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Rigid Cohomology and de Rham-Witt Complexes
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ABSTRACT - Let k be a perfect field of characteristic p > 0, W,, = W,,(k). For sepa-
rated k-schemes of finite type, we explain how rigid cohomology with compact
supports can be computed as the cohomology of certain de Rham-Witt com-
plexes with coefficients. This result generalizes the classical comparison theo-
rem of Bloch-Illusie for proper and smooth schemes. In the proof, the key step is
an extension of the Bloch-Illusie theorem to the case of cohomologies relative to
W, with coefficients in a crystal that is only assumed to be flat over W,,.

1. Introduction

Let k& be a perfect field of characteristic p > 0, W,, = W, (k) (for all
n>1), W =W(), K = Frac(W). If X is a proper and smooth scheme over
k, and if WQ5 = lgn W, Q2% denotes the de Rham-Witt complex of X, the

n
classical comparison theorem between crystalline and de Rham-Witt co-
homologies ([8, III, Th. 2.1], [14, II, Th. 1.4]) provides canonical iso-
morphisms

(1.1.1) H o (X /W) — H (X, W,Q%),
(1.1.2) H o (X/W) = H (X, W),
(1.1.3) H o (X W)k — H' (X, WQ% ),

where the subscript x denotes tensorization with K. In particular, the
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latter allows to study the slope decomposition of crystalline cohomology
under the Frobenius action, thanks to the degeneracy of the spectral
sequence defined by the filtration of WQ5 by the subcomplexes W.Q}Z(i
[14, IT, Cor. 3.5].

In this article, our main goal is to generalize the isomorphism (1.1.3) to
the case of a separated k-scheme of finite type. Then H,  (X/W)k is no
longer in general a good cohomology theory, but we may use instead rigid
cohomology with compact supports, which coincides with Hg. (X /Wk
when X is proper and smooth, while retaining all the standard properties of
a topological cohomology theory. The key case is the case of a proper k-
scheme, as the non proper case can be reduced to the proper one using a
mapping cone description. We will therefore assume for the rest of the
introduction that X is proper.

When X is singular, the classical theory of the de Rham-Witt complex
can no longer be directly applied to X. Instead, we will consider a closed
immersion of X into a smooth k-scheme Y of finite type, and we will use on
Y de Rham-Witt complexes with coefficients in crystals, as introduced by
Etesse in [11]. More precisely, we will construct on Y a WOy g-algebra
A}}Xy, supported in X and closely related to the algebra of analytic func-
tions on the tube of X in ¥ when Y admits a lifting as a smooth p-adic
formal scheme Y over W. This algebra is endowed with a de Rham-Witt
connection, which extends so as to define a complex AY y &wo, W} (the
tensor product being completed for the canonical topology of the de Rham-
Witt complex). Our main result, which is part of Theorem 5.2, is then the
existence of a functorial isomorphism

(1.1.4) H;3,(X/K) — H'(Y, A} y Gwo, W),

which coincides with (1.1.3) when X is smooth and ¥ = X.

A key ingredient in the proof of Theorem 5.2 is the use of Theorem 3.6
and of its Corollary 3.8, which provide generalizations of the comparison
isomorphisms (1.1.1) and (1.1.2) to the case of cohomologies of a smooth k-
scheme Y with coefficients in a crystal in Oy, w,-modules (resp. Oy w-
modules) €. Such results have been previously obtained by Etesse [11,
Théoreme 2.1] and Langer-Zink [18, Theorem 3.8] when & is flat over
Oy,w, (resp. Oy,w). However, this assumption is not verified in our sit-
uation, since we work on the smooth scheme Y with crystals supported in
a closed subscheme X C Y. We give here a proof of the comparison the-
orem with coefficients in £ that only requires £ to be flat over W,,, in the
sense of Definition 2.3 (resp. quasi-coherent and flat relative to W). It



Rigid Cohomology and de Rham-Witt Complexes 289

provides under these assumptions functorial isomorphisms

(1.1.5) Y /W,,&) = H Y,V @ 0, W.Q}),

c1 Vs

(1.1.6) Y/W,&) = H'Y,EY Qwo, W2,

crys
where EXV is the evaluation of the erystal £ on the PD-thickening (Y, W, Y)
(resp. eV = 1(i31 & nW). As afirst application, we get that, when the immersion

n
X — Y is regular (in particular, when X is smooth), there exists functorial

isomorphisms
1.1.7) X/W,) = HA(Y, PX v @w,0p Wi %),

X/W) = H*(Y, PYy Swo, W23,

cry%
(1.1.8)

crys
where P)V(V_Yﬂ is the divided power envelope of Ker(W, Oy — W, Ox) with
compatibility with the canonical divided powers of VW, 10y, and
P}V}IY - hm ,P}/(VY ne

Note that, even if X is smooth, the possibility of computing the
crystalline cohomology of X using the de Rham-Witt complex of a smooth
embedding was not previously known. Our results imply in particular
that, as objects of the derived category D’(X,K), the complexes
PYy . @0, Waly, PYy Gwo, W5, and AYy Swo, W} do not de-
pend, up to canonical isomorphism, on the embedding X < Y. It would be
interesting to have a direct proof of this fact in the form of appropriate
Poincaré Lemmas.

We now briefly describe the content of each section.

In section 2, we prove some Tor-independence properties of the sheaves
of Witt differentials Wn.(l{, on a smooth k-scheme Y, and, more generally,
of the graded modules associated to their canonical filtration or to their p-
adic filtration. Specifically, we show in Theorems 2.6 and 2.10 the vanishing
of the higher Tor’s involving such sheaves and the evaluation on the PD-
thickening (Y, W, Y) of a crystal on Y/W,, that is flat over W,, — a result
that may seem surprising at first sight, given the intricate structure of the
sheaves of Witt differentials. The flatness assumption allows to reduce to
similar statements for the reduction modulo p of the erystal. The key point
is then the existence of a filtration of the crystal such that the corre-
sponding graded pieces have p-curvature 0. Thanks to Cartier’s descent,
this allows to write them as Frobenius pullbacks, and it is then possible to
conclude using the local freeness results proved in [14] when the graded
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modules associated to W,,LQ{', are viewed as Oy-modules through an ap-
propriate Frobenius action.

We use these results in section 3 to prove the comparison theorem
between crystalline and de Rham-Witt cohomologies with coefficients in a
crystal that is flat over W,, (Theorem 3.6). As in the constant coefficient
case, the proof proceeds by reduction to the associated graded complexes
for the p-adic and for the canonical filtration. The Tor-independence re-
sults of the previous sections allow to reduce to the fact that, in the con-
stant coefficient case, one gets quasi-isomorphisms between complexes
that can be viewed as strictly perfect complexes of Oy-modules when Oy
acts through an appropriate power of Frobenius. The section ends with the
above mentionned application to crystalline cohomology for regularly
embedded subschemes.

We begin section 4 by recalling the definition of rigid cohomology for a
proper k-scheme X. Given a closed immersion of X in a smooth p-adie formal
scheme P over W, let Ay p be the direct image by specialization of the sheaf
of analytic functions on the tube of X in P. We explain how Ay p can be
identified with the inverse limit of the completed divided power envelopes
(tensorized with K) of the ideals of the infinitesimal neighbourhoods of X in
P. We also give a variant of this result in which these envelopes are replaced
by their quotients by the ideal of p-torsion sections. If X is proper over k and
is embedded as a closed subscheme in a smooth k-scheme Y, we derive from
this construction an isomorphism between the rigid cohomology of X and the
derived inverse limit of the crystalline cohomologies (tensorized with K) of
the infinitesimal neighbourhoods of X in Y (Theorem 4.7).

In section 5, we keep these last hypotheses, and we use the crystalline
nature of the previous constructions to define two inverse systems of
WOy k-algebras canonically associated to X — Y, with isomorphic inverse
limits. By definition, this common inverse limit is the WOy g-algebra A}}Zy
entering in the isomorphism (1.1.4). To define (1.1.4) and to prove Theorem
5.2, we combine the isomorphism of the previous section, which identifies
the rigid cohomology of X with the limit of the crystalline cohomologies of
its infinitesimal neighbourhoods in Y, with an isomorphism derived from
the comparison theorem 3.6, which gives an identification of this limit with
the cohomology of the complex A}V,y Swo, W% The first identification
uses the description of AY y as a limit of PD-envelopes, while, because of
the W, -flatness assumption in Theorem 3.6, the second one uses the sec-
ond description given in section 4, based on p-torsion free quotients of PD-
envelopes. We end the section by extending (1.1.4) to rigid cohomology
with compact supports for open subschemes of X.
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To conclude this article, we explain the relation between the iso-
morphism (1.1.4) and the isomorphism [5, (1.3)], which identifies the slope
<1 part of rigid cohomology with Witt vector cohomology. As a con-
sequence, we obtain that the part of slope > 1 of H;;-g(X /K) can be iden-

tified with the cohomology of a subcomplex of A}vzy Swo, W% We hope
that Theorem 5.2 can also be used to provide a description of parts of
higher slopes in H;;.g(X /K), but this is still an open question at this point.

General conventions

1) Inthe whole article, we denote by k a perfect field of characteristic p,
by W,, = W, (k) (for » > 1) and W = W(k) the usual rings of Witt vectors
with coefficients in k, and by K the fraction field of W. Formal schemes
over W are always supposed to be p-adic formal schemes.

2) If Y is a k-scheme, we call crystal on Y /W, (resp. Y /W) a crystal
in Oy,w,-modules (resp. Oy w-modules) on the usual crystalline site
Crys(Y/W,,) (resp. Crys(Y/W)) [7, Def. 6.1].

3) From section 3 till the end of the article, we assume for simplicity
that all schemes and formal schemes under consideration are quasi-com-
pact and separated.

2. Tor-independence properties of the de Rham-Witt complex

Let Y be a smooth k-scheme. We prove in this section Tor-in-
dependence results between the sheaves of de Rham-Witt differential
forms W, Q7. and the evaluation on the Witt thickenings (Y, W,Y) of a
crystal on Y /W, that is flat over W,, (see Definition 2.3).

2.1. Let & be a crystal on Y/W,, for some n > 1 (resp. a crystal on
Y /W). Recall that:

a) For each divided powers thickening U — T, where U C Y is an open
subset and T' a W,,-scheme (resp. a W,,-scheme for some »), £ defines an
Op-module E7, which we call the evaluation of £ on T.

b) For each morphism of thickenings (U’,T") — (U, T), defined by a
W,-PD-morphism v : 7" — T, the transition morphism

2.1.1) V'Er — Ep,

defined by the structure of £ as a sheaf of Oy,,-modules (resp. Oy -
modules) on the crystalline site, is an isomorphism.
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We will consider more specifically two families of thickenings. The first
one is the family of thickenings (U, U,,), where U C Y is an open subset
and U, is a smooth lifting of U over W,, (which always exist when U is
affine). When U = Y and a smooth lifting Y,, has been given, we will simply
denote by &, the Oy,-module Ey,. From the crystal structure of &, £, in-
herits an integrable connection V, : &, — &, ® Q; W which is quasi-
nilpotent [7, Def. 4.10]. This construction is functorial in £, and defines an
equivalence between the category of crystals on Y /W,, and the category of
Oy,-modules endowed with an integrable and quasi-nilpotent connection
relative to W,.

If £ is a crystal on Y/W and Y is lifted as a smooth formal scheme Y
over W, with reduction Y,, over W,,, £ can be viewed as a compatible family
of crystals on Y /W,, for all n. Thus, £ defines for all » an Oy,-module &,
endowed with an integrable connection V,, such that &, ~ &,,.1/p"E,.1 as

a module with connection. Then the Oy-module £ = l(iln &, has a connec-
n
tion V = 1<iLn V., and one gets in this way an equivalence of categories

between t};?e category of crystals on Y/W and the category of p-adically
separated and complete Oy-modules endowed with an integrable and to-
pologically quasi-nilpotent connection.

The second family of thickenings we are going to use is provided by the
immersions Y — W, Y := (|Y|, W,,Oy), which are divided powers thicken-
ings thanks to the canonical divided powers of the ideal VW,,_; Oy (defined
by (Va)t! = (pi=1/iV (&' for all i > 1). Thus, evaluating £ on (Y, W,Y)
defines a W,,Oy-module, which will be denoted by EZV . For n' <, the
closed immersion W, Y — W, Y defines a morphism of PD-thickenings of
Y, hence the crystal structure of £ provides a homomorphism SI;V — 83’,
the linear factorization of which is an isomorphism

2.1.2) W, Oy W, 0y EI;V o SZL[’/

If £1is a crystal on Y /W, these homomorphisms turn the family of W, Oy-
modules (5%121 into an inverse system of W,,Oy-modules.

2.2. Let 6: W — W be the Frobenius automorphism of W. We now
assume that we are given a smooth formal scheme Y lifting Y over W, with
reduction Y,, over W,,. We assume in addition that Y is endowed with a o-
semi-linear morphism F': Y — Y lifting the absolute Frobenius endo-
morphism of Y. As Oy is p-torsion free, the homomorphism F : Oy — Oy
defines a section sp: Oy — WOy of the reduction homomorphism
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WOy — Oy, characterized by the fact that w;(sp(x)) = Fi(x) for any
¢ € Oy and any ghost component w; [14, 0, 1.3]. Composing sy with the
reduction homomorphisms and factorizing, we get for all » > 1 a homo-
morphism

(2.2.1) tF : OY” — WnOY.

These homomorphisms are compatible with the reduction maps when n
varies, and functorial in an obvious way with respect to the couple (Y, F).

The morphism ¢z is a PD-morphism, because the canonical divided
powers of VW,,_1 Oy extend the natural divided powers of (p). Therefore, it
defines a morphism of thickenings of Y, and, for any crystal £on Y /W,,, we
get a canonical isomorphism

2.22) W,0y oy, €1 — EV,

where the scalar extension is taken by means of the homomorphism ig.
We will need the following condition on &:

DEFINITION 2.3. Let Y be a smooth k-scheme.

(i) If £1is a crystal on Y/W,,, we say that & is flat over W, if, for any
smooth lifting U,, over W), of an open subset U C Y, the evaluation £y, of
& on U, is flat over W,,.

(i) If £isacrystal on Y/W, we say that £ is flat over W if, for all n, the
induced crystal on Y /W, is flat over W,,.

For any open subset U C Y, two smooth liftings U,,, U, of U over W,
are locally isomorphic, and such local isomorphisms extend canonically to
the evaluations on U, and Uy, of a crystal. Therefore, £ is flat over W, if and
only if there exists an open covering U, of Y and, for all &, a smooth lifting
U,y of U, over W, such that the evaluation &, ,, of £ on U, ,, is flat over W,,.

