincides with

:01(,,:1

; cris N =1
H' ((Xo/Ouris) g » D (1) H (¥, Lo BY, )"
(4) The Gx-submodule Vi (D (L) @ lOg) of Di(L) @xity Bog O-
incides with the image of H' (X~ % L)
(51) Vieg (Di(L) @3y Blog
and it is a semistable representation of Gk for every i;

) is finite dimensional as Q,-vector space
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(5.i) the maps H (X%, L ® FllOIBV ) W (Xz, L ® IBZI %
Jjective for every j;

(5.iii) the morphism 1 in (2) is an isomorphism and we have a long
exact sequence

) are in-

- Hi(¥g, L) — H' (¥, Lo BT ) —

Vikg (DiL) @y By ) — B (X, L) = -

log

Proor. (1) follows from 2.36(3). The existence of : follows from
2.21(3i). The fact that p is an isomorphism follows from 2.36(3) and 2.32.

As Elvog_ﬁ = A%i = Q) Blog and BCI‘I = ﬁ\me Q) Bis by § 2.3.7 and

§2.3.3 and as ch /FllOchs :Blog /F11 Blog by 2.1, we get an isomor-
. . =V L0V . . .
phism BZiS’K/FﬂOIBZiSK > Bk /Fllo]BlogK. Using the inclusion
H' (X5, Lo BY.

cris, K) 7 \v 10V ~
Fil'H (X, L@ BY, ) (b & P P o) =
cris,

H' (X7, L ® B,z /Fil'By, ),

which contains H' (X, L. Evogﬁg) /Fi'H (X, L ® Elzg‘g) as a submodule,
we deduce that : is injective. ‘

(3) Since Frobenius is the identity on H' <3€Ev L BW’ 1) the first
claim is clear. The composite of the map t¢;: H' (%— L ® RV ) —
Hz(%K, L. ® Ciog) with the map s; in 2.36(2) is identified with the map

(9~ LN)H (X Lo by o) —H (X Loby o) oH (X Loby o).

Due to 2.36(2) the kernel of t;, which is the image of u;, coincides with
the kernel of s; o t;. By 2.36(1) the kernel of s; o ¢; is H' (X, L ® Bv )(p:l.
This proves the second claim except for the last isomorphism in the dlsplay
To get this it suffices to remark that HZ((XO / Ocm)g; Dﬁ)‘;o(L))(o '
H'((Xo/ Ocns)fs;s, JDﬁif(L))de The conclusion follows.

(4) An element x in Vg (Di(L) Qwa Blog) is in the image of
HZ(SE 7L ® BV = 1) by (3). Thanks to the injectivity of z proven in (2) the
element x is also thei image of some y € H' (% L® ]9‘1101[%v ) by (2). This

implies that (p — 1)() = 0 using the long exact sequence in cohomology
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defined by tensoring the first diagram in § 2.3.9 with .. We conclude that y
is in the image of Hi(3€E7 L) as wanted.

(5.1) This follows from (4) and 2.3.

(5.i) Let Q be the kernel of the map HI(Xz, L& Fi’BY. ) —
D;(I.) @w(y Bog. Then, Q is a Beis-module. Since Bes contains the max-
imal unramified extension an of QOp, then @ can be considered as a vector
space over Q;“. A diagram chasg in (3) and the last assertion in 2.36(2)
imply that @ is in the image of H’(X, ) which is a finite dimensional Q-
vector space by 2.34. Hence @ must be trivial.

(5.iii) Using the long exact sequence in cohomology associated to the exact
sequence 0—L@FiI’BY. — —L&BY. - —LeBY. _/FiI’BY. _—0

cris,K cris, K cris,K cris,K
and (5.ii) we get that
H' (Xz, L@ B}, )

Fil'H' (Xz, L@ BY, =)

cris,K

~ ITi (Y ) 210
> H'(¥g, Lo BY, £/FI'B}, o).

cris,K

This and the argument in (2) imply that : is an isomorphism. As

L®BY.

cris,K

10V ~ V,p=1
JFI’BY, 2= (Lo B/ /L

by § 2.3.9 we deduce the second claim by considering the cohomology of
the exact sequence 0 — L — L ® Bcvr’ii’%l —(L® IBZ;Z%I) /L —0.

COROLLARY 2.38. The filtered (p, N)-module D;(IL) Qv Bg’; s ad-

missible and it is associated to the semistable representation H! (X%, L)
of Gg;

Proor. Thanks to 2.3, (1) the filtered (¢, N)-module D;(IL.) @) Bg’g( is
admissible if and only if (2) the map J(D;(L)) is surjective. Assume that (1)
holds. The map

lo

hi: H (Xz, L) — Vi (Di(L) iy BGg)

is surjective by 2.37(4). Its kernel coincides with

Hi(¥g, LoBl o)  H((X /OCI.is)fjf;, DE(L))M
(0~ DH(Xg Lo Bl 2) (0= DH((Xo/Oaris) g - Ve (1))

by 2.36(1) using the long exact sequence in cohomology associated to the
crystalline fundamental diagram in § 2.3.9. Note that (D;(L) ®w Blog)NZO /
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(¢p—1)(Di(L) @y Biog)™ i 0 since Di(L) @y BEX is admissible. By

. log
definition (D;(L) @y Blog)N_o contains the image of Frobenius on

H (X, /Ocﬁs)f;‘;,nﬁfg"(L))N:‘]. Hence, p — 1 on H' (X, /oms)f;“;,nlgg(m,))N:O /

(Di(L) @y Blog)N:O is the operator —1 which is an isomorphism. We con-
clude that the map ¢ — 1is surjective on H' (X, / Ocris)for:, Dﬁg’(L)) N=0 Thus
the map #; is an isomorphism.

We are left to prove that one of these equivalent statements is true. Due
to (2) it suffices to show that the map o6(D;(L)) is surjective. Let
V = Vi (Di(L) @y BE) and put D' := (V @0, By) *. Due to 2.3 the fil-
tered (¢, N)-module D’ is admissible and V = V (D’ Q) Bﬁg). It then
suffices to prove that D’ = D;(IL). We argue as in [CF, Prop. 5.6 & Prop. 5.7].
Let D := D;(I)/D'. Consider the commutative diagram

0 0
| |
V — VL (D'ewwBik) — V&L (D®wwBiX) —0
\ J l
0— V — VO (DiL)®ww Ber) — Vil (Di(L) ®ww) Bix)
! l
Vie (D ®way By¥)  —  Vik (D ®wqy BiX)
| |
0 0,

00—

where the first line is exact since D’ is admissible and the columns are exact
by 2.3. Thus the map 6(D) is injective and its cokernel coincide with the
cokernel of 6(D;(LL)).

Let & be the dimension of D as Ky-vector space. Fix a basis {dy, ...,d;}
adapted to the filtration and for every j=1,...,k let ¢; be such that
d; € Fil"D\Fil’"'D. Fix r such that » > i; for every j. Let n be the di-
mension of the Q,-vector space H'"! (X%, ). We consider the Galois twist
of 6(D) by Q,(r). Due to 2.37(3)&(5.iii) we have Coker(é(D)) (r) =
Coker(6(D;(L))(r) c H*! (X%,L.)() so that its dimension is bounded
by n. Let K C K’ be a totally ramified extension of degree s > 0. Then,
Vl?)g (D ®wa BlGO’g‘)(T) C (D @k, Bgt)(r). Since t is invertible in By, we have
(D ®k, Bg)(r) = B so that its Gg-invariants are K{. On the other hand,
Vﬁ)g (D ®k, Bg’g‘)(r) = @;le (BdR /Bir)t"" @ d; as Galois module, i.e., it is
isomorphic to &, Bar /Fil""¥ Bgg. In particular, its G -invariants coincide
with &/, K'; see [CF, § 1.5]. Hence, H’ (G, Coker (6(D)(r))) has dimen-
sion as Ky-vector space at least (s — 1)k. On the other hand, it is bounded
by n. Since s can be chosen arbitrarily large, the only possibility is that
h = 0 so that D = 0 as wanted. O
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PROOF. (of theorem 2.33) It follows from 2.38 that H'(X%, L) is a
semistable representation of Gx with associated filtered (¢, N)-module
D;(L)). Since semistable representations of G form an abelian tensor cat-
egory and Dy is exact and since Hi((X;C /Y\‘V(k)““)fj;, _) is a d-functor, the
statement of 2.33 regarding the isomorphism as o-functors is clear. The
functoriality is also clear. Note that HZ((X;C / ‘W(k)*)lc;";, Df‘gg(Lﬁ) satisfies
Kiinneth formula by [K2, Thm. 6.12]. The category of semistable sheaves is
closed under tensor products and ‘f‘(fg commutes with tensor products by

2.30. Thus the compatibility with Kiinneth formula holds as well. O

3. Relative Fontaine’s theory
3.1 — Notations. First properties

Let R be an Og-algebra. Assume that there exist a positive integer o,
non-negative integers a and b and elements Xi,...,X, and Yy,..., Y, € R
such that X - - - X, = n* and the properties numbered (1), (2), (3), (4) below
hold. We start by defining the monoids P, := N* and P, := NP, put

P := P, x Py and we let
b

wp:P—R,  be defined by (a1,...,0a, fr,.... ) — [[ X2 [[ Y7
-1 j=1

It induces a morphism of Og-algebras yp: Og[P] — R. We then get a
commutative diagram of morphisms of Ok-algebras

Ok[P] =% R
I ]

Y

O[N] — Ok,

where the left vertical map is induced by the map N — P = P, X Py,
n— ((m,...,n),(0,...,0)) and y,: Og[N] — O is a morphism of Ok-al-
gebras sending N 5 1+ 7*. We assume that the following hold.
(1) R is excellent;
(2) the map Yr: Ok[PlRo, Ok — R induced by v, has geometrically
regular fibers;
(3) R is obtained from Ok[Pl®o,nOk as a succession of extensions
RO = Ok[PI®o,NOk C -~ C R™ = R such that

(ALG) RV is obtained from R® by (loc) localizing with respect to a
multiplicative system or (ét) by an étale extension.
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(FORM) each RV is p-adically complete and separated and it is
obtained from R® as (loc) the p-adic completion of the localization
with respect to a multiplicative system, (ét) the p-adic completion of
an étale extension, (comp) the completion with respect to an ideal
containing p.

(4) For every subset J, C {1,...,a} and every subset J, C {1,...,b}
the ideal of R generated by y (N* x N} is a prime ideal of R, the
ideal of R generated by y (P,) is not the unit ideal and the image of
the monoid O% -y (Py) is saturated in R ®o, Og.

Inboth cases we consider the log structure on Spec(£) induced by the one
on the spectrum of Og[Pl®e, Ok considering the fibred product log
structure. Here we take on Spec(Og[P]) (resp. Spec(Ox[IN])) the log
structure associated to the prelog structure P — Og[P] (resp. N — Og[N])
and we take on Spec(Ok) the log structure associated to the prelog structure
N — Ok sending 1 to n. In particular the structure map of schemes
Spec(R) — Spec(Ok) extends to a morphism of log schemes.

More explicitly let P’ be the submonoid of %Pu x P, C Q% x Py, given by
P ::ENJFP C lPa X Py,
o o
1. o .1
where &N is diagonally embedded in &Pa.

LEmMA 3.1. (a) The momnoid P’ 1is the amalgamated sum of
monoitds P ®&x N via the maps (i) N —P given by N>n—
((n,...,m),(0,...,0)) € P, x P, =P; (i) N — N given by N 2 n— on.

(b) The monoid P’ is fine and saturated.

(¢) The structural morphism of log schemes

q: (Spec(Ok[P1®0,10k), P') — (Spec(Ok), N)
1s log smooth of relative dimension a + b — 1, in the sense of [K2, § 3.3].
Proor. (a) By construction we have a surjective morphism of monoids
f:N & P — P'given by the inclusion P C P’ and the map N — P’ sending n
1
to <& n,...,n),Q,..., 0)). The equalizer of f is IN mapping to N & P via

the maps given in (i) and (ii). By the universal properties of the amalga-
mated sum we thus get an isomorphism P &x N =2 P/, 1
(b) The group P generated by P’ is the subgroup &Z—i-ng of
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—P% x PP which is torsion free and abelian. In particular, P’ is integral
o

and it is clearly finitely generated. We prove now that P’ is saturated.

Every element a € P'#* can be written as a = (hjo+hy,... ¢hjo+
ha,mq,...,my) for a unique positive integer 0 </ < o —1 and unique
integers hy,...,hg,my,...,my. It lies in P’ if an only if hy,..., A,

my,...,my € N. Let 0 £ f € N be such that ffa € P'. Write fh = ro + I/,
the division by o with reminder 0 <4’ <o —1. Then, fa = (h’ Jo+
Bh1+7),...,hja+ (Phg +7), fa, ..., fmy) so that phy +7,..., fhe + 7,
pmy, ..., fmy € N. This implies that m,,...,m; are non-negative, and
hence lie in N, and that for every 1 <1 < a we have r+ fh; > 0, ie.
afth; > —ra=h' — fh > —ph. We conclude that «h; > —h > —o so that
h; > —1,1i.e. h; € \N. This implies that a € P’ to start with.

1
(¢) The map of monoids z: N — P’ sending » to (& n,...,mn),Q,... ,0))
is injective. At the level of associated groups #P remains injective and the

quotient is isomorphic to 7“7, Thus, ¢ is log smooth of the claimed
relative dimension by [K2, Prop. 3.4]. O

For every n € N write R, = R if » = 0 and let R,, be
R, =R ®o, Ok [X; LXEYE Ym}/(xlm X — n)

for n > 1. Then, Spec(R,) has a log structure N, defined by the chart

1 1
Ox [ﬁp} D [1] Ok — Ry, considering on OK{ 'P}@) 1 ]OK’ the

Ok
fibred product log structure, where:

@i we endow Spec((’)K{;' \D and Spec((’)K[ PD with the log

1 1 1 1
structures havmg A\T — Ok [—N} and respectively — P — Ok {—P}
n! n! n! n!
as charts;
(i) the log structure on Ok is the one associated to the map N — O,
defined by 1— 7 ) )
(iii) the map OK [ﬁl\} — Ok [n' } is the map of Ok-algebras defined

d 1
by = (... d.0,....0)

(@iv) the map Ok {%N} — Ok is the map of Ok-algebras defined by
1o
n!
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(v) the map Ok [%P} — R,, is the map of Og-algebras defined by

=

1 a % b B;
ﬁ(alv"wathﬁla"'?ﬁb) = HXZVUHY;
: i=1 1

j=

Equivalently, proceeding as in the case n = 1 treated before, we have
an isomorphism
1
Ok |-
n!

.P} ®0K[1 N] Ok, = Ok, [%P’}

ls

and the log structure on Spec (Rn ) is the one associated to the morphism of
1
monoids ﬁP/ — R,. We also define

1
o

R’ :=R[Xj,...Xi|/(X{ - Xi-n) CR,

with log structure on Spec (R") associated the morphism of monoids
1 .1 a _wbo

(—Pa) x Py, — R° sendlng& (ul, coUg) X (v, ,vb) to [TX," ] Y;’.We
o

=1 j=1
consider it as a log scheme over Spec(Og) where the map on log structures is

. . 1 .
associated to the map of monoids N — <&Pa) x Py sending n € N to

1(n,...,n,O...,O).
o

3.1.1 — First properties of R,
The following hold:

1) R, and Rn (resp. R° and IAB") are flat Ok -algebras (resp. Ok-alge-
bras);

(2) the extension R — R, is n*-flat, i.e., the base change of an injective
morphism of B-modules has kernel annihilated by z*.

(3) R, is a Cohen-Macaulay ring and, in particular, it is normal. It is
regular if o = 1.

(4) R’ is a regular ring. Moreover, R is a direct summand in R° as R-
module and 7*R? is contained in a finite and free R-submodule of R°. We
have R = R° if and only if o« = 1.

(5) R is an integral domain.

Proor. Since R, (resp. R°)is noetherian claims (1)-(2) for IA%W/ (resp. IAQ")
follow from the claims (1)-(2) for R,, (resp. for R°). By construction R, is the
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tensor product of Og[P'] — R, induced by w, and R, : [ P } Thus it

suffices to prove claim (2) for the tower defined by R/, for n € N. Since the
map Y is flat by assumption, it suffices to prove clalm (1) for R, and
similarly we can replace R with R°.

(1) We prove it for R) leaving the analogous proof for R to
the reader. Since the element X; o . ¢ g is irreducible in
O, [X{',...,XF, Y], ..., Y}"], which is a UFD, it defines a prime ideal.
Slnce the quotient is R/, the latter is an integral domain and, hence, it is
nu-torsion free. The claim follows. L

2) LetA C R/, be the R'- subalgebra generated by 7, Xy, i S Xd Y
and Y”' Since 77 = X . . ¢ " in R/,, we compute that

X = XAX2 T X e A
Xy =XiX, "X, "nw e Ay

Hence, 7R, C A, C R),. Furthermore, A, is finite and free as A,-
module for every n. Indeed, since both A, ,; and A, are flat as Ok, -mod-
ules, it suffices to prove that the elements 77X, Y, are linearly independent

over A, [p~'] = R, [p~!]. Since K/, ,, = K|, [ is an extension of degree
a kb

n + 1, we need only to show that the elements XV, := H X H Y“’”"
_ 1 J

with f' = By, ..., B,) and 0 < f;<n+1 for every 2§z§a and with

7=01,---,7) and 0 <y, <n+1 for every 1< j <b, are linearly in-
dependent over Frac(R;) @k K, .1 and this is clear.

(3) We prove that R, is Cohen-Macaulay for » = 0. The general case
follows in the same way after replacing K with K/, and R with R,. Assume
we are in the algebraic case. Since the map Ox — R is the base-change of
the map O[N] — Og[P], which considered as a map of log schemes is log
smooth, it defines itself a log smooth map. Since Ok with the log structure
defined by # is log regular, [K3, Thm. 8.2] implies that R, with its log
structure, is log regular. Then, [K3, Thm. 4.1] implies that R is Cohen-
Macaulay and normal as claimed.

In the formal case, due to [K3, Thm. 4.1] it suffices to prove that R, with
its log structure, is log regular. By construction R is obtained from
RO := Ok[Pl®0, Ok by taking successive extensions R ¢ R*D each
given by (ét) the p-adic completion of an étale extension, (loc) the p-adic
completion of a localization or (comp) the completion with respect to an
ideal containing p. Since R is log regular by the argument provided in the
algebraic case, it suffices to prove that if R is log regular, then RV is.
We may assume that R = RV, By [K3, Prop. 7.1] to prove the log reg-
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ularity of R it suffices to show it at maximal ideals of R. Since R is p-adi-
cally complete and separated, any such contains p. Due to [K3, Thm. 3.1(1)]
the log regularity of R at @ is expressed in terms of the completed local
ring Rq of R at @, with the induced log structure. Set Q¥ := @ N R®. Then,
R(Z)Qm - RQ is a finite and étale extension in case (ét) or it is an iso-
morphism in the other two cases. Since R is log regular by assumption,
then [K3, Thm. 3.1(1)] holds for R(i>Qu> and hence it holds also for RQ as
wanted.

Assume next that o = 1. We may assume that n = 0. In case (ALG)
the map ¥ is the composite of localization and étale morphisms. Thus
to prove the regularity of R, it suffices to show that R/, is regular. Since
R![p~'11is a smooth K/ -algebra, it is regular. We are left to prove that
the localizations of R/, at prime ideals containing p are regular. In case
(FORM) the map ¥r is the composite of p-adically formally étale
morphisms, p-adic completions of localizations and completions with
respect to ideals containing p. Since it suffices to check regularity for
the localization at maximal ideals and the maximal ideals of a p-adically
complete ring contain p, it suffices to prove that the p-adic completion
I§’ of R) (for R, as in (ALG)) is regular

Let P be a prime ideal of R or R’ containing p. Then, it contains

= X v X ;' and, hence, it contains X " for some ¢ =1,...,a. Note that
1

X" is a regular element in R, and in R’ i.e., it is not a zero divisor.
Otherwlse 7 would be a Zero lelSOI‘ But this is impossible due to (1).

Since R, /XZ.’”R’,L ~R /Xi’” ", is a smooth k-algebra, we deduce that R, p

(resp. IABW/_VP) is regular as claimed.
(4) The regularity of R° follows arguing as in the proof of (3).
Clearly R=R° if and only if «=1. One shows that in general

“ROC@RﬁX/ HY” with f=(f,...,f,) and 0 < f;<a for every
=2 j=1

2<i<a and with y=(p,...,7) and 0<y;<a for every 1<j<b

proceeding as in the proof of (2). The proof that R is a direct sum-

mand in R° as R-module is reduced to the case that R = R’ = Og[P']

and R° = R° = Og[((1/2)P,) x Py). This follows as R = R’ & D where

D = > R'x with @ the subset of (1/0)P, of elements which are not

diagorelgl (i.e., of the form (u,...,u) € (1/2)P,) and which do not lie in
P, C 1/a)P,,.

(5) It follows from assumption (4) in 3.1, taking J, = J, = 0, that R is
an integral domain. |
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Let Q be an algebraic closure of Frac(R). Fix compatible R-algebra
morphisms R, — Q for n € N and write

R,CQ

for the union of their images.

Lemma 3.2. (i) The R°-algebra R, is flat as R°-module.
(ii)) For every m the image of R, — R, is a direct factor of R, and it is
a finite R-module.

Proor. (ii) Since R, is noetherian and normal, R, is the product of
finitely many normal integral domains and the image R C Q of B, in Qs
then one of these factors. We conclude that liqgn R, is a product of integral
normal domains and its image R, = U, R/ in £ is one of these factors.

(i) We claim that A := li?anRn is a flat R°-module. Thanks to (ii) this

proves that R, is flat as R°-module. Proceeding as in 3.1.1 we reduce to the
case that R = R’ = Og[P']. In this setting we prove that A is in fact free as

a B; b .
R'°-module with basis given by the elements [] X711 Y, with rational
=1  j=1
numbers 0 < f;<land 0 < y;<lfori=1,...,aandj=1,...,b. Indeed,
as 1 = X7 - - - X, for every positive ¢ € O, then Ok, C A so that these ele-
ments are generators of A as R"°-module. They also form a basis over

R°[p~1]. As R" is p-torsion free, they form a basis of A as R°-module. [

3.12 — The ring R
Let S be the set of R-subalgebras S of 2 such that

(1) RIY{,....Y p 11 C SeeRIY{E, ... Y p~1] s étale;
(2) S is finite as R-module and S is a normal domain.

Then S is a directed set with respect to the inclusion. Define R to be the
direct limit R := }qmsl S and R to be the p-adic completion of R. Put G to be
S

the Galois group of R[p~'] over R[p~']. We endow the R-algebra R with
the log structure induced from the given one on R.

Let S, be the set of extensions R, C S, C Q2 such that S, is finite
and étale over R, [p~'] and such that S is normal. Every S, € S is
contained in R. On the other hand it follows from Abyhankar’s lemma
[SGAI, Prop. XIII.5.2] that every normal extension R, C T finite and
étale over R [Y{!,..., Y™, p~1]is in fact finite and étale over R..[p~!].
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Hence, .
limS=R= lim S,
Ses SwESx
For every S, € Sx let es, € Sc®p. So[p~'] be the canonical idempotent

splitting the multiplication map S« ®r_ S~ [p~!] — S [p~1]. We have:
P g p p ~ p p

ProposiTiON 3.3. For for every n € N, the element n%esm s in the
mmage of Sx®r._Seo-

Proor. The claim follows from Faltings’ Almost Purity Theorem [F3,
Thm. 4]. See also [GR, § 9], especially Theorem 9.6.34. O

It is in the proof of the proposition that assumptions (1) and (2) on the
ring R made in § 3.1 are used and they might be relaxed using recent work
of P. Scholze. Let mg be the ideal of R generated by = i for n € N. Then,

COROLLARY 3.4. _The extension R, C R is almost flat. In particular,
the extension R° C R is mz-flat.

