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Uniform Sheaves and Differential Equations

YVES ANDRE

ABSTRACT - Real blow-ups and more refined “zooms” play a key role in the analysis of
singularities of complex-analytic differential modules. They do not change the
underlying topology, but the uniform structure.

This suggests to revisit the cohomology theory of differential modules with
help of a suitable new notion of uniform sheaves based on the uniformity rather
than the topology. We also investigate the p-adic situation (in particular, the
analog of real blow-ups) from this uniform viewpoint.

Introduction

“Les points ne commenceront a peser que lorsqu’on saura les capter
correctement, non pas comme des figures géométriques, mais bel et
bien comme des puissances d’explosion. C’est ainsi qu’il faut com-

prendre le caleul différentiel.”
G. Chatelet [18, p. 135].

0.1. The study of singularities of a linear differential equation Ly = 0
with meromorphic coefficients is arich and delicate topic (¢f. e.g. [45, ch. 7, 9]),
which has its roots in the works of Fuchs and Poincaré.

One first localizes the problem over an open disk D where the coeffi-
cients are analytic, except at the origin where they may have a pole. One
may then pass to the formal completion, .e. consider the coefficients of L
as formal power series; the study becomes purely algebraic, and it turns
out that, after ramification, the differential operator factors as a product of
differential operators of order one.

On the other hand, one may restrict to the punctured disk D*, i.e.
consider the coefficients of L as analytic functions outside the origin; the
study becomes purely topological, the differential operator being con-
trolled by the local monodromy.

(*) Indirizzo dell’A.: Département de Mathématiques, Ecole Normale Supér-
ieure, 45 rue d’Ulm, 75005 Paris, France.
E-mail: yves.andre@ens.fr
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In order to complete the study of L, one then needs a bridge between
the (algebraic) formal theory and the (topological) theory over D*, which is
provided by the theory of asymptotic expansions. This requires some kind
of “zoom” on the singularity (real blow-up [43][45], Deligne’s halos [23][34]
or subanalytie site [29] [35]) and techniques from sheaf theory.

This paper grew out of a reflection on the nature of such “zooms”.
Restricted to D*, the real blow-up does not change the topology (nor the
real-analytic structure), but changes the uniform structure (c¢f. 2.1). This
suggests to revisit the theory of meromorphic differential equations, re-
placing sheaves by a new notion of uniform sheaves based on the uni-
formity rather than the topology.

0.2. “Uniform” is somehow intermediate between “local” and “global”.
Uniform structures (a.k.a. uniformities) were invented by A. Weil in order
to axiomatize, in a qualitative way, the properties of e-neighborhoods of the
diagonal X C X x X which occur in the definition of uniform continuity,
Cauchy sequences and completeness, on a metric space (we recall the main
definitions and properties of uniformities, and related proximities, in § 1).
Soon after Weil, J. Tukey reformulated the notion of uniformity in terms of
“uniform coverings” of X (without reference to X x X).

According to whether one wishes to patch uniformly compatible local
data, or to patch compatible uniform local data, one is led to two different
notions of uniform sheaves (§ 3). The first one is more useful and is the one
which we develop in detail in this paper.

Let us assume for simplicity that the uniform space X is precompact,
i.e. that any uniform covering admits a finite subcovering (this amounts to
the compacity of the completion X). One can define a Grothendieck to-
pology using the open subsets of the topological space underlying X and
the uniform open coverings'. A uniform sheaf on X is then a sheaf for this
Grothendieck topology. For instance, bounded functions and uniformly
continuous functions give rise to uniform sheaves (of course, they do not
form sheaves in the usual sense).

We prove that the topos of uniform sheaves on a uniform space X is
equivalent to the topos of sheaves on its completion X.

0.3. When X is a complex smooth open algebraic curve, endowed with
the “sectorial uniformity”, a useful example O%°® of uniform sheaf is pro-

vided by analytic functions with moderate growth.

(*) in the non precompact case, the definition has to be modified, cf 3.1.
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Revisiting the cohomology theory of meromorphic differential modules
from the uniform viewpoint, we show that the De Rham cohomology of an
algebraic connection on X can be identified with moderate uniform De
Rham cohomology, and also with the cohomology of the constructible
uniform sheaf of solutions of the connection in (’)Q“’d (4.1.1). This leads to a
“combinatorial” interpretation of Deligne’s index formula, without ever
leaving the topological space X(C). We briefly mention finer “zooms”.

Replacing the sectorial uniformity by suitable “spiral uniformities” al-
lows to deal in a similar way with g-difference equations.

0.4. We also investigate the p-adic situation from the uniform view-
point. We exhibit an analogy between a real blow-up (viewed as a change of
uniformity which, at the level of completions, adds a circle of tangential
base-points), and the passage from Berkovich analytic spaces to Huber
adic spaces. Our starting point is an observation by J. Rivera-Letelier and
M. Baker: given an affinoid space X = Spm A, the collection of its rational
domains can be used to define uniform coverings (rather than to build a
Grothendieck topology, as rigid geometry does); the completion of X for
this uniformity is then nothing but the Berkovich space X** attached to X.