Similarly, when £ is a crystal on Y/W, £ is flat over W if and only if
there exists an open covering U, of Y and, for all ¢, a lifting U, of U, as a
smooth formal scheme over W such that the corresponding Zariski sheaf
?a = 1(ir_n Eun on U, is p-torsion free.

n
If £ is flat over W, (resp. W), then its restriction to Crys(Y /W) is flat
over W; for any ¢ < n (resp. any ¢). If £ is flat as an Oy w, -module (resp. as
an Oy y-module), then & is flat over W,, (resp. over W).
We now begin our study of the Tor-independence properties between
the sheaves WnQ‘{, and the evaluation of a crystal that is flat over W,,. We
recall first from [14, I, 3.1] that, for ¢ € 7, the i-th step of the canonical
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filtration of WﬂQ{, (resp. WQ{,) is the sub-W,,Oy-module (resp. sub-W0Oy-
module) defined by

W, if i <0,
Fil'W,Qy = { Ker(W, Q) — WiQ}) if 1<i<n,
0 ifi>n

o Wl if i <0,
resp. Fil'WQy, = . A :
Ker(WQ) — WiQ}) ifi>1

We denote

gr'W, Q) = Fil'W,Q /Fil™ W, 1,

gr'WQl = Fi'WQ) /Fil'weol.

By construction, the ecanonical homomorphism
gr'WQl — gr'W, @),

is an isomorphism for i <n. Note that, under the assumptions of 2.2, the
homomorphism tr defined in (2.2.1) endows the sheaves FiliW,aQ{, and
griW,,«Q{, with an Oy,-module structure for 1 < <% and all ¢, 5.

The following lemma allows to relate the reduction modulo p of tF with
the usual Frobenius endomorphism.

LeEmMaA 2.4.  Let A be a commutative ring without p-torsion, F : A — A
a ring homomorphism lifting the absolute Frobenius endomrphism of
A/pA, and sp:A — W) the ring homomorphism such that
wi(sp(x)) = Fi(x) for all x € A and all i > 0 [14, 0, 1.3]. Let n > 1 be an
mteger, A, = A/p"A, trp : A, — W, (A1) the factorization of sy as in (2.2.1),
and tp : Ay — W, (A1)/pW,(Ay) the reduction modulo p of tp. Denote by

(241 F: Ay~ W, (AD)/VW, 1(A1) — W(AD/pW, (A1)

the homomorphism induced by the action of F' on W, (A1)/pW,(A1). Then
F is equal to the composition

©.4.2) A DAy WA WAy,

where the first homomorphism F is the absolute Frobenius endomorphism
OfAl.
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Proor. _It suffices to prove the equality of the morphisms obtained by
composing F and tp o F' with the surjection A — A;. By construction, there
is a commutative diagram

A~—W(A) — L W(A) ——— W, (A))/pWa(A))

l
\} i/

] —»H Ay)/pWh(Ay)

T

in which the unlabelled arrows are the canonical surjections. Note that
the commutativity of the left upper square (in which the upper F' is the
given homomorphism and the lower one the canonical Frobenius en-
domorphism of W(A)) is a consequence of the definition of sz [14, 0,
1.3]. The lemma follows from the equality of the exterior paths of the
diagram. O

LEmMMA 2.5. Let Y be a smooth k-scheme, such that there exists a
smooth formal scheme Y over W lifting Y and a semi-linear en-
domorphism F of Y lifting the absolute Frobenius endomorphism of Y.
For some n > 1, let € be a crystal on Y /W,, flat over W,,. Let Y,, be the
reduction of Y over W,, and &, the evaluation of £ on Y,. Then, for the
Oy,-module structure defined on W,Oy-modules by tr,

@25.1) Tors (€, Fil'W, Q) = Tors (€, gr'W,2)) = 0

forq>11<r<mn, and all 1, j.

In particular, when W, Oy is viewed as an Oy, -algebra through tr, £,
and W,,Oy are Tor-independent over Oy, .

Proor. The canonical filtration of W, Qi is discrete and codiscrete, so
it suffices to prove the vanishing of 7¢ mﬂo"‘ (&n, griWyQ{,). Moreover, we
may assume that » = n, since gr'W,Qy, = 0 fori<0or: > r,and the natural
map gr'W, .Qj — gr'W, .Qj is an isomorphism for 0 <i<r < n.

As gr' WnQ] is anmhllated by p, its Oy, -module structure is also given

by the composition Oy, — Oy I, W,.Oy /pW,,Oy, where tr is the reduction
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of tr mod p. Therefore, we obtain isomorphisms
L A L Lo ,
En ® ngWn'Q'{/ ~ (& ® Oy) ® gI'an.Qg/.
OY” OYn, OY

Because &, and Oy, are flat relatively to W,,, we have

L L L L o~
En ® Oy ~ &, ® (OY,L%)k) ~ & ®k— &,

OYn, OYn n

so it suffices to prove that
Torffy (&1, griW%Q{,) =0

for ¢ > 1 and all 4, j.

Since £ is the evaluation on Y of a erystal, its connection V; is quasi-
nilpotent [7, Def. 4.10]. Let Ty = .Q%,v be the sheaf of k-derivations on Y
and y : Ty — Endo, (1) the p-curvature of V; [15, 5.0]. We define an in-
creasing filtration of £; by horizontal submodules £7°, m > 0, by setting,
for any affine open subset U C Y,

252) I'(U,&)=
{w € TW,&)|VDy,..., Dy € (U, Ty),yp(Dy) - yp(Dy)@) = 0}

[15,5.5]. As V; is quasi-nilpotent, this filtration is exhaustive, and it suffices
to prove that, for ¢ > 1, m > 0, and all 1, j,

T orf]QY(Ein, griWnQ{,) =0.

By construction, £2 = 0 and, for m > 1, each quotient £ /£ has p-cur-
vature 0. Therefore, for all m, there is an Oy-module F" such that
Er e ~ F* F™, Since F is flat, it is enough to prove that, for all ¢ > 1,
m > 0, and all 7, j,

Tor&" (F", gr'W, Q) = 0,
griWnQ{, being now viewed as an Oy-module thanks to the composition

Oy = Oy - W, 0y /pW, Oy.
By Lemma 2.4, this homomorphism is the factorization
F : OY — WnOY/pVVnOY

of the Frobenius action on W,,Oy /pW,,Oy. As griWn.Q{, is alocally free Oy-
module for this structure [14, I, 3.9], the lemma follows. O
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THEOREM 2.6. Let Y be a smooth k-scheme. For somen > 1, let £ be a
crystal on Y /Wy, flat over W,,, and let S};V be the evaluation of £ on the PD-
thickening (Y, W, Y). Then

2.6.1) TorOr (&) | FilW,Q}) = Tor) O (€N gr'W,Q]) = 0
forg>1,1<r<mn, andalli,

Proor. The statement is local on Y, hence we may assume that Y is
affine and has a smooth formal lifting Y over W endowed with a lifting # of
the absolute Frobenius endomorphism of Y. Let Y,, be the reduction of Y on
W, and &, the evaluation of £ on Y,,. By (2.2.2), tr provides an isomorphism

En @0y, W0y — V.
Applying (2.5.1) for ¢ =5 =0 and r = n, we obtain in D~ (W,,Oy) an iso-
morphism
I,: ~Y
(2.6.2) En @ W,0y — &V,

Yn
On the other hand, the transitivity isomorphism for the derived extension of
scalars yields
L , D~ L L , :
& @ Fi'W,.Q, — (€, ® W,0y) ® Fil'W,Qy

Oy, Yn Oy

~ L : ;
— & © Fil'w,Q.
WHOY

By (2.5.1), the left hand side is acyclic in degrees # 0. The first vanishing of
(2.6.1) follows, and the second one is obtained by the same argument. O
We define the canonical filtration of £} @w,o0, W,.Q}, by

Fil' (€Y @w,0, W,Q)) =

2.6.3) &Y @w,o, Wal2} if i<0,
Ker(EY @w,0, W@} — EY @wo, WiQ)) if 1<i<n,
0 if ¢ > n.

Using (2.1.2), the theorem implies:

COROLLARY 2.7.  Under the assumptions of the theorem, the natural
map

2.7.1) EY @w, 0, FilW, Q) — Fil'E€) @w,0, W,.2))

18 an isomorphism for all 1.
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2.8. Let Y be a smooth k-scheme, and assume that » > 2. If £ is a
crystal on Y/W,,, multiplication by p on SW ®@ W, Qj vanishes on the image
of EW ® Fil" W, Q] Factorizing and taking the 1s0m0rphism (2.1.2) into
account, one gets a canonical homomorphism

2.8.1) p:EY L ®w, o W Q) — &) @w,0, W, Q5.
We recall that, when & = Oy y,, the morphism p is an injection
p: W1 Q) — W, Q)
for all j [14, Prop. 3.4]. It follows that, for ¢ > 1, there is an exact sequence
(2.82) 0—W,_1Q} p W, 1!2 - WnQY/plW 97 —>WnQ§/anQ7 —0.

We will show later that, when £ is flat over W,,, the homomorphism
(2.8.1) is still injective (see Corollary 2.11). This is a consequence of another
Tor-independence property, which we prove next.

LEMMA 2.9.  Let Y be a smooth k-scheme. For n > 1 and all j, the sheaf
W, Q1 /pW,.25, is a locally free Oy-module of finite rank for the structure
defined by the homomorphism F : Oy — W, Oy /oW, Oy (2.4.1).

Proor. We proceed by induction on 7, the claim being clear for n = 1.
We set WnQ]Y =0 for n = 0. For n > 1, the commutative diagram with
exact rows

0 — g™ W, —— W, —— W, 1) —0

p I’{ I’lA

- W, -0

0 - o7 H,,HQ,- '”u+|-~)

yields an exact sequence

0 > gl‘"”,,+1-.) /pgr™” 'II,,Q;

W18, /[ pW, 8, ———— W, 4, /pW,, 1, — 0

in which the morphisms are Oy-linear for the module structure defined by
F.As PWa 1QY = anQ for all » > 1, the induction hypothesis reduces to
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proving that g'r”WnHQ{, /p gr”‘anQ{, is  a locally free finitely generated
Oy-module for the structure defined by F. By [14, I, (3.10.4)], there is a
commutative diagram

. . rn—1 . . .
0 — Q/Boi O, L g W, 08, — Q571 /Z, 15— 0

)

Cc1 p cl
\ \ Y

. V" . . s - o
0 — O, /B,Y, — gt"W,i O, —— 7 /2,07 ——0

in which the exterior columns are defined by the inverse Cartier operator
C~1 and we set By, = 0, ZoQj, = Q4. All maps in this diagram become
Opy-linear maps if we endow the terms of the middle column with the
structure defined by F, the exterior terms of the upper row with the
structure defined by F, and the exterior terms of the lower row with the
structure defined by F"*! (see [14, I, Cor. 3.9]). Therefore, the corre-
sponding cokernel sequence, which can be written as

0 — B — gr"W,.1Q) /pgr W, Q) — BQJ — 0,

is an Oy-linear exact sequence when BQ{, and B.Q{,+1 are viewed as Oy-
modules thanks to F"*1, By [14, 0, Prop. 2.2.8], they are then locally free of
finite rank over Oy, which ends the proof. O

THEOREM 2.10. Let Y be a smooth k-scheme, and let £ be a crystal on
Y /Wy, flat over W, Let EE/ be the evaluation of € on (Y, W, Y). Then
210.1)  Tor)Or &Y W, Q) [p'W, Q) = Torl O (€N p'W,2]) = 0

n

forq>1,1<r<mn,1>0 and all .

Proor. Thanks to Theorem 2.6, it suffices to prove the vanishing of the
left hand side.

The statement is trivial for ¢ = 0. Let us prove it first for i = 1. We may
assume that Y is affine, and we can choose a smooth formal scheme Y
lifting Y over W, together with a lifting F’ of the absolute Frobenius en-
domorphism of Y. Then the isomorphism (2.6.2) and the transitivity of the
derived extension of scalars show as in the proof of Theorem 2.6 that it is
equivalent to prove the relation

(2.10.2) Tory " (€, W, Q21 /pW, Q%) = 0,
where WyQ{, /pWyQ{, is viewed as an Oy,-module thanks to {7. As this
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module is annihilated by p, the flatness of &, relative to W,, implies as in
the proof of Lemma 2.5 that it is equivalent to prove that

(2.10.3) TorO (€1, W, Q4 /pW,2]) = 0,

where & = &, /pE, and WVQ{, /pWV.Q{, is viewed as an Oy-module thanks
to the reduction t7 : Oy — W, Oy /pW,Oy of tr. Repeating again the proof
of Lemma 2.5, we can use the p-curvature filtration of £; to reduce (2.10.3)
to the relation

2.10.4) Tor" (F, W, 2}, /[pW,2},) = 0,

where F is an Oy-module and WTQ{, /pWTQ{, is viewed as an Oy-module
through the composition #z o F. As the latter is equal to F by Lemma 2.4,
relation (2.10.4) is then a consequence of Lemma 2.9. ‘

This proves that, for i = 1, T or(‘IV”OY(EZV, W,Q4, /p'W,2;,) vanishes for
q > 1,1 <r < mn,and allj. Moreover, by Theorem 2.6, it also vanishes when
r=1for ¢ > 1,7 >0, and all j. Using the exact sequences (2.8.2) and the
previous result for ¢ = 1, one can then argue by induction on # to prove that

the same vanishing holds for 1 < » < and all 7 > 0. O

COROLLARY 2.11.  Let Y be a smooth k-scheme, and let £ be a crystal on
Y /W, for some n > 2. If £ is flat over W,,, the homomorphism (2.8.1) is an
mjection

. oW J W J
p: 5n71 KW, 10y anl‘QY - gn KW, 0y WW‘QY'

ProoF. Since p : WVHQ{, — WnQ{, is injective, it follows from the
theorem that

dep: & ew,o, Wai2) — EY @w,0, Wi}
is injective too. Using (2.1.2), we get an isomorphism

&V w00 Wur Q@ — V| @w, ,0p WurQ5,
which identifies Id ® p to the homomorphism p defined by (2.8.1) and
completes the proof. O

2.12. We now assume that £ is a crystal on Y /W, flat over W, and we
consider the inverse system of W,,Oy-modules £ defined in 2.1 by taking
the evaluation of £ at all thickenings (Y, W,Y) when » varies. We also
assume that £ is a quasi-coherent crystal, i.e., that, for any PD-thickening
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(U, T) in Crys(Y /W), the evaluation £r of £ on T is a quasi-coherent Op-
module. It is equivalent to ask that, for any n > 1, this condition be verified
for thickenings of the form (U,, U, ), where U, varies in an open covering
of Y and U, is a smooth lifting of U, on W),. Thanks to [14, I, Prop. 1.13.1],
the W,,Oy-module 5}?’ W, 0y Wn.Q‘; is then quasi-coherent for all n > 1
and all j.
For all j, we define
E"Bwo, W :=1im (&) @w,0, Wu2}).

n

By construction, we have projections
EW(/QWOYWQ{/ — SXV QOW,0y W@Q{,

for each 7 > 1, and, since the inverse system has surjective transition
maps and quasi-coherent terms, the Mittag-Leffler criterion implies that
these projections are surjective. We define the canonical filtration of
EW&X\)WOY W.Qg/ by
PN ; o
Fil' € S0, W) = {5 swo, Way - Hesh,
Ker(€" Syo, Wl — &Y @w.o, WiQl) if i > 1.