Proor. It follows from 3.3 and 3.2. O

ProrosiTION 3.5.  The following hold:

(1) the ring R is p-torsion free and reduced, the map R — R is injective
and pRNR = pR; R

@) the extension B [p~!] C R[p7!] is faithfully flat.

PrROOF. (1) The claim, except that R is reduced, is the analogue of
[Bri, Prop. 2.0.2] and the same proof applies. In our case the key in-

gredient is that R is the direct limit of finite and normal extensions of R.
Let 2 € R be such that 2" = 0. Since R is p-torsion free if @ # 0 we may
assume that « is not divisible by any element of the maximal ideal of O~.
Since R/pR = R/pR, we may write x =y +pz with x € R. Thelri,
y" € pR and we deduce from the normality of R that yp * € R. This
implies that p» divides » and hence x. This leads to a contradiction.

(2) We start with the flatness. It follows from 3.2 and [Bri, Cor. 9.2.7],
with 4 = R° and B = R, that the extension IAB"[ “1] c R[p~!] is flat (note
that in loc. cit. one does not need  to be p-adically complete). Due to § 3.1.1
we have that 7R is contained in a finite and free R-submodule of R°. Thus
the map R[p~!] — R°[p~']is flat.
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To conclude the proof of the proposition we are left to show that the
image of Spec(ﬁ[pfl]) — Spec (f?, [p~!]) contains the maximal ideals of
R [p7']. Let P C R be a prime ideal such that P]Aﬂ ‘1] is maximal. Ar-
guing as in [Brl Thm. 3.2.3] one concludes that the ideal PR[ ] is not the
whole ring R[ 1]. In particular there exists a maximal ideal Q of R[ 1]
such that P c Q ﬂIA%[p‘l}. Since P is maximal the last inclusion is an
equality and P is the image of Q. O

COROLLARY 3.6. Frobenius is surjective on S./pS~ for every
S € Soo and, in particular, on R/pR. Moreover, 73Sy is a finitely
generated R..-module.

Proor. IfRisp-adically complete the proofis asin [Bri, Prop. 2.0.1]. In
the general case we proceed as follows. We claim that Frobenius ¢ on
R/_/pR/_ is surjective. Recall that R/pR is obtained as a chain
R'/pR' = RO /pR© C ... ¢ R™ /pR™ = R/pR where RV /pRD ig
obtained from R® /pR® by taking a localization or an étale extension or the
completion with respect to an ideal. One then proves by induction on 7 that
in each case Frobenius on RU™V/pRE*D induces an isomorphism
R [pRED @F e RY/pR® — RV /pRED  In particular Frobe-
nius provides an isomorphism R/pR %, IpR! R'/pR'— R/pR. Since

R /pR is adirect factor of R/_/pR/_ ®g R by 3.2, Frobenius on R /pR
induces an isomorphism R, /pR ®R, R_/pR., — R /pR. In parti-
cular, since Frobenius ¢ on R_/pR._ is surjective then Frobenius is sur-
jective also on R, /pR .

Let R, C Sy be an extension in S,.. Write nﬂes as a finite sum of
elements Z x;®y; with x; and y; € S.. Then, for every z € S, we have

i=1
niz = > Trg sr (zx)y;, ie., nzl)Soo is generated by ¥1,...,¥, as Ru-
1 1
module proving the last statement. We also compute nres = (n7es_ )" =
Zx @y +pw with w € Sw®r, Sw. For every zeS, we have

ETTS,C/R 2y = niz+pw with w €S.. Write Trs sr. (2a)) =
P
O%‘ +pf; with «; and f; € Ro. Then, nhy = (Z oclgh) + pw" for some

t 1

w" € S. Since S is normal and the p-th power of y;, = (Z aiyi) /m” lies
P i

l/p
is surjective on S/ —~ = / S+ and, hence, it is surjective on S, O

in S, then y, lies in S and z = +

w”. This proves that Frobenius
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3.1.3 — The lift of the Frobenius tower }N%Oc

Put O .= W(k)[Z]. Let Mo be the log structure on Spec(O) associated
to the prelog structure y: N — O given by 1 — Z. Let y,: W(k)[N] — O
be the associated map of W (k)-algebras. Note that Og = O/(Pr(Z)) so that
Ok has a natural structure of O-algebra, compatible with log structures.
Put
RO .— O[P]@O[N]O

where the completion is taken with respect to the ideal (P,I(Z)), the map
O[N] — O[P] is the morphism of O-algebras defined by N > n+—
((n,...,n),(0,...,0)) € P and the map O[N] — O is the morphism of O-
algebras defined by N 5 n— Z*". All these maps are compatible with log
structures taking on O[P] (resp. O[N]) the prelog structures given by P
(resp. N). We consider on R©® the log structure induced by the fibred
product log structure on O[P] ®orNy O. It is associated to the prelog
structure P’ — R© where P’ := P @&x N where N — P is defined above
and the map N — N is multiplication by . Note that R /(P,(Z)) =
RO = Og[Pl®o, Ok compatibly with log structures so that we can view
RO as RO_algebra.

_ Lemma 3.7. There evists a unique chain of RO-algebras RO C
RW c ... C R™, complete and separated with respect to the ideal (Px(Z))
m case (ALG) and with respect to the ideal (Pn(Z), p) for i >1 1 case
(FORM), lifting the chain of R©-algebras R® c RV c ...c R=R™
modulo (P(2)).

PrOOF. We construct R proceeding by induction on i. Assume that R
has been constructed. If R“*V is obtained from R® by (the p-adic completion
of) an étale extension R of R then we put RtV to be the (P.(2))-adic
completion (resp. (p, Px(Z))-adic completion) of the étale extension of R
lifting R® ¢ R™. If R%D is obtained from R by (the p-adic completion of)
the localization of R with respect to a multiplicative set U;, we let U; be the
set of elements of R® reducing to U; and we let @(” ”Nbe the (Pr(2))-adic
completion (resp. (p, P-(Z))-adic completion) of R®[U;]. If R is ob-
tained from R® by completing with 1 respect to an ideal /; (containing p), we
let I; be the inverse image of 1; in R® and we let R+D be the I;-adic com-
pletion of R®. We leave to the reader to check the uniqueness. O

We put R := R™ and we let Xi,...,X, and Y1,...,Y, € R be the ele-

ments so that the induced prelog structure yj: P’ — R restricted to P C P’
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[ b _p

is the morphism of monoids (a1, ..., %, fy,..., fy) — [T X [1 Yf’ Note
=1 j=1

that we have a commutative diagram of morphisms of O-algebras

oP] & R
1 !
O[N] = 0.

Let Ok {% — 1} be the ring of n-adically convergent power series in % -1
Since the power series in Z with coefficients in O can be expressed as power

Z Z
seriesin Z —n = n(; — 1), then OK{; - 1} is a Og ®wq) O-algebra.

. . . Z
LeEmMA 3.8.  There exists an isomorphism of Ok H; — 1“ -algebras

R&o (OK H% - 1“) ~ R&o, (OK H% - 1H )

~ Z
where @ stands for the (; — 1) -adic completion.

Z
Proor. We construct compatible isomorphisms of Og H; — lﬂ -alge-

bras between R™&»0x Hg - lﬂ and R(”@OK Ok H% - IH by induction

on n. The inductive step follows from the construction of R® given in 3.7.
We just prove the case n = 0.

Recall that R is the (P(Z))-adic completion (resp. (Pr(Z),p)-adic
completion in case (FORM)) of

So := O[P] RKorNg (= (9[)?1,...,X’a,ﬁ,...,f/b]/()?l---)N('a —Za).
Then,

So @0 Ok Hﬁ_lﬂ ~ 0y Hﬁ_lﬂ SN O U A Vo S )

Since Z = nu with 4 = % a unit of Ok Hi — IH , we have

7 ~ ~ ~ -~
SOQOKH 1H[X{,...,Xa,Yl,...,Yb]/(X{mXa—n“)

T
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> 5 Z
with X] =u"X;. There is a map of Ok H; — 1“ -algebras to
R© ®ox Ok H; — IH sending X{ to Xj, )~(Z- toX; fort:=2,...,a and 17] to
Y; for j=1,...,b. It is an isomorphism. This proves the case n =0. O

For every n € I\ write 1?3,7, for

R, :=R[X],... . X}.Y],....Y]
Let

and define morphism of monoids ype: (%Pa> x P, — R° sending

1 CETT VY A i :
&(ul,...,ua) X (vy,...,v) to I_IXZ HY/ As in § 3.1.1 and in 3.2 one

proves that

LeEmMa 3.9.  The following hold:

(1) the rings R, and R° are noetherian and flat O- algebms
2) R 18 Z*-flat as R-module and the direct limit hm Rn 1s a flat Ro-
module with basis provided by the elements

a ws

~ _7b
= H

with w = Uy, ..., u,) and 0 < u; <1 rational number for every 1 <i<a
and with v = (vy,...,v) and 0<wv;<1 rational number for every
1<j<b.

3) En are Cohen-Macaulay rings and they are reqular if o = 1. In
particular, they are normal.

4) Roisa reqular ring. Moreover, R is a direct summand in R° as R-
module and Z*R° is contained in a finite and free R-submodule of RC.
Furthermore, R = R° if and only if o = 1.

(5) R is an mtegral domain.

3.1.4 — The map 6.

For any normal subring S ¢ R we put

E{ :=1limS/pS c E* :=limR/pR
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where the projective limits are taken with respect to Frobenius x+— a?”.
The fact that the natural map Es — E* is injective follows from the
assumption that S is normal. We write the elements of E* as sequences
(900,901, - )

The rings E} s and E* are rings of characteristic p. In fact, they are k-
algebras via the map & > a— (x, /7, 21/%* .. .). For any (xo, 21, . . ) cE"
there is a unique sequence of elements (90(0), @@, ..) of elements in R such
that (x®*V)” = 2™ and &™ = x, modulo p for every n € N; see [Fo,
§ 11.1.2.2]. In fact due to 3.6 if S, € S, then we have an isomorphism of
multiplicative monoids

Ej =~ {(x“”,x(“ ) € SN (@Y = 1™, vy € N}.

In particular, if R, C S is Galois with group H after inverting p the trace

map Y o induces maps
ocH

(1) Ter/Rx: Eé’; — EE@C’ Ter/Rm: W\T\v(ﬁgm) — W (EIE@C) .

Let © be the map from the Witt vectors of E*toR

~

O:W(E') —R,  (ap,ar,0az,.. )’—*ZP” v
n=0

The elements &:=(1,¢,,82,...), P:=@,p'",...), T:=@aP,..),
=X, X7, Ofori=1,.. aandY; = (¥;,Y}”",. forj=1,..b
all deflne elements of Ej, . The images of their Teichmiiller lifts via @ is

O(le)) =1, o(pl) =p. O() == o(Xi]) =X o6([Y)]) =Y,

We endow W (E™) with the log structure defined by the prelog structure

l//\\( ) P = PEB\ <—>\\\Y(E+)

b __
sending P 3 (o1, 7, fo, ..,ﬂb)toH[ Ak H[Y]ﬁfandnemo [7]".
=1

Recall that the R-algebra R is endowed Wlth the log structure induced from
the given one on R. Since O([X;]) = X; and ©([Y;]) = Y, we conclude that
O respects the given log structures. Write

(o1t el ] -p
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LEmMa 3.10. (1) The morphism O s a surjective homomorphism of
W(k)-algebras. The kernel is generated by

Ker(©) = (P (7)) = (¢) = ()

(2) The kernel of the morphism of Og-algebras 1® 0: Ok Q)
W(EY) — R is generated by &, -=1® [7] —n® 1.

(8) The same holds for the induced map QSQ\\\'V(EQL) .S, for
every So € Soo-

Proor. (1) The proof that @ is a homoanorphism of W(k)-algebras
proceeds as in [Bri, Prop 5.1.1-5.1.2]. Since W (E™) is p-adically complete, to
prove that @ is surjective it suffices to show that it is surjective modulo p
and this follows from 3.6. Note that ¢/, ¢ and P, ([7]) lie in Ker(©). Moreover
q and ¢ generate the same ideal in Fontaine’s ring Ai,y = W(E{,_) which is
contained in W(E™). Since W (E™) is p-adically complete and separated
and R is p-torsion free, to prove the claims regarding the kernel it suffices
to show that for any x € Ker(®) there exists z such that x = & (resp.
x = P,([7])2) modulo p. If e is the degree of P,(Z) then P,([7]) = [7]",
modulo p, which is p up to a unit. Thus, it suffices to show the claim re-
garding ¢ and this follows as in [Bri, Prop 5.1.2]. N

(2) It follows from (1) that OK ®‘\‘\'(k) \\\.V(E-F)/(f) 2 OK ®‘\‘\’(k) E Thus
the kernel of 1 ® @ is generated by &, and £ and we are left to show that £ is
a multiple of &,. Note that p = un® for some unit u € O and [p] = [u][z]’
for some unit u € EEK, . Since O([u]) =u we conclude that [w] —u € (&, &).
Hence, ¢=[u]([7]° —n°) + ([]—u)n® so that e (& mé) L, E1+7%a) =
b&, for some a and b in Og @y W(E™). Since the latter is 7°-adically
complete and separated, then 1 + 7n°a is a unit and the claim follows.

The proof of (3) is analogous to the proofs of (1) and (2) and is left to the
reader. |

3.15 — The ring A}

Recall that @ := W(k)[Z]. Consider on W (E*) the structure of ¥-al-
gebra given ]loy Z+ [7] where the latter is the Teichmiiller lift of the
element (z,77,---). Using the prelog structure " and the fact that

[X1] - [Xa] = [7]", we deduce that ‘\‘&"(E*) is endowed with the structure
of R©-algebra via the map of O-algebras

RO w(EY)
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sending X; to [X;] for1<i<aand I~’J to [Y;] for 1 < j < b. In particular
the log structure on W (E*) is the one induced by the log structure on R

Convention: In what follows giverll an element ¢ € E* and n € N for
typographical reasons we write [a]" to denote [a*] where [a] is the
Teichmdiller lift of a.

Levva 3.11. (1) The elements ([7],p) form a regular sequence in
W(E™). Moreover & is also a regular element.

(2) There exists a unique morphism }NE—V\\‘\"(INE*) of E(O)-algebms
such that the reduction wmodulo Pr,(Z) induces the inclusion

R/(Pu2) =R c R =W (E")/(Pu(7)) (using 3.7 and 3.10).

For every n € N there exists a unique morphism of }Nﬁ-algebms
R, — W(E") (resp R° — W(E*)) sending )N(ﬁ to [X; ]“17“’ for
1=1,. a and Y“””' to [ ]‘"*“' forj=1,...,band Z#v to k& ]“”“‘ (resp.
X’;to [_] forz—l ,Q).

(8) The (Z,p)-adic completion I~3 (resp. R’ ) of the zmage of R, (resp
R’)in W(E*) is a direct factor of the (Z, p)-adic completion Rn (Tesp R °)

of R, (resp. of R°). It coincides with the (Z, p)-adic completion R of R for
n=0.

(4) The (Z,p)-adic completion of R, = hmR’ maps isomorphically
onto \‘V(E+ ).

(5) The subring R C “\“\V(E s ) is stable under Frobenius and the in-
ducgd morphism ¢ extends uniquely to a morphism, denoted o, on I~Bn and
on R’ sending Xlﬁ to [X; ]“%“‘for i=1,...,a and Y(’”” to [Y]]ﬁfor
j=1,....b and Z @ to [7] T It has the property that the maps
R, — W(E} ) and R —w (Ef_) commute with the morphism g.

Proor. (1) Note that E* 1s identified as a multiplicative monoid

with a submonoid of o . Since Ri is reduced by 3.5 and multiplication by
p on T (E*x) is the composite of Frobenius and Vershiebung, we deduce
that p is a regular element of ‘\ﬁ\"(l?]gx). Since R is n-torsion free for every
n, then E}x is w-torsion free. This proves the first part of the claim.

For the second part one proceeds as in [Bri, Prop. 5.1.5]. Assume that
x = (o, ®1,...) € W(E") is such that & # 0 and «¢ = 0. Let n be the
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minimal integer such that x, # 0. Dividing x by p" we may assume that
n = 0. In particular, 0 # 2 € E* and py = 0. Since E* is the inverse limit
lim R with the natural multiplication and since R is p-torsion free, we de-
duce that xy = 0 (absurd).

(2)-(3) We prove the claims for iBn; the statements for R° are proven in
the same way. It follows from (1) that V\"(E}x) /([7],p) = ng/ (7) =
R, /nR~. By construction ﬁn /(Z,p) 2 R,/pR,. The image R/ of
R, — R is a direct factor of R, as R, is normal and noetherian. This
defines a direct factor of }NEn /(Z,p) and, hence, a direct factor }NB;Z of }NEn

=0
__ First of all we construct injective morphisms of R( )—algebras
R” — W (Ef_) by induction on i. Assume that we have constructed a

morphism R” —w (ﬁfgm) of E(O)—algebras inducing the natural inclusion
R /(Z, p)R®D ‘\.‘\\.V(]T],Ex) /([@],p) and with the property required in (2).
Then, R? c RV is obtained as (the (p, Px(Z))-completion of) an étale
extension, a localization or the completion with respect to an ideal con-
taining (p, Pz(Z)). In each case, one proves by induction on m that the map
IE(” D )(Z, p)RED ¢ ‘\\&”(IT]EM) /([7],p) extends uniquely to a morphism of
R®-algebras

ROV ([, p)" — W (ER )/ ([7].p)"

Passing to the limit over m € N we get the morphism R \V‘V(EEX).
Reducing modulo P,(Z) and using uniqueness one proves that such map has
the property required in (2). N N

The existence and uniqueness of the morphism R, — W(E™) for
n € N as required in (2) is clear. Note that (p, Z) are regular elements in
R, and in W (]TJEX) by (1). Moreover, R,/(p,Z) — W (E}m) /([7],p) =
R /nR factors via the direct factor R/, /(p, Z) which injects in R, /nR .
Thus, the map R, — \W(IT]JF) factors via E;L — W(E*) and the latter is
injective. N B

(4) Since W(Ey )/([z],p) coincides with U,R;, /(p,Z), the statement
follows.

(5) The proof proceeds as in (2). First of all one proves by induction on ¢
that the (p, Z)-adic completion of the image of Jran \\‘&"(IT]EOC) is stable
under ¢. This is clear for ¢ = 0. For the inductive step one recalls that the
(p, Z)-adie completion of R? c RW+D is obtained as the (p, P(Z))-com-
pletion of an étale extension, a localization or the completion with respect
to an ideal containing (p, P,,(Z)). In each case one checks that this is
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preserved by ¢. One verifies that the extension of ¢ to EL, given in (5), is

well defined and that the morphism R, — W (E+ ) commutes with ¢ on
the two sides. The details are left to the reader. O

DEFINITION 3.12. We write A1+% (resp. Algu) for the (p,[7])-adic com-
pletion of the image of R, (resp. R°) in W(E*).

We write Z for the ideal of W (E*) generated by [e]" —1 for n e N
and by the Teichmiiller lifts [x] for x € E* such that #© € mz. Following
Fontaine (cf. [Bri, Def 9.2.1]), we say that the extension A+ — W(E*) is
I -flat for m € N if, given an injective map of A+ —modules M — N the

induced map M ®ar W(EY) —N Da: W (E+) has kernel annihilated
by 7.

PROPOSITION 3.13.  The extension Aztz” — W (E*) is 7°-flat. Moreover,
A;';v is finite and [7]*-flat as Ag -module and Alg is a direct summand in
Azte" as Ag-module.

Proor. Thanks to 3.9 and 3.11 the extension A~o — R, is flat. As
“\V(IT}E”) is the (p, [7])-completion of R.. and (p,[7]) i 1s aregular sequence
in R by loc. cit., the extension Ago /(") — W (ng) /(p") is flat by [Bri,
Thm. 9.2.6] for every n € N. Taking the limit over n € IN and arguing as
in the proof of [Bri, Prop. 925 & Thm. 9.2.6], we conclude that
AL — \W(Ea) is flat.

For R, C Sw(C ) normal and finite and étale after inverting p the
extension ‘\\V(E+ ) C W(ES ) is almost étale by 3.3 and, hence, Z-flat. As
W(E*) is the (p, [7])-completion of the union of all the rings W(EJr ) and
(p, [n]) is a regular sequence, arguing as above and using [Bri, Prop. 9.2.5
& Thm. 9.2.6], we conclude that A;gu — W(E") is 7°flat.

The other statements follow from 3.9 and 3.11. O

Extending O-linearly (resp. R-linearly, resp. R-linearly) the morphism
O we get a homomorphisms of O-algebras (resp. R-algebras, resp. R-al-
gebras)

Oug: W(ET)@wpO —R,  Onig: W(E ) @wwR — R,

O 1o W (BT ) @R — R.
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We consider on W (E™) @O (resp. W (E1) @y R, resp. W (E™) @ywgyR)
the log structure defined as the product of the log structures on 7 (E*) and
on O (resp. on R, resp. on R). Then, By, Op 1oy and @E,log respect the log
structures.

3.2 — The rings Bqr

Define Aiy¢ (R/O) (resp. Ains (R/R), resp. Ay (R /ﬁ)) as the completion
of ~\\(IT]+) R O with respect to the ideal O} (pR) (resp. of
W(E") @w@ R with respect to the ideal Ol (PR), resp. of
W(E™) ®we R with respect to the ideal @I?E‘llog (pR)) with the induced log

structures. Denote by

Og: At (R/O) = R, Opig:Ait(R/R) = R, O, :Aw(R/R) =R

R log :

the maps induced by @, (resp. Or1og, resp. @kﬁlog)'

Define By’ (R) (resp. By, (R), resp. B{; , (R), resp. By, (R)) to be
the algebra uhderlying the n-th log infinitesimal neighborhood of the
closed immersion of log schemes defined by O@W(k)[p~!| (resp.
Orog @W (k) [p7], resp. Oplog @W(k) [p~!], resp. O,  @W(k)[p~']) in the
sense of [K2, Rmk. 5.8]. Put

Jlog

By (R) := lim By (R), B (R) := lim BY:" (R)

o0—Mn o0—n dR,VL

and similarly

B (R) := g@ntR,n(R)’ Big (R) = lim BgR,n(k)'

0N

Note that Ker(®) contains the element [¢] — 1 with Et5¢:= (1, p, 852, ...

In particular, BY;", and hence Bjy(R), contains Fontaine’s element
t :=log[e]. Put

Bi(R) =By (B)[t'].  Bi(R) =By (B)[t],
Bar(R) :=Bi(R)[t'],  Bar(R):=Bg(R)[t"].
Filtrations: We endow BY;" (R) (vesp. By (R), resp. By (R), resp.

B (lNE)) with the Ker(@)-adic (resp. Ker(Op 1, )-adic, resp. Ker(6,, )-adic,
resp. Ker(@ﬁ log )-adie) filtration.
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Galois action: Note that Gr acts continuously on the rings above,
preserving the filtration.

We extend the filtrations as follows. Let B, be BY;" (R) (resp. Bl (R),
resp. BY: (R), resp. Bjz(R)) with the given filtration Fil"Bjg. Set
Bar = B:{R[t_l] and

Fil’Bag := » ¢ "Fil"B, Fil'Bgg := t'Fil’Bgg Vr € 7.

n=0

3.2.1 — Explicit descriptions

Following [K2, Pf Prop. 4.10(1)] let 7' := {(a,b) € Z x Z|a + b € N}
and let @ be the inverse image of P’ in P x P via the sum
P’,gp X P’,gp — P’,gp. Put (Ainf(R/O))log = Ainf (R/O)@/[\X\]Z[T] The
map O, extends to a map

(o (A (R/O))™ S R.

log :
Similarly, put (Ainf (R/]Aé) ) log = Ainf (R/E) ®Z[p/ xP'] 7 [Q] and extend
@I?,log to
~\] =
@}ZJOg : (Ainf (R/R)) 8 — R.