Note that, for : > 1,
Fil' (€Y @wo, W) — limKer(€) @w,0, Wa2y — £ @wo, Wi2}),
n

hence the Mittage-Leffler criterion implies that, for any affine open subset
UcY,
2.12.1) HYU,Fil'(EY Swo, W) = 0

for ¢ > 1 and all 4, j.

For each affine open subset U CY, the canonical filtration endows
r, EW@)W@YWQ{,) with a topology, which will be called the canonical
topology. From (2.12.1), we deduce the isomorphism

2.12.2) I'(U,EY @wo,W QD/FI I (U,EY Sywo,W Q) T (U,EN 2.0, Wi )

for ¢ > 1. It follows that I"(U, EW@A?WOYWQ{,) is separated and complete for
the canonical topology.

ProrosiTION 2.13.  Let Y be a smooth k-scheme, and let £ be a crystal
on Y /W. Assume that £ is flat over W and quasi-coherent.
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(i) For all 3, multiplication by p is injective on /S\W@)WOYW.Q{,.

(i) If U C Y is an affine open subset, then, for all i > 0 and all j,
p' (U, SW@)WOYW.Q{,) 1s closed in I'(U, EW@@W@YW.Q{,) for the canonical
topology, and I'(U, gW@@W@YW.Q{,) 1s separated and complete for the p-
adic topology.

ProoF. As multiplication by p on E’W@WOYWQ{, is the inverse limit of
the maps P defined in (2.8.1), assertion (i) results from Corollary 2.11.

Let U be an affine open subset of Y, and let ¢ € IN. Using assertion (i)
and Corollary 2.11, we can write a commutative diagram with exact columns

0 0

|

Y

- Llll";:_]. ( ((:,“1 i QW iOy ”',,,,'SZ‘;')

LU, EY wo, W)
Ve | JL
D(U.EY &wo, W) ——1lim _ T(U,EY ®w,0, Wal®)

l.‘(('.c":m-?H'OYHQ{.‘) . i I'(U, 8 AW, Oy H,,() ) ‘
pT(U,EY wo, W) n>i piT (U, EY oy Wa1)

n—i <

| ¢,

0 0

in which the surjectivity in the right hand side column results from
the surject1v1ty of the transition maps in the inverse system
W, ow, oy W ZQY)),W It follows that the bottom horizontal

arrow is an 1s0morphlsm The quasi-coherence assumption on £ implies
that

prUEY; @w, 0y Wit Q4) = p'T(U,EY @w,0, Wa2})
and that the map (2.12.2)

I(U, % @wo, W} — (U, EY @w,0, W2}

is surjective. Therefore the quotient in the right hand side column can be
rewritten as

i (U, &wo, WQ23)
=7 P, EV Swo, W) + Fil" I (U, €Y Sywo, W)
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This proves the first part of assertion (ii). As I'(U, EW@A@WOYWQ{,) is
separated and complete for the canonical topology, which is coarser
than the p-adic topology, the second part of assertion (ii) follows by
[9, Ch. III, § 3, n° 5, Cor. 2 to Prop. 10]. O

3. De Rham-Witt cohomology with coefficients

In this section, we extend the classical comparison theorem between
the crystalline and de Rham-Witt cohomologies of a smooth k-scheme Y to
the case of cohomologies with coefficients in a crystal on Y/W,, that is flat
over W,.

As indicated in our general conventions, we now assume until the end of
the article that all schemes are quasi-compact and separated. We first recall
the construction of the comparison morphism in the case of constant coef-
ficients [14, 11, 1], starting at the level of complexes of Zariski sheaves on Y.

3.1. Let P be a smooth formal scheme over W, with reduction P,, over
W, and special fibre P = P;. Let X C P be a closed subscheme. We denote
by J. (resp. J) the ideal of X in P, (resp. P) and by P,, (resp. 73) the
divided power envelope of 7, (resp. the p-adic completion of the divided
power envelope of 7). In these constructions, we impose that all divided
powers be compatible with the natural divided powers of p, which implies
that P, ~ Py11/p"Ppy1 for all » and P = l(iﬂl P, Divided power envelopes

have a natural connection, which allows to define the de Rham complexes
Pp @ Qp and P Qy; these complexes are supported in X. Let wuxw,
(resp. ux,w) be the projection from the crystalline topos of X relative to
W,, (resp. W) to the Zariski topos of X. In its local form, the comparison
theorem between crystalline and de Rham cohomologies [7, (7.1.2)] pro-
vides functorial isomorphisms

3.1.1) ]R’I/Lx/W”* OX/W,,, ~P,® ‘Q;Jn/W,,,’

(3.1.2) Rux w. Oxyw =P @ Q-

in DP(X, W,,) and DP(X, W) (note that the tensor product does not need to
be completed, since £}, W is a locally free finitely generated Op-module).
Taking sections on X, one gets in D*(W,) and D"(W) the global com-
parison isomorphisms

(313) chrys(X/Wm OX/W”) ~ RF(X, Pn & Q:D,L/W”)v

3.1.4) REerysX /W, Oxyw) ~ RIX, P @ Q).
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These isomorphisms can be generalized to the case where the datum of
the embedding X — IP is replaced by the data of an affine open covering
U =(U,) of X and of closed embeddings U, — P, into smooth formal
schemes [14, 0, 3.2.6]. For each multi-index o= (ag,...,o;), let
U,=UyN---NUy, Py=Py xw--- xw Py, let T, C Op, be the ideal
defining the diagonal embeddings U, — P,, P, its completed divided
power envelope, P, ,, J yn, Py the reductions mod p" of P,, J 5, P,, and let
Ju : Uy—X be the inclusion. One can define Cech double complexes
Josx(Pen ® Q;)._N) (resp. j.*(73. ® Q1)) with general term

H jg*(Pz,7l 24 Q{JZ-”) (resp' H jz*(ﬁz ® ijﬁ))

a=(0tg..,0) a=(210,.--,04)

in bidegree (J,1). If one uses the subscript “t” to denote the total complex
associated to a multicomplex, one can then generalize the isomorphisms
(3.1.1) and (3.1.2) as

(3.1.5) Ruxw,« Ox/w, = (Jox(Pey @ Qb
(3.1.6) Rux w. Oxyw = (jor(Po © Q3 ),

and one gets similar generalizations of (3.1.3) and (3.1.4).

DEFINITION 3.2. Let P be a smooth formal scheme over W, endowed
with a g-semilinear morphism F': P — P lifting the absolute Frobenius
endomorphism of its special fibre P, and let X C P be a closed subscheme.
For any n > 1, let tp : Op, — W,,Op be the homomorphism (2.2.1) defined
by F'. Then the composition

3.2.1) Op, 5 W,0p — W, 0x

maps J, to VW, _10x Cc W,,Ox. Using the natural divided powers of the
ideal VW,,_1Ox (which are compatible with the divided powers of p), the
universal property of divided power envelopes provides a unique factor-
ization of this composition through a homomorphism denoted

3.2.2) hp : Py, — W, 0x,

which commutes with the divided powers.

3.3. Let Y be a smooth k-scheme, embedded through a closed im-
mersion Y — P into the special fibre of a smooth formal scheme P over W.
Assume that IP is endowed with a Frobenius lifting /" as in 3.2, and keep for
Y the notation introduced for X in 3.1-3.2. Then the homomorphism (3.2.1)
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extends as a morphism of complexes
3.3.1) Qp — W, Qp — W, Q5.

Thanks to the structure of graded P,-algebra defined by &y on W, Q5, this
morphism defines by extension of scalars from Op, to P,, an hp-semi-linear
morphism

(3.3.2) Pn®Qp — W, 0%,

which is still a morphism of complexes. When % varies, these morphisms are
compatible, and their inverse limit gives a morphism of complexes

3.3.3) P, — Wy

The morphisms (3.3.2) and (3.3.3) are functorial with respect to the triple
(Y,P,F) in the following sense. Let P’ be a second smooth formal W-
scheme, with special fibre P’,let Y’ C P’ be a smooth closed subscheme, and
let F': P — P’ be a lifting of the Frobenius endomorphism of P’. If
u: P'— P is a W-morphism commuting with ¥ and F”, and inducing a k-
morphism f : Y’ — Y, then we get commutative diagrams

[(Pa®Q},) ——— s [H(W,0})

(3.3.4) J l
)’ (3.3.2)

(3.3.3)

(3.3.5) l l
' 48

where the vertical maps are the functoriality morphisms.

The morphisms (3.3.2) and (3.3.3) are quasi-isomorphisms, and, via (3.1.1)
and (3.1.2), they define the comparison isomorphism between crystalline and
de Rham-Witt cohomologies [14, 11, 1.4]. In the derived category DP(Y, W,,)
(resp. DP(Y, W)) of sheaves of W,-modules (resp. W-modules) on Y, this
comparison isomorphism does not depend on the choice of (P, F') (by the
standard argument comparing two embeddings Y — (P, F) and Y — (P, F")
to the diagonal embedding into (P xw ', F x F") via the projection maps).
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If Y is quasi-projective, one can always find such an embedding (PP, F"),
since it suffices to choose for P an open subscheme of a projective space,
endowed with the morphism induced by some lifting of the Frobenius
endomorphism of the projective space. In the general case, one can choose
an affine open covering Il = (U,) of Y and closed immersions U, — IP, into
smooth formal schemes endowed with a lifting of Frobenius. As in 3.1, one
can then identify Ruy w, .Oyw, with the total complex associated to the
Cech double complex jo.(P., ® 25 ) (resp. Ruy w.Oy w, j.*(73. ® Q%)).
On the other hand, the total compléx associated to the Cech double com-
plex Ce(, W, Q%) (resp. Ce(, WQ5)) provides a resolution of W,Q5
(resp. WQ5,). Endowing each [P, with the product ', x - - - x F,, and using
the functoriality (3.3.4) (resp. (3.3.5)), one gets between these double
complexes a morphism that is defined on each intersection U, by the
corresponding morphism (3.3.2) (resp. (3.3.3)). Since each of these is a
quasi-isomorphism, so is the morphism induced between the associated
total complexes. In the derived categories D(Y,W,) and D(Y, W), this
provides isomorphisms

3.3.6) Ruy w, «Oyw, e
3.3.7) Ruy w.Oyw = W,

which extend the comparison isomorphisms (3.3.2) and (3.3.3) to the general
case and do not depend on the choices (see [14, II, 1.1] for details).

3.4. Let us keep the hypothesis of the existence of an embedding
Y — P of Y into a smooth formal scheme, and let £ be a crystal on Y /W,, for
some 7 > 1 (resp. a crystal on Y /W).

We now denote by £,, the evaluation of £ on the thickening (Y, Spec(P,,)).
By construction, &, is a P,-module, and, by restriction of scalars, it can also
be viewed as an Op, -module. As such, it inherits from the crystal structure
of £ an integrable connection V,, : £, — &, ® Q}g Wy compatible with the
natural connection on P,. This connection allows to define the de Rham
complex &£, ® .Q}M w,- When & is a crystal on Y /W, it can be viewed as a
compatible family of crystals on Y /W, for all n. Thus, £ defines for all n a
Pr-module &, endowed with an integrable connection V,, such that
En = Enna /P"En+1 as a module with connection. Then the P-module

E= l(iin &, has a connection V = 1<iLn V.., and we get similarly the de Rham
n

complex £ ® Q5 W We recall that the datum of (£,,,V,) (resp. (£,V)) is
equivalent to the datum of the crystal £.
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As in the case of cohomology with constant coefficients, the comparison
theorem between crystalline and de Rham cohomologies yields functorial
isomorphisms [7, Th. 7.1]

3.4.1) Ruy jw, € = & ® Qp, 1w,

(3.4.2) R ays(Y /Wy, €) = RI(Y, €, @ Qp, ),
and, when £ is a quasi-coherent crystal on Y /W [7, Th. 7.23],
(34.3) Ry w. € ~ €@ Qb y,

(3.4.4) Rl erys(Y /W, ) = RI(Y, E @ Q3 ).

If 1 = (U,) is an affine open covering of Y and (U, — PP,) a family of
closed immersions into smooth formal schemes over W, these iso-
morphisms can be generalized when £ is quasi-coherent by replacing
En @ Qp, )y, and £® Q7w with the total complexes (jo.(Ep,, @ 2p, jw,

and ( j.*(g])' ® Q. /W))t defined as in 3.1. When £ is a non necessarily
quasi-coherent crystal relative to W,,, a similar expression can be given
using cohomological descent [14, 0, 3.2.6].

3.5. We keep the notation £ used in 2.1 for the evaluation of £ on the
thickening (Y, W, Y). As shown by Etesse [11, IT, 2], the crystal structure
of € also provides a differential V¥ : &Y — &V @y, 0, W, 2}, which ex-
tends so as to define a complex £ @w, 0, W,2}.

Let us assume again that P is endowed with a lifting F' of the absolute
Frobenius endomorphism of P. Then the PD-morphism &y : P, — W, Oy
defined in (3.2.2) corresponds to a morphism of thickenings W, Y — Spec (P,,),
and the crystal structure of £ provides a natural hp-semi-linear map

hgyF : gn — EW

n

the linear factorization of which gives an isomorphism
(3.5.1) 1® hey : WOy @p, £ — £

(generalizing (2.2.2), where Y = P). We can then take the tensor product
over hy : P, — W, Oy of the morphism kg r with the semi-linear morphism
of graded modules P, ® .Q;J" — W, Q5 defined in (3.3.2), and this defines an
hp-semi-linear morphism of graded modules

352 &£, ®o, 2, — En@p, (Pu @0, Q) — EN Dw,0, Wl

It is easy to deduce from the constructions of V, and V)V that this
morphism is actually a morphism of complexes. When £is a crystalon Y /W,
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the inverse limit of these morphisms when % varies defines a morphism
(3.5.3) £ @0, At — Y Byo, WO,
where the completed tensor product is defined as in 2.12 by

£V Bwo, Wy = 1im (€] @w,0, Wa5).
n

As in the constant case, these morphisms are functorial with respect to
(Y, P,F). Keeping the same notation and hypotheses than in 3.3, let
&' = fuys(6) be the inverse image of &, which is the crystal on Y” corre-
sponding to the inverse image connection (£, V) = (&}(E,), %} (Vy)) on
P, %, denoting the morphism of ringed spaces (P),,P,) — (P, P,) de-
fined by u. Then the following square is commutative:

r—1 P . '/-W]H:‘”—)'.‘)}) r—1 W o y .
FNEn ®op, Up) ————— UEY Sw.0p Wally)

(3.5.4)

(3.5.2) ;
! o . W o 7 ]
5” ‘."‘C)/'l,, SZI"’, 2 5” "—"\A,,C)y/ H ,,QY/

When £ is a erystal on Y /W, there is a similar diagram based on (3.5.3).