Then, BY;" (lNB) is the Ker (6, )-adic completion of (Aj;(R/ (’)))log [p7!]
and By (I~€) isthe Ker(@kﬁbg )-adic completion of (A (R /}VE))IOg [p~!].One
proceeds similarly for By, (R).

We make these definitions more explicit. Consider the elements

U . EM 0:¢] P .4
Z’ CX, : Y

fori=1,...,a and j=1,...,b. Then, (Ajnf(R/O))log is generated by u
and u~! as Aj¢(R/O)-algebra, ie.,

(Aun (R/O))'*® 2 Aing (R/O) e, ]

and KeNI'(@{Og) = (u—1). Similarly, (Aus(R /R))log is generated as
A (R/R)-algebra by u, the elements v; for i=1,...,a, and w; for
j=1,...,b and by their multiplicative inverses

(At (R/R))'® 2= Aine (R/R) [, o, . 02 ot ).

yYa
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For later purposes we generalize these constructions. Set
(W (E")@ww0) ™ =W (E") @O 7n 7 [T]
The map 6., extends to a map

@iog : (V\V (E+) ®‘\‘\'(1¢)O)log — f%
As above \\,"V(ITT) S OR7xn Z[T] %/‘\\‘\"(ﬁ ") @wayOlu,u"land Ker (), )=
(u—1). Similarly, set (W(E") ®‘\‘\V(k>R)10g = W(EN)@wpRoup«p7Z[Q

and extend @ﬁ,l og to

Ot (W(E ) BuR) ™ - R.

Then,

‘V’V(E*)®\«‘\V(k)f3®%[p/xp/]z, [Q] =AY (E+) ®‘\‘\'(k)l~‘3 [uil,’l)it17 .. .,?)(:1‘:1, ’M)itl, e 77/02:1].

LeMma 3.14. (1) The sequence (&,u—1) (resp. (Pr([7]),u—1)) is

regular and it generates the kernel of Ker (0, ) in (“W(E*)@mk)(’))log.

(2) The sequence (Z,u—1va—1,...,0,—1w—1,...,w,—1) is
reqular and it generates the kernel of Ker(@ﬁilog) n (W(E*)@mk)R)log.

Proor. It follows from 3.10 that P, ([7]) and £ generate the same ideal.

(1) Due to 3.11 the element ¢ is not a zero divisor in W(E™)®yy)O.
Since W (}7]+)®‘\~A\v<k)(’)/ (&) = §®‘W(k)0 and 1 ® Z is not a zero divisor in it,
we deduce that ¢ is not a zero divisor in W(E")®wwO[u™]| =
\\,V(EJr)@\\\'(k)O[T]/ ([ﬁ]T — Z) N

Note that ”\\Y\:”(IT]*) Qe Olu, u=11/(6) %F@mlc)(’)[u, w1 with 1 ® 2)u =
n @ 1. Modulo (» — 1) this coincides with R. Moreover, such ring injects in

R[Z1[u,w ']which injects in R[ p~11(Z). It then suffices to show that (u — 1)
is not a zero divisor in the latter or equivalently that Z(ux — 1) = n — Zisnota

zero divisor. This is clear since 7 is a unit in B[ p1l.

(2) Since R is obtained from R® by completing with respect to
some ideal, localizing or taking étale extensions, it is a flat R®-module.
Thus, the regularity of the sequence, given in (2), in the ring
W(ED)@wpR? [u, v, ..., v wil, ..., wi'] holds if it holds for i = 0.

Since R© is flat as an algebra over R’ ::O[Xl,...,)?a,?l,...,f’b]/

()~(1 . ~)~(a — Z") it suffices to prove the regularity for R’ instead of R.

Note that W (E")@weR [utl, v, ... v wtl, . .. wtl] is isomorphic to
(k) 1 a 1 b
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W(E")@weO[uvf, .. vE wil, . wit] /(vr - ve — w*) which is

(T 41,41 i1, 41 41
W(EN)@wwpO[u™ v, .. vg wr, . wy ]

since vy = w*vy1-- vl Thus, if & and u —1 is a regular sequence of

B (E+) Rk Olut!] generating Ker(@{og ) then also (2) holds for R’ inplace

of R. In particular, the regularity claimed in (2) follows and we are left to
prove that the sequence given in (2) generates the ideal Ker(@k 1og).

Due to (1) the ring VV(E*)@WIC)}NB [w*t o, v wit L wEt] mod-

y Vg
ulo (¢, u — 1) coincides with R ®o,R[vF!, ..., vE wil, ... wil]. Consider

the quotient B modulo the ideal J:= (v2—1,...,0,—Lw —1,...,
wy, — 1). To show that B = R, by base changing via R — R, it is suffi-

cient to prove that Roo,R[v3',. .., v, wil, ..., wi']/J coincides with
R; here and below we still denote by J the ideal generated by
(vo—1,...,04 — 1wy —1,...,w, — 1). This follows showing by induction

on i that R9®0, RO [vf!, ... v wil, ... wil]/J = RY. The inductive
step is left to the reader using the fact that RO (resp. RD) ig obtained
from R® (resp. R?) by completing with respect to some ideal, localizing or
taking étale extensions. The essential case is 7 = 0 and in this case we may
replace RO with R = Ox[X3,..., X, Y1,...,Y,] /(X7 -+ X, — 7). Then,
R'&o R vz, ... v wil, o wifl] /T2 R vt o wt L wif]

J =2 R’ and the claim follows. O

PRroPOSITION 3.15.  The following properties hold

(1) B (R) = By (R)lu —11;

@) Bir(R) =By (R)[[o1 —1,..., 00 — Lwy —1,...,w, — 1];

@) Bir(R) @BL (R) [ — 1, ... 00 — Loy — 1,...,wp — 1]);

4) Bz (R) = Bjr (R)[u — 11 =~ B (R)[Z — nl}

(5) the filtration on Bl (R) is the t-adic filtration. In particular,
Gr'Bgf’{+ (R) = RIp'1[t] with grading given by the degree in t;

(6) the filtration on Bi (R) isthe (t,v1—1,...,v,— L1 —1,...,w, —1)-

adic filtration. In particular, Gr*Blg (é) = ﬁ[pfl][t, v —1,...,0,—1,
wy —1,...,w, — 1] with grading given by the degree as polynomials in
t,vyy —1,...,v0, — 1wy — 1,...,wy — 1. Therefore,

Gr*Byg (R) _ i[p’l] ¢ -1 v —1 Vo—1 wy —1 wy — 1

P Rt e R
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with grading given by the degree in t. Similarly,

-1 Ve—1 wy —1 wy — 1

By (R) = RIp-1le.e 122
Gr dR() [p ] ) ) ¢ ) ) t ) t ) ) t

with grading given by the degree in t;

(7) the filtration on Bggr (R) is exhaustive and separated and
Fil'Br (R) N By (R) = Fil'Bj (R) for every v € N.

Proor. The proofs of (1), (2) and (3) are similar and follow closely
the proof of [Bri, Prop. 5.2.2]. We only sketch the proof of (1) and (2) and
we refer to loc. cit. for the details. We certainly have morphisms
:BY(R)[uw—11—BY; (R) and f:BY; (R) [ —1,...,va — 1w —1,...,
wy — 1]] — Bgg (lNE) Notice that de{ (R)[w —1] has the structure
of an (-algebra as we can send Z to [mlu~!. Similarly, BXI’{* (R)
[or—1,...,0a—Lwy —1,...,w, — 1]] has the structure of R©-alge-
bra. Indeed, it is a O-algebra since W = [z]*-v7!---v,! lies in this
ring. Since the equation X*=W has the solution 1 modulo
tGuw—1,v1—1,...,v, —1L,wy —1,...,wy — 1), by Hensel's lemma it
admits a solution Z’. Then, the structure of O-algebra is defined by
sending Z to Z'. The structure of R©-algebra is given by the structure of
O-algebra and by sending X; to [X;]v;! fori=1,...,a and Y to (Y] !
for j=1,...,b. Arguing as in 3.7 one proves that there is a unique
extension to an R—algebrg structure compatible via the morphism @
with the R-structure on R[p~']. This provides morphisms B} (R) —
BY: (R)[u—11and BjR(R) —BY; (R)[v1-1, ..., va—1,w1—1,...,w,—1]]
which are proven to be inverse to : and f respectively, see loc. cit.

a ~
For (4) we notice that u* = [ v;. Since the v;’s are unit in By (R), the

i—1
first formula follows from (2)1 and (3). The second formula follows re-

. Z n 7
marking thatu:ﬁ:ﬁ-;so that
n (Z T

T

(7]

The claim follows since 1 lies in Fil'BJ (Ok).
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For (5) one needs to prove that t is not a zero divisor in de; (R) Note
that thR‘L( ) = éB "(R), as this holds already for R = 7, due to [Fo,
§ I11.1.54]. One is then left to prove that & is not a zero lelsor in BY: dR (R)
Arguing as in [Bri, Prop. 5.1.4] one reduces to prove that R has no non-
trivial p-torsion. This has been proven in 3.5.

(6) follows from (5), (2) and (3).

(7) follows arguing as in [Bri, Prop. 5.2.8 & Cor. 5.2.9]. O

3.2.2 — Connections

Put @}, J0x = 1171}1 wh 10/ Pk J0, Where ' denotes the module of loga-

rithmic Kéhler differentials. Then, @j, = ¢ ,RdlogX; ®?_, RdlogY;.
Similarly, let

o0—MNn

= lim o/ (p, P(D))" @} .

R/\\(k) = lim wR/\\(k)/( n(Z)) R/\\(ky
é/o
We have ok ~ RdlogZ L lédlogf( Rdlog Y], Where R is the

R /W (k)
p, P,(Z))-adic completion o as dlogX; = adlogZ + og e
(2))-adi leti f R, dlog X dlog Z dlog X;. W,

also have @}, vy = O dlog Z. We have an exact sequence =2

~1
()_>R®0wo/\\(k)—>wR/\\(k) w}?/olm'

Using 3.15 define the connections
Vg: BgR (R) - le_R (R) Q= @}e/om

Vi Bir (E) — B (R) = wﬁ/\\ k)

and
Vi o' Bar (R) — B(R) ®3 A}é/o

to be the BJ;"(R)-linear (resp. BY;" (R)—linear) map given by sending
(v; =1 to —v;dlogX; for ¢ =1,...,a and (w; —1) to —w;dlog¥; for

j=1,...,b. These connections extend to the rings Bqg (R) and Bag (IN%)

LEMMA 3.16. We hawve:

(1) The above connections commute with the action of Gg, are inte-
grable and satisfy Griffiths’ transversality with respect to the filtrations;
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@ BdVR (R) = Bar (R) Vr=0 =~ Bar (E) vﬁ/‘\‘wmzo;

(3) B (R) = Bar(R) 7™,
The same statements apply for the rings with +.

Proor. By definition the connections are integrable and satisfy Grif-
fiths’ transversality. To prove that they commute with Galois it suffices to

prove that the induced derivation N; equal to }N(l % fort=1,...,aand N;

= 0 . i .
equaltoY; ,——fori=a+1,...,a+0 commuté with Gg. Let X; = v; if
i—a

1<i<aandwjifi=j+afor some 1l < j<b. Since N; acts trivially on
v; — 1 forj # i and on w; — 1forj 4 a # 1 it suffices to prove that for every
g € Gg we have g(N;(X; — 1)") = N;(9(X;) — 1)". Since N; satisfies Leibniz’
rule it suffices to consider the case n = 1. Then g(X;) = [e]ci(}’)Xi for suitable
ci(y) € Z; and, as N(X;) = —X;, the formula is readily verified.

(2) and (3) are a formal consequence of 3.15. O

3.2.3 — Flatness and Galois invariants
Let R[p~1] be the P,(Z)-adic completion of R [p71].

—

LeEmMa 3.17.  We have isomorphisms (’)Eo;l] ~ K Z —z]l and R’[p*l] o
Rlp™] [E - IH as O[p—11-algebras.

Proor. Note that the P,(Z)-adic completion (950;1] of O[p~1]is a
complete dvr with residue field K. In particular, it is a K-algebra by Hen-

sel’s lemma and, hence, O[ p—1]is isomorphic to K[Z — =]. Thus, lNE[ p1lisa
K[ Z — n]-algebra. Since it is Z — n-adically complete and separated and
R[p]/(Z —n) = R[p~1], the proof of the second isomorphism is a variant
of the proof of 3.8 and is left to the reader. O

Recall that G, is the Galois group of R[p~!] over R[p~!]. Then,

—

PROPOSITION 3.18. The extensions I?E[p’l] C Bagr(R) and E[p*l] C

—

Bar(R) are faithfully flat. Moreover, f%[p’l] = Bar(R)%® and E[p*l] =
Bar(R)%".
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Proor. We prove the first assertion for R.The assertion concerning B
follows remarking that Bqr(R) = Bar(R)/ (Px(Z)) sothat R[p~!] C Bar(R)

is obtained from the extension E[p—l] C BdR(INB) by tensoring with

—

Rlp] — R[p 1)/ (P2) = R R[p™]. _

We first prove that B (R)/(t) is a faithfully flat R[ ~1]-algebra.
It follows from 3.15 that B (R)/tB (R) is isomorphic to R[p~']-
[o1=1,...,09a —Lwy —1,...,w, — 1]]. This is a faithfully flat Rlp~11-
o1 —1,...,0a —Lwy —1,...,w, — 1]]-algebra since R[p~Y1c Rlp~']
is faithfully flat by 8.5. Furthermore, E[p‘l][[vl —1,...,v,—1,
wy —1,...,wp —1]] is the completion of R @y E[p‘l] [0, ... vEt,
wil, ..., wi'] with respect to the kernel of the map R®~\~\*(;€)l~i’,[p‘1] -
[0, .,vjl,wfl, : ..,wg“] —>IAE[p*1]. Such kernel is given by
( (2),v2 — /,; S0 — Lwr — 1,0 wpy — 1]. Thus, such completion coin-
cides with R[p~1] [[v2 —1,...,v4 — 1w — 1,...,w; — 1]] which is a faith-

fully flat B [/\—1] -algebra.

Since t is a regular element of B (R) it follows by induction on ¢ that
B*R(R) /(t)isthe successive extension of flat R [ 1]-modules and, hence, it is
flatitself. SlnceR[ 1] isnoetherian, one concludes as in [Bri, Thm. 5.4.1] that

BgR(R) is aﬂatR[ 1]-module. Since Spec (BdR(R)/(t)) — Spec (R[/p;l]) is
surjective then Spec (BgR(R)) — Spec(fi[/p\*l}) is surjective as well and
R [/tl] B, (]N{f) is faithfully flat. Arguing as in [Bri, Thm. 5.4.1], the faithful
flatness of By, (R) /(@) as R [ 1]-algebra implies that the assertion of the

Proposition regarding B (R) implies the assertion regarding Byg (R).

We are left to compute the invariants. Recall from 3.15 that
Bar(R) = Bjr(®)[w — 11[t']. Since [7] is invertible in Bjp(R), then
Br(®)[u — 1] = Bi(R)[[Z - [7]]. Note that [7] —neFﬂlB r(R) so
that Bir(R)[[Z — [7|]] @ Br(R)[[Z — n]|. We conclude that Bir(R) C
Bir(R)[[Z — n]]. Since Z — 7 is fixed by Gp, if we prove that Bar(R)™ =

R[p 11" we conclude that BdR(R)gR is contained in R[p 1[[Z - =]

R[p~1]. Since it also contains R[p 1], it coincides with R[p1].
We are then left to show that BdR(R)GR = R[p~']. The proof proceeds as
in [Bri, Prop. 5.2.12]. Consider the exact sequence

0— Fil""Byr(R) — Fil'Bgr(R) — Gr'Bar(R) — 0.

14
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= ~1 1w —1 ~1
As Gr'Bar (R) = t'RIp™] vzt ,...,”“t ,wlt ,...,“’”t by 3.15

one shows as in [Bri, Prop. 4.1.4 & Cor. 4.1.5] that H' (Gr, Gr'Bar(R)) is

R[p-1]ifi = 0and 1 and » = 0 and it is 0 otherwise. We refer to loc. cit. for
the details using 3.43(ii) in place of [Bri, Prop. 3.1.3].

In particular, H’(Gg, Fil'Br(R)) = H’ (G, Fil "' Bar(R)) for » #0
which implies that H’(Gp,Fil'Br(R)) =0 and H°(Gr,Bir®)) =
HO(gR,FiIOBdR(R)) since the filtration on Bgr(R) is separated and
exhaustive by 3.15. Thus, H’ (G, Fil’"Br(R)) € H’ (G, Gr"Bar(R)) which
is R[p—]. Since R[p—1] C H*(Gg, Fil’B4r(R)), the claim follows.

Alternatively, one can argue in the same way using Bgr(R) in-
stead of Bgr(R). Thanks to 3.29(4) and 3.39(iii) one deduces that
Hi(GR,Gr’"BdR(ITB)) =0 for ¢>1 and every r€ N and is a direct
summand in R ®o, Gr'By, for i =0. Here Gp C G is the geometric
Galois group and By, is the classical ring of periods introduced in
§21. As Gr'Big= Y Gr'Bar - (Z — 1), see §2.1.1, one deduces

a+b=r
that Hi(GR7GrTBdR(R)) is 0 for i>1 and every r€ N and is a
direct summand in R ®e, Gr'Bgg for i=0. One deduces that
H'(Gr,Gr'Bar(R)) is RIp '] if i=0 and 1 and =0 and it is 0
otherwise from the analogous result for the cohomology of Gr"Bgg. O

COROLLARY 3.19.  The connection Vg (resp. Vg, vesp. Vi /o) mduces

the standard derivation d:R[p~!] "a’}e/oK [p7Y] (resp. d:R[p~'] —

a);é/‘xwk) [p~], resp. d:R[p~?] —>6)}§/0 [p~1]);

Proor. It follows from 3.16 that the connections are Gg-equivariant.
Due to 3.18, upon taking invariants, we get maps as claimed. We only need
to verify that they coincide with the standard derivations. It suffices to
prove that they send X; to dX; and Y; to dY; (resp. X; to dX; and Y; to Y).
This is clear. |

3.3 — The functors Dqg and ﬁdR. De Rham representations

Let V be a finite dimensional Q,-vector space endowed with a con-
tinuous action of Gr. We write

Dgr(V) := (V @0, Bar (R))QR, Dyr(V) := (V ®0, Bar (E))QR
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—

Then Dgg(V) is a R[p~!}-module and Dar(V) is a R[p~']-module. The fil-
trations and the connections on Bgg (R) and on Bgg (1~B) induce exhaustive

decreasing filtrations Fil"Dqr(V) and resp. Fﬂ”f)dR(V) for n € 7 and in-
tegrable connections

: — ~ oL V:D — D ~ oL
V:Dgr(V) — Dar(V) @~ S V:Dgr(V) — Dar(V) ®E[p’1] D v

such that the filtrations satisfy Griffiths’ transversality.

DEFINITION 3.20. We say that a representation V of G is de Rham if
Dgr(V) ®E[p*1] Bar (R) —V X0, Bar (R)

is an isomorphism of Bgg (R)-modules.

Recall from 3.17 that ﬁ[p*l] = }AB[p*I]I[Z — 7] as filtered rings. Then,

LemMa 3.21.  Given a representation V of Gr, we have a functorial
isomorphism of filtered }NE[/p\—l]—modules endowed with connection
Dar(V) &7 Rlp-1]— Dag(V). Thus,

(1) the filtration on Dar(V) is the composite of the filtration on Dar(V)
and the (Z — n)-adic filtration. In particular, considering the map

p: Dar(V) — Dar(V)/(Z — 1) = Dar(V)

the filtration Fil"Dagr(V) is the image of Fil”]SdR(V). Viceversa Fil'f)dR(V)
is the unique filtration such that the image via p is Fil*Dgr(V) and it
satisfies Griffiths’ transversality with respect to V. It is characterized by
the property that for every n € N

Fil'Da(V) := {x € Dgr(V)|p(@) € Fil"Dar(V), 5)(2(79?@ € Fﬂ”—lﬁdR(V)};

2) V is de Rham if and only if
Dar(V) & Bar(R) — V ©0, Bar (R)
.

is an isomorphism of Bag (R)-modules.

PrOOF. Recall from 3.15 that By (R) = B (R)[Z — #l. This iso-
morphism is compatible with the isomorphism ﬁ[ p1] IAB[ pHIZ — =] via
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the inclusion R[p~1]1C Bjp(R) and R[p—[Z -zl C Bj (R)[Z — xl.
These isomorphisms are strict with respect to the filtrations where
R[p[Z — =] is endowed with the (Z — m)-filtration and By (R)[« — 1]
is endowed with the filtration composite of the filtration on By (R) and
the (Z —n)-adic filtration. We deduce that the natural application
Dar(V) ®§[p71]1§[p71] —Dgr(V) is an isomorphism of filtered R[p—1]-
modules endowed with connection. This proves the first claim. Claims (1)
and (2) follow. For the formula in (1) compare with [Bre, p. 207]. We
remark that in (1) the condition dx/9(Z — n) € Fil" 'Dgr(V) is equivalent
< an—171 =" ~1

to V(x) € Fil"""Dgr(V) ®1§[pr] B iy’ O

ProprosiTiON 3.22. Let V be a de Rham vepresentation of Gr of
dimension n. Then,

(1) Dar(V) (resp. Dar(V)) are finite and projective f%[pfl]-module
(resp. R[p~11) of rank n;

@) the R [ pfl]—modules Fil"Dgr(V), Gr"Dgr(V):=Fil"Dgr(V)/ Fil’“HDdR(V)
and Gr'Dgg(V) := Fil'Dar(V)/Fil" "'Dar(V) are finite and projective for
every r € N\;

3) for every r € N the natural maps

DaspnGr' DV @7 Gr’Bar (R) — V ®0, Gr"Bar (R)
and
EBaer:nGr“lN)dR(V) ®§[p*1] GI‘deR (R) —V®q, Gr"Bgr (R)

are isomorphisms.

In particular, the isomorphisms Dar(V) ® 1) Bagr (R) —V ®0, Bar(R)
P

and Dgp(V) @~ 1 Bar (IN%) —V @0, Bar (fi!) are strict with respect to the
filtrations. P

Proor. The last claim follows from the others and 3.21. Claim (1) for
Dgr(V) follows from the asAsumption that V is de Rham and the fact, proven
in 3.18, that the extension R[p~'] C Bqr(R) is faithfully flat. The statement
for Dgr(V) follows from 3.21. R

If (3) holds and since the extension R [p~!] c R[p~!] is faithfully flat by

3.5 and since Gr’Bgr (R) is a free R[p~!]-module by 3.15, it follows that
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each Gr'Dgr(V) is finite and projective as }A?[p’l]—module. Arguing by in-
duction one gets Claim (2) for Fil"Dgg (V) as well. Statements (2) and (3) for
Gr’ﬁdR(V) follow from 3.21.

We are left to prove (3). Let T be the set of minimal prime ideals of R
over the ideal (n) of R. For any such P let T'» be the set of minimal prime
ideals of R over the ideal P. For any P € T denote by Rp the p-adic
completion of the localization of R at P N R. Itis a dvr. For Q € T let R(Q)
be the normalization of R in an algebraic closure of its fraction field and
let R(Q) be its p-adig¢ completion. Let Bar o (R) be the ring defined using
the extension Rp C R(Q) and let Gg g be the decomposition group of G at
Q. It is the Galois group of Rp C R(Q). The normality of R implies that the
map R/pR — [[ Ro/pRg, where the product is taken over all P and all Q,

Q
is injective. This and 3.15 imply that the map Bqg (R) — []Bar,o(R) is
Q

injective on graded rings and, hence, it is injective. It is naturally a
map of Ge-modules considering the action of Gg on the primeideals Q’s; see

[Bri, Rmk. 3.3.2] for a description of the action on [ | R(Q).In particular, the

map f: Dgr(V) — H Dgr o(V) where DdR’Q(V) :ZQ (V R0, BdR,Q (R))QR‘Q is
injective. Q

By [Bri, Rmk. 3.3.2] the group Gr acts transitively on T'» and, for every
Q and QA/ € Tp, any h € Gp sending Q to Q' induces an isomorphism
R(Q) = R(Q) and hence Bggg(R) = By o (R). This _induces an iso-
morphism between Dgr,o(V) and Dgg o(V) as filtered Rp[p~']-modules
for any Q and Q' over P. As the elements in the image of f are fixed under
the action of Gr and Claims (2) and (3) are known for R formally smooth
over Ok by [Bri, Prop. 8.8.2], Gr"Dggr(V) is zero apart for finitely many
a’s. The morphism f is strict with respect to the filtrations by 3.15 so that
it induces an injective morphism Gr*Dgg(V) — [] Gr*Dggr o(V) for every

Q
a € N. Since the map in (3) is injective for Dgg o(V) for every Q, we
conclude that the map displayed in (3) is injective for every n € IN. This
implies that it is an isomorphism and (3) follows. O

. cris max
3.4 - The rings By, and B,

Define A}, (R) to be the p-adic completion of the logarithmic divided
power envelope (\\"\V(E+))DP of W(E™) with respect to Ker (@) (compatible
with the canonical divided power structure on p™W(E™)). We define

AY (R) to be the p-adic completion of the ‘X‘\"(E*)—subalgebra of
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W (E*) [p~1] generated by p~'Ker(®). We have a natural map AY. (R) —

cris

AY (R). The element t = log ([s]) is well defined in AY.. Define

max Cris*
By (R) := Al (R)[t '] and By (R) := A}, (R)[t7].

Let Alc(f;s’v(R) be the p-adic completion of the log divided power envelope
(Y\V(ITY)@\«\V(;C)O)IOgDP of W(E") @O with respect to Ker(6yg ) (com-
patible with the canonical divided power structure on p¥W (E™)@yy©)
in the sense of [K2, Def. 5.4]. Here we consider on W(E*)@mk)(’) its

log structure. Define AE;X’V(R) to be the p-adic completion of the

(W(ET) 2w O) 2 _subalgebra of (W (E") ®‘\‘\'(k)(9)10g[ p~!] generated by
pflKer(@{Og). We have a natural map Aﬁfg‘v(R) — Afzzx‘v(R). We define

Bf;";S’V(R) = Af(gSvV(R)[tfl] and BfgngV(R) = Aﬁ?’V(R)[t*I].

Let Aﬁff;(i%) be the p-adic completion of the log divided power envelope
(W(E*)@Y\V(;ﬁ)f%)logm of W (E") @R with respect to Ker (6, )
patible with the canonical divided power structure on p'W (E*) @y R) in

the sense of [K2, Def. 54]. Let A{g‘g"(f%) be the p-adic completion of the

(T\*‘\T’(IT]*)®~\;\V(k)}~3)log—subalgebra of (W(E*)®‘x~\'(k)}~3)10g[p‘1] generated by

pflKer(Q;alog). We have a natural map Aﬁgs(IN%) — A{ggx(ﬁ). Define

(com-

BCI’iS(E) — Acm(ﬁ) [til] and BmaX(R) = AmaX(fg) [t*l}.

log log log log

3.4.1 - Explicit descriptions of Bf};* and BJ}3*

LEMMA 3.23.  The ring Afgi:’v(R) coincides with the p-adic completion of
the divided power envelope of W(E™)[ul with respect to the ideal
(&,u—1) = (P([7]),u — 1). Hence,

ATSY(R) = AL (R (u — 1)},

log cris

the p-adic completion of the divided power algebra AZ,IS(R)(u -1).
W u-1

Similarly, Aﬁ)‘g"‘v(R) = ‘\\“\.Y(E+) {? , T}, the p-adically convergent

power series ring in the variables W = & (or W = P,([7])) and u — 1. In
particular,

APV (R) AX%(R){MTTI}.

log
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Proor. We prove the claims for Ay, and Alc(f;s'v. Those for AY, and

cris
Aff)‘gx‘v follow similarly. It is clear that Ay, (R){(x —1)} is the p-adic
completion of the DP envelope of "W (E™)[«] with respect to the ideal
(¢,u — 1). There is a map of W (E™)[u]-algebras
FAGB{ (=1} — ATEY(R)
by universal property of divided power envelopes. By definition Af;"f;’v(R)
is the p-adic completion of W (E*)lOgDP and the latter is the DP envelope
of W(E") @wa Ofu,u '] with respect to the kernel of the map to &,.
Such kernel is (&,u—1) by 38.14. Note that u =1+ (u—1) has

S (= Dlilu — 1P as multiplicative inverse in AY. R){(u—1)}. Fur-

i=0

thermore, Z = [7|(u™! — 1) + [7]. If e is the degree of P,(Z) then [ﬁ]e =
v[p] with v a unit of ”W(E*). This implies that Z° — vp admits divided
powers in AZiS(R){ (u — 1)} so that, since the latter is p-adically complete,
power series in Z converge in it. We thus get a map g¢: ATSV(R)—

log
A (R){(u — 1)} which is the inverse of f. O

COROLLARY 3.24. For every n € N the morphisms
W (B {00,01,...}/ (900 — &, pSnsr — ), . — AL (R) /D" AY(R)
and

AZ‘ls(R)/p%qus(R)[u] {pOapla .. }/(pﬂo - (’I/L - l)p’pperl - pgq/)me\f -

Apg " (R)/p" Ay Y (R),
sending ,, to yY"1(&) and p,, to Y"1 (u — 1) with y(x) == (p — )P are

1somorphisms. In particular, Acvris(R) and Afori:’v(R) are p-torsion free.

Also Axax(R) and A{;‘ZX’V(R) are p-torsion free.

ProoF. For the first claim one argues as for the proof of [Bri, Prop.
6.1.1 & Cor. 6.1.2]. If AY. (R) is p-torsion free, then Afgg’v(R) is p-torsion

cris
free as well thanks to 3.23. One proves that A} (R) is p-torsion free as in

[Bri, Prop. 6.1.3]. The fact that AIZQX(R) and Afggx'v(R) are p-torsion free is
clear. m

LemMaA 3.25.  The natural map

ATSYR{ (02 =1, 00 — Ly — 1, wp — 1)} — AJR(R)
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1s an isomorphism. The map

m vo — 1 Ve—1 wy —1 wy — 1 max S
AIOQX’V(R){ Zp ,...,“p 71p ”p }—»Alog(R)

18 an 1somorphism.

ProOF. We prove the claims for Af’¥. Those for Ajf* follow similarly.

We follow [Bri, Prop. 6.1.5]. Recall that A{7"(R) is the p-adic completion of

(W(fﬂ*)®~\;\V(k>}~3)l°gDP. The latter is the DP envelope of

W(E) Dk
p [P X [X] X, [X] 7 [Vd] Y, [T
P p X X UX] X L]

with respect to the ideal (é,u—l,va— L...,vg— 1w —1,...,w, — 1)

which is the kernel of the map to R by 3.14. Note that Aﬁff;‘v(R) is

an (-algebra. Consider the structure of O[P']-algebra on Aﬁff;"v(R).

{(v2—1,...,0s—Lwr —1,...,w, — 1)} given by sending X; to [X;]v; +
[X;] fori=2,...,aand Y to [Y;]w; + [Y;] forj=1,...,b. Using that v

isinvertibleinAIC;';’V(R){(vz7 ey Vg, W1, - wp) Ford =2, ... a,itsends Xy
_ a .

to [X1]u” [T v;'. The ringAf;;S’v(R){<v2 —1,.. v —Law —1,... w,—1)}

is =2

ATV R vi, hig, bty wj, o, G, -}

log i=2,...,a,j=1,..,b

p
with £, — Y™+ 1(p;) and j o =y 1(wj) where y:x+— :)c_. See [Bri, Prop.
6.1.2]. Put p

E*/To”ﬁ*[u— Lve—1,...,0— 1w —1,...,w — 1]
(('M— 1)]17(,02 - 1)p7"';(va - l)p,(?/l)1 - l)p,.-.,(’M)b - 1)[3)

and Z := (p,u— 1,03 —1,...,05 — L,y —1,...,wp — 1). It follows from
3.24 that

ATSYRY{ (2 — 1,0 w0 — Loy — 1, — 1)} /() =

log

~ AI:507 517 <o PosPry s h/i‘Oa h’i,la T 7£j,07£f.1) o .]i:Q,..,,a,j:L,....,b




232 Fabrizio Andreatta - Adrian Iovita

Then, Afj;SV(R){(vg —1,...,v4 — Liw; —1,...,w, — 1)} modulo p is an A-
algebra and A is an O[P']-algebra. The ideal of 7 is nilpotent. Furthermore,
A/T ~ R/pR as O[P']-algebras. Since R/pR is a successive extension of
O[P']/pO[P']-algebras obtained taking localizations, étale extensions and
completions with respect to ideals, there exists a unique morphism of O[P']-
algebras R— A inducing on R /pR its natural structure of R- algebra. This
also provides Aﬁf;sv(R){(vz —1,...,0—1Lw —1,...,w, — 1)} modulo p
with a structure of R-algebra. By induction on n we get unique maps
R— AR B (v2—1,...,v0 — Lwy — 1,...,w, = 1)} /(") of O[P')-al-
gebras, compatible for varying %, inducing via the natural map

APSY®R{(w2 — 1, 00— Ly — 1, w, — 1)}/ (") — R/p"R

the natural structure of IN%—algebra on R/p"R. Hence,
ATSVRY (v —1,. . vq — Lowy —1,...,wp — 1)}

log

is a V\"’(E*)®\~\«(k)R—algebra. By the universal property of Aﬁfés(i%) such
morphism extends uniquely to a morphism

FrASSR) — AYSVRM (g —1,... va — Lowy — 1,...,w, — D)}

log log
Consider the natural map g¢: Alc;;v(R){@g —1,..., 0 —1w —1,...,
wy — 1)}—>Aﬁf§(1~€) of Alc;;s,v(R) -algebras. By construction it is a mor-

phism of W (E+) Ry OLP']-algebras. Arguing as before, one concludes
that it is a morphism of W (E™) @y, R-algebras since this holds modulo p”
by induction on %. One verifies that since the composites g o f and f o g are
morphisms of W (E*) @y R-algebras, they are the identities on

A{S(R) and on Af;:’v(R){@z —1,.. 00 —Lw — 1, w, — 1)}

respectively, by the universal properties of divided power envelopes. This

concludes the proof. O

REMARK 3.26. We have morphisms

AV (R —1,... v —Lwy —1,...,wp — 1>}—>Af;;;(R)

and

AXaX(R){ -1l Gaclwmzl o W 1} AP (R),
P P p P
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Using the isomorphism Af;;s V(R) =~ AZB(R){ 1)} of 3. 23 the first map
is a map of Acm(R)—algebras sending v; to 1)21 v, and being the
identity on the v;’s for ¢ > 2 and on the w;’s. Hence, using 3.25 we conclude
that the above morphisms are isomorphisms if o = 1.

cris

COROLLARY 3.27.  The rings A,y

(R) and Alog (R) are p-torsion free.

Proor. This follows from 3.25 and 3.24. O

3.4.2 — Galois action, filtrations, Frobenii, connections

Write A=AJ(R) or Ay, (R)[p71], Axy = ATV (R) or APV (R) [pY]

cris log log
and Ay == AP (R) or A"™(R)[p~']. Put B = A[t"'], BY, = Ay, [t"!] and

log log log — “*log

Blog = Alog[ ]

Galois action: The Galois action of Gp on ”W(E*) extends to an action on
the rings A, Alzg and A, which are continuous for the p-adic topology. For
every o € Gg we have a(t) = y(o)t with y:Gp — Lp the cyclotomic char-
acter. Thus the action of G extends to an action on B, Blog and Byg.

Filtrations: Note that the rings Ay, (R) and A{r™(R), with and without
V, are endowed with the divided power filtrations which are decreasing
and exhaustive. Similarly, Ay.x(R) and A10g (R) with and without V, are

endowed with the p~'Ker (&), )-adic filtrations which are compatible with
those on AY, (R) and AYS(R). Set Fil'B:= S t"Fil' ™A, Fil'BY, :

cris log ! log "=
ne

STtFilT ”Alog and Fil"By,g := Y t"Fil" "Ajy, for every r € Z.

nez ne’z

Frobenii: Let 9n: O — O be the Frobenius morphism inducing the
usual Frobenius on W(k) and Z— ZP. Let Pp :R— R be the unique
morphism which lifts Frobenius modulo p and is compatible via the chart
Wi O[P'] — R with the morphism O[P']— O[P’] gvhich is ¢ on O and
gives multiplication by p on P’. Then, ¢ ® ¢y on W (E™)®1y()O extends to
Frobenius morphisms ¢ on A, Alvog and Aj,. They are compatible with
respect to the natural morphisms between these rings. Since ¢(t) = pt, the
Frobenii extend to compatible morphisms on By, BFOg and B,.

cris?

Conmnections: Using 3.25 define the A-linear connections

. ~1
Vi iy Alog — Alog @~ /W)’
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characterized by the property that for every m € IN we have
v((y _ 1)[m]) _ (,7/ _ 1)[’m—1], v ((Z/ B l)mp7m) _ (mp—l)(y . l)mflpf(mfl)
for y =u, vy,...,vq, O wy,...,wy. One defines similarly

Vi Alog I Alog ® ok

R0 RO

as the Alzg—linear connections characterized by the formula above for
Y =02,...,Vq, OY W1,...,Wp.
These connections are compatible for the natural morphisms
f(gs(R) — {f)‘gx(R). They extend to connections on B),,. We will also prove
in that Frobenius on By, is horizontal with respect to the connections

V]NE/‘\‘\’(]C) and VR/O

COROLLARY 3.28. The following hold:

(1) the connections V R and Vi o are Gr-equivariant, they are
ntegrable and they satisfy Griffiths’ transversality with respect to the
given filtrations;

(2) the connections V and Vi, on AC“S( ) are p-adically quasi-

nilpotent; R v

(3) the connections Vi Wk and Vi o are compatible with the deri-
vation d: R —s wﬁ/\\(k) (resp. d: R —>a)R/O)

(4) we have Ay, (R) = ARR) #rvo ™ and A2~V (R) = AjpX(R)VFro™°

Proor. Claims (2) and (4) and the claims that the connections are in-
tegrable and that the filtration satisfies Griffiths’ transversality follows
from the construction and 3.25. The Gg-equivariance is checked as in 3.16.
Claim (3) is proven arguing as in the proof of 3.19. O

3.4.3 — Relation with Bgg

Note that the ideal Ker(@,) admits divided powers in
BY:' (R)/Fil"BY;" (R) for every n € N since p is invertible in the latter.

Thus, the map W (E*) @yuO— Bl (R)/Fil"BY;" (R) extends to a map
(W (B @i 0) " — By (R) /Fi'BY; (R).

This provides with a morphism Afgg V(R)— BY; +( ). Similarly we get
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natural morphisms

Al VB — AR — B (R), AR (R)— AR (R)— By (R).

ProrosITION 3.29. The given morphisms have the following properties:

(1) they are injective. In particular, Aﬁfés(R) and A10g (R), with and
without V, are t-torsion free;

(2) they are compatible with respect to the connections;

(3) they are strictly compatible with respect to the filtrations. In par-
ticular,

Gr AS(R) 2 &, on RE™ @ — DIy — 1.
(0 — )%a](w 1)[na+1] e (wy — 1)[nd]

and

o AMaAX D\ ~u Qéno uw—1\"™ v —1 "2 wp — 1 e
e 8 (5 (52 (5

@) the maps By (R)— BIV(R)— By (R) and Bjig(R)—

log log
{;’ZX(R)—>BdR (R) are injective, compatible with connections, strictly

compatible with the filtrations and

fgés(R) = Gr*By," (R) = Gr*Bar (R).

Proor. The compatibilities with the filtrations and connections are
clear from the construction. If the morphisms are injective, since B, ( ) is
t-torsion free by 3.15, also Af(‘);s(R) and {gg"(R) are t-torsion free. Then also
the morphisms in (4) are injective and compatible with the connections.
They are also compatible with respect to the filtrations and if (3) holds, they
are strictly compatible with respect to the filtrations and induce iso-
morphisms on graded rings by 3.15.

We are left to prove that the given morphism are injective and that the
filtration on BJy induce the filtrations on Alzg and Ay, using the con-
ventions of § 3.4.2. Due to 3.15, 3.23 and 3.25 it suffices to prove that the
maps AY; (R) — AmaX(R) — BJ;" (R) are injective and that Fil"AJ; (R) =

Cris

AY. (BN Fll’"B ( ) (and similarly for AIZQX(R)). For this we refer to the

proof of [Bri, Prop 6.2.1]. The last statement follows from the strict
compatibility of the filtrations, the explicit description of the filtrations in
AYS(RY and AR (R) in 3.23 and 3.25 and the description of Gr® B i (R)

log
in 3.15. O
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3.44 — Descent from Bj(%"

Let R be the (p, Z)-adic completion of R.

DEFINITION 3.30. Define Rcris as the p-adic completion of the logarith-
mic divided power envelope of R with respect to the kernel (Px(Z)) of the
morphism from R to the p-adic completion of R, compatible with the ca-

nonical divided power structure on pﬁ. Put

Nmax = R{P (Z)}
p

of R[p

to be the p-adic completion of the subring R { HI(JZ)] R 1.

Consider the inclusion Rypax [p7l] C g (}NB) We have the following
fundamental result:

THEOREM 3.31. (1) If a sequence of Runax[p~']-modules is exact after

base change to By (R R), then it is exact.

If an Ry [p~']-module becomes finite and projective as g (R)-

module after base change to By ( ), then it is finite and projective as
Rnax[pt]-module. B
2) If o =1 then Ruax [p~'] C By ( ) is a faithfully flat extension.

Write Alg’log’v (resp. Afulog YV resp. W(E*) ) for the p-adic completion of
the subring A} [%] (resp. of A;;o {7”(70[ ])} , resp. of W(E") [7” gn]) D

of \\‘\V(EJ’)[ ~1]. Then, Af'loi(v is isomorphic to Rmax by 3.12. It follows
from 3.10 that W (E* )" = A7 (R).

Consider the morphlsm of rings with log structures 6: A~ Q9w (k) R— R
induced by Oy, - Let (AR k) R~) A* Y. [Q] and let 0,y be
the extension of 6 to (A;g W) R)l . We write A}% ﬁix for the p-adic
completion of (Ag vy R)log [p—lKer(Ol‘)g)]. We define Alg’uloﬁax similarly
using A, instead of A;. We start with the following:
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LEMMA 3.32. (1) The extension A}%;l‘fl’az — AV (R)is I¥-flat,
(2) We have an isomorphism '

~ {u—lvg—l Ve—1 wy —1 wb—l}

~ A+,log

Rmax ) PR ’ [RR) = B max

p p p p p

of ﬁmax-algebms. They are faithfully flat as INBmaX—algebms.
(3) AY% s a divect summand in AL as A% cmodule and
R max R ,max R max
AL s Z*-flat AL -module.
R max R max
(4) The extension Ag:}‘;faX%A{;‘;"(ﬁ) is I8 -flat. Thus the extension
Algglj)jax — B™(R) is flat.

In particular the extension Ry [(pZ)fl] C By (R)[Z71] is flat.

PTE i =~ Pr[ T .
Proor. (1) Since the extension Ago [@} — W(E") {#} is
obtained from A;%n — W(E*) by base change via the extension
P ([7])
+ +
AEO — Ajéo |: p

], it is Z°flat due to 3.13. The extension obtained

taking p-adic completions is the extension A%V —>V\."(IT]+)IMX. Since
R max 0g

P([7)

A}co [T} is noetherian and p-torsion free, the extension of the lemma

is 72"-flat by [Bri, Thm. 9.2.6].

(2)-(3) Recall that A;ilriix is the p-adic completion of (Alg Rwk) ﬁ)log )
[p*IKer(Qlog)} (resp. Ag;lf’jax for A;a instead of Alg). In both cases
Ker(bog) = (P(m) @ 1L,u— 1,09 —1,...,0, — 1wy —1,...,w, — 1); this
ideal coincides also with (1®P.(Z),u—1,v2—1,...,0,—Lwi—1,...,
wp — 1). It follows as in 3.25 that Ag:ﬁx is isomorphic to

1%

Atle ~ P {u—l vo — 1 Vo—1 wy —1 wb—l}
= max b 7 ) PR

B max p D P p p

EAblog,v{u—lvz—l vo—1 wy —1 wb—l}
R,max p ) p ) ) p ? p 9 ) p

and, in particular, it is a faithfully flat kmax-algebra. This proves (2). Sim-
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ilarly, we have

Al log o, ptlogV u—1 v —1 Vo —1 wy —1 wy — 1
Rmax_ Iéo,max p ; p sy D 5 D yeeey p .
Note that A; 108V i a direct summand in Af,}ofl v and the latter is a [7]*-flat

A+ log V thanks to 3.13. As [7] = Zu and w is invertible, Claim (3) follows.
(4) As in (1) we deduce that

A+,10g \\V(E.;,.)max -1 -1 Vo—1 wy —1 wy — 1
B0 D s yeee

) ) )
,max log

p p p p

is (127) -flat. The latter is isomorphic to Aps" (R) due to 3.25. Since

IB{{;;X(R) Bff)‘gx(R) cf. [Bri, Pf. Thm. 6.3.8], the last claim follows. O

In order to prove Theorem 3.31 we show:

Lemva 3.33. The image of the map g:Spec(By; (R)) —
Spec(Rmax[p7]) contains all maximal ideals not containing Z.

Proor. We first prove that the image of g contains all prime ideals
containing P,(Z). Consider the commutative diagram

]“?“m[ ] = nmx(ﬁ)

log

l l

Bl — Bw(R).

—

Recall that R [p~1] is the Pr(Z)-adic completion of Rinax [p~!]. Since the

latter is noetherian, the set Spec (}NB [p~1]) is identified with the set of prime
ideals of Ryax [p~!] containing P(Z). Due to 3.18 the last row is a faithfully
flat extension and, in particular, the induced map on spectra is surjective.
We conclude that the image of ¢ contains all prime ideals of Riay [p~1]
containing P,(2).

'The maximal ideals of Ruax[p~!] are defined by the L-valued points
h: Rmax[p~!] — L for L varying among the finite extensions of K. Fix one
and let us call it . We characterize the images under the Frobenius
morphism ¢: Ryax [p!] — Rmax[p~'] of the maximal ideals containing
P,(Z). As g is compatible with the Frobenius morphism ¢: B10 (R) —

ﬁjgx (R) we conclude from the argument above that they also 11e in the
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image g. Assume that P,(Z) € Kerh. Th~en, WZ) =’ for some root n’ of

P(Z). The Frobenius morphism ¢ on Rma[p~'] maps P(Z) to P%(ZP)

where, if P,(Z) =Z°+5" a;Z" € W(k)[Z], then Pl =2+ a(a)Z" is
5 5

the polynomial with coefficients twisted by Frobenius ¢ on %W(k). Thus

ho¢" sends P(Z) to Py (n?") for every n € N. More generally take a

maximal ideal of EM[ 1] corresponding to a homomorphism f to K
sending Z to 7" for some n € 7. As Frobenius ¢: R — R is finite and flat
by construction, Frobenius induces a surjective morphism Spec(R)
Spec(R). Thus f is obtained by pre-composing an homomorphism
h:R [p7!] — K, sending Z to 7/, with ¢". Note that % extends to
Ruax[p~']. We conclude that fis in the image of g as / is and Frobenius
on R is the restriction of Frobenius on By (R).