When f is the identity on Y, the right vertical arrow of diagram (3.5.4)
is the identity, and the left vertical arrow is a quasi-isomorphism which
corresponds in the derived category to the identity on crystalline coho-
mology, via the canonical identifications (3.4.1) between the crystalline
cohomology of € and the de Rham cohomologies of £, and £, on P,, and P’,.
It follows that, in D*(Y,W,,) and D°(Y, W), the morphisms (3.5.2) and
(3.5.3) do not depend on the choice of (P, F) when they are viewed as
morphisms from crystalline cohomology to de Rham-Witt cohomology via
(3.4.1) and (3.4.3).

Finally, using Cech complexes (or cohomological descent) as in the case
of cohomology with constant coefficients, these functorialities also allow to
extend to the general case (i.e., without assuming the existence of an
embedding Y — (P, F) as above) the construction of the morphisms (3.5.2)
and (3.5.3) as morphisms

(8.5.5) Ruyw, . € — &) @w,0, Wa 2%,
(3.5.6) Rauy . € — EV Swo, W2y

in the corresponding derived categories. Taking global sections, one ob-
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tains morphisms
357 R erys(Y /Wy, ) — RO, EW @0, W, 0Q3),
(8.5.8) RI ey (Y /W, E) — RI(Y, EY By, W23)

(as usual, we assume in (3.5.6) and (3.5.8) that £ is quasi-coherent).
Our basic comparison theorem between crystalline and de Rham-Witt
cohomologies with coefficients is then the following:

THEOREM 3.6. Let k be a perfect field of characteristic p, and let Y be a
smooth k-scheme. For somen € N, let € be a crystal on Y /W,. If £ is flat
over W, the comparison morphisms (3.5.5) and (3.5.7) are isomorphisms
respectively in D*(Y, W,) and D*(W,,).

This generalizes earlier results of Etesse [11, Théoreme 2.1] and
Langer-Zink [18, Theorem 3.8], where £ is assumed to be flat over Oy, .

The first assertion of the theorem implies the second one. To prove the
first one, one can make further reductions. Indeed, taking an affine open
covering (U,) of Y, choosing closed immersions of each U, in a smooth
formal scheme P, endowed with a Frobenius lifting, and using the defi-
nition of (3.5.5) as a morphism of DP(Y, W,,) thanks to Cech resolutions
(or to cohomological descent), it suffices to prove that, on each inter-
section U,, the corresponding morphism (3.5.2) of the category of com-
plexes is a quasi-isomorphism. So we are reduced to proving that, when Y
can be embedded in a smooth formal scheme PP endowed with a Frobenius
lifting, the morphism of complexes (3.5.2) is a quasi-isomorphism. This is a
local statement on Y. As this morphism does not depend in the derived
category on the choice of (P, F"), we may localize and assume that Y, to-
gether with its Frobenius endomorphism, can be lifted as a smooth formal
scheme Y over W, with reduction Y, over W,. Thus we may assume that
P =Y, and it suffices to prove the following local form of the theorem:

THEOREM 3.7. Let k be a perfect field of characteristic p, and let Y be
a smooth k-scheme. Assume that there exists a smooth formal scheme Y
over W lifting Y, with reduction Y, over W,, and a semi-linear en-
domorphism F of X lifting the absolute Frobenius endomorphism of Y.
For some n € N, let € be a crystal on Y/W,. If £ is flat over W, the
morphism of complexes

(3.7.1) En oy, &y — &) @w,0, WaY,

defined by (3.5.2), is a quasi-isomorphism.
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Proor. If we endow the complex £ ® Qf with the p-adic filtration and
the complex £V ®w, 0, WL} with the canonical filtration defined in (2.6.3),
the morphism (3.5.2) becomes a morphism of filtered complexes, and we are
reduced to proving that the morphisms

3.7.2) P'E ®oy, R /pTE 0, Ay — gr'(E€) @w,0, Wa2})

are quasi-isomorphisms for all <.

As the morphism (3.5.2) is hp-semi-linear, the morphism (3.7.1) is tp-
semi-linear. If we denote as before by ¢z the reduction modulo p of ¢z, we
can view gr'W, Q% and gri€) @w,o, W,Q}) as Oy-modules through Zp.
The morphism (3.7.2) is then Oy-linear.

Using (2.7.1), (2.2.2), and the fact that griWnQ;, is annihilated by p, we
obtain natural linear isomorphisms of complexes

&1 ®o, gr'W,Q% = gr (€Y @w, 0, Wa Q).
Multiplication by p’ induces a linear morphism of complexes
Bi 1 &1 ®o, gr'W,Q% — & o, griW, Q.

On the other hand, since &, is flat over W,,, multiplication by p’ induces a
linear isomorphism of complexes

P’ &1 ®oy By o pE Roy, O /PTIE R0, Q.

As in [14, IT 1.4], these morphisms fit in commutative diagrams

~

E1®o, Oy — =+ £ Ro, g'W, 05

P P
¥ ¥

P'E Qoy, Q. [PTE Roy, Ny, — &1 Qo gr'W,Qy,

in which the upper horizontal isomorphism follows from the identifi-
cation between gr'W, Q3 and Q5. Hence it suffices to prove that the
morphisms

Bi 1 &1 ®oy .Q;; — &1 ®oy, g'I'iWnQ;/

are quasi-isomorphisms for all <.

As in the proof of Lemma 2.5, we can endow £; with an exhaustive
filtration by horizontal submodules £/ such that £/ ! has p-curvature
0. Since the filtration is exhaustive, it suffices to prove that the above



Rigid Cohomology and de Rham-Witt Complexes 311

morphism is a quasi-isomorphism when &; is replaced by £} for any m, and
it is even sufficient to prove it for the quotients £"/E"~!. As their con-
nections have p-curvature 0, they are of the form F*F™ for some Oy-
modules F™, as Oy-modules with connection. So it is enough to check that
the morphisms of complexes

3.7.3) P F" R0, F.QY — F" ®0, F.gr'W, Q%

are quasi-isomorphisms. From [14, T 3.14], we know that the morphisms
p': QY — griW, Q5 are quasi-isomorphisms, and both complexes are
linear complexes of locally free finitely generated Oy-modules when Oy
acts by F on @} and by F : Oy — W, 0y /pW,Oy on griW, Q3 [14, I,
3.9]. By Lemma 24, F =i{poF, so the Oy-action on F.gr'W,Q5 in
(3.7.3) is the one given by F. Moreover, the connection on F*F™ is
simply Ids» ® d, where the tensor product is taken through F'. There-
fore these quasi-isomorphisms remain quasi-isomorphisms after ten-
sorizing with 7. O

COROLLARY 3.8. Let k be a perfect field of characteristic p, and let Y be
a smooth k-scheme. Let € be a crystal on Y /W, flat over W and such that
the Oy-module & defined by & is quasi-coherent.

(@) If there exists a smooth formal scheme Y over W lifting Y and a
semi-linear endomorphism F : Y — X lifting the absolute Frobenius en-
domorphism of Y, then the morphism of complexes

3.8.1) E®o, &y — &Y Swo, WS,

defined by (3.5.3), is a quasi-isomorphism.
(ii) In the general case, the comparison morphisms (3.5.6) and (3.5.8)
are isomorphisms in D*(Y, W) and DP(W).

Proor. The quasi-coherence of £; and the flatness of & over W imply
that &, ~ E/p”@ is quasi-coherent for all n. Then the terms of the two
complexes of inverse systems £, @ 2y, and EY @w.o, W.25 have vanishing
cohomology on open affine subsets and surjective transition maps. There-
fore, these are complexes with l{iﬁl—acyclic terms, and we obtain equalities

Rlm(, ® Q) = lim(E, Q).
— . — .

R1im (EY @w.0, Wo23) = LEm(EY @w.0, W.Q3).
— —
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When 7 varies, the quasi-isomorphisms (3.7.1) provide a quasi-isomorphism
of complexes of inverse systems. Applying the R 1<ir_n functor, it follows that
(3.8.1) is a quasi-isomorphism.

As in the proof of Theorem 3.6, assertion (ii) follows from assertion (i)
by taking an affine covering of Y, choosing closed immersions of the open
subsets of the covering into smooth formal schemes endowed with Fro-
benius liftings, and representing the morphism (3.5.3) in DP(Y, W) thanks
to the associated Cech resolutions. O

3.9. As an example of application of Theorem 3.6, we now show that,
for local complete intersections, crystalline cohomology can be computed
using the de Rham-Witt complexes of smooth embeddings. We first
recall a few facts about crystalline direct images by a closed immersion
[7, Prop. 6.2].

Let Y be a k-scheme, and let ¢ : X — Y Dbe a closed immersion defined
by an ideal Z C Oy. For any PD-thickening (U, T, ) of an open subset
U Y, we denote by Zr the ideal of X N U in T. Let iuys« be the direct
image functor from the category of sheaves on Crys(X/W,) (resp.
Crys(X/W)) to the category of sheaves on Crys(Y /W,,) (resp. Crys(Y /W)).
Then:

a) The sheaf iuys. Ox/w, (resp. iays« Oxw) is a crystal in Oy, -al-
gebras (resp. Oy w-algebras) supported in X. Its evaluation on a PD-
thickening (U, T, 0) is given by

(391) (icrys * OX/W”)T = 7)é(Z-T)

(resp. (ierys « Ox w)r), where Ps denotes the divided power envelope with
compatibility with .
b) For all ¢ > 1, R¥ierys « Oxw, = 0 (resp. Rlierys« Oxw = 0).

THEOREM 3.10. Let Y be a smooth k-scheme, and let 1 : X — Y be a
regular immersion defined by an ideal T C Oy. For each n > 1, set
W,Z = Ker(W,,0Oy — W,,Ox). Let PEV be the PD-envelope of W, T with
compatibility with the canonical divided powers of VW, 10y, and let
PV = lim PW. There exists functorial isomorphisms

n

(3.10.1) Rauxw, » Oxw, — PV @w,0, Wal¥,

(3102) RMX/W* OX/W ; 7/5W @W@YW.QE/,
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respectively in D*(X, W,) and D*(X, W), and

(3.10.3) R erys X /W, Oxw,) — RIX, PV @w, 0, W),
(3.10.4) R erys (X /W, Ox jw) — RIX, PV @wo, WR3),

respectively in D*(W,,) and D*(W).

PROOF. As uy,w, = wy,w, © lerys, We get from 3.9 b) a canonical iso-
morphism

(3.10.5) Ruxw, . Oxw, — Ry pw, (erys « Ox/w,)-

To define (3.10.1), it suffices to check that the erystal icrys. Ox w, is flat
over W,, and that its evaluation on W, Y is canonically isomorphic to P!
Theorem 3.6 will then provide an isomorphism

(3.10.6) Raty yw, «(erys « Ox pw,) — PV @w,0p, Wal,

and we will obtain (3.10.1) as the composition of (3.10.5) and (3.10.6).

To check the first claim, consider an affine open subset U C Y on which
7 is defined by a regular sequence (t1, . . ., tg). Let U, be a smooth lifting of
U over W, and ¢y, .. .,%;) a sequence of sections of Oy, lifting (t1, . .., tq). It
is easy to check that (f,...,#;) is a regular sequence in Oy, and that
OU"/(il, ..., 1g) is flat over W,,. The ideal of X in U, is Z, = (p,il, o t),
and, by (3.9.1), the evaluation of icrys« Ox/w on U, is the divided power
envelope P,, of Z,, with compatibility with the divided powers of (p). This
divided power envelope is also the divided power envelope of the ideal
(t1,...,tg) with compatibility with the divided powers of (p), and, by [6,
2.3.3 and 2.3.4], it is flat over W,,. Therefore, the crystal icys « Oxw is flat
over W,,.

On the other hand, (3.9.1) shows that the evaluation of iuys « Ox/w, on
W,Y is the PD-envelope Pean(Zw,y), Where the subscript can denotes
compatibility with the canonical divided powers of VW,,_1Oy. As the ideal
Iw,y can be written

IW,7Y = WnZ + VWYL—IOYv

the second claim follows.

To define the isomorphism (3.10.2), one constructs the family of iso-
morphisms (3.10.1) for variable » so as to obtain an isomorphism in the
derived category of inverse systems. The quasi-coherence of PD-envel-
opes implies that, for all n, P, @w,o, W,y is a quasi-coherent W, Oy-
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module. Therefore, the inverse system with surjective transitions maps
PV 2w, 0, Wa%), is l}r_n-acyclic, and applying the Rl{iLn functor pro-

n
vides (3.10.2). Taking global sections, one gets (3.10.3) and (3.10.4). O

4. Rigid cohomology as a limit of crystalline cohomologies

Our goal now is to apply the comparison theorems of the previous
section to the computation of rigid cohomology with compact supports in
terms of de Rham-Witt complexes, for a separated k-scheme of finite type.
The key case is the case of a proper k-scheme, and our method is based on
the interpretation of the rigid cohomology of such a scheme as a limit of
suitable crystalline cohomologies (see [10, section 2] for a closely related
point of view).

4.1. We briefly recall some basic constructions used in the definition of
rigid cohomology for proper k-schemes (see [2], [4], [19] for details and
proofs).

Let IP be a smooth formal W-scheme, and let Pg denote its generic fibre
in Raynaud’s sense, which is a rigid analytic space over K. If P is affine,
defined by P = Spf A where A is topologically of finite type over W, then
Pk is the affinoid space Ak defined by the Tate algebra Ag. In general, Px
is endowed with a specialisation morphism sp : Px — IP, which is a con-
tinuous map such that sp~'(U) = Ug for any open subset U C P. By
construction, we have

Sp*O'pK = OP.K = O;[)@K.

Let P be the special fibre of P, and let X — P be a closed subscheme
defined by an ideal [J C Op. The tube of X in Pg is the subset
X[p :=sp™(X). If U=SpfA CP is an affine open subset, and if
fi,..., fr € Ais afamily of generators of I'(U, 7), then

4.1.1) IX[p N Ug = {we Ug | Vi,|fi@)| <1},

where, for a point € Uk corresponding to a maximal ideal m C Ag, | f;()|
is the absolute value of the class of f; in the residue field K(x) = Ag/m. In
particular, ]1X[p is an admissible open subset of Pk.