We are left to consider homomorphisms 7: Ryax [p~!] — L which do
not send Z to n*" for some root ' of P,(Z). Let p be h(P(Z) /p) It is non-
zero and, since R max 18 p-adically complete, 7 induces a map h: RmLX — Oy,
Consider the map

5: Ay (R) — Apu(R)
sendingu — 1,02 —1,...,9, —landw; —1,...,w, — 1to 0; see 3.25 for the
notation. Recall from 3.12 that the (p,P(%))-adic completion of R is
identified with the subring AJr C AXaX(R) In particular, & defines a

morphism h: A; — Or, and AV ) is endowed with a structure of R-al-
gebra via these identifications, Wthh is the same as the R- algebra structure
induced by s composed with the structural morphism of Og (R) as R-al-
gebra. To prove that / is in the image of Spec (BJ2* (R)) it suffices to prove
that there exists a morphism

Ay, (R) — O

extending h and such that the image of ¢ is non-zero. Due to 3.23 we have
~ . (P:([% ..

Ay (R) = W(E") {(}En]) } It follows from [Fo, § 5.2.4 & § 5.2.8(ii)] that

t = v ([¢] — 1) with vo a unit of Fontaine’s A so that »(t) # 0 if and only if
r([e]—1) #0. Note also that h(P.([7])/p) =p€ O is already de-
termined. It then suffices to prove that there exists a morphism

¢:W(E") — Og

(I) extending % and such that (IT) q(lel — 1) is non zero.
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We start with (I). It follows from 3.11 that ‘\\V(EE%) is the (p, Px([7))-
adic completion of the A;—algebra obtained by adjoining all roots of |7,
[X;] for i=1,...,a and of [Y;] for j=1,...,b. We deduce that, once
chosen compatible roots of h([ 7)), h([ i]) for i=1,...,aand of %([YJD
for j=1,...,b, the morphism % can be extended to a morphism
B W(Itlgm) — (AQI—{ By assumption 2(Z) # 0 so that %([ﬁ]) # 0. Since the
image of ho. contains all p-th power roots of fl”va([ﬁ])7 it contains elements of
@R of arbitrarily small valuation. Note that V\W(E*) is the (p,Px(2))-
completion of the union of all extensions W(Ej ) c W(E{ ) for

R, C S,(C Q) normal and union of finite and étale extensions of R..[p~!]
after inverting p. Since (9— is p- -adically complete and separated, to achieve

(I) it suffices to prove that h.o extends to compatible morphisms hg on
‘\“\(ng) Using Zorn’s lemma we are left to show that, given extensions
S — T as above which are finite and étale after inverting p and a map
%Sx extending hoo, the morphism ng can be extended to a morphism %Tx-
Write A for the base change
I @E—) A= \W(E};) ®?\S°(<E;) (AQE

The existence of the ring homomorphism hr_: W (Ej ) — Of ex-
tending Ahgx is implied by the existence of a ring homomorphism
s: A— O which is a section to . Indeed if s exists, we define k7 as the
composition \W(EL) BN LN (ADK, where a is defined by a(x) = x ® 1.

We have the following properties of the @E—algebra A. Let us denote
by Aors the ideal of A of torsion elements and by Ay := A/ Aiors. The
(z)g—algebra Ay defined above is Aﬂat since it is torsion free. Let
A= OELnn A/p" A and similarly for Aj.

1) mzAtors = 0.

Due to 3.3 the extension W (E+ ycow (E+ ) is almost étale so that : is
almost étale and, in particular, mz-flat. Here my is the maximal ideal of
@E' In particular, base changing to A the exact sequence

0— 6K Lﬂ) @E i OK/]O”OE — 0,

we get that the kernel A[p"] of multiplication by p” on A is annihilated by
my for every n i.e., Ays = UA[p"]is annihilated by my.
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2) The @E—algebm ;lo is torsion free.

For every n € N the kernel of multiplication by p on Ay/p" A is
p" 1Ay /p" Ay so that the kernel of multiplication by p on A, is
lim p"~'Ap/p" Ay which is 0.
o0—MN

3) ;to is non-zero. In particular, ;to[l /pl # 0 by (2).

To prove this we describe the map induced by : by taking quotients
Oz/ppOg — A/ppA as follows. The quotient \\“\(ng) @y Or, modulo
(P([7]) ® 1,1 ® pp) coincides by 3.10 with S @way OL/ppOr, and simi-
larly for W(E}x) ®w Or- Then, the map hg_ := Eg% modulo pp factors
via Sy Qwaw Or/ppOr and 1 modulo pp is the base change via kg of the
extension

7: S0 @wiey OL/PpOL — Too Qwiey OL/ppOL.

Since T, is the normalization of S, in a finite and étale extension of
S..[p~'1, we conclude that the map induced by 7 on spectra is surjective
on generic points and, being an inductive limit of finite and finitely pre-
sented S -algebras, it has closed image. Hence, it is surjective. In parti-
cular, there exist prime ideals of 7'y, ®wa) OL/ppOy, over the prime ideal
of Seo ®way Or/ppOr, defined by the kernel of S. Qway Or/ppOr —
Og/mzO% induced by hg_. The set of such ideals is Spec(A/mzA). We
conclude that A/mz.A is non trivial. Due to Faltings’ almost purity theo-
rem, see 3.3, the extension S, C T is almost étale so that the trace map
Tr:Too — S has m£S, in its image. Its base change via hs.. provides a
map y: A/ppA — O /ppOx of Ox-modules having mz in its image. Since
any element of A5 has image via y annihilated by m by 1) and since the
only such element in Ox/ppOz is 0, we conclude that w(Asns) = 0. We
conclude that Aiys C A/ppA is not surjective, i.e., the quotient which is
Ay /ppAp is non trivial. In particular p is not a unit in .4,. Therefore for all
n > 0 the ring Ay /p" Ay is non-zero which implies that Ay is non-zero.

4) ;lo[l /p] is a finite dimensional K-vector space and coincides with
All/p]. 1

Since S, C T is almost étale, n»T,, is finitely generated as S..-
module by 3.6. Hence, there exist ey, ..., e, in A s111gh that if B is the @K'
submodule of A generated by e, ..., e, we have n» A C B+ pA. As Bisa
finitely generated @K—module, it is p-adically complete. We claim this
implies that we have:

nzl‘);chch.

Indeed, let us denote by p’:= n# with 0<v<1 and let x € A. Then
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p’x = by + pxy, with bpe B and x; € A. Then p'x = by + pt V(b + pwz),
with b; € B, xs € A. Iterating this process and using the completeness of B
we obtain that

p'x = by 4+ pt by + p* T Vby + ... € B.

Since multiplication by p” annihilates Ao and has trivial kernel on Ay,
we have for every n that the map Ay, — A/p" A is injective with quotient
Ao / p"Ap. Taking projective limits we get the exact sequence 0 — Ators —
A— AO — 0. Therefore A[l /pl = Ao[l /pl = B[1/p], which proves the
claim.

5) There is a section s: A — @E of L.

We have that .Zl[l /plis afinite Aétale E-algebra by (4). Therefore ;l[l /p]
is a finite product of copies of K as K is an alAgebraically closed field.
ThereforeAthere exists a section sg: Zt[l /Pl — K to the structure mor-
phism 15: K — ;t[l/p].

As Ay C ;l[l/ pl is p-adically complete and separated, we have
sk(Ag) C @K' Denote by s the following composition

A— Ay — Ao —>;lo[1/p] sk — K.

It is clearly a section of  as required.

We now prove (II). First of all we consider the particular case that &
sends Z to a root of P?'(Z), for some m € 7, assuming that
P?"(Z) # P(Z). Then, P°"(Z) is an Eisenstein polynomial so that
O/(P2"(Z)) = Oy, is a discrete valuation ring with uniformizer =, image
of Z. Identifying \V\"(E+ ) with the (p, P2 (Z))- completlon of O[ "']ne;\"
sending Z to [7], we get that \\\V(E+ )/ (P2 (7)) = Oy, C (’)— with
OL. C O the direct limit of the discrete valuation rings (’)L [n n*] for
n € N. Smce ([z1°, p) is a regular sequence in W (E+ ) by 3.11, we deduce
that A := \\“\”(EJr )/ (P2 ([7D) is p-torsion free. By construction it is the p-
adic completion of almost étale extensions of OL Hence, we can extend
the inclusion O, C Og to an injection 7: A — O—. As P?"(Z) and P(Z) are
monic Eisenstein polynomials of degree e, we have P (Z) = P(Z) modulo
p and A/pA = \\“\”(EJr )/ (P(7), p) = Ox/pOx by 3.10. Hence 5 is an
1som0rph1sm and 7 modulo p factors via the canonical map @: W (E*K) —
OK. In particular, 77([8]1’) #1 as O([e] ) = ¢, # 1 modulo p. Recall from

3.10that 14 [e]F + - - + [e] 7 is P, ([7]) up to unit since they both generate
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the kernel of ©. Thus 77([8]11’) is not a primitive p-th root of 1 as else
n(P([7])) = 0 but we assumed that P7"(Z) and P(Z) are coprime. We
conclude that 5([e]) = 17([8]717)” # 1. As q constructed in (I) is compatible
with 7, we conclude that in this case q satisfies (II) as wanted.

We prove (II) in the general case. Thanks to the particular case just
discussed and the argument with Frobenius at the beginning of the proof,
we may assume that there do not exist m € /. and n € N and roots 7’ of
P?"(Z) such that i(Z) = n?". Take any q as in (I). Recall that h(Px([7])) =
h(Px(Z)) = pp is non zero in L by hypothesis.

a) There exists n such that %([s:ﬂ) £1.

Recall from 3.10 that 1 + [8]1% et [,9]70771 is P, ([ﬁ]) up to unit since
they both generate the kernel of @1. In particular, applying ¢'~" we get that

1 —1 —n — . .
1+ [¢7"] 4+ + [eﬁ)_l] is P7' ([7@"7]) up to a unit for every n € N. Thus, if
~ 7 1-n 1
h( [SPL]) =1 for every n then (P "([7"])) = p times a unit of O~ for
~ K

every n. As h([x]) = y € Oy, is not a unit and it is not zero and P,(Z) is an
Eisenstein polynomial of the form Z¢ + pg(Z), we deduce that for » large
enough h(P;H([ﬁfﬂl7 N) =7 +pg” " (yl%) has valuation strictly smaller
than the one of p, leading to a contradiction.

b) We have %([8]) # 1 which proves (II).

Assume on the contrary that %([s]) = 1. By a) there exists n such that
%( [gr%] ) # 1. Take the smallest such 7. Then, ii( [ez%] ) is a primitive p-th root
of unity. Thus % maps 1 + [sz%] +oe [e%] to 0 and, arguing as in (a), we
conclude that & (P? " ([ﬁﬁ} )) = 0. Thus, 7' := h( [ﬁﬁ]) is a root of
P? " (Z) and I sends Z to x?"". This contradicts our assumptions on k. [

In order to prove 3.31 we have the following lemma whose proof we
leave to the reader:

Lemma 3.34. Consider rings A — B — C — D such that A — B 1is
faithfully flat, B is a direct summand of C as B-module and C — D 1is
Sfaithfully flat. Then,

(1) A sequence of A-modules which is exact after tensoring with D over
A 1s exact;

(2) An A-module M, such that M ®4 D is finite and projective as
D-module, is finite and projective as A-module.
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ProoF. (of Theorem 3.31) Thanks to 3.32 and 3.33 the inclusion
Runax [(p2)7'] C BIX(R)[Z71] is faithfully flat. If « = 1, as B = R° in this

case (see 3.9), the inclusion Ry (p7l] C ﬁ)‘g"( ) is flat.

Due to 3.32 and to conclude the proof of the theorem we are left to show

that the map A+ Jog [p’l] — By (1~€) is faithfully flat if we localize at

maximal ideals of Ag”l?rfax [p~!] containing Z. Equivalently we need to show
that the map on spectra contains all closed points associated to L-valued
points h: Ag’nl;glax [p~!] — L, for some extension K C L, such that 2(Z) = 0

First of all the map h defines the map hg: Onax — W(k) sending Z

to 0. We claim that one can extend /g to a K-point kg of Bpy*(O).

For this it suffices to show that Z is not invertible in B{j3*(O). As

p(Z) = ZP and ¢(By3*(0)) is a subring of Kato’s period ring By, in-
troduced in § 2.1.1 by 3.59, it suffices to show that Z is not invertible
in Bjg. It follows from [Bre, Cor. 4.1.3 & Prop. 5.1.1(Gi)] that

9?(BiX) C Ouislp'] which is contained in Omax[p~]. Thus, if Z were
1nvert1ble in Bjog, then 7P and thus Z itself would be invertible in

Omax[p~'] which is not the case.
Since Af,}f V is p-adically complete, & defines a morphism Z: A*; 1°jaz

Op,. As the images of u — 1, v —1,...,9, —1and w; — 1,...,w, — 1 are

determined thanks to 3.23 and 3.25, it suffices to show that there exists a
morphism 7 AY._(R) — O 0] <, extending h and such that the image of ¢ is
non zero. As 1n the proof of 3.33 we are left to construct a morphism
q:'wW (E+) _,(9, extending L and such that q([e]) # 1. First of all we

extend / using the map b W (Eg}) — 62 defined above. Note that the

image of [¢e] — 1 is non zero as hx(t) is non zero. The map g, extending I
and hg, is then constructed as in the proof of 3.33. We leave the details
to the reader. O

3.4.5 — Localizations

Assume first that R is p-adically complete and separated and that the
log structure coincides with the log structure defined by the ideal 7. This
amounts to require that Y7, ..., Y} are invertible in R and that there exists
1 <i<a such that Xj,...,X; 1,X;:1,...,X, are invertible in B. Up to
renumbering the variables we assume that X; = X,. In particular, R is
obtained from Ok [X{, ... X2 Y, ... Y;7!] by iterating the following

a—1°
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operations: taking the p-adic completion of an étale extension, taking the p-
adic completion of a localization and taking the completion with respect to
an ideal containing p. Put R := R/ZR. 1t is p-adically complete and sep-
arated and Ry/pRy = R/zR.

LEmMa 3.35. There exists a unique isomorphism R >~ Rol[Z] of
O[X{h, .. X Y, .. Y -algebras lifting Ro/p Ry = R/7R. In par-
ticular,

Reie = RIZI{(PAZN}, B = Ro[[Z]]{

Pn(Z)}
b |

ProOF. Both R and Ro[Z] are (p, Z)-adically complete and sepa-
rated. By definition of R in 3.7, they are both obtained from
O[X{h, ... XA, Y, ... Y] by iterating finitely many times the fol-
lowing operations: taking the (p, Z)-adic completion of étale extensions,
the (p, Z)-adic completion of localizations and completion with respect to
some ideal containing (p, Z). One proceeds by induction on the number of
iterations to show that the algebras we obtain are isomorphic modulo

(p,Z) and, hence, they are isomorphie, cf. 3.7. O

Following [Bri, Def. 6.1.3] we let Beis(Ro) := Auis(Ro)[t™!] where
Ais(Ro) is the p-adic completion of the DP envelope of W (E*) ®yry Bo with
respect to the kernel of the morphism @: W (E") gy Ry — R. Similarly
one defines Amax(Ro) and Buax(Ro) := Amax(Ro) [t 7] where Apax(Ro) is the
p-adic completion of the subalgebra of W (E*) ®way Ro[p~!] generated by
p'Ker(0).

COROLLARY 3.36. We have A™SV(R) =~ AY. (ROIZI{(P(2))} and

SR ) log cris
Alc(l:és (R) == Awis(Ro)®r, Reris-

Similarly, A{;};’W(R) ~ AV (RIZ] {P ’}EZ ) } and {g;"(k) =~
Amax(RO)@)RoRmaX~
PrOOF. This follows since R = Ry[Z] by 3.35. O

We now return to a general R, i.e., assume that R satisfies the
assumptions in § 8.1. Let 7" be the set of minimal prime ideals of R over
the ideal () of R. For any such P let Tp» be the set of minimal prime
ideals of R over the ideal P. For any P € T denote by Ep the p-adic
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completion of the localization of R at PN R. It is a dvr. Let R(P) be the
(p, Z)-adic completion of the localization of R at the inverse image of P
and let Rpo := R(P)/ZR(P). Then, R(P) = Rp [ Z] by 3.35. For Q € Tp
let R(Q) be the normalization of Rpy in an algebraic closure of
Frac(Ro).

LemMaA 3.37.  The maps

AR —  J] AS@REY= [ AasBrolZI{(P:2)}
Pel,QeTp PeT,QeTp
obtained from the functoriality of the construction of f(gs are mjective, Gg-
equivariant and compatible with filtrations and Frobenii. Similarly, the

maps

AR — [ Am@Een= ] Amax<Rp‘,o>[[Z]1{P ’;()Z)}

PeT,QcTp PeT,QeTr

are injective, Gr-invariant and compatible with filtrations and Frobenii.
In pa’r'ticulm' the same holds if we take By, instead of Ay and if we take

log log
log instead of Ay,

Proor. The compatibilities with filtrations and Frobenii follow from
the construction of Af;: and Ajo;* and their functoriality. As remarked in
the proof of 3.22 the group Gr acts transitively on T'p for every P € T and,
by the normality of R, we have an injective Gr-equivariant homomorphism

R/pRc J] R(Q)/pR(Q). This implies the claimed Gr-equivariance.

PeT,QeTp
It follows from 3.24 that the displayed map of the Lemma is injective
modulo p and, hence, it is injective. One argues similarly in the case of
log - 0
COROLLARY 3.38. Frobenius on BES(R) and on Blog (R) is horizontal

log
with respect to the connections V and V3

B/w) R0

Proor. We need to prove that ¢ o V = V o ¢ where Frobenius on the
differentials is defined by sending dx+— de(x). Due to 3.37 it suffices to
proveitin the case that R is a complete dvr. Thanks to 3.36 one is reduced to
prove the horizontality for B.s(R¢) and B (Rg). This is the content of
[Bri, Prop. 6.2.5]. O
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cris

3.5 — The geometric cohomology of Byy,

Fix an embedding K C Q with Q an algebraically closed field containing
R. We call

Gr = Gal(R[p']/RK),  Gr:=Gal(R[p~']/R[p"])

the geometric (resp. the arithmetic) Galois group of R[ ]

In 3.30 we defined Rcm (resp Rmax) as the p-adic completions of the
logarithmic DP envelope of R with respect to the kernel Ker of the

morphism R—R (resp of the subring R [Kp } of R[p1]> Similarly,

geo,cris and Rgeo ,max

one defines the geometric counterparts Rlog og

subring

using the

Ree .— Y\V(Egﬁ) Qv (k) R C V\V(E}%) Qwk) R

instead of R and the kernel of the natural morphism RE — ﬁ induced by
Os1og: WV (E ) @way R — R. Asin § 3.4.2 one endows JN%goegO'ms and fzﬁfg"*m“

with filtrations. There are morphisms Rge0 eris Aﬁfg(R) and Eﬁ)?max -
max

log (R) preserving the filtrations. For m e 7, we set

Fi (RE2#(1717) = 3 © Rl e
S

1 ~
Fil" (RE ™ 711) = 37 Rl R ™
S

in REUS[4-1] (resp. Egeo’max[t’l]). Form = — oo we put Fil” RE*S[¢-1] =

10g log log
Rgeo ais4-1] and FllmRﬁZ”ma"[t‘l] = Rﬁ)ego MaX[¢-1] The main result of this

sectlon is the following

THEOREM 3.39. (i) Fort > 1 the cohomology groups
H' (Gr, Afr ()

are annihilated by ([e] — 1)2d ([e]% — 1)812 fori>1, with d=a+0b, and
they are zero if we invert t. For i = 0 we have injective morphisms

Rﬁ)z) Jeris HO (GR; Alc(fés (k)) 7 Rﬁigo ,max HO (GR; {ggxdé))

with cokernel annihilated by a power of t and which are strict with respect
to the filtrations.
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(ii)) We have an injective morphism

R20,Gr* A, — H (Gr, Grr AR (R))

with cokernel annihilated by a power of p.
(i) For every m € 7.U{—oo} and every i > 1 we have

H' (Gp, Fil"B{iy (B)) = 0

For i =0 we have isomorphisms

FIIWLRgeO Clls[t 1] . HO (GR7 l'chrl%(R)) ,

log log

Fil" BEy ™[] — H° (Gr, Fil"BI2(R) ).

(iii") Statement (iit) holds replacing Bﬁfg(R) with Bﬁfés(R) OBy Biog and

replacing Rgeo A gith Rgeo @By Blog. See § 2.1 for the notation.
Using 3.39, we also prove the following analogue of [Bre, Prop. 5.1.1(ii)]:

PrOPOSITION 3.40. There exists s € N, equal to 2if p > 3 and equal to
3 if p=2, such that ¢ (Bf;;(R)gR) c Rcm[ 1] and ¢* (B (R)QR)

Rrax [p_l} :

log

Let Hr C Gg be the Galois group of R[p'] over R, K. Then,
I'r:=Gg /Hp is the Galois group of R..K over RK. Due to Assumptions
(3)&(4) in § 3.1 the monoid O% - e ({0} x N 1w Nb) C RK is saturated
Whlch implies by Kummer theory that RK ®zo R is an integral domain,

, it coincides with R, K. Thus I'r coincides with the Galois group
F RO = Of_57py; ® ]:14 d; of the extension

RO @0, K =
— — 1 1 1 1
K(Xy,... . X, Y1,....Y, KIX® . X5 Y® ..  Y!
[ ! 4 ! o b] _>U7’L€N [ ! 1 . il b ] :RE&) ®0K’ K:
(Xl...Xa—n) (Xl”'“"X&“*ﬂ%)
where for every i = 1,...,a we let y; be the automorphism characterized

by the property that for every n € IN we have

. {an:Xl’ it h =i

X' Vi<h<a, h#i
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1 1
and y;(Y;") = Y;" foreveryj = 1,...,b. Here, ¢, is the primitive n!-root of
unity chosen in 2.1. Similarly, for every ¢ =7j,...,b we l1et 0; ble defined by
the property that for every n € N we have J;(X/") = X" for every
1=1,...,aand

1
1 Sn!Y-m lfh:j
6j(Yﬂ.) — B J
Y/ VYh=1,....b,h#j.

The proof of 3.39 is in three steps:

1) First of all, using Faltings’ theory of almost étale extensions, we
prove that

H' (Hp, Afip (R)/p" Afre (R) )

and

H' (Hp, Al (B)/p" A (B) )

are annihilated by the ideal Z for ¢ > 1. We also construct rings ﬁfgw and

{’ggj;c with maps to ﬁfi;(f?)HR and {ggX(R)HR respectively, such that
modulo p™ kernel and cokernel are annihilated by Z for every m € IN; see

3.48.
2) We define subrings Aﬁ;o’max(f%) and Ang‘cris(}?) of AP and AY

lo; log,00 log,00

) induce a

p—1 som—1
respectively such that these inclusions modulo (p”ﬁ > [s] v

=0 _
morphism between the cohomology groups Yvith respect to the group I'r
with kernel and cokernel annihilated by ([e]> — 1)%. See 3.53 and 3.54.

3) We prove that the cohomology groups
H' (T, AR ™ R/ (™)

vanish for ¢ > d + 1, are annihilated by the ideal ([¢] — D¢ for i > 1 and
coincide with Rﬁfgo’ms /meﬁf;’mS up to ([e] — l)d—torsion for 1 = 0. We also
prove that

H (T, AL ™ B)/ ™)

log

coincides with f?ﬁﬁ;*m“ /pméﬁz)’max up to multiplication by ([e] — l)d. See
3.56.

Prooror 3.39. We start by showing how Claim (i) follows from (1)-(3).
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First of all using the limit argument of 1[AB’ lemma 23 & Cor. 24] one
proves that (2) holds modulo p™ up to ([e]r — 1)*-torsion for every m € N.
Using the Hochschild-Serre spectral sequence applied to Hz C Gg giving

H'(I'g, H' (Hp,.)) = H"* (G, ),

the f1rst clalm in 3.39(i) follows, considering the rings modulo p™, up to
(le]l - 1) ([e]? — 1)*Z-torsion. Using once more using the limit argument
of [AB, lemma 23 & Cor. 24] the first claim follows. As [8]”2 — 1 belongs
to 7 and 1t is invertible in Bgis by [Bri, Pf. Thm. 6.3.8], the ideal
([F] — 1) (]’ — 1)*Z becomes a unit if we invert ¢ proving the vanishing
in Claim Q).

The injectivity for ¢ = 0 in 3.39(1) and the fact that the maps are strict
with respect to the filtrations is proven in 3.42.

Claim 3.39(ii) concerning the graded rings are proven according to
similar lines. The analogue of (1) is contained in 3.43. The analogue of (2)
is the content of 3.55. The analogue of (3) is also proven in 3.56.

Claim 3.39(iii) is discussed in § 3.5.4.

Claim 3.39(iii"), concerning the vanishing of the cohomology groups, is a
variant of the strategy described above and is discussed in § 3.5.5. For the
computations of the invariants, see 3.42.

For the reader’s convenience we summarize in the following diagram
the various rings appearing in this section in the crystalline setting. The
horizontal rows should be thought of as analogues of the inclusions
ROz CROf C R. The top row is the V = 0 analogue of the lower row:

A +.geo G I\vris.V C A€ ris. ( )

R,cris “HMog,oc log
! ! !
B e ATV R A2 @ AR
where:
i) f;ésm (resp. AIC(ZS;Z) is the p-adic completion of the log DP envelope of

‘W(EE )®\\(k)R (resp. ‘W(ER o )®w(nO) with respect to the natural
morphlsm to R. It is the analogue "of the inclusion RO C R and by al-

most étale descent it reduces the computation of the GR cohomology of
cris

Jog (R) to the computation of the r r-cohomology of als . see 3.48;

10goc’

ii) Alg’ fﬁ: is the p-adic completion of the log divided power envelope of
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the image Alg’geoofAEQ@\«\v(k)W(Eg_) — W(E) with respect to the mor-
= K Acris.V
log,00

phism to R; see § 3.5.2. It is the de-perfectization of

iii) Aﬁg”ms(ﬁ) is the p-adic completion of the log DP envelope of
A}c’geo@«w(k)R with respect to the morphism to R. See § 3.5.2. It is the de-

et cris
perfectization of Ay, .

3.5.1 — Almost étale descent

Denote by R o_ the composite RO C R.

Lemma 3.41. (1) For every m € N the subring R,Ox C R is a divect
Jactor of R, ®o,, O and is a normal ring.

2) Let S C Q be anormal Rooﬂo?—algebm, finite étale and Galois with
group Hg after inverting p. Then, for every i > 1 the group H' (H S, S) 18
annihilated by the maximal ideal of Ox. Fori = 01t coincides with ROO,@?

In particular, H' (Hg, R) is annihilated by the maximal ideal of O for
1> 1. For 1 = 01t coincides with ROO_OE and the latter is a normal ring.

Proor. (1) It follows as in § 3.1.1 that R, ®0, Oy, is a normal ring for
everyn € N and every finite extension K € L C K. As it is noetherian, it is
the product of normal domains one of which is its image R, O;, ¢ R. Thus,
R, O is a direct factor in R, ®0, O and it is a normal domain.

Statement (2) follows from 3.3; cf. [F'3, § 2¢]. The claim concerning the
invariants is clear if we invert p. Since ROC,OE is normal by (1), it follows
that B = R0

The last statement follows from (2). O

COROLLARY 3.42. (1) The image of RE® vig, O 1og 18 l/%?)X.

2) The map Ef}?’cris — Af;;s(é) (resp. Rﬁ)e;‘max — Aﬁ}g"(ﬁ)) 18 injective
and strict with respect to the filtrations.

(8) We have a surjective, Gg-equivariant map ﬁ@oAlog — ﬁﬁ)?'cris,
where @ stands for the p-adically completed tensor product, which is
compatible with the filtrations and admits a splitting compatible with the
filtrations. It is an isomorphism if the map R @0, O — ROz(C R)isan
isomorphism.

(4) Statements (2) and (3)~h0ld after taking the p-adically completed

tensor product ®a,, Alg nd RR0Alg = RR0,Alg-
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Proor. It follows as in 3.14(1) that the kernel of the extension of
05 log:fif‘\.‘v(E}) R to (R, ‘W(E*E))log is generated by a regular se-
quence consisting of 2 elements, given by (&, u — 1) (or (P,([7]),u — 1)).
The graded pieces are isomorphic to the image of ' Ohog - _By 3.41 the ring
RO% is normal so that the map R(’)K /me(’)— — R/p™R is injective for

every m € \N. We conclude that RO— — R is injective. Thus, the image of
R\\V(E +§) via 0, is R(’) proving (1). Due to0 3.14(2) we conclude that the
maps in the statement (2) induce injective maps on the associated graded
rings. It follows by induction on m € I\ that they are injective modulo the
m-th step of the filtrations on the two sides of the given maps. As the fil-
tration on A‘:“S(R) and on m"‘X(R) is exhaustive, claim (2) follows.

Recall from 3.41 that R®0K Og is the product of integral normal domains
one of which is B := RO%. As the latter is normal, the map B/pB — R/pR
is injective so that, since p is not a zero divisor in B, we deduce that the map
on p-adic completions B —Ris injective. As R /(P(Z)) = R, the reduction
of the \\.‘V(EEE)®~\~\'(;¢)IN€ modulo (p,&,Z) is Oz®o,(R/nR). By Hensel's
lemma the direct factor B/nB of Ox®o,(R/nR) lifts uniquely to a direct
factor B of the (p, ¢, Z)-adically completed tensor product E@«Y\«(k)\vv(ﬁgx).
By construction the map B — W (E )®\\(k)R modulo (&, P(Z)) coin-
cides with the inclusion B C R®0KO ThlS implies that the p-adic com-
plet1~0n Bfgg ofAthe logarithmic divided power envelope of the map
Op:B — B has B as graded piece for the DP filtration. As @p is compa-
tible with 65, Rﬁ)‘;" seris
morphism on graded pieces. The DP flltratlon being exhaustive, it is an
isomorphism. As IAi;@\x\/(k)V\v(IT]ZgE) maps to E@@@Alog, which is (p, &, P(2))-

we get a natural map Bc“S which is an iso-

adically complete, we get a map B — ﬁ@oAlog. Arguing that the kernel of
Op is generated by the regular sequence (f U — ) see 3.14, and using
that (C U — 1) admits DP powers in Alog, we obtain a natural map
Bcrls — R®@Alog inducing the inclusion B—R ®ok (9— on the graded
pleces for the DP filtration. It provides a splitting of the map R®oAlog
Rff)ego T required in Claim (3).

We prove (4). As Z =7 in Alog, see § 2.1, we have P,(Z) =0 and
R®oAlog = R®@KA10g The analogue of (3) is then clear. The filtration on
Alog[p 11 is the one induced from § and the two rings have the same

graded pieces, each isomorphic to K. Consider the composite map

R{g(igo qu Alog Aﬁf; (R )®A]nglog — Bd+R (R ) 5
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where the second map is provided by 3.29. The morphism 7 is compatible
with filtrations as both maps are. The rmg Rfoeg(’ s A Alog has B as graded
pieces, using the analogue of (3). As B injects in R, the map 7 is injective on
graded pieces by 3.15(6). Thus, it is injective and strict on filtrations.
Therefore also Rgeg‘? "5 A Alog — AfE(R)®a,, Aty must be injective and

strict on filtrations. The claim follows.

COROLLARY 3.43. Constder the following situations:
(i) A = R/pR and A, equal to the image of R0 /PRx.0.;
(i) A = ﬁ and A the p-adic completion }ABOQOE of Roo,oE;

(iii) A = Gr"AZS and A = @,cnnRoc.o 8™ — D™y — 1

(Vg — 1)[na](w1 —1) (a1l | (wy, — 1)[1211].

The groups H' (H R,A) are annihilated by the maximal ideal of O for
every 1 > 1. For 1 = 0 the natural map

A — H'(Hp,A)

has kernel and cokernel annihilated by the maximal ideal of O.

Proor. The first two statements are clear. For (iii) we use that

r f;;S(R) _ ne \(me[nO (0 — 1)[”1](1)2 )[nzl (g — 1)[na](w1 _ 1)[na+1] .
(wb — 1)™ proven in 3.29. The claim follows then from (ii) noting that Hp acts
trivially on &, u, v, ..., Vg, W1, ..., Wp. O

Define A%™Y and A™*V to be the p-adic completion of the log DP

log,00 log,00

envelopes of ‘W(E in0_)®\\(;€)(9 with respect to the natural morphism to
I:% induced by © arlid, respectively, the p-adic completion of the
(W(Ef. o ) @1 ©) *-subalgebra of (W(ngw)®~\\\V(k)(’))l°g[p*1] gener-
ated by p “'Ker(6},, ). As in 3.23 and in 3.24 one proves the following
results:

LEMMA 3.44. The ring Alc(fls V' is the p-adic completion of the DP en-

velope of W (I:]fg ; _)[u] with respect to the ideal (£,u —1).

log,00

Similarly, APV ~ \\W\V(EE%O_){%MT?I} the p-adic completion of
UK

the ring in the variables V and W = ule modulo the relation pV = &.
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COROLLARY 3.45. We have

ASYR) ATV (R) 2 B[l (00,61, o py, -}/ (& S u? =1, p8),

log

and similarly for Alcor;z instead of Af(gs’v(R) and ng_ instead of E*. On
the other hand, K

AMES V(R)/pAmaxv(R) o E+/(é) [67/)]

log log

the polynomial ring in the variables o and p where & corresponds to the

class of 1% and p corresponds to the class of ule One has the same

description for A"V instead of Ama‘X V(R) and E

log,o0

instead of E.

0

Define Aﬁf;soc as the p-adic completion of the logarithmic DP envelope of

‘\\\."(IT]+ )® w2 with respect to the natural morphism to R induced by 6.
Let Alog . be the p-adic completion of the (W (Ej_ )®~\~\V(k>l~3)10g—sub—
algebra of (W (E},_ o )@wwR) [p~11 generated by p*lKer( 1og)- Asin

3.25 one proves:

LEmMA 3.46.  The natural maps

ATV — 1, vg — Ly — 1, wy — 1)} — ATE

log,00 log,o0
and

maXA,V{vZ_l Vo—1 wy —1 wb—l} max

1 : geeey 5 geeey b 10‘

R G p p p 820

are 1s0morphisms.

COROLLARY 3.47. We have

ris,V
A Ry By e D
PALS Y ®) (=1 1, i =D 6, )5

1,....b,meN

and similarly for Aﬁf“;oo instead of Afé’f;(}}). We also have

ARSNR) /AR R) 2= AR (R) /pARSY (R) [, 4],

max
log,00

and similarly for instead of Ay (R).

log
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Write A for AC“S(R) or Ay (R). Write A, for fé;soo Iogoo: We
deduce from 3.47, the following:

PRrROPOSITION 3.48. For every i>1 and every n € N the group
H'(Hg,A/p"A) is annihilated by the ideal Z. The wmorphism

Ay /p"Ay — (A/p"A)H"’ has kernel and cokernel annihilated by T.

Proor. Since A is p-torsion free, proceeding by induction on 7 it suf-
fices to show the claim for n =1. It follows from 3.45 and 3.47 that
AT /pASTS (resp. Al /pAR) is a free ET/(&)-module (resp. E/(&)-

log log log log Y
module) with a basis fixed by the action of Hg. Since E* /(&) = R/pR and
E*t/(&) = R/pR, the statement follows from 3.43. O

3.5.2 — De-perfectization

Recall that we have introduced in 3.12 subrings A;% of W(E*) iso-
morphic to the (p, Z)-adic completion of R. We have '

1 1 — .1
! ! T

[Ya]*,

— - 1 — — . 1
-JHVHQ&V“TXT
where O, := W[Zn] for every n € \N. Since \V\"(E+ ) is a W(k)-algebra, we

can make it into an O,-algebra by sending Z to [ ]”' Set A+ "8%% t0 be the
image of

.%®=0{ﬁﬂ L[ X —7h),

n

A%"®@;WXE5E)——;WXE+y
where the completion is taken with respect to the ideal (p, Z). Identifying
A}% with R, we let R5% to be the quotient of R, &0, “\V(EEE) isomorphic to
AL For every m € N set

. 1
Au(Ry) =" (Alfejnge") ( ", 1)

1:0
The action of the group I'po = @& ,7,7; © @Y 7,pd; on W(E"), for
R = R, stabilizes AT;5* for every n. More explicitly, it acts trivially on
W (Eg}) and it acts by

[l [X,] " if b =1
7([Xa]™) =< a4 X)

[X]" V2<h<a, h#i

if h=1

2l
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and 3;([Y;] %) = [Y]] " for every j= .,b. Similarly, for every
i=4,...,bwelet d; act via §;([ X ]7) [ ]”’ for everyi=1,...,a and

7.4 - {[e]nv[?ﬁ if b=

9 ([Ya] ,
[Y,]" Vh=1,....b h#j.

LeEMMA 3.49. (1) The ring A:z 8¢ is a direct factor of A+ ®0 W(E+ ).
They are equal for R = R®. " B B -
2) The maps A+ geo/ (p, Pr(2))— E% /(Pr(2)) and A, (R,) —>‘\V\vm(E%) /

<pm Z [ ] v 1) for m € N are injective. Moreover, ¢™ induces an 1so-
momohzsm A+ geo/(P , Pr(Z)) —>Am( )

() The subring A+ %0 of W(E*) is stable under the action of the group
T for every n. M oreovefr forn = 1 the induced action of I' on Am( ) is

trivial. N 1
(4) The ring and I g-module Af"geo / <pm, > [e]” ) is a direct factor
i=0

i bl 5 ooy 587 ()

Proor. Without loss of generality in proving (1), (2) and the first part
of (3) it suffices to consider the case En =R.

(1) The argument is as in 3.42(3).

(2) Since the map Agge" - ‘\.\\.Y(E%) modulo (p,Z) is the map
B/pB — R/pR, it is injective as proven above. Since (p,Z) is a regular
sequence in A+ 8e0 and W (E*) also (p, Px(Z)) is a regular sequence. Note
that P,(Z) and ¢’ = Z [e] generate the same ideal in (E+ ) by 8.10 so

=0
that also (p,q) is a regular sequence. We conclude that the map

A+ 880 \\V(E*) is injective modulo (p™, ¢'). Frobenius to the m-th power
deflnes an isomorphism W, (E*)/(¢) = W,,(E¥)/(¢"(¢)) and an iso-
morphism Alg 80 /(p™, q') = g™ (Alg’ge°> /(P™,¢"(¢')). The second claim
follows.

(3.a) Recall from 3.7 that there exists a unique chain of O-algebras

+ + _ At
Ao CALC.. CAL) = A

lifting R® c RY C--- C R™ = R modulo P.(%). Since the subgroup
T'r C T'go stablhzes AN(O) and acts trivially on the chain R© c
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RY c ... c R™ = R, one proves by induction on i that it stabilizes AN(Y)
for every ¢ by uniqueness. Hence, it stabilizes A+

(8.b) We prove the second part of claim (3) by induction on 7 in R®.
Since AN(O) is the (Z, p)-adic completion of O[P'], then A,, (R©) satisfies

(ES,)

DO ~
AnlB5) = G i)

)_(l}pm’ o I:Xa]pm, [Yl]pm7 o [Yb}pm]/

(X" [X]" = 27").

m—1

Since [}’ — 1 = ¢"(¢/ )([elP” —1), it follows from the definition of the
action of I'zo that the latter acts trivially on A,, (R©). Assume that I'zo
acts trivially on A, (ITB@) . By construction and the argument in (3.a) we have
that A,, (INE(“D) is obtained from A,, (E@) taking a localization, the com-
pletion with respect to an ideal or an étale extension. In the first two cases
g acts trivially on A,, (R%D). In the last case we remark that I'zen,
acting on A,, (lNB(” ), acts trivially on A,, (R“)) by assumption. Moreover,
the action on A%M /(p, Z) = RWD /(z) is trivial and, hence, it is trivial on
A, (E(”D) /(p,Z). Since A, (RD) is (p, Z)-adically complete and sepa-
rated, we conclude that I'gi: acts trivially on A,, (R(i+l)) as well. This
concludes the proof of (3).

(4) Consider the map

D b= 1 m 1 P— 1 m 1
Am (R) ®Am (E(m) At([%eo <pn7, ) A+ geo <p7n7 )

n 1=0 =0

<.

Due to (1) and (2) it suffices to prove that AJr is a direct factor of
(A+) » (A‘ )Ag“” Due to 3.11 it suffices to showthatR is isomorphic
~(0)

n

~ R
to ¢"(R) 2, (&) RO Arguing as in (3.a) it suffices to show this for
R, = IN%S” and this is clear. O

Define A; 8¢ and A; 8¢ as in 3.30 using A+ £ instead of R. Define

n,CI'18 n,max
Af[f;( n) as the p- adlc completion of the logarlthmlc divided power

ogDP
envelope (A~ ®\\<k)R) . Let Afﬁg"(R ) be the p-adic completion of
the (AL ®~\;\V(k>R) ®_subalgebra of (A~ ®~\‘\V(k>}~2)l°g[ ~!] generated by
pflKer(@Q ) Similarly, define Ageoc“S(Rn) and AZ™(R,) using

log log
A ’ge°® Wik instead.
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Recall that we also have rings Ef)eg‘”ms and Rﬁg’ma" defined before 3.39.
Then,

LeEmma 3.50. We have isomorphisms of Gg-modules

AL {uw—1ve—1,... 0, — 1wy —1,... 0w — 1>}—>Ac"is(R%)

R, cris log
and
A;% mw{upl,vzp17...7vapl7W1p1’”.’7/01;]0 1} N fﬂ;x(én)

and similarly for the geometric counterparts

ADE L —1ve —1,...,0 — Ly —1,...,wp — 1)} —>Age°’cris(Rn)

Ry eris log
and
A+ geo u—1 v -1 Vg —1 wy —1 wy — 1 Ageomax }é
Emmax P ’ P sy P ’ P LR P — log ( n)

Forn =0, the natural morphisms

Ecris{«%*].,’0271,...,'1)0/71,?/01 *1,...77/0{, - 1>}‘) fgés(R)

~ —1w—1 —1 w—1 ~1 ~
Rmax{u avz a"'7va aWI 7"'77/01) }—> FOISX(R)
b p p p p

are 1somorphisms and similarly for the geometric counterparts

Egeo’cris{(vz 1,0 —Liw —1,...,w, — 1)} —>Age°’ms(R)

log log
and
e T e B ]

ProOF. The first claims are proven as in 3.23 and in 3.25.

For n = 0 we certainly have natural maps as stated. To prove that they
are isomorphisms we remark that the images of R’ﬁg’ and of Aggeo in R via
@EJ og coincide with ROz by 3.42(1) and 3.49(1). Thus, the given maps define
isomorphisms on the graded rings and, hence, are isomorphisms. O
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iym—1

~ p=1
Set A,,(0) = W(ES,)/ (pm, K

) .Foreverymandn € N define
i=0

1
E’%,’m = {(ala ceey g, ﬁlv ey ﬁb) S ﬁNC&H’ N [Oapm)a+b‘al ceellg = 0}7

ie, at least one of the as is 0. Set K, :=U,Eyu,. For (z,f) =
(o1, %ays Prs -, By) € By, write

XY= [T X T

Define =10 f
X = Dapeb, a0 [ X] [ Y]

They are endowed with an action of r ro Where the action on A,,(O) is
trivial and the action on [X]* [Y]E has been described above. For / and
1€{1,...,a} with ¢ # h, consider the I'po-submodules

. 101518
XZL;”:’Z = ®(K,E)€En_m,ah:0,o(1,...,O(i,lE;\l,D(,jng”’L(O) [X] : [Y]/_
andforie {a+1,...,a+ b} set
XU = @iy a0t o a5 Am(O) X[V IE.

In particular we have X = @ne(1,...apie(1,..api X o ps-

LEmMA 3.51.  Foreverym € N, every 1 < i,h < awith h # 1 and every
1 < j < bthe kernel and the cokernel of the following maps are annihilated
by [e]" — 1.

1) y,—1on X fori>1;

n,m

2) y,—1on XD,

n,m?

3) 9 —1on X2,

ProOF. Notice that (3 —1)[X]*[Y]% = ([l ™ —1)[X]*[Y]? and

(6 — 1) [X]*[Y])! = (el — 1)[X]*[ Y]’ The assumption (1) (resp. (2),
resp. (3)) amounts to require that o; — oy (resp. —oy, ff;) are rational num-

bers of the form ¢ := g for some r and s € Z with r and s coprime and s > 1.

If s is not a power of p, then [e]° is a primitive s—th_root of unity { in
W (Eg}) /(p.[7]) = Of/nO%. Since {; — 1is a unit in F,,, we conclude that
[e]° — 1 13 a urg't. In this case y; — 1 (resp. y;, — 1,resp. d; — 1)is a bijection on
A O[X[T]E
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If on the other hand s is a power of p it follows from [AB, lemme 12] that
[e]° — 1 divides [e]’ — 1. In particular, the cokernel and the kernel of y; — 1
(resp. 75, — 1, resp. &; — 1) on A,(O)[X]*[Y ]! is annihilated by [e]° — 1
and, hence, by [s]f% — 1 as well. O

Let us recall that we denoted by Aeis(Ok) and Anax(Ok) the classical
period rings.

LEmMA 3.62. Foreveryic {l,...,a} and N € N, we have

N-1

G = D(@; = ™M) € @ = [e) Y Aai(Ox)w; — D™

m=0
and

— N m
0; —D(“’lpﬂ) e(l—[anAmx(oK)( A

m=0

Similarly, for every j € {1,...,b} and N € N, we have

N-1
@ — D™ € 1~ [e) Y Aais(©g)aw — ™!

m=0

and

N _ 1™
(5]. _ 1) (%%) e (1 — [F]p) ZAmax(OK)( ) .

Proor. We prove the first statement. The second one is similar. We
show how to deal with v; and y;, the computations for w; and J; are the same.

[Xi]

Foreveryi=1,...,arecall that v; := 7 so that y;(v;) = v; + ([s] - l)vi.

1
In particular, y;,(v; —1) = (v; — 1) + ([e] — 1)v;. Recall that [¢]—1=
([8]11_’ —1)ifor 1€ W(E%) mapping to zero via 0; cf. [Fo, 5.1.1]. Thus, for
every N € N, we have

pi(@; = DM = (; = D + ([e] = 1))

( 1)[N 7)0 ([8] . 1)[m]vm

1

I
Mz

0

N
= (v; — 1)[N] + Z ([8]}“ — 1)y m;[m](,v )[N m]

m=1

3
I
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Similarly
@ — DY (i . W — N
A0 = (S S (e - S
U
In particular, it follows that the rings
Ap{(u—1,v2—1,...,9,—Lw —1,...,w, — 1)}
and
A{u—l ve — 1 Ve—1 wy —1 wb—l}
m p ) p LA p ) p bR p
are endowed with an action of I'g.
Note that X"? and X,, ,, are modules over
AuB®) = A O)[[X]7, . [Ka] [V [Vo] ]
Y % Y 5‘ 1
([(X]™-- [X] " = 27),

where the equality follows from 3.49(1). Let X% (}Ni’,) =
hi > 5 5

XEW) ®, ’(ém))Am(R) (resp. Xym(R) :=Xum D, & A, (R)). The next

proposition will allow us to reduce the computation of the Galois

cohomology of Aféésx to the cohomology of AFP“"(R) and the coho-

mology of another module that will be computed in 3.54.

PROPOSITION 3.53. For every m the Am(ﬁ’)-module ATS

log,00
p71 ,L'pm—l . . ~
P> [é] is a direct summand, as I g-module, of
i=0

ris (75 2 it
sz (m S )
=0
X,

lim (R){(u—l,vz—1,...,va—1,w1—1,...,wb—1>}.

Nn—00

log,00

p71 Fy—
Similarly, AP/ (pm, [e]” 1) is a direct summand of

p—l ;i M—
Aiz)mdx(R)/<pm, ) [8]110 1)@
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Proor. First of all we claim that for every » and m € N the natural
maps Af “(R,) — Alog o and AZPT (R,)) — A, are injective mod-
ulo p™ and induce an isomorphism onto passing to the direct limit lim.