As the specialization morphism sp : Px — P maps 1X[p to X, one de-
fines a sheaf of Op g-algebras supported on X by setting

Axp = sp, O,
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For any affine open subset U C I° and any j, there is a canonical iso-
morphism I (UK,Qf>K) ~ (U, Qﬂ) ® K, which is compatible with differ-
entiation. It follows that the canonical derivation of Ox; endows Ay p with
an integrable connection. Therefore, one can define the de Rham complex
Ax p ® Q}, and, taking into account that each €, is locally free of finite
rank, one gets a canonical isomorphism of complexes

Axp ®o, Qp = 8p,(Qy,).

If U c P is affine, it follows from (4.1.1) that ]1X[p N Uy is quasi-Stein
[17, Definition 2.3], hence Kiehl’s vanishing theorem implies that
Ri sp*(Q]jX[_P) = 0 for all j and all ¢ > 1. Therefore, we obtain

4.1.2) Axp ®o, & =~ Rsp.(Q,)

in the derived category D°(X, K).

As an object of D*(X, K), the complex Ay p ® €5, does not depend (up to
canonical isomorphism) on the choice of the embedding X — P, and it is
functorial with respect to X [4, 1.5]. We will use the notation

4.1.3) RLrig(X/K) =Axp ® QI’

to denote Ay p ® 2}, as an object of DP(X, K). Assuming that X is a proper
k-scheme and can be embedded in a smooth formal scheme P as above, its
rigid cohomology is defined by setting

RIMigX/K) = RI'X, R vig(X/K))

4.14
( ) = RF(X, AXy‘p X .Q.[v) ~ RFGX[P?QIX[[J)'

In the general case, where such an embedding might not exist, one can
generalize this definition using a Cech style construction analogous to the
description of the complex Ruy /w. Ox,w given in 3.1 (see also [13, pp. 28-
29], where the analogous construction is used for algebraic de Rham co-
homology in characteristic 0). One can choose a covering of X by affine
open subsets U,, and, for each o, a closed immersion of U, in a smooth
affine formal scheme P, over W. Then the diagonal immersions for the
finite intersections

UZ = Uaoﬁ...ﬂUo(ic—ﬂ[)z = pao Xw « -+ XWPai

provide algebras Ay, p,. From the de Rham complexes of the products P,

with coefficients in these algebras, one can build as in 3.1 a Cech double
complex. As an object of D(X, K), the associated total complex does not

depend on the choices, and it is functorial with respect to X. It will still be
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denoted by RIz(X/K). When X is proper, its rigid cohomology is again
defined by RIig(X/K) := RI'(X, R ,i(X /K)).

4.2. To construct a de Rham-Witt complex computing rigid cohomol-
ogy for proper varieties, we will use a description of the algebra Ay p based
on PD-envelopes.

Let J C Op be a coherent ideal. We denote by P(7) the divided power
envelope of 7 (with compatibility with the natural divided powers of p). By
definition, P(7) is the sheaf of Op-algebras associated to the presheaf
Uw—PU (U, 7)), where P(I'(U,7)) is the PD-envelope of the ideal
r'(U,J) c r{u,Op). However, the formation of PD-envelopes commutes
with flat ring extensions [7, 3.21]. Since J is coherent over Op and
I'(V,Op)is flat over I'(U, Op) for any couple of affine open subsets V c U
in P, it follows that the functor Uw— P(I'(U, 7)) satisfies the glueing
condition on the category of affine open subsets of . This implies that

4.2.1) (U, PJ) =PU(U,T7)

for any affine open subset U C P.

We denote by P(7) the p-adic completion of P(7). As divided power
envelopes may have some p-torsion, we also introduce the ideal 7 (7) of p-
torsion sections of P(J), the quotient P(J) = P(J)/7T(J), and its p-adic
completion 75(J ). Note that the natural connection of the divided power
envelope P(7) extends to the algebras P(7), P(J) and P(J).

We first observe that these algebras have quasi-coherent reduction
mod p":

LEmmA 4.3. Let J C Op be a coherent ideal, n > 1 an integer, and P,
the reduction of P on W,. Define
Pu(T) =PI /p"P(T), Pu(T) =PI/ p"P(T),
T,.(J) = Ker(p" : P(J) — P(I)).

Then:
1) Pu(J) and Py (J) are quasi-coherent Op,-algebras.
(i) 7,(7) is a quasi-coherent Op, -module.

PRrOOF. As the divided powers of P(J) are compatible with the divided
powers of p, there is a canonical isomorphism

PulT) = P/ P(T) — P(T ),
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where J,, = JOp, [7,3.20-8)]. The ideal .7,, is quasi-coherent over Op, , and
therefore the Op, -algebra P(J,) is also quasi-coherent [7, 3.30], which
proves the first claim.

Since 7(7) = U;7;(J), the commutative diagrams

|

0 — 71 (J)

p

0 — Ti(J) — P(J) —=— p'P(J)
()

-

provide an isomorphism
lim p"P(7) — P(),
i

in which the transition maps of the direct system are defined by multi-
plication by p. Therefore, we obtain an isomorphism of Op, -modules

12

Pu(T) = PD/p"PT) = lim (PP /D" P(T))

1R

lim (p'P,. ().

As the Op, -algebra P, ;(J) is quasi-coherent, PiP,4i(J) is a quasi-co-
herent Op, -module. Taking the direct limit of these for variable ¢, it follows
that P,,(J) is quasi-coherent over Op, .

Let V C U be two affine open subsets of P. Using the flatness of
I'(V,0p) over I'(U,Op), we deduce from (4.2.1) that the canonical
morphisms

I'(V,0p) @rw,on (U, PT) — TV, PT)),
I'(V,0p) @rw,on (U, T(T) = IT'(V,T,(T))

(4.3.1)

are isomorphisms. Therefore, 7,,(7) is quasi-coherent over Op, . O

44. We now fix a notation. Let A be a commutative ring, a C A anideal
that contains p, and m a positive integer. For any ideal I C A, we will de-
note by I the ideal of A generated by a and the p™-th powers of elements
of I, or, equivalently, by a and the p™-th powers of a family of generators of
I. When a = pA, we will simply use the notation ™. Note that

4.4.1) I =1 4 q.
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We extend this definition in an obvious way to sheaves of rings on topolog-
ical spaces.

As in 4.1, let P be a smooth formal scheme, and let X — P be a closed
subscheme of its special fibre, defined by an ideal 7 € Op. We apply the
previous definition to 7, using the ideal a = pOp C Op. We obtain in this
way coherent ideals 7™ c Oy.

As JHD < 70 for all m > 0, the Op-algebras P(T™) and P(T™)
defined in 4.2 sit in inverse systems

RN ﬁ(j(mﬂ)) N ﬁ(j(wz)) RN 73(‘7(0))7
N 7’5(j(7ﬂ+1)) - 7’5(‘7(”%)) RN 7’5(j(0)).

The following proposition is the key to comparisons between crystalline and
rigid cohomologies in the proper singular case (see also [10, Section 2]):

PropPoSITION 4.5.  With the previous notation, there exists functorial
horizontal isomorphisms

(4.5.1) Axp — im (P ™)) = lim (PT™)e).
Moreover, for any coherent ideal IC C Op,

(4.5.2) R'lim (P(T™ + K)i) = R lim (T + K)x) = 0
foralli>1.

Proor. For all m > 0, let 5,, = p~'/?". We recall that the closed tube
[X]p,, is defined as the open subset of Pk characterized by

[X]Pﬂm n UK = {.’)6' € UK | Vl, |ﬁ(%)‘ < ﬂm}

for any affine open subset U C P and any family of generators (f;) of 7 over
U. Then 1X[p = U,lX]p,, is an admissible covering of 1X[p by an in-
creasing family of open subsets [2, 1.1.9]. It follows that, for any open subset
U c P, the algebra of analytic functions on ]X[p N Ug is defined by

I'(X[p N Ug, Oxr,) = 1(131 I'(Xlp,, NUk, Ox).
m

Let Ag}”[), = sp*(O[X]W ). Then we obtain

Ax,p — lim AGY,
m ’
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We now define canonical morphisms
s =PIk =PI — ALY — PT " D) — -

such that the composition of any three consecutive morphisms is the
transition morphism in the corresponding inverse system. The first one is
simply defined by the canonical map DTy — P(F™),

To define the two other ones, we work on affine open subsets and glue
the local constructions. If U = Spf A C PP, then the above description of
[X]p,,, N Uk shows that this is an affinoid subset of Ux. From the defi-
nition of rigid analytic functions on such an affinoid, we obtain

(U, AP) = I'([X]p,, NUg, Op,)
= Ag{Ty,...,T.}/(f7" —pTy,... . f7" —pT

where fi,..., f, are generators of I'(U,7), Ty,...,T, is a family of
indeterminates, and Ag{T1,...,T.} C AgllT4,...,T,]1] is the subring of

formal power series the coefficients of which tend to 0. Since Ag?q% is a

(Q-algebra, the morphism Op — Ag'b[)) factors uniquely through a mor-

phism P(7") JT(T my _, AW),, and we obtain ring homomorphisms
r(U,PI™) — FUBI™) S U, AP,

For ¢ >1, the composed homomorphism maps a section (fp g

"y

fp il = (p /z')TI On the other hand, (4.2.1) shows that I"(U, P(j“’”)) is
generated as a I'(U, Op)-module by the produets ( f” L (P g

the first homomorphism is surjective, since Lemma 4.3 (ii) and the
quasi-compacity of U imply that H(U,7(J™)) = 0. As p'/i! € 7Z,, it
follows that A(I'(U,P(J™))) sits inside the image of A{Ty,...,T,} in
(U, g”{)) This implies that A is a continuous morphism When the
source is endowed with the p-adic topology and the target with its Tate
algebra topology. Therefore 1 factorizes uniquely through the p-adic
completion of I'(U, P(J7")).

We observe here that the natural map

LU, BT /p"F (U, PIT™)) — [0, PT™)/p"P(T™))

is an isomorphism for all n: since P(J )y ig p-torsion free, it suffices to
show that H(U,P(J™)) =0. But H'(U,P(T"™)) =0, because (4.2.1)
implies that P(J ) is a direct limit of coherent Op-modules, and
H2(U, T(J™)) = 0, because Lemma 4.3 (ii) shows that 7(7") is a direct
limit of quasi-coherent Op -modules. So the p-adic completion of
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I'(U,P(T™)) is isomorphic to I'(U, P(J™)), and the factorization of A
provides the morphism I"(U, P(J")g) — I'(U, Ag??)).
Finally, one can define a morphism

ATy, ..., T/ = pTy,..., f" = pTy) — LU, PT" D))

by sending T} to (p — D!( fjpm?l)[p]. Factorizing through the p-adic com-
pletions and tensorizing with K provides the morphism I'(U, Ag}'?)
— I'(U, P m=1,), which is also unique. '
Note that all these morphisms are horizontal, since they are continuous
and induce the identity map on Op g, which is dense in every algebra under
consideration.
Applying the functor 1<iln, the previous morphisms of inverse systems of

m
sheaves yield isomorphisms

liin (ﬁ(j(nz))K) ~ liLn (ﬁ(j(M))K) ~ lgn .Ag??[), ~ Ay p.
m m

m

~To prove the second part of the proposition, it suffices to show that
R l(iln (P(T™ + K)g) = 0 for i > 1. Observe first that, for any affine open

sub;nét UchPp,
(4.53) H(U,P(T"™ +K)) =0

for j > 1, thanks to Lemma 4.3 and to the algebraic Mittag-Leffler crite-
rion. As U is noetherian, taking sections on U commutes with tensorisation
with K, and it follows that

(4.5.4) H(U, P(T™ + K)g) =0

for 7 > 1. On the other hand, I"(U,P(J™ + K))x = I'(U, Op)g for any
m > 0, so that the image of I'(U, Op)g in (I'(U, P(T™ + K))™ )k is dense
for the p-adic topology. Lemma 4.3 implies that I'(U,P(7™ + K))~
=TI (U, P(gm™ + K)), hence it follows that, for m' > m, the image of
(U, P(J™ + K)g) is dense in I’ (U, P(JT™ + K)g). Therefore, the in-
verse system of topological vector spaces (I'(U, P(T™ + K)g)m>0 sa-
tifies the topological Mittag-Leffler condition (ML) [12, Oryr, 13.2.4 ()]. It
is easy to see that, together with (4.5.4), this property implies that the
inverse system (PT™ 4 K)x)m=0 is 1(ir_n—acyclic. O

COROLLARY 4.6. Let X be a proper k-scheme, and let X — P be a
closed immersion into a smooth formal scheme over W. There exists



Rigid Cohomology and de Rham-Witt Complexes 321

canonical isomorphisms

4.61) RIup(X/K) = 1im (P(T")g) @0, O

m

-, lim (P(T")k) @0, 2,
m

(4.62) RIp(X/K) — RIX,lim (P(T")g) @o, OF)

m

— RIX,lim (P(T")k) @0, 1),

m

Sfunctorial with respect to the immersion X — P.

Proor. Thanks to the previous proposition, this follows immediately
from (4.1.3) and (4.1.4). O

We now observe that Proposition 4.5 allows to write the rigid coho-
mology of a proper scheme as the inverse limit of the crystalline co-
homologies of its infinitesimal neighbourhoods in a smooth scheme (ten-
sorized by K).

THEOREM 4.7. Let Y be a smooth k-scheme, and let X —Y be a
closed subscheme that is proper over k. Let T C Oy be the ideal of X in
Y, and let X C Y be the closed subscheme defined by T™ (as defined
m 4.4). There exists functorial isomorphisms

471  RL4pX/K) = Rlim (Raegon . Oxom i),
m

(472) RIX/K) > REM Ry X™ /W, Oxon k)
m

in D*(X, K) and DP(K) respectively.

Proor. For m </, let if]fy/é’") (X W)y — X ™) /W)y denote
the morphism of topos induced by the inclusion X < X®")_To define the
right hand side of (4.7.1) and (4.7.2), one can work with the category of in-
verse systems (E™, pi™), where E™ is a sheaf on the site Crys(X" /W)
and p' is a morphism of sheaves (if@g"*l))’lE(W — E™=D_These systems
form a topos (X®/W)ays, and the family of structural sheaves Oxuw w,
together with the functoriality morphisms, is an object O« v in this topos.
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Using the fact that [X”| = |X| for all m, the family of functors wuxuw .
defines a functor uxw ., from (X ®/ W)ays to the topos Xé’;r of inverse

systems of sheaves on X. We denote by Rl}r_n ((Ruxon o Oxon jw)x) the

m
complex obtained by applying to Oxw/y the right derived functor of
Uxw /ws, tensorizing with K, and applying the ngn functor. The complex

Rlim (RT arys (X" /W, Oxn jy)x) is defined similarly.

Let us assume first that ¥ can be embedded in a smooth formal scheme
P. Let J be the ideal of X in P, and let K be the ideal of Y in P. Then X is
the closed subscheme of > defined by the ideal 7" + K. Thanks to the
functoriality properties of the linearization functor used in the construc-
tion of the comparison isomorphism between crystalline and de Rham
cohomologies [7, 6.9], the family of linearizations of Q} on the sites
Crys(X /W) provides a resolution of Oy /W that is acyclic for the functor
uxw /- This defines an isomorphism

RuXm/W*(Ox(-)/‘\jv) l’ I/ﬁ(J(.) + ’C) ® QI—’

in the derived category of inverse systems of W-modules on X, which has
the isomorphism (3.1.2) as component of index m for each m. Tensorizing
with K, applying Rhm and taking (4.5.2) into account, one gets an iso-
morphism

@73)  RUm((Rugonw. Oxom/wk) = lim BT 4 K)p) © &0,
m

m

As
4.7.4) R 4ig(X/K) — lim (P(T ")) @ 21,

’WL

by (4.6.1), it suffices to prove that the functoriality morphism
@14 mPI")p) e 0 — lim(PI™ + ) © Q)

m m

is a quasi-isomorphism.

This is a local statement on X, so we may assume that P, Y, and X are
affine. It is independent of the choice of the embedding P of Y, because it is
functorial with respect to I, so the morphisms defined by any two em-
beddings P, I’ can be compared via the diagonal embedding into IP xy I’
But the left hand side of (4.7.4) is independent of PP up to quasi-isomorphism
because it computes canonically R/ ,i(X/K), and so does the right hand
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side because, for each m, it computes canonically (Ruywm . Oxon )k and it
has l(ir_n—acyclic terms. This allows to reduce to the case where P is a smooth
lifting of Y. Then the source and target of (4.7.4) are identical, and the
morphism is the identity.

This defines the isomorphism (4.7.1) when Y can be embedded into a
smooth formal scheme over W. In the general case, one chooses an affine
open covering 11 = (U,) of Y and closed immersions U, — PP, into smooth
formal schemes over W. Then one can use for each X the Cech resolu-
tion introduced in 3.1 to compute R liLn ((Rugen .. Oxen jw)x) and the Cech

m

resolution introduced in 4.1 to define RI”,;3(X /K). The functoriality of the
previous construction provides a morphism between these Cech resolu-
tions, and this morphism is a quasi-isomorphism because the corre-
sponding morphism for each intersection U, of the covering is a quasi-
isomorphism.

The isomorphism (4.7.2) follows from (4.7.1) by taking global sections
and using the commutations between ngn and RI'(X, —), and between
RI'(X, —) and tensorisation by K. O

REMARK 4.8. As Y is noetherian, the ind-scheme (X™),,- is iso-
morphic to the ind-scheme that consists in all infinitesimal neighbourhoods
X, of X in Y. Therefore, one can rewrite isomorphisms (4.7.1) and (4.7.2) as

481)  RI(X/K) — Rlim((Ruy, jw. Ox,/w)k);

n

482)  RI(X/K) — RImRTayX./W,Ox,/wk).
n

5. The comparison theorem

Given a proper k-scheme X enbedded as a closed subscheme in a
smooth k-scheme Y, we construct now a de Rham-Witt complex on Y with
coefficients supported in X, and we prove that its cohomology is canoni-
cally isomorphic to the rigid cohomology of X. This de Rham Witt complex
can easily be defined using divided power envelopes for the ideals of sec-
tions of W, Oy that vanish on the infinitesimal neighbourhoods X of X in
Y. However, because of the flatness over W,, required in Theorem 3.6, we
need to use also an alternate definition based on p-torsion free quotients of
PD-envelopes, analogous to the construction introduced in the previous
section.
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More generally, we prove a similar comparison theorem for the rigid
cohomology with compact supports of a separated k-scheme of finite

type.

5.1. Let Y be a smooth k-scheme of finite type, and let ¢ : X — Y be
the inclusion of a closed subscheme defined by an ideal Zy C Oy. For each
PD-thickening (U, T, 6) of an open subset U of Y, we will denote by K the
ideal of U in T and by Zr the ideal of X N U in T.

For each m > 0, let i : X < Y be the inclusion of the closed sub-
scheme defined by Z{/, where 7/ is defined as in 4.4. The ideal of X" in
T is then equal to

m

(5.1.1) (IT)%WT) = (f" ez, + Kr.

We will work with the crystalline direct images i{2, Oy w. As
recalled in 3.9, these are crystals on Y /W, which can be described as
follows: for each (U, T, 0) as above, the evaluation on 7' of i, .Oxun w is

given by
(6.1.2) @ Oxn )t = Po(@ )Y,

where Ps denotes the divided power envelope with compatiblity with the
divided powers 6 on Kp. When (U, T, ) varies, the transition maps are
defined by the functoriality of divided power envelopes.

To simplify the notation, we set Pg’("l), = i «Oxw s For m > 1, the
inclusions XD < X define functoriality morphisms

P PRy — PRy,
which turn the family (733?3),)7,@0 into an inverse system of crystals. Asin 2.1,
we can take the evaluations of these crystals on the thickenings Y — W, Y,
and let n, m vary. In this way, we obtain an inverse system of W,, Oy-modules
(P;}’,LI),_’W%)m’n and an inverse system of complexes (Pg'”}),vz Ow, 0y WLy -

We define
P Im P, AL = lim P 0 K)
n m

D W S : w
Y Bwo, Wy = lim (P} @w,0, Wald3),
n

Ay Ewo, W3 := lim (PYY" Swo, W) © K).
m
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As WWQ% = W, Oy, we get in degree 0

w w w
7><”7> ®W0YWQY_l1m( PYYY @w,0, WaQl) ~ g;"; ,

7

Ay Ewo, WY = lim (P} Gwo, W) © K) =

We will denote the transition morphisms by

/A)(m) . ﬁgnl)]W N 7’5(m71)W

ﬁ(M). . Pg?g/W @WOY WQY ,P(m Hnw S ®W(’)YWQY

)

Note that, since the crystals 73(7”) are supported in X, so are the com-

plexes Pg}'”w ®wo, W Q5 and .AX v @wo, W% We can now state the main
result of this article.

THEOREM 5.2. Let X be a k-scheme of finite type, and lett : X — Y be a
closed immersion into a smooth k-scheme.

(i) Ifthere exists a closed immersion Y — PP of Y into a smooth formal
W-scheme P endowed with a lifting F of the absolute Frobewius en-
domorphism, these data define a quasi-isomorphism of complexes of
sheaves of K-vector spaces supported in X

5.2.1) Ax.p ®o, Qp — AX Y ®W0YWQY7

SJunctorial with respect to (X, Y, P, F). Via the identifications of [4, 1.5],
its image in D*(X, K) is independent of the choice of the embedding of Y
nto (P, F).

(ii) Without extra assumption, there exists in DP(X,K) a canonical
isomorphism

(522) RErlg(X/K) l} AyY ®WOYWQ;”

Sfunctorial with respect to the couple (X, Y) and defined by (5.2.1) whenever
the assumptions of (i) are satisfied.
(i) If X is proper, there exists in D*(K) a canonical isomorphism

(5.2.3) RTIig(X/K) L RIX, AXY Bwo, WQS),
Junctorial with respect to the couple (X,Y).

The proof of the theorem will be given in subsection 5.7. It requires
some additional constructions, which we detail in the next subsections.
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5.3. We first want to show that one can perform constructions similar
to those of 5.1 using the p-torsion free envelopes defined in 4.4.

We begin with a local construction. Let U C Y be an affine open subset,
and let U be a smooth affine formal scheme on W lifting U; for alln > 1, let
U, be the reduction of U on W,,. We denote by Z C Oy the ideal defining
XNU in U, and we define 70, P(Z™), PI™), T(Z™), P(Z™) and
P(Z™) as in 4.4. We set

P%(I(m)) _ P(I(m)) /pnzp(l—(m)) ~ 73(I(m)) /pnj\)(z-(m))7
ﬁn(z-(m)) _ 7_3(1-(%1))/]9117_9(1(771/)) ~ ﬁ(z(m/))/pnrﬁ(z-(m)).

Let us recall how the crystal 73%), corresponds to the Oy-module

73(1 ) in the classical equivalence between crystals on Crys(U /W) and p-
adically complete Oy-modules endowed with an integrable and topologi-
cally quasi-nilpotent connection. If (V,T) is a thickening in Crys(U/W),
there exists locally on 7' an integer n > 1 such that p"Op =0, and a W-
morphism £ : T — U, extending the immersion V — U,. Then the Op-
algebra 1*(P,(Z™)) does not depend on the choice of % and %, up to a
canonical isomorphism defined by the HPD-stratification of P,(Z™), and
it can be identified with the Zariski sheaf (P{%)r on T defined by the
crystal Pg}"l), [7, Th. 6.6 and claim p. 6.3]. ’

As we already observed in 4.4, the quotient P, (T )y of P(Z™) is en-
dowed with the quotient connection. Since the connection of P,(Z™) is
quasi-nilpotent and P, (Z )y s a quotient of P, (Z ™)) the connection of
P.(Z™) is also quasi-nilpotent. It follows that P,(Z™) defines by the
previous construction a crystal in Oy w-algebras 7_3%)& > endowed with a
surjective morphism 7 : PG — PYY 1. '

In order to be able to glue such local constructions and to define a
crystal globally on Y, we need to show that the crystal _%)UU does not
depend, up to canonical isomorphism, on the choice of the lifting U. Let U’
be a second lifting of U, defining a crystal 7_3’%)[]_[] by the previous con-
struction. As U is affine, there exists a (non-canonical) W-isomorphism
u: U =5 U inducing the identity on U, hence on each X™. If T’ denotes
the ideal of X in I, the functoriality homomorphism «*P(Z'™) — P(Z"™)
is then an isomorphism compatible with the connections. It induces an
isomorphism «*7 (Z'"™) =T (Z") between the torsion subsheaves, and

we get a horizontal isomorphism
eu 1 WP ™) =PI,

If (V,T) is a thickening in Crys(U/W), if we choose a morphism
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h:T — U, as above to define (P(E}’”U )1, and if we use the composition
m)

W =u,oh:T — U, todefine (P’XQU )t (denoting by u,, the reduction of
% modulo p™), then the evaluation on T

ér . (ﬁlg?r?U?U)T — (ﬁ%U’U)T

of the wanted canonical isomorphism ¢ : 7_?’%)[]1] P%)U y 1s defined to
be the pullback of the reduction of ¢, mod p" by . One observes that, if
one changes the choices made for &, 2/, or u, then the pull-back of ¢, is
modified by the same isomorphisms deduced from the HPD-stratification
that occur in the definition of the Zariski sheaves ( %)U y)r and
(P’%)UAU)T, so that &p finally does not depend on any choice. One also
checks that, thanks to the cocycle property of the HPD-stratification,
these isomorphisms satisfy the necessary transitivity properties. This
allows to glue the local definitions on affine open subsets and to construct
the crystal 73(7”) globally on Y.

For m > 1 the natural homomorphisms P(Z") — P(Z™ V) defined
on smooth liftings of affine open subschemes of Y can also be glued so as to
define homomorphisms of crystals p : 7?(”’) P(m U on Y, turning the
family of crystals (P;}”;)mm into an inverse system On the other hand, we
have by construction a surjective morphism of erystals 7" : P(m) 77<m)
for each m, and these define a morphism of inverse systems. The next
lemma will allow us to replace, up to isogeny, the inverse system of crystals

(7);'11)/)7,@>O by the inverse system (P%”;)Wo

LeEmma 5.4.  With the previous notation and hypotheses, let m be fixed,
and let s > 0 be an integer. If s is big enough, there exists a unique
morphism of crystals ¢ ﬁm) — Pﬁ?f; Y such that

(5.4.1) (m) ° ﬂ(m) _ pe (m) n(M—l) ° 0.(m) _ ps (m)

PROOF. The unicity claim follows from the fact that each 7 is a epi-
morphism of erystals. Note also that, if there exists a couple (s, s™) that
satifies the conditions of the lemma, then, for any ¢ > 0, the couple
(s +t,0") .= pla™) also satifies these conditions. As Y is quasi-compact,
this allows to check the lemma locally on Y.

So we may assume that Y is affine and has a smooth formal lifting Y
on W. Let us keep the notation of 5.3, only replacing U and U by Y and
Y. Let (f1,...,f;) be a family of generators of Z, and let R =
OylTy,...,T,]. We define an Oy-algebra AM( fi,..., f) (the completion
of which is an integral model of the algebra A“”) used in the proof of



328 Pierre Berthelot

Proposition 4.5) by setting

.

A fry o ) = RGP —pTh, ., 77— pTo).

The canonical homomorphism Oy — A( fi,..., f.) maps the ideal 7" to
the PD-ideal pA™(f, ..., f,), hence it factorizes uniquely through a PD-
morphism

(5.4.2) o Py — AM(fL L)
On the other hand, there is a unique homomorphism of Oy-algebras
(5.4.3) B AY(fr L ) — PEY)

sending 7 to (p — DI(fF P oy = 1,...,7. Letus also denote by p™ the
canonical PD-morphism P(Z™) — P(T m=1) For all i and all k > 0, we
have

B 0 (PR = g plhIh)

p(p — DI
(p(p — DI
= G = P,

As the products (7 Ml (PR generate P(Z™) as an Oy-module, we
get that

)[10] )UC]

(5.4.4) B o o) — )

Recall that, Y being noetherian and separated, the functors H4(U, —)
commute with direct limits for any open subset U C Y and any ¢ > 0. In
particular, we have

I'(U,R)=I(U,0ITy, ..., T)]

for any open subset U C ¥, and, by [3, Prop. 3.1.1], R is a coherent sheaf of
rings on Y. As A™(fi,..., f,) is finitely presented over R, it is coherent
too, and the same holds for the kernel K, of multiplication by p" on
A™(f ..., f.) for any n. Therefore, K, is a coherent Oy, [Ty,..., T\
module, which implies that it is generated by its global sections, and so is
the subsheaf K = U, K, of p-torsion sections of A™(fi,..., f).

On the other hand, the ideal A/ = >R -f; is the increasing union of

the Oy-coherent subsheaves Ny = de -fi, where Ry C R is the sub-
sheaf of sections of total degree < d. Therefore, H'(Y,N) =0, and
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Y, A™(fi,..., 1)) is a quotient of I'(Y, R), hence is a noetherian ring.
So there is an integer s > 0 such that p’g = 0 for any p-torsion section
geI(Y,A"(fi,..., ). Since K is generated by its global sections on
Y, we obtain that p’/C = 0.