NnN—00

Since in both rings p is not a zero divisor, it suffices to prove the claim
for m =1. Due to 3.47 and 3.50 it suffices to show that the maps

ALEC L — 1)} — AV and ALE {u_—l} A"V are injective

R, cris log,00 R, ,max log,00
modulo p and induce an isomorphism onto passing to the direct limit 7111m .
Due to 3.45 it suffices to show that AJr 80 /(p, &) — E1+-3 o /(D) is mJectlo\;e
and induces an isomorphism onto passmg to the direct hmlt over alln € \N.
The injectivity follows from 3.49(2). The image in E} RO, /@) =R 0% /(p)
is the image of R, O by construction. Due to 3.11, the union of such i images
over all m € N is the whole R, O%/(p).

We are then left to prove that for every m and n € N the quotient of

p—l s am—1 ~
Algo‘i; C“S(Rn) modulo <pm, 3 [e]w ) is, as I'gp-modules, a direct sum-
=0

mand in

A{goegocns (p Z ml>
Xn_ym(ﬁf){w— Log—1,...,0—Lw —1,...,w, — 1)}

and similarly for AFY ™% (R,). Due to 350 it suffices to show that

p=1 .o p=1l e
A}fz'geo / (pm, > [e] K 1) is a direct summand of Ag’geo / (pm, S [e]” 1) ®
" i=0 i=0
X (ﬁ) . Thanks to 3.49(4) we may replace R, with R and R with R®. The
claim follows then from 3.49(1). O

COROLLARY 3.54. For every i1 € N and every m and n € N the
cohomology groups

Hi(fR,Xn,m(iB){W— Lvs—1,...,00— Lawg —1,... 0 — 1>})

and Hi<fR,Xn_m{u_1 ’1;2—17“.7va—17w1—1’.."wb—1}> are anni-
1' p p p p p

hilated by ([e]” — 1)2. The same holds if we take the direct limit over all

n € N.

Proor. We prove the first statement. The second one is similar and
left to the reader. Using the direct sum decomposition X, ,, =
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(h0)

n,m

Shefl,... a},ie{lﬁ_”,d}_#thf;Q it suffices to prove the statement for X
instead of X,,,,. Apply the Hochschild-Serre spectral sequence asso-
ciated to the exact sequence of groups:

0—>nyh—>INﬂR—>INﬂR/2yh—>O

for2§i§a(resp.0—>2(3j—>fgefg/iéjHOfora+l < h < d with
7 =h —a) with coefficients in Xg”){m —1Lve—1,...,0,—1,w —1,...,
wy — 1) }. The cohomology of Zyl (resp. 25]-) is zero in degrees > 2 and is
computed as the kernel of y; —1 (resp. J; — 1) in degree 0 and as the
cokernel of y; — 1 (resp. d; — 1) in degree 1. It follows from 3.51 and 3.52
arguing as in [AB, Lemme 15] that kernel and cokernel of y; —1 on
Xﬁfzn{(u— Lvg—1,...,04 — 1w — 1,...,1w;, —1)} for 2<i<a and of
d; —1 for 1 < j < b are annihilated by [¢]? — 1. The result follows. O

We also have the following analogue on graded rings. In § 3.1.1 we have
proven that the R-subalgebra R’ of R, generated by the elements
XYy = zflz X jﬁl ij for non negative rational numbers o;, f;, is free as R-

module and it has the property that 7R, C R’ . Write X := > X@ where
i

X@ is the E(\Qg—submodule of R::OE generated by X, Yp with ag, ..., 01 €
Nyo; & Nif 1 <4< a and with og,... 04,01, fig1 €N, fi_q & N if
1€{a+1,...,a+b}. We have

COROLLARY 3.55. For every i € N the cohomology groups
H (fR, @@e;\'dﬂxf[%](vl — Dy — DMy — Dl — 1)[nd])
are annihilated by (&, — 1)2. The morphism
HY(Tp, B e RORE™ = 1" = D (0 = - a0y = ") —
H' (G, GreAfLY )
has kernel and cokernel annihilated by mzn* (e, — 1)2 for every i € N.

Proor. The first statement follows as in 3.54. -

For the second statement note that multiplication by n* on R, O
factors via I/{f(\’)E @ X thanks to the results of § 3.1.1 and 3.41. We conclude
using 3.43(iii) and the Hochschild-Serre spectral sequence for the sub-
group Hr C Gg. O
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3.,5.3 — The cohomology of Af)e;’ms(ﬁ) and of Aﬁ;‘)’m“(f{)

In view of 3.54 and 3.53, to conclude the proof of Claims 3.39(1)&(ii) we
are left to show that

ProposITION 3.56. (1) For every 1 and wn,m € N the groups
H' <F Aﬁ)e; “S(R )/pmA{gg'ms (E)) vanish if i > d+ 1, are annihilated
y ([e] - 1) for i>1 and contams Rge0 seris /p ngeo jeris for i =0 with

cokemel annihilated by ([¢] — 1) The map

Rﬁ)egomax_)HO (F Aﬁ)egomaX(R))

is injective with cokernel annihilated by ([¢] — 1)d_
(2) For every i the group
H' (fR, \d+1R(9 ol (g — Dbl — et

(Vg — 1)[%](?/01 _ 1)[7La+1] o (wp — 1)[%1])

716
vanishes if © > d + 1, is annihilated by n(sp — 1) fori>1and contams
(ROg)®0_Gr* (A Cm) fori = 0 with cokernel annihilated by (g, —1)".

ProoF. We prove statement (1) for Ageo seris (R) The proof of statement
(2) is similar and easier and is left to the reader. Define

Rﬁ)(;o Lcris /meﬁi; Lcris
@) {< _1,v2_1,.-.,?]i_1—1>} v1§l§a
K, =

R{g(')eg() CI’I@/ ,WLR%)egO Cl"lq

{lu—Tve—1,...;0 —Lbw —1,...,w; — 1)} Va+1<i<b.
Note that

2~ D= (el = 1)o; + ;= 1, 50— 1) = ([el — L)y + (o — 1)

and hence

(; — (@i — D" = ((Ie] = 1w + @; — D)™ = @; — ™!
> ([l = 1) (v — 1)

j=1

<.

= ([8] - 1) (vi(vl- — 1)[m71] + iﬂﬂ)ﬁ(vz _ 1)[,,%,]-])

J=2
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l7
-1
with B = ([8[]8]7_1) € Ker(0) of Auis(Ok) by [AB, Lemme 17]. Then, y; — 1

defines a Kﬁ;?—linear homorphism on K (v; — 1) whose matrix with respect
to (v — L@ -0 ... @ —-D) and (1,@ -1),..., - DV M) is
given by ([e] — 1)G“N Wwith

BBy vev wes 1','-\ 1By 1 wes o By

[—2 N —
1".\ M‘i\' 9 1':\ I‘)’A\. 1

2 . . s

G =

YIII

0 G senn wem see 0 v;

Since v; is invertible, it follows that G(l .. is an invertible matrix. This implies
that the cokernel of y; — 1 on K% (v; — 1) is annihilated by [¢] — 1 and that
the kernel coincides with K up to a direct summand which is also anni-
hilated by [¢] — 1.

A similar argument shows that (J; —1) defines a K("“) linear
homorphism on K (w; — 1) whose matrix with respect to (w; — 1,
w; — D — DY) and (1, ; — 1),..., w; — DY) is given by
(le] — 1) times an invertible matrix. This implies that also in this case the
cokernel of y; —1 on Ky (w; — 1) is annihilated by [¢] — 1 and that the
kernel coincides with K up to a direct summand killed by [¢] — 1. The
conclusion follows proceeding by descendmg induction on 2 < h < d.

Note that K@ (wy, — 1) = Aﬁ)eg" “5(R) /" AR “B(R) due to 3.50. The

cohomology with respect to 7.0 is zero in degrees > 2, is annihilated by
[e] — 1 in degree 1 and is K@ = K9V (w, ; — 1) up to a direct summand
annihilated by [e] — 1. Applylng the Hochschild-Serre spectral sequence
associated to the subgroup Z&b crl r, we conclude that, up to ([¢] — 1)-
torsion, the cohomology groups of the proposition coincide with the coho-
mology of KD (w,_; — 1) with respect to I'z/Zd;. For general i <d one
assumes that, up to ([¢] — l)d””l—torsion the cohomology groups of the
proposition coincide with the cohomology of K(h) with respect to the groups
Fh—697h aZ&Fglfh>a+1anth_ Zyl@7IZ(5 if h < a. Ap-
plying the Hochschild-Serre spectral sequence associated to the subgroup
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%&h crl,ifh>a+1 and ‘?yh C I'y, if h < a, one concludes that, up to
([e] — 1)¥"*2_torsion, the cohomology groups of the proposition coincide
with the cohomology of K%~V with respect to the group I';_;.

The statement concerning H° (f R, ABCOmEX (R)) follows as before, using

log
that
i) <(Ui —ml)”7’>_ ((le] = 1)y :: @ -D)" (v —ml)m
p p p _
(=D (v 1" < ) -1 (v;—-1)"7
1/
p pm 1 +j; ] p? pm J
and similarly
m m—1
(5_1)<<wj—1>>_m ([e1-1) (w; )1 N
m p pm
fﬁ mY, g (=D ;= )"
o h ] ph pm h
O

We remark that the same strategy to prove the vanishing of

H (fR, Aﬁg max( )/ (pm)) for 1 <1 < d, fails due to the presence of bino-

mial coefficients. For example, coming back to the proof of 3.56, the matrix
of (y; —1) with respect to the bases (v; —1, (v; — D/p2, ..., (v — l)N/pN) and
(1, ;= 1)/p,...,;— DN /pN-1) is upper triangular with the elements
(v, 2v;, . .., Nv;) on the diagonal.

3.5.4 — The cohomology of the filtration of BIHS(R)

In order to conclude the proof of 3.39(iii), we are left to show the van-
ishing of

H' (GR, Fﬂ"Bfgg(k)) = lim H’ (GR, Tl f;;(}é))

for ¢+ > 1. The strategy is the same as in [AB, § 5]. Due to 3.39(i) and the

fact that GrA1 s ) is annihilated by t, we know that H' (GR7 14‘117'Af;;S (ﬁ))

is annihilated by a power tV of ¢t depending only on i and 7. In particular,

the composite map H (GR,Fﬂ’“AﬁgS(E)) L H (GR,t—NFﬂ’“Af;"i;(é)) is

zero. One proves as in [AB, Lemme 33] that H' (GR, FilTBf(f;S(IN%)) isa Q-

vector space. One is reduced to prove that the kernel of the map
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H' (GR,t—NFﬂ”NAf;;S(E)) ~H (GR,t—NFﬂ’“Afg;(iz)) is p-torsion; com-

pare with the proof of [AB, Prop. 34]. Arguing by induction on N we may
assume that N =1 and we are reduced to prove the following:

LeEmMA 3.57.  The cokernel of

Hi! (GR, Fil Ass (E)) gl (GR, Gr" AU (E))

log log

1s p-torsion for every 1 > 1 and every r € IN.

Proor. Thanks to 3.55 the Ggr-cohomology of Gr” f(gs(f%) is the I'p-
cohomology of the ROz-module

M,:= ®Zni:rl%f(gp _ 1)"’05[%](%7 1)[701](,02 _ 1)[”2] o (Vg — 1)[%] o (wp— 1)[12(11]

up to p-torsion. On the other hand, define the R#e°-submodule M, of

Fil" Aj}*(R) spanned by t"/log ()" "log (v2)" - - - log ()" - - - log (w;)"*

for >~ n; = r. Arguing as in [AB, Lemme 36] one shows that it is I"r-stable,
i -

it maps surjectively onto M, and the induced map on I'z-cohomology is

surjective. This concludes the proof. O

3.5.5 — The cohomology of Efj:(ﬁ)

We are left to prove 3.39(iii'). Let A, be the image of Ay in Bog. Set

AK1((:)1‘gisy‘v(l‘z) = Acris’v(R)(/g\)A -‘Zloga K]ZI;S(R) = cn.S(R)®A -Zlog-

log cris log cris
Then,
. ocris,V ~ —
M) Ay (R) = AL (R)Da . Ay

——cris,V

i) Apy  B{(vz—1,...,v0 —Laws —1,...,w, — 1)} — A (R) s
an isomorphism.

(iii) Riy := RECS8,, Ay is the image of R0, Ay in Apy ().

The first statement follows asAIC;;S’V(R) o AZiS(R)QB A Alog DY 3.23. The
second statement is a consequence of 3.25. The third statement follows

——cris ,

from 3.42(4). One proves the analogues of 3.48 with A = Alog (R) and A
the image of Afie . ®4,, Alog in Kﬁ:(ﬁ). O~ne defines ch;;s (R,), resp. Aj

resp. _iego’ms (R) as the image of Al (R,) ®4,, Aleg in KICOZS(R), resp.
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AL {(u—1)} ®a,, A, resp. ALY (R) @4, Alg; see 350 for the

R, cris
notation. Due to loc. cit., one gets 1s0morphisms

cris

KJf?fn{@)z—1,...,7)a—1,w1—1 Sy — 1)} = Alog (2 ">
and

890 —geo,cris /75
Ry, {(v2 Vo —Lowr — 1, wp — 1)} = Ay, (R).

— — —cris ~ p—1 iym—1
Define A,, as the image of A, {(u — 1)} ®4,, Apg in Al(;gs (R)/ (pm, S le]” )

_ o -0
and X, 1= S per, , An (X ]Z [ Y]E. One shows that the analogzues of 8.53,
3.54, 3.56(1) and § 3.5.4 hold proving 3.39(iii’).

3.5.6 — The arithmetic invariants

It follows from 3.39 that (B{)™ = REC™[t1] and (BYE)% =
Rﬁg .

h PDeris geo,cris Gk d D ge0,max Gk

Lemma 3.568. We have Rij; = (Rlog ) and Rmax = (Rlog ) .
ProOF. Let Ayis(O) (resp. Auis o(O)) be the p-adic completion of the

DP envelope of ”W(E(*9 ) @y O (resp. of *\V\V(E ) Qe O) with respect

to the morphism 6 to (’)— Let A.x(O) be the p—adlc completion of the
W(E ) Qg O- subalgebra of “W(E* ) ®way Olp~'1 generated by

‘1Ker(0) using the notations of § 2. 1 1 we have inclusions Aqis C
Amax C Ajog. Analogously, define A +(O) using W(E* ) instead of

"\‘\"(E* ). By 3.49 the ring Rﬁ)ego S is a direct factor of R®0Ams((’)){< 1)}

and R{go‘i: M s a direct factor of R®0Amax((9){pl}, where ® is the
p-adically completed tensor product.

Let H be the Galois group of K’ C K. Since every finite field extension
of K/  is almost étale, arguing as in 3.48 one proves that the invariants of
Rﬁf’; eris (resp. of Rﬁg’ %) with respect to H are contained in R®pAeris s (O)
(resp. in R0 Amax0(O)).

Recall that W (E+ ) contains a subring A™ = W(k) [[[7]]] isomorphic to
O, where the 1s0m0rphlsm is defined by sendlng Z to [%]. Moreover,
\‘\V(E+ ) is the [7]-completion of U,,,cnA™ [[n]ﬁ’”] cf. 3.11. In particular, we

may write W (E+ ) as a direct sum A" @ X where X is the (p, [7])-adic

completion of > A+ [n]ﬁ’” where the sum is taken over all integers m > 1
m.,a
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and 1 < a<p”™. Note that the p-adic completion AJr 8 of the DP envelope
of A" @iy O with respect to Ker() is 1somorphlc to O{(u — 1,P(2))}.

Similarly the p-adic completion Altgmax of the (A" @ (9) £_subalgebra

of (A" @ (’))log [p7!] generated by p~'Ker()) is isomorphic to
-1 P,(Z

O{u—,ﬁ}. In particular,
p p

Acris,oo(o) = A1+0gcrls @ X ®A+ Afg;rls, Amax,oo(o) = A;ggmax S5 X ®A+ Altgmax.
Let y € G be an element such that y([7]) = [e][7]; it is a topological
generator of the coset Gx/Hg. As in 3.51 one proves that the kernel of
y—1 on R&pW (E+ ) intersected with R&0X is annihilated by E ]P -1
As in 3.54 one deduces that the kernel of y—1 on R®0Acm((9) inter-

sected with R&pX ® AF Alf)gcm (resp. on R®0Amax(O) intersected with

R®0X ®, Altgm #) is annihilated by ([e]?% — 1)2. In particular, it is zero
since R®pA eis(O) (resp. RR0Apmax(0)) is ([¢] — 1)-torsion free. We con-
clude that the invariants we want to compute are the elements of
~ -1 P Z
R{{u~1,P.2)} (resp. R{ . %)
y — 1 acting on I~2®0A10g((’)) (resp. on R®@Amax((9)). Arguing as in 3.56

we conclude that such invariants coincide with E{(P,,(Z))} (resp.

Ié{#}) as wanted. O

}) which are invariant under

REMARK 3.59. Let A be a ring which is p-adically complete and has no
p-torsion. Assume that it is endowed with an operator ¢ lifting Frobenius
modulo p. Let & € A be such that x — 1 is a regular element and p(x) = «P.

Write Agis :=A{(x — 1)} (resp. Ame

P
pletion of the DP envelope of A with respect to @ — 1 (resp. of the subring
Al(x —1)/p] of A[p~']. Note that Frobenius extends to Aeis and Apax.

for the p-adic com-

m
For every m € N we have (¢ — l)m = % (x —1)"p~™. In particular,

we have a morphism A s — Amax. Since px — 1) =aP — 1= (x—1)" +py,
then p((x —Dp~') = (p — Dl — D! 4+ 4 so that ¢ on A factors via a
morphism A s — Amax-

It follows from 3.59 and from 3.23 and 3.25 that we have ring homo-
morphisms

lc(gs (é) - ﬁ)lgx (é)’ ~f§§igs —>}~Bmax-
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Furthermore, as shown in 3.59 Frobenius on BJ2*(R) factors via B{" (R)

inducing a ring homomorphism fEmaX[pfl} —>1~‘3c1~is[]071]. In particular, it
suffices to prove 3.40 for Bf7¥ (R). Define
Ais(r) == ﬁfg(ﬁ) A

Using 3.58 and since ¢ is Galois equivariant, to prove 3.40 we are reduced to
show that for every » € IN we have

o ((As0)) € - R

This is proven in [T2, Prop. 4.11.2]. We sketch the argument.
Take x € Aﬁf;(R) such that «t™" is Galois invariant. Then, ¢ (xt™") is
also Galois invariant. Its image in By (R) is then also invariant under Gr

—

and those invariants coincide with R[ p~11by 3.18.In partlcular o™ (xt )
BdR( ). Since ¢™(t") = p"™t", this implies that ¢™(x) € t"By, ( ) for every
m € N.

Using 3.25 write ® as > p,( — DM, = DMy — Db

v Na+b
wp — DY with v=(,.". very) and B, € AV (R). Write ¢"(x) =

> B —1)“1] - g = Doy — ) oy — 1)), Since " (X —1)=
v a+b
(e(;( -1+ 1) —1=p"(X — 1)+ higher order terms in (X —1) for
X =w1,...,0,W1,.. .0, one argues that g, , = p™ 2 "ip"™(B,)+ a Z-linear
combination of the ¢™(f,) for v/ such that v; <v; for every 1<i<a+b
and there exists i such that v <. Since Bjz(R) =By (R)-
[o1—1,...,0— 1w —1,...,wy, — 1]] by 3.15 one concludes by induction
that ¢"(8,) € t' B3 (R (~) for every v € N*0.

Let I AcrIS Y(R) be the subset of elements y such that ¢"(y) €
Fll’"BgRV( ) for every m € N. Then, f, € I'"] Acr; V(R) for every v. We are
left to prove that ¢*(I [’"]ACTlS v(R)) t’"Amsv(R) with s =1 if p > 3 and
s =2if p = 2. This follows from [T2, Lemma 4.11.4] or [T1, Prop. A.3.20].

3.6 — The functors Df(‘)'és and Dyg™. Semistable representations

Let V be a finite dimensional Q,-vector space endowed with a con-
tinuous action of Gr. Due to 3.40 there exists s € IN such that ¢’ (Blog gR) C

Cris
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Rosis [p~1] and ¢ (Bmaxgﬂ) C Rupax [p~1]. Write

log

o=\ 9 s ~
Di (V)= (V 00, Big (R)) " @fes, Besi [p 7).

Ttis a R [p~*]-module. The connection and Frobenius on Bf(gs (1-2 ) induce a

connection and a Frobenius on the Gg-invariants of V ®¢, Bﬁgs (}NB) and,

hence, by base change via ¢%: B9 — R . [p~], an integrable connection

Cris

Vv s chgés(V) — ch;'és(V) ® R/‘\‘\”(k)

and a Frobenius ¢ horizontal with respect to Vy sv). The morphism ¢* on

B (R) induces a natural map

DCI‘IS(V) N V ®(Jp BCI’IS (R)

log log

cris

We define a decreasing filtration Fil°D; °(V) as the inverse image of

log
V ®q, Fil* Bﬁfés( ). Since Frobenius on Bf;?;( ) is horizontal with respect
to the connection and the filtration on B{ (R) satisfies Griffiths’ trans-

versality, also Fﬂ'D{g

Similarly, let

(V) satisfies Griffiths’ transversality.

Gr

D (V) = (V @7, BUE (R)) " @] sy s [p7].

log

It is a Ry [p~!]-module endowed with an integrable connection Vy s
and a Frobenius ¢. It is also endowed with an exhaustive decreasing

filtration Fil”D{‘g‘g*X(V), for m € 7, given by the inverse image of

V @q, Fil*Bg “(R) via the morphism
log (V) —V ®Qp ?ggx(ﬁ)
induced by ¢* on Bl (R).

It follows from 3.59 and from 3.23 and 3.25 that we have ring homo-
morphisms

ff; (R) — B1Og (R)» Ecris — Rrmax.

In particular, we get a map

fr: DiRS(V) — DX (V).

log log

It sends Fil”Df‘(fi;(V) to Fil”ng‘;"(V) and it is compatible with Frobenius and
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connections. Furthermore, as shown in 3.59, Frobenius on Bjg; (R) factors

cris

via (R) inducing a ring homomorphism Ruax[p ] — Reis[p!]. In

log
particular, Frobenius on Dfé’és(V) factors as a morphism
gv: DI (V) — DSV,

We then get the property that gy o fyy and fy o gy define Frobenius on
cr'IS(V) (resp. on Dlog ).

PRroPOSITION 8.60. Let V be a finite dimensional (Qp,-vector space of
dimension n endowed with a continuous action of Gr. The following are
equivalent:

1) the map of Bﬁfg( )-modules

(V &0, Big (R)) " @ yman By (B) —V o7, B (R)
is am isomorphism;

2) the map of Bﬁfg( )-modules

Oleris,V Dlo S(V) ®R lc;';;s( ) —V ®/p 105;8 (E)

18 an 1somorphism;
3) the map By ™ (R)-modules
max /S Gr max max [
(V ®7, log (R)) ®B$§X‘gk log ( )_>V®7 log (R)

18 am 1somorphism;

4) the map By (R)-modules

Omax,V+ Dlog V) ®R Blog ( )—)V®7’P ﬁ)ng(R)
1S an 1somorphism.

If one of these conditions holds then Df(gs(V) 1s a projective and finitely

generated Res [p~t]-module of rank n and the natural morphisms

DIP(V) @ Bimax — Dp(V),

mduced by fy, and

s~ \ Y
CI'IS(V) ®R BCI‘IS g[e (V ®(~)P Bf(l)'és (R)) R

log log
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and
~\ 9
D (V) 0, BRSS9 — (Vao, B ()™

are all isomorphisms compatible with Frobenii and connections. Simi-
larly the morphism

DRX(V) @5, Reris— D (V),

mduced by gy, is an 1somorphism.