The homomorphism o maps the torsion ideal 7(Z"™) c P(Z"™) to K.
Using (5.4.4), it follows that p®p™ vanishes on 7(Z™), which provides a
factorization of p*p™ through P(Z™). Reducing mod p” for all % and
taking the associated morphism of crystals, we get a morphism
aim 7_3%@; — PV which satisfies the first relation of (5.4.1). As 7 is
an epimorphism, ‘the second one follows. O

5.5. We can now apply the constructions of 5.1 to the crystals 773?("%
Taking their evaluations on the thickenings Y — W, Y, we obtain again an
inverse system of W,0Oy-modules (ﬁ;}@%)mvn and an inverse system of

complexes (733(”%2 @w,0y Wu%),,,,» We now define

PO =1mPYY, Ay =lim P @ K),
n m

vy Bwo, W = lim (PR3} ®w,0, Wa23),
n

ALy Bwo, WO := lim (PY}" Swo, W) © K).
m
In degree 0, these complexes are respectively equal to Ng}"l),w and ;l}’(VY
We will denote by 5 : P4 — Py "™ and pm* - P Sywo, W5 —
Ng}’; W Swo, W% the transition morphisms.
By functoriality, the morphisms of crystals 7 : PE}”)Y — fg% define
homomorphisms of WQOy-algebras

(.5.1) 2 PV PV AYy — AYy,

and morphisms of complexes on Y (supported in X)

(6.5.2) 2 YV Swo, W5 — PYYY Swo, Wy
(5.5.3) 7 AYy Bwo, W2y — AYy Bwo, WS

PROPOSITION 5.6. Let Y be a smooth k-scheme, and let X CY be a
closed subscheme.
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(i) The morphism n* defined by (5.5.3) is an isomorphism.
@ii) Forallm>0,7>0and 1> 1, we have

(5.6.1) R hm( P @w,0, Waly) =0
(5.6.2) R hrn ((ng“w Bwo, W) ® K) =

In particular, the homomorphism 7 of (5.5.1) is an isomorphism.

Proor. Applying Lemma 5.4, we can find an increasing sequence of
integers (s(m)),,>1 such that, for each m, there exists a morphism of

crystals a%}l) 73(’”) f;”YD satisfying (5.4.1) for s =s(m). For any

m > 1, these morphlsms satisfy the relation
(563) ps(m+1)—s(m)0.zr;)l> o ﬁ(m+1) _ p(m) ° Gg’(?;::&i)?
which follows from (5.4.1) because 7" *? is an epimorphism.
By functoriality, the morphisms agﬁ)l) define homomorphisms of WOy-
algebras a(’g;)@ P(’”)W Py and morphisms of complexes

~(m)- ,P(m)W ®W0yW‘QY N ,P(m H»wWw =S ®WO} W.QY

s(m)

They satisfy the analogs of relations (5.4.1) and (5.6.3). If we set
(m)- pas(m) (m) ’PS?II)/W ®W0; W.Q;/ QK — 7’5;:?;1)W ®WOYWQ;/ ® K,

we obtain when m varies a family of morphisms of complexes, which com-
mute with the transition morphisms p™* and 5"* and satisfy

(m)e o ﬁ_(m)o A(m)o ﬁ(mfl)- (m)e

=p

7 oyt = plme.

Taking the inverse limit of the morphisms y"* when m varies provides a
morphism of complexes

W A}/(V,Y @WOYWQ} — .A)VKY QA@WOY WQy,

which is inverse to 7°.
To prove assertion (ii), we observe first that, by 2.12 and Lemma 4.3,
P;"I),VZ W, 0y WﬁQ is a quasi-coherent W,,Oy-module, for all n > 1, m > 0.

So, for fixed m and variable n, the inverse system (Pf;”;,‘ﬁ W, 0y Wi )n>1
has surjective transition morphisms and terms with vanishing cohomology in
degree > 1 on any affine open subset of Y. Therefore (5.6.1) follows from the

algebraic Mittag-Leffler criterion [12, Prop. (13.2.3)].
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Note that this Mittag-Leffler criterion also implies that, for any affine
open subset U C Y, any 7 > 1, and any j,

H(U, P Swo, W) =
Since U is quasi-compact and separated, it follows that, for ¢ > 1,
(5.6.4) H(U, PP Gwo, W) @ K) =

So, in order to prove (5.6.2), it suffices to prove that each K-vector space
r, Py (m)W ®W0YWQ§,) ® K) can be endowed with a metrizable topolog-
ical Vector space structure for which it is separated and complete, and
such that the transition maps for varying m are continuous and satisfy the
topological Mittag-Leffler condition (ML’) [12, O, Rem. (13.2.4) (i)].
Since, by construction, P(’")W is flat over W, Proposition 2.13 allows to
use for this purpose the p-adic topology, defined by the lattice
', P(WZ)W ®W0YWQY), which is metrizable, separated, and complete. To
finish the proof, it is then sufficient to prove that, for all m > 0, the image
of '(UWQ{ ®K) in I'(U, (Pg}")W®W@YWQ§) ® K) is dense for the p-
adic topology in the image of I'(U, (73(”H1)W ®W0YWQ§) ® K). As multi-
plication by p is a homeomorphism of I"(U, (P(W)W Qwoy WQY) ® K) for
the p-adic topology, it is enough to show that, for any n > 0,

(5.65) P, PP Gwo, W) €
IU,Wep) @K +p"I'U,PEYY Swo, W)

Let fi,...,f, € I'(U,Oy) be a family of generators over U of the ideal
Zy of X in Y. Then, for all 7> 2 and all m > 0, the kernel ICE”“ of the
homomorphism W;0y — Oxw is generated by VW, 10y and by the

Teichmiiller representatives [f7 1, "1,...,[f?"1. By construction, Pg}”;,vy isa
quotient of the divided power envelope of IC“”) with compatibility with the

canonical divided powers of VW,_1Oy. ThlS implies that PS;”%VX is gener-

ated as a W;Oy-module by the sections
(5.6.6) AP = QAP ™,

for k=(k1, ..., k) eN". Therefore, an element x € I"(U, P(m“) w ®WOYWQ{,)
can be written as an infinite sum

@ = Z "% @ oy,

m

where the sections w; € I'(U, we! y) are such that, for any i,
wy € I'(U, FllZWQ{,) for all but a flnlte number of k’s. As p+V is a PD-
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morphism, we can write

D () = Z (([]_v]pm)p)[lg] ® Wy = Z (pk) ([f]p’” L) W
k k

Using the classical formula for the p-adic valuation of v, (k!) [7, Lemma 3.3],
we get

(pk) _

vp(—=—) =k.

So we can write

Pt = > (ik) Y oy +p" Y (kp DL 1178 5

Vi ki<n = 3, kj>n ="

a decomposition in which the first term belongs to I"(U, we! v) ® K and the
second one to p"I"(U, (’"I),W Bwo, WRJ). This proves (5.6. 5) and ends the
proof of the proposition. O

5.7. PROOF OF THEOREM 5.2. Let us assume first that Y can be em-
bedded as a closed subscheme in a smooth formal scheme P endowed with
a lifting F' of the absolute Frobenius endomorphism. For » > 1, let P, be
the reduction of P over W,,. We denote by 7 the ideal of X in P, 7, its ideal
in P, and we keep the notation of 4.4 and 5.1. Let K be the ideal of Y in I,
and KC,, its ideal in P,,.

Let P(K), P(K,) ~ P(K)/p"P(K) be the divided powers envelopes of
and C,,. We denote by T, the PD-thickening of Y given by T',, = SpecP(K,,)
and by g}"%l, P%)/Tn the evaluations on 7', of the crystals P}, Py Let
Kr, = Ker(Or, — Oy) be the PD-ideal generated by C,, in P(K,,), and let &
be its canonical PD-structure. Then the ideal Z7, of X in T), is given by

ITn = jnOTn + ’CTn'

Therefore,
VA n)(m) J SZn)OT,, + Kr

and the description (5.1.2) of P{}” shows that
Pg}nl),Tn =Ps(T ;Z")OT,, + Kr,) = Ps( JZ”)OTW).

But the universal property of divided power envelopes provides formally a
canonical isomorphism

Ps(TMOp, +Kr,) ~ PT™ + ).
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So we finally get a canonical isomorphism
(5.7.1) Py, ~ PIT + K.

Let N
P(m)T _ hm P(m)T P( j(m) + K:),

7L

P(M)T _ hm rP(m)T ﬁ(j(m) 4 ,C)

We get by (3.5.3) canonical morphisms of complexes that sit in a commu-
tative square

S(m)T ~(m)W = 7
Pxy ®op, (i 2 PF\'.)' wo, Wy

oo | |

P(m -‘»E.:‘O,,” Q P(ln )W > vion " S

Tensorizing by K and taking the inverse limit for variable m, we get a
similar square

13_1 'H‘“ K) ®o, O3 — AYy@wo, Wy,
(5.7.3) i~ lm
lim (P{)" ® K) ®0, O — AYy Bwo, WO,

m

in which the right vertical arrow is an isomorphism thanks to Proposition
5.6. The left vertical one is also an isomorphism, because Lemma 5.4 implies
by the same argument that the homomorphism

11m P @ K) — hm PYy @ K),

which is induced by the morphism of inverse systems of crystals
7™ . P(m) ng”}, is an isomorphism. On the other hand, Corollary 3.8
implies that the lower horizontal arrow of (5.7.2) is a quasi-isomorphism,
since the crystal 7?(m> is flat over W and quasi-coherent. For all j, the in-

verse system (P(M)T QK® Qﬂ,)m>0 is 11m acyclic by (56.7.1) and (4.5.2), and
the inverse system ((73<m)W ®W0YWQY) ® K)o 18 11m acyclic by (5.6.2).
Therefore, the lower horizontal arrow of (5.7.3) is agam a quasi-isomor-
phism, and the upper horizontal arrow is a quasi-isomorphism too.
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We now consider the canonical morphism of complexes defined by the
commutative diagram

A.\'A:: R0, Q'

lim (P ® K) ®o, O

m

- 1 |
lim P(T)k o, % — lim P(T™ + K)k @0, 0.

m m
In this diagram, the lower horizontal arrow is the arrow (4.7.4) induced by the
functoriality map for PD-envelopes. As shown in the proof of Theorem 4.7,
this arrow is a quasi-isomorphism. Therefore, we can define the quasi-iso-
morphism (5.2.1) to be the composition of the morphism (5.7.4) with the upper
horizontal arrow of diagram (5.7.3). Each of these two morphisms is functorial
in an obvious way with respect to the data (X, Y, P, F), and, as isomorphisms
RE (X /K) — Rlim (Ruy,w. P,

m

Rlim (Ruyw. Py} )k = Ay Bwo, WQy
in the derived category DP(X, K), they are independent of the choice of the
embedding into (P, F") (by the usual diagonal embedding argument). This
proves assertion (i) of Theorem 5.2.

To prove assertion (i), we argue again as in 3.3. We choose an affine
open covering 11 = (U,) of Y, and, for each o, we choose a closed immersion
U, — P, into a smooth formal scheme endowed with a lifting F, of the
absolute Frobenius endomorphism. For each multi-index o = (o, .. ., o;),
we endow the product P, = P, xw --- xw P, with the endomorphism
F =F, x---xF,, and we embedd U, = U,, N...NU,, diagonally into

. Let 7, be the inclusion of X N U, into X. As a representatlve of
RF I',i;(X/K), we use the total complex “associated to the Cech bicomplex
described in 4.1: in bidegree (j,?), it is given by

(5.7.5) I[ eAxcv,e, @ 20).

o=(00 ---,0%7)

On the other hand, we can represent A}XY Swo, WS by its Cech res-
olution defined by the covering 11, which is the total complex associated to
the bicomplex defined in bidegree (j,%) by

(5.7.6) II e A0, 0, Bwon, W,).
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For fixed « and variable j, we have a quasi-isomorphism of complexes (5.2.1)
from Axny,p, ® ), to A¥,y 1. Bwo,, W], , and its direct image by j,
remains a quasi-isomorphism, because j, is an affine morphism, and, by
Mittag-Leffler, the terms of these complexes have no higher cohomology on
affine subsets. The functoriality of (5.2.1) implies that these quasi-iso-
morphisms commute with the differential of the Cech complexes when
varies. Therefore they induce a quasi-isomorphism between the associated
total complexes, and (5.2.2) is defined by its image in DP(X, K).

To check that (5.2.2) does not depend on the choices, one considers
another covering 11’ = (U.,), with closed immersions U/, — (P,,, F",). One
can then refine both 11 and II' by the covering by the intersections U, N U’,,
which can be embedded into (P, xw P;, , Fy x I,). Then the functoriality of
(5.2.1) provides commutative diagrams showing that the morphisms (5.2.2)
constructed by means of 11 and 11’ are equal in D*(X, K). For a morphism of
couples (w,v) : X', Y") — (X, Y), a similar argument using affine coverings
W, N of Y', Y, and the embeddings U’ 7N v YU, — P!, x P, defined by the
graph of v, shows that the morphisms (5.2.2) for (X', Y’) and (X, Y) commute
with the functoriality morphisms on the sources and targets. This com-
pletes the proof of assertion (ii).

Finally, in view of the definition of rigid cohomology for proper schemes
recalled in 4.1, assertion (iii) follows from assertion (ii) by taking sections
on X. O

5.8. We now briefly explain how to extend the previous results to rigid
cohomology with compact supports.

Let X be a k-scheme of finite type, Z C X a closed subscheme, and
U = X \ Z. We generalize the complexes entering in Theorem 5.2 as fol-
lows.

a) Assume that there exists a closed immersion X — PP of X into a
smooth formal scheme [P. By functoriality, we obtain a canonical morphism

of complexes
Axp Qo, Qp — Azp Q0, 20,

which we view as bicomplex. We will use the shorter notation
A zp ®o0p @ = (Axp ®o, Qb — Azp ®o, Q)

for the associated total complex. From this definition, we obtain a short
exact sequence of complexes

(6.81) 0— Azp®o, 2ol —1] — AS(\Z_]) ®o, p — Axp ®0, p — 0.
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We will denote by RI g (X \ Z/K) the image in DP(X, K) of the complex
A\ zp ®0, Q7; up to canonical isomorphism, it does not depend on the
choice of the embedding of X into P.

b) Without embedding assumption, we can choose an affine covering
I = (U,) of X and closed immersions U, — P, into smooth formal schemes.
We obtain a functoriality morphism between the Cech bicomplexes defined
by (5.7.5) for X and for Z, which we can view as a triple complex. We
generalize the previous definition by denoting R/ e (X \ Z/K) the image
in D°(X, K) of the total complex associated to this triple complex. Up to
canonical isomorphism, it is still independent of the choices. From the exact
sequences (5.8.1) on intersections of open subsets of 11, we get in DP(X, K)
an exact triangle

(5.8.2) RI g X\ Z/K) — R 4ig(X/K) — R yig(Z/K) = .

¢) When X is proper, the rigid cohomology of U with compact support
can be defined by

RIﬂrig,c([]/[<) = RIX, RLrig,c(X \ Z/K))

Note that, under the assumptions of a), (4.1.2) provides a canonical iso-
morphism

R g o(U/K) ~ RIQXTp, (Qyr, — (2 ),

where % denotes the inclusion ]Z[p — 1X[p. Without embedding as-
sumption, the complex R/ iz (U/K) does not depend on the compactifi-
cation X of U, and satisfies with respect to U the usual functoriality
properties of cohomology with compact supports (see [1, section 3] and
[19, 6.4] for details). Taking sections on X, the triangle (5.8.2) yields the
usual triangle

(5.8.3) RIyigo(U/K) = RIyig(X/K) — RIyig(Z/K) -5 .

d) Let now 7: X — Y be a closed immersion of X into a smooth k-
scheme. By functoriality, we obtain a canonical morphism of complexes

ALy Bwo, Wy — AYy Gwo, WY,
which we consider again as a bicomplex. We will denote by
ALy Bwo, W = (AYy Bwo, Wy — AYy Bwo, W)

the associated total complex, which sits in a short exact sequence of
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complexes
(5.84) 0— AYy Bwo, W — 11— AL | Gwo, W5, —
Ay Bwo, Wy — 0.

COROLLARY 5.9. Let X be a k-scheme of finite type, Z C X a closed
subscheme, U = X\ Z, and i : X — Y a closed immersion in a smooth k-
scheme.

(1) Ifthere exists a closed immersion Y — P of Y into a smooth formal
scheme P endowed with a Frobenius lifting, these data define a quasi-
isomorphism of complexes of sheaves of K-vector spaces supported in X

(5.9.1) Az ®0, 2 — ALY ¥ Bwo, W,

functorial with respect to (Z,X,Y,P,F). Its image in D*(X,K) is in-
dependent of the choice of the embedding of Y into (P, F). Together with the
quasi-isomorphisms (5.2.1) for X and Z, it defines a morphism of exact
sequences from the exact sequence (5.8.1) to the exact sequence (5.8.4).

(i) Without extra assumption, there exists in D*(X,K) a canonical
isomorphism

(5.9.2) RLyig o X \ Z/K) = A, 1 Gwo, WY,

Junctorial with respect to the triple (Z,X,Y), which is defined by (5.9.1)
whenever the assumptions of (1) are satisfied. Together with the iso-
morphisms (5.2.2) for X and Z, it defines an isomorphism of exact tri-
angles from (5.8.2) to the triangle defined by the exact sequence (5.8.4).
(iii) If X 1is proper, there exists in D"(K) a canonical 1somorphism

(5.9.3) R vig o(U/K) = RIX, AR, Bwo, W),

Junctorial with respect to the triple (Z,X,Y). Together with the iso-
morphisms (5.2.3) for X and Z, it defines an isomorphism of exact triangles
Sfrom (5.8.3) to the triangle obtained by applying the functor RI'(X, —) to the
exact sequence (5.8.4).

Proor. Assertion (i) is a straightforward consequence of the funec-
toriality properties of the quasi-isomorphism (5.2.1), applied to the im-
mersion Z — X. Assertion (ii) follows from the same functorialities, applied
at the level of Cech resolutions after choosing an open covering of ¥ by
affine open subsets U, and closed immersions U, — (P,, F',), as in the proof
of Theorem 5.2 (ii) given in 5.7. Finally, assertion (iii) follows from the
previous one by taking global sections. O
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6. Relation with Witt vector cohomology

We end this article with the relation between Theorem 5.2 (with its
corollary 5.9) and Theorem 1.1 of [5], which identifies the slope <1 part of
rigid cohomology with compact supports with Witt vector cohomology with
compact supports.

6.1. LetY beasmooth k-scheme of finite type, andlet X — Y be a closed
subscheme defined by an ideal Z C Oy. Let W,,Z := Ker(W,,Oy — W,,Ox),
WZT .= Ker(WOy — WOyx) be the subsheaves of Witt vectors with coef-
ficients in Z. By construction, 7?3(()_)%2 is the divided power envelope of W, 7
with compatibility with the canonical divided powers of VW, 10y (see
(5.1.2)). Since these divided powers extend to W, Oy/W,Z = W, Ox (as
the canonical divided powers of VW, _10x), there are canonical ring

homomorphisms

POV, —W,0x,  PQY — WOx.
By composition with the canonical projection, we obtain a ring homo-
morphism

(6.1.1) Ay =lm P @ K) — POV @ K — WOx k.

m

We can now compose with the augmentation morphism, and we obtain a
morphism of complexes

6.1.2) AYy Bwo, WQy — WOx k.

where we view WOy k as a complex concentrated in degree 0.
Let Z C X be a closed subscheme defined by an ideal H C Oy, and let
U = X \ Z. By functoriality, we obtain a morphism of complexes

(6.1.3) A}}"@Y Bwo, Wy — WOx g — WOz ).

Note that the target complex is actually a resolution of WHg.

Taking the image of (6.1.2) (resp. (6.1.3)) in DP(X,K), and com-
posing with the isomorphism (5.2.2) (resp. (5.9.2)), we obtain canonical
morphisms

(614) R£r1g(X/K) I WOX,K7
(6.1.5) RI g (X \ Z/K) — WH.

Assuming that X is proper, and taking global sections on X, they define
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canonical morphisms
(6.1.6) RIMig(X/K) — RI'X, WOx k),
(6.1.7) RIige(U/K) — RI«(U, WOy k),

where the complex RI.(U, WOy k) is the Witt vector cohomology with
compact supports defined by [5, (2.12)].

6.2. Let X be a k-scheme of finite type, Z C X a closed subscheme
defined by an ideal H C Oy, and U = X \ Z. In [5], morphisms

(6.2.1) ay : Rng(X/K) — WOX,K,
(622) ax v - Rngc(X \ Z/K) —>WHK

are defined in D’(X, K) without using the de Rham-Witt complex of a
smooth ambient scheme (see [5, Prop. 4.4 and Thm. 4.5]). To compare these
morphisms with (6.1.4) and (6.1.5), we now recall their construction.
Assume first that there exists a closed immersion X — P, where P is a
smooth formal scheme endowed with a lifting F" of the absolute Frobenius
endomorphism. Then F defines a ring homomorphism [5, (4.4)]

6.2.3) Axp — WOx k.

One can then define a morphism Ay » ® Qf, — WOx g by composition with
the augmentation morphism of Ay p ® @, [5, (4.5)]. Using the identifica-
tions of 4.1, its image in D*(X, K) does not depend on the choice of the
embedding X < I, and defines a canonical morphism ax. Using Cech re-
solutions as usual, the construction of ax can be extended to the general
case where an embedding into some (P, F) might not exist. Finally, the
construction of ay ;7 follows using the functoriality of the construction of ay
with respect to Z — X.

LEMMA 6.3. Let Y be a smooth k-scheme, and let Z — X — Y be closed
subschemes. Then the morphisms (6.2.1) and (6.2.2) are respectively equal
to (6.1.4) and (6.1.5).

Proor. We consider first the case where there exists a closed im-
mersion Y — [P, where P is a smooth formal scheme over W endowed with a
Frobenius lifting F'. Then ay is defined as the image in DX ,K) of the

composition
. (62.3)
axp: Axp Qo, Qp — Axp — WOxk.
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On the other hand, (6.1.4) is defined as the image of the composition
, (62.1) ~ . (6.1.1)
Axp ®o, 2% . Ay Bwo, Wy — AYy — WOxk,

where the middle arrow is the augmentation morphism. Thus it suffices to
check the commutativity of the diagram of morphisms of complexes

6.3.1) (5:2.1) | (5.2.1)

A% Ruweo. WQS . AW (6.1.1) I-I'O' ’
XY W O Pria by stnisv iy = a2 X.K-

Here the middle vertical arrow is the map induced in degree 0 by (5.2.1), so
the square on the left hand side obviously commutes.

To check the commutativity of the triangle, we keep the notation of 5.7.
Observe first that the composition of (6.1.1) and (5.2.1) can also be written
as the composition

Axp — P(T)g — PW(I)g — WOxk,

where the first map is given by the isomorphism (4.5.1) composed with the
projection on the factor of index 0, and the second one is induced by the
morphism (3.5.3) defined by the crystal structure of iuys.Ox/w. On the
other hand, (6.2.3) is also defined as a composition of maps starting with the
homomorphism Ayxp — 73(j )k (see [5, (4.7)]). Therefore, it suffices to
check the commutativity of the triangle

“'”‘”i \

—~

P(W(T)) — WOx.

This is now a consequence of the universal property of PD-envelopes, as the
oblique map is the canonical factorization of

Op L WOp — WOxy,
the vertical one is the canonical factorization of
O]p t—F> WOP — WOY - 73(W(I))7

and the horizontal one is the canonical factorization of WOy — W0Ox.
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In the general case, one chooses as usual an affine open covering (U,) of
Y and closed immersions U, — P, into smooth formal schemes over W
endowed with Frobenius liftings F,. The previous argument can then be
repeated simplicially. Taking the image in D*(X, K) of the associated total
complexes, the first assertion of the lemma follows.

The assertion relative to X \ Z follows similarly thanks to the func-
toriality of diagram (6.3.1) with respect to Z — X. O

ProposiTION 6.4. Let X be a proper k-scheme, U = X \ Z an open
subset of X, and X — Y a closed immersion into a smooth k-scheme. For
each q > 0, there is a commutative diagram

i (U/K) —»H”(\ A\ 7y Bwo, W)
(6.4.1) (';mi i((i.l.:&)

,
b,

“ ¢ /[\ ﬁ]f({l(lv“(?[/\)

where the left vertical arrow is the projection on the slope <1 part, and the
lower isomorphism is the canonical identification between the slope <1
part of rigid cohomology with compact supports and Witt vector coho-
mology with compact supports [5, Theorem 1.1].

ProoF. Let us first recall the construction of the isomorphism b?; (see
[5, 5.2]). Applying the functor R7'(X, —) to the morphism ay; x and passing
to cohomology in degree ¢, we obtain a homomorphism

al (U/K)— HI(U, WOy k).

rlg c

As the slopes of the Frobenius action on H{(U, WOy k) belong to [0, 1], aU
vanishes on the subspaces of slope Aof Hq {U/K)forany /¢ [O 1[. Thanks
to the slope decomposition of H n C(U /K) it follows that a factorizes
through H mg U /K)<1 which prov1des the homomorphism bq But the
previous lemma implies that af; is equal to the homomorphism mduced on
HY by (6.1.7). As the latter is the composition of the homomorphisms in-
duced by (5.9.3) and (6.1.3), this proves the proposition. O

PropPoSITION 6.5. Let Y be a smooth k-scheme of finite type, and
X <Y a closed subscheme.
(i) The homomorphism A)VXY — WOx g defined in (6.1.1) is an
epimorphism.
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(ii)) Assume that X is proper over k, and let Hf,ig(X /K)Zl denote the

component of slope > 1 ole‘{ig(X/K). If we set

~ ~ 612

651)  Fil'(AYy Bwo, W) == Ker(AY, Sywo, Wy 22 Wox x),
the cohomology long exact sequence defined by (6.5.1) splits into short
exact sequences

~

(6.5.2) 0—HUX, Fil'(4) y Bwo,WQ}) — HL (X /K) — HIX, WOx £) 0,

which yield isomorphisms

(6.5.3) HI(X, Fil'(AY y wo, WQ3)) — H

1, X/K)7.

Proor. LetZ betheideal of XinY. We first fixm > 0. For eachn > 1,
PYLY is the PD-envelope of the ideal W, 2" with compatibility with the
canonical divided powers of VW,,_1 Oy, hence the canonical homomorphism
P%V,Z — WOy is surjective, and its kernel is the PD-ideal W,z
gerierated by W,Z™. Tt follows from [7, 3.20, 3)] that the homomor-
phisms W,,.,Z™ — W, I are surjective. As each W, Z" has vanishing

cohomology over affine open subsets, the inverse system (W,Z™), is
lgn—acyclic, hence the homomorphism

?)A()?:L;W — WOX(m)
is an epimorphism, with kernel WZ .= l(iLn W, 2.

n
Therefore, we obtain for variable m an exact sequence of inverse sys-
tems
0—WI™ oK — P @ K — WOxuwg — 0.

By [5, Prop. 2.1, ()], the transition morphisms WOxw-+» g — WOxw g are
isomorphisms, hence assertion (i) follows if we show that the inverse system

WI™ @ K),, is ly—acyclic. The algebraic Mittag-Leffler criterion implies

that the terms of this inverse system have vanishing cohomology on affine
open subsets. It is then sufficient to check that, when Y is affine, the system

(WI™  K),, statisfies the topological Mittag-Leffler criterion. This can
be done as in the proof of (5.6.2), the only difference being that, in the family
of generators described in (5.6.6), we must have k # (0, ..., 0).

Using assertion (i), the definition (6.5.1) of Fill(A;vXY @WOYW.Q;)
provides a long exact sequence of cohomology, in which the middle terms

can be identified with Hzig(X /K) using (5.2.3). This sequence splits be-
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cause diagram (6.4.1) implies that the homomorphisms 1ﬂg(X /K) —
HY(X,WOx g) are surjective for all q. Then the last assertion follows from
[5, Th. 1.1]. ]

REMARK 6.6. The behaviour of the long exact sequence defined by
(6.5.1) is of course reminiscent of the degeneration of the slope spectral
sequence for H;iig(X /K) ~ H:. (X/W)® K when X is proper and smooth
over k [14, Th. 3.2, Cor. 3.5].

It is therefore natural (but maybe too naive) to ask the following
question: assuming X proper, but maybe singular, can one generalize the
definition (6.5.1) so as to define a functorial filtration of AX v @wo, WQ5
by subcomplexes FIIZ(AX Y ®WOYW.QY) depending only on X in D*(X, K)
and quasi-isomorphic to WQX '« When X is smooth over k, such that their
cohomology computes the slope > i component of HY (X /K) for all q?

It should be pointed out here that the work of Nakkajima [20] already
provides a construction of the slope spectral sequence for H y*ag(X /K), based
on the de Rham-Witt cohomology of a proper hypercovering of X by smooth
varieties. Nevertheless, a positive answer to the previous question would be
interesting if the cohomology of the Fil' was more accessible to computation.
For example, one might hope to obtain generalizations of Katz’s congruences
mod p®* for the number of rational points of X when X is a subvariety of the
projective space over a finite field with p® elements [16]. For x = 1, these
congruences are indeed a consequence of the identification of the slope <1
component of rigid cohomology with Witt vector cohomology [5, Cor. 1.5].
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