ProoF. We write By for Bf(gs (R) and By for Big; (R) We also let

Deis be Dﬁfg(V) and D be Dlog (V). Eventually, we write E; for
Gr

. Gr
(V ®0, Bf;“és (R)) and E ., for (V ®q, B]()g (R))
1) = (2). We have

Dcris Qp BCI‘IS = Ecns ® Rcris Qp Bcns = Ecns ® g Bcris =
RCI"IS RCY‘IS R

Ecris ®Bg}? Bcris ®(§ms Bcris-
Since (1) holds the latter is isomorphic to V ®q, Bais ®ng Beris &
V ®q, Beris- This implies (2).
One proves similarly that (3) = (4).
4) = (1). As Dppax := Emax 7 J— Rmax, we conclude from 3.31 and (4)

log
that Dpax is a pI‘O,]e~Ctlve Rmax[p’l]—module of rank 7 i.e., it is a direct

summand in a free Ry.[p~']-module. In particular, the Gg-invariants of
Dinax ® ] Beais are Dimax ®% BgR and its base change via

[ Cris
B9 _. ch i8 Diax g, -1 Brax ®Bm Bais which is V ®@q, Beris by (4).

Cris

This proves (1).

_ We have also proved that if (4) holds then Dy, is a projective
Rpax[p~'l-module of rank 7 and Dy ®7% BgR =~ Eujs. This implies

Roax[p~1] — cris
that the map Dmax(V) ®1§max iécris—>Dcris(V)7 lnduced by 9v, is an iso-
morphism. Using the projectivity one proves similarly that
Das ® BiE, 2 By and Deis @ Bek, = Eage compatibly with Fro-
benius, filtrations and connections so that the last statements of the pro-

position hold.

(2) = (3). Since by (2) we have that D Dp.. Bpax is isomorphie to
V ®0, Bmax-module, it follows from 3.31 that Deyis ® B Rpnax is a projective
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Emax[pfl]_module of rank n and one argues that D ®p. Brgn’;X is Emax

and (3) holds. O

If one of the conditions of the proposition holds, we say that V is a
semistable representation of Gr. For any such the restriction of the
filtration on Bp:' (resp. Bjg;®) via the inclusion Dfé“g“(V) C V®o, Bl
(resp. Dlog (V) C V&g, Blog ) define an exhaustive decreasing filtration
Fll"Dﬁfg(V) for n € Z (resp. Fll"Dlog ).

ProposITION 3.61. Assume that V is a semistable representation.
Then,

(1) Frobenius is horizontal with respect to the connections and it is

étale on Dlog V) and on Dﬁfés(V) i.e., the maps
pOLDEE V&Y Ruax—Dig™(V), 9@ 1:DX(V) &% B — Dipp(V)

are 1S0morphisms.

(2) The commection is integrable and topologically nilpotent on Dﬁf;(V)
and it is integrable and convergent on Dlog ).

(8) The representation V is de Rham and the natural morphisms

— o

f;;<v>®R R[p—1] = e (V) ®p "R[p~112=Dgr(V)

—

are 1somorphisms as I~B[ p~1-modules with connections.

(4) The filtrations Fil’Df(f;S(V) and Fll‘DlOg (V) satisfy Griffiths’

tmnsversal@ty with respect to the given connection. The morphisms
f(fés(V) Diog (V) —Dar(V) are strict with respect to the filtrations
and for every v € N we have isomorphisms

Gr"D{E(V) = Gr'D(V) = Gr"Dar(V).

In particular, via the natural maps

DI (V)— D (V) — Dar(V) — Dar(V)/(Z — ) = Dar(V)
the filtration on Dar(V) is the R[p~1]-span of the image of the filtration
on Dﬁfg(V) or on D{ggx(V) Moreover FllanS(V) and Fil"D{ggx(V) are
uniquely characterized, as filtrations, by the fact that their images span

Fil"Dgr(V) and they satisfy Griffiths’ transversality.
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Proor. (1) The horizontality of Frobenius follows from 3.19. The as-

sertions regarding the étalness of ng’;s(V) follows from the one about

log 2%(V) and 3.60. We use the notation of the proof of loc. cit. We know that

Emax ®¢ BY® is a projective B module and its base change via

max

Brgrgx — Bmax 18 V ®q, Bunax. In particular, Frobenius defines an iso-

morphism E.x ®"’ BgR = Enax thanks to 3.31. Taking the base change

m

via B% @ R, ax|p '] we deduce the claimed étalness for Da*(V).

max log
(2) Let N; be the derivation R defined by X;0/0X; for 1 < i < a and by

Y;0/0Y; for a+1<i<a+b with j =i—a. Since Dif(V) is étale, it

suffices to show that it is generated as }Nicm [ ] by a finite R..s-module £
stable under the connection and such that Np (F) c pE for every

1<i<a+b. It suffices to show that D := fﬁgx(V) is generated as

Rmdx [ ] by a finite Rmax—module D, stable under the connection and such
that N” (Do) C pDy for every 1 <i<a+b. Indeed, in this case E :=

Dy®5 B Rcms — Df;'és(V) is afinite Rcms-module with the required properties.

We may assume that Vis in fact a Z,-representation. Since Dfﬁgx(V) is

a projective and finitely generated ﬁmax [p~!]-module, it is a direct
summand in a finite and free Ry [p~!]-module T'. Let T be a free Rinax-
submodule of T such that Ty [p~!] = T. Let n € N be large enough so that
the image of V in

log (V) ®R log (R) - T®R fggx(é)

1 max( ). Then,

is contained in Ty ®p 7 PMog
max

D = (Ve 1 max(é) gRCT Qs l max(E) o
0- Zp o log 0 PR o log :

(1 A\ 1
It follows from § 3.5.6 that ¢°®: (ﬁ f‘;gx (R)) — Bpoy factors via — Ripay.

Write D, for the Eﬁmax—span of the image in Ty ® . (p_ Rmax> of the base

change of Dj via ¢°. It is stable under the connection and NP (Do) C pDy

for every 1 <i<a-+b since this holds for {ggx( ). Slnce R is 2
1

noetherian ring and D is contained in T ®Of, <p”
finite Rmax-module. Consider Dy [p~1]. It is contained in D and after base

changing via the extension Ry [p7'] — By (E) it contains V so that it

f?mw{), then Dy is a
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surjects onto D ®p B (R) =V @y, By (R). In particular, the in-

clusion Dy[p~1] C D is surjective after base changing via Rua[p~'] —

log (R). Due to 3.31 this implies that Dy[p~!] = D.

(8) We prove the claim for Dﬁf;s(V). The one for Dﬁ,‘gx(V) follows

similarly. The natural Gg-equivariant morphism Bf§;S(R)—>BdR(R)

induces a morphism of Reis-modules Dﬁfés(V)—>I5dR(V). Write D :=

— —

Dﬁf;s(V) ®%. I~B[p—1]. It is/i projective }Nﬁ[p—l]—module with a natural

map 2:D — Dgr(V) of ﬁ[p*l]-modules. Note that D ® — Bggr (INB) =~
- R[p~1]

V®BdR(R). Thus, to prove that o is an isomorphism it suffices to
show that Byg (E)QR = R[p-1]. This is proven in 3.18.

(4) The morphisms for Bf;if (E) C Bpg (l~%) C Bar (R) are strict with
respect to the filtrations by 3.29. This implies that the morphisms

Df(fés(V)—> Diog (V) — Dgr(V) are strict. Since the filtration on Bf;;s (R)

and on Bij3* (R) satisfy Griffiths’ transversality, the same holds for Dﬁff;(V)

and Dﬁ,‘gx(V). The rest of the claim follows from this, (3) and 3.21.

3.6.1 — Localizations

We assume that we are in the setting of § 3.45 and, in particular,
R=Ry[Z] by 335 and B{F(R) = Bai(Ro) Op Rass and BRE(R) =
Bax(Ro) QA@RORmaX due to 3.36. Here, Bis(&y) and B,,.<(Ry) are the period
rings introduced in [Bri, Def. 6.1.3]. Let V be a representation of Gr. Define
Deis(V) := (V® Bcris(RO))gR and Dpox(V) := (V® BmaX(Ro))gR. They are
projective Ro[p~']-modules endowed with Frobenius, an integrable con-
nection and an exhaustive and decreasing filtrations satisfying Griffiths’

transversality; see [Bri, § 8.3].

PROPOSITION 3.62. Let V be a representation of Gg. Then,

(@) V is a crystalline representation of Gr in the sense of [Bri, § 8.2]
if and only if V is semistable in the sense of 3.60.

(i) if () holds, then the morphisms Deis(V)®g,Reais — Df(gs(V) and
QmaX(V)@JROI}mX — fo)‘gx(V) are isomorphisms of ﬁcris—modules (resp.
Ruax-modules), compatibly with Frobenius and connections and strictly
compatible with the filtrations.
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Proor. (i) Due to [Bri, Prop. 8.2.6] the morphism
Oeris,V: Daris(V) @p,p cris (RO) —V X0, Bais (R0>

is injective so that V is crystalline if and only if the image of oisy
contains V. We have compatible maps R — R, and Bl“S(R) Bis(Ro)
given by Z+—0. This induces a section Dl“S(V) Duis(V) to the
morphism given in (i). In particular, if V' is semlstable then V is in the
image of Df;';S(V) ® Bj* (R) — V ®0, Bais(Ro) induced by Z — 0. Thus, it
is in the image of aqisy and V is crystalline.

Viceversa, if V is crystalline then ogisv ®p,,. &y Beris (R) is an iso-
morphism, strictly compatible with the filtrations. As Ds(V) is a projec-
tive Ro[p~']-module by [Bri, Prop. 8.3.1], taking the Gg-invariants we get
that (V ® Beyis (R))gR 2 Deis(V) @, Beris (R)gR, compatibly with Frobe-
nius and connections and strictly compatible with the filtrations. Moreover,
condition 3.60(1) holds. In particular, V is semistable. As D.5(V) is an étale
Ro[p~'1-module by [Bri, Prop. 8.3.4] the map in (ii) is an isomorphism. [J

We go back to the general ring R. Let T be the set of minimal prime
ideals of R over the ideal (n) of R. For any such P let Tp be the set of
minimal prime ideals of R over the ideal P. For any P € T denote by Rp
the p-adic completion of the localization of R at P N R.Itis advr. Let R(P)
be the (p, Z)-adic completion of the localization of R at the inverse image of
P and let Rp := R(P) /ZR(P) For Q € Tp let R(Q) be the normalization
of Rpy in an algebraic closure of Frac(Rg) and let Gg o be the Galois
group of Rpy C R(Q). If V is a representation of G, we can consider it as a
representation of Gg o and form D ;s (V|GR‘Q) as in [Bri, § 8.2]. Using 3.37
we get injective maps

fgéS(V) - H Dcns V|GRO) QRpy R('P)

PeT,QeTp

ProrosiTION 3.63. (1) Let V be a semistable representation of Gg.
Then, Vg, , is a crystalline representation of Ggro and Deris (V\GRQ) =
ﬁfg(V) ®R Rpy compatibly with connections and Frobenius and
strictly compatzbly with the filtrations.
@) If V and V' are semistable representations of Gr then

V ®o, V' is a semistable representation of Gr and ngf; (V&o, V') =

lcorés(V) ®%,, fgg(v') compatibly with Frobenius and connections
and stmctly compatibly with the filtrations.
() Let V be a semistable representation of Gr. Then, the Q,-dual V' is

a semsistable representation and DfogS(VV) is the Reis [p~1]-dual Df’;;i;(V)v
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of Df;':;(V), compatibly with connections, and Frobenius and strictly

compatibly with the filtrations.

Proor. (1) Due to [Bri, Prop. 8.2.6] the morphism
eris, Vg, o D{(V) ®Ryy Bais (Rpo) — Vg, o ©0, Beis(Rro)

is injective so that V|G is erystalline if and only if the image of o5 v o
contains V|, . Dueto our assumption, V is contained in the i image of oy, V
Since deris v and Deris V], AT€ compatible, we deduce that the image of
Peris, Vi, contains V|GR‘Q as well. This proves that V\G is a crystalline rep-

resentation of Gg o. We certainly have a morphism f ng;s(V) ®p Rpo—
Deis(Vg,,)- They are both projective Rp o [p~']-modules of rank equal to
the dimension of V' as (),,-vector space. After base change via Rpy [pfl] -
Beis (Rpy) the map f is an isomorphism. Since such extension is faithfully
flat by [Bri, 6.3.8] the morphism f is an isomorphism as claimed.

(2) By assumption we have an isomorphism
DiE(V) @ o (V) @, TS (R) —V @y, V' @y, Bos(R).

Since ch;'és(V) and Dg‘;(V’) are projective Res [p~*]-modules, the base

change of the G-invariants of the LHS via B%% — Ry,is[p~'] coincide with

ng'fgs(V) ®f, l?gs (V") due to 3.40. It also coincides with Dﬁf; (V®@o, V') by

definition, compatibly with connections, filtrations and Frobenius. The
claim follows.
(3) By assumption we have an isomorphism

DEE(V)’ @5 8 (R) = Homo, (V, Qp) @7, B (R).

Since Df;"és(V)v is a projective Ems[ }—module and thanks to 3.40, the

base change of the Gp-invariants of the LHS via Blog 9r —>Rcm[ 1] co-

incide with cm(V) It also coincide with ﬁf; (VV) compatlbly with con-

nections, ﬁltratlons and Frobenius. The claim follows.
We are left to prove the isomorphisms Dﬁfés(V) ®%,. Dﬁf;(V’ ) —
f&“(V@V’) and Dﬁf;;(V)v ﬁ?; (VY) constructed in 2) and (3) are
strictly compatible with the filtrations. It suffices to prove that they are

injective on the associated graded modules. As the maps

ché';S(V) — H Dcris (V|GR_Q) ®R7>A0 ié(’P)

Pe T, QGTP
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are injective and induce injective maps on Gr®, we may reduce to the smooth
case. The claim is then the content of [Bri, Prop. 8.4.3]. O

3.6.2 — Relation with isocrystals

Assume that V' is a semistable representation. It follows from 3.61, see
the proof of (2), that there exists a coherent R..s-submodule D(V) of
DS(V) such that D(V)®: 7, Qp = Di$(V) and

log log

(@) D(V) is stable under the connection Vy ) and the induced loga-
rithmie connection Vpy, is integrable and topologically nilpotent;

(i) due to 3.61, choosing suitable integers m and n € N the map
Pp) = = p¢p sends D(V) to D(V), the morphism Py 18 horizontal with
respect to Vpy and multiplication by p” on D(V) factors via p” ‘-

We deduce from [K2, Thm. 6.2] that (D(V), Vy ) defines a crystal
D(V) of Oy, 0,,,-modules on the site (X;C / Ocm)log ; see 2.4.5 for the nota-
tion. Moreover, the absolute Frobenius on X and the given Frobenius ¢,
define a morphism of sites F: (X;./ OCHS)CHS — (Xi/ Ocm)cm Then, ¢py,
defines a morphism g: F*(D(V)) — D(V) of crystals of O, o, -modules.
Due to (ii) this is well defined up to multiplication by p.

_ Given two charts on R, inducing two choices of Frobenius ¢; and ¢, on
R, we get two Frobenii ¢; and ¢, on D(V). Then,

cris

COROLLARY 3.64. Assume that V is a semistable representation.
Then, the two Frobenii ¢, and ¢, on the crystal D(V) differ by multi-
plication by a power of p.

Proor. Choose in (ii) above h large enough so that it works both for ¢,
and for ¢,. We then prove that ¢; and ¢, on the crystal D(V) coincide.

Let T be the set of minimal prime ideals of R over the ideal (%) of R. For
any such P let Tp be the set of minimal prime ideals of R over the ideal P.
Using the injective maps

ﬁfg(v) - H Dcrls V|GR O) ORpy R(P)
PeT,QeTr

it suffices to prove the claim for Dms(V|GR ) for every P e T and
Q € Tp. Since the log structure on Rpy is tr1v1al our claim is the
content of [Bri, Prop. 7.2.3]. O
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3.7 — The functors ch(fs’geo and DIEE® Geometrically semistable represen-
tations.

Let V be a finite dimensional (Q,-vector space endowed with a con-
tinuous action of the geometric Galois group Gg. Define

. . o~\G ~\G
DEH (V)= (V e, BIR(R)) ", D™ (V)= (V @0, Bi(R)) ™

They are Eﬁ)‘g)’cris -modules (resp. Iéﬁ)‘g”max-modules) endowed with filtrations,

connections Vy yw) and Vy g and semilinear Frobenius ;. We have

PROPOSITION 3.65. The following are equivalent:

1) D{;Oeg"’cris(V) is a finite and projective ﬁﬁg’cm [t71]-module and the
map

D{go‘i::cns(v) ®§ie;,cris BIC;;S (R) — V ®Qp BIC;;S (R)
is an isomorphism; _

@) D(V) is a finite and projective RY ™ [t1]-module and the
map

geo,max - pmax(p cris (D
DlOg (V) ®j§i§>,m¢\ Blog (R) — V ®Qp 10g (R)
18 an isomorphism.

Moreover, in this case Dﬁi:"cm(V) ® sgenris Rﬁ)ego"max o Dﬁ)eg“’max(V) com-
log

patibly with filtrations, connections and Frobenius.

Proor. This is a consequence of the projectivity assumptions and the
fact that Bl8 0% — Iéﬁfgoms [t1] and B = Iéﬁg’cm [t71] provenin3.39. O
DEFINITION 3.66. We say that a representation V is geometrically
semistable if one of the two conditions above hold and if furthermore there

exists a coherent R <§>@A10g—submodule D of Dﬁ?’ms(V) such that:

(a) it is stable under the connection Vy v, and Vy swa|p is topologi-
cally nilpotent; _

(b) D[t™'] = DEZ“™(V);

(¢) there exist integers 7 and n € N such that the map t"¢ sends D to D
and its image contains ¢"D.

The following corollary provides examples of geometrically semistable
representations:
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COROLLARY 3.67. If'V is a semistable representation of Gr, then it is
geometrically semistable and we have natural isomorphisms

geo,cris I~ l)geo‘cris(‘/)7 DmaX(V) ®§max Rgeo,max ) Dgeo,max(v)

log log log log log log

DEE(V) @ i R

Rlng
compatible with connections and Frobenius and strictly compatible with
the filtrations.

Proor. The displayed isomorphisms follow from the isomorphisms

in 3.60, the fact that Dfé';;(V) and D{f)‘gx(V) are projective modules and the

computation Bf;"f;'G” = Fiﬁg’cris [t71] and BgSr = ﬁﬁfgo’max [t71] provided
in 3.39.

Such isomorphisms are clearly compatible with connections, Frobe-
nius and filtrations. The conditions in 3.66 are satisfied due to §3.6.2.
The strict compatibility with the filtrations follows from 3.29(4), 3.61(4)
and 3.22. O

We state our main result:

ProposITION 3.68. (i) The category of geometrically semistable repre-
sentations is closed under duals, tensor products and extensions.
(ii) The functors D™ and Dﬁ)e;"cm, from the category of geomet-

og g .
rically _semistable representations to the category of Ry “"-modules

(resp. Rﬁego‘max—modules) endowed with connections and Frobenius, com-

mute with duals and tensor products and are exact.

Proor. The claims concerning duals and tensor products follow
proceeding as in 3.63(2) & (3). Let 0 — V; — Vo — V3 — 0 be an exact
sequence of (Q,-vector spaces endowed with an action of Gg with V; and
Vs geometrically semistable. First of all we claim that the sequence

0— Dﬁ)eg("max(Vl) — Dﬁ)e;’max(Vz) — Dﬁ)‘?’max(Vg) — 0 is exact. This fol-

lows if we prove that HI(GR,Vl R0, {gg") = 0. This group coincides

with H'(Gg, D™ (V) g ﬁzg"(f%)) since V7 is geometrically

log ~
DE (V) is a projective R ™ [t™!]-module of

semistable. Since og og

finite rank, it suffices to prove the vanishing of H'(Gg, fﬁgx(ﬁ))

This follows from 3.39. In particular, Dﬁ)ego’max(Vz) is a finite and
projective RF°>™*[t"']-module. Consider the commutative diagram

with exaect rows:
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I)l:‘::.l:x,x\(\-l ) @ B — D;[:‘.I.;.,.:...\(‘-J] ®Bmax —, D-,I:‘.I;...:...\”.‘] ) —

0— V1 ®g, Bix(R) » Va®g, Bx(R) » V3 ®q, Bpx(R) » 0,
where the tensor product in the first row is taken over Eﬁ)‘g”m” and Byy*
stands for Be™ (R). The right and left vertical arrows are isomorphisms by
assumption. The snake lemma implies that also the vertical arrow in the
middle is an isomorphism as wanted. In particular, V» satisfies 3.65(2).

We are left to show that the other conditions of 3.66 are satisfied. Let
D, c Dﬁ)‘?’ms(Vl) and Ds C Dﬁfg‘”ms(Vg) be the submodules as in loc. cit. We
have just proven that Dﬁ?cris(Vg) is an extension of the projective Iéﬁ)eg‘”cm—
modules D (Vy) and Dy ™™ (Vs). In particular, it is isomorphic to their
direct sum. We view D}, := Dy & D3 C DEOUS(1,) as a submodule. Note

1o
that D[t 1] = Dﬁ)e;‘cris(Vg). The connectiongVVz;y\«(k) is compatible with the
connections Vy, wg) and Vy, s so that it preserves Dy and sends Dj, to
(t VD& D3)®w11§/‘\‘\v(lc) for some N € N. Set Dy :=t¥D; @ Ds. Then, Ds
is a coherent E@oAlog—module, it is stable under Vy, w) and Vy, w| D, 18
topologically nilpotent as Vv, w)lp, and Vy, wae|p, are. Thus conditions
3.66(2)&(b) hold. If we take n € N and & < n so that t"¢ satisfies condition
3.66(c) for D; and Ds, then t"¢ sends D; to D; and Dy to t "D, @ D3 for
some m € N. Then, 2", is contained in t"*"p(Ds) so that condition

3.66(c) holds. O

4. List of Symbols

E;g} classical Fontaine ring, §2.1.1

Ajy (Og) classical Fontaine ring, §2.1.1

Ais, Bais classical Fontaine rings, §2.1.1

Alog, Blog classical Fontaine rings, §2.1.1

B, Bz (O) classical Fontaine rings, §2.1.1

D s, Diog, Dgr classical Fontaine functors, §2.1.1

X, Tx, Faltings’ site and respectively Faltings’ topos associated to X
and L, §2.2.3

Ox, (535 Fontaine sheaves, §2.3

Agypp, Fontaine sheaf, §2.3

Ay Fontaine sheaf, §2.3

AlvogyL, Fontaine sheaf, § 2.3
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Ajog Fontaine sheaf, §2.3.4

Blzg Biog Fontaine sheaves §2.3.6

EZE:K’ Elog K

Dgeo Fontaine functor §2.4.1
Digg Fontaine functor §2.4.3

R,, R° rings, §3.1

R relative Fontaine ring, §3.1.2

Fontaine sheaves §2.3.7

R, relative Fontaine ring §3.1.3
E§ relative Fontaine ring, §3.1.4
AJr , relative Fontaine ring, §3.1.5
At (R /O), At (R/R), Aine (R /k) relative Fontaine rings, § 3.2
By (R). B, (R). Biz,,(R), Bjg,, (R) relative Fontaine rings, §3.2

B BM* pelative Fontaine rings, § 3.4

log » “log
]c;'; V(R), Alc(gs"v, relative Fontaine rings, § 3.4

Rmax ring, §3.4.4

A+ Jog,V A+ Jlog,V
R max

,max
+, geo \Y .V €0,cri s .
AL i i Af;;oo, Afgg (R), AL S(R), ﬁfgm relative Fontaine rings, § 3.5

Dggr, DdR relative de Rham functors, §3.3
DY DM pelative Fontaine functors, § 3.6

relative Fontaine rings §3.4.4

log » ~log
log,geo log,geo : : :
D557, Dpae” geometric, relative Fontaine functors, § 3.7
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