On the other hand, in dimension one, adification adds “circles” of tan-
gential points. Would then the Huber space X% attached to X be a com-
pletion of X for a finer uniformity?

No, because of the dissymetry between non-closed points and closed
tangential points in their closure.

Yes, if one accepts to drop the symmetry condition in the definition of a
uniformity (2.4.1). This provides a nice instance of the well-developed
theory of quasi-uniformities (¢f. [31]). We analyse the corresponding uni-
form topoi, and discuss overconvergence from the adic viewpoint.

At the end of the paper, we discuss in some detail the cohomology
theory of p-adic differential modules and the p-adic index formula, taking
the complex situation as a guiding thread.

1. Uniform structures
1.1 - Unaformity and proximity
General topology formalizes the notions of closeness (to a given point or

subspace) and continuity in a qualitative way, independently of any dis-
tance.
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In the mid 30s, two independent attempts were made to formalize the
notions of relative closeness (of points, or subspaces) and uniform con-
tinuity in a qualitative way: Weil’s theory of uniform spaces (and its re-
formulation by Tukey), and Efremovich’s theory of proximity spaces®. We
refer to [10] for a historical survey?’, and to [16, ch. 2 and 9][28] and [38] as
references for the results recalled below.

1.1.1. DEFINITION. A uniformity (alaWeil [47][16]) on a set X is afilter I/
on X x X which is reflexive (i.e. all E € U contain the diagonal 4y), sym-
metric (i.e. E € U iff E~! € U{) and cotransitive (i.e. for any E € U, there is
E’ € U such that E' o E' C E). The elements of U/ are called entoumges“.

1.1.2. DEFINITION. A uniformity (ala Tukey [44]) on a set X is a family
T of coverings of X by subsets, which is stable under finite intersection,
contains any covering which is refined by a covering in 7, and such that
any (A;); € T has a star-refinement in T (i.e. a refinement (B;); such that
for any jo, the union of all B;’s meeting B, is contained in some A;).

These definitions are actually equivalent: given U/, 7 is the set of cov-
erings which admit a refinement of the form (K (x)),cx for some E € U;
conversely, given 7, U is the filter on X x X with basis U; (4; x 4;), for
A eT.

1.1.3. DEFINITION. A proximity (cf. [38]) on a set X is a binary relation v
between non-empty subsets of X (“A is near B”), which is reflexive, sym-
metric, and distributive (i.e. Av(BUCQC) iff AvB or AvC) [one often also
adds the axiom: (VC,(AvC)or (Bv(X \ () = AvB].

A proximity can alternatively be described in terms of v-neighborhoods
(B is a v-neighborhood of A iff A is not near the complement of B).

() already foreseen by F. Riesz at the Bologna congress in 1908.

() see also [4] about filters and uniformities according to Cartan and Weil.
Commenting [47] in 1979, Weil wrote: “Avec le recul que donnent les quarante
derniéres années, on sourira sans doute du zele que j’apportais alors a 'expulsion
du dénombrable”.

(*) viewing them as a binary relations (= correspondences) between elements of
X, we use the language of correspondences: we write o for their composition, £
for {(y,x) | (x,y) € E}, and E(x) for {y € X, (x,y) € E'}. More generally, if A C X,
E(A) stands for {y € X,Jx € A, (x,y) € E}.
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One has the following logical relations between these notions:
Metric — uniformity — proximity — topology.

Let us describe these relations.

The proximity v attached to a uniformity ¢/ is defined by AvB iff
(AxB)NE # (0 for all E € U (equivalently, iff A and B meet some A; for
any (141)2 eT).

If U comes from a metric, i.e. if the e-neighborhoods (in the metric
sense) of the diagonal form a basis of the filter i/, then AvB iff A is at
distance 0 from B (and B is a v-neighborhood of A iff it contains some &-
neighborhood of A).

A proximity defines a topology on X: the closure A of a subset A is the
set of « such that {x} v A. If the proximity comes from a uniformity ¢/, then
A =gy EQA). For any « € X, the E(x) for £ € U (equivalently, the
Ugilweay Ai Tor (A;); € T ) form a basis of neighborhoods of x.

The topology induced by a proximity v (resp. a uniformity ) is
Hausdorffiff {x} v{y} = x =y (resp. Ngey £ = 4x). One can show that a
Hausdorff uniformity &/ comes from a metric iff it admits a countable basis.

1.1.4. DEFINITION. Amapf : X — Y isuniformly continuous iff for any
E ey, (f,f)fl(E) € Uy (equivalently, for any (4;); € Ty, (f*I(Aj)j e Tx).

It is then v-continuous for the induced proximity, in the sense that
AvB = f(A)vf(B). Any v-continuous map is continuous for the induced
topology. This provides forgetful functors:

{uniform spaces} — {proximity spaces} — {topological spaces}.

A topological space is uniformisable iff any closed set F' and any point
outside F' can be separated by some continuous function. Any Hausdorff
proximity space is uniformisable.

A Hausdorff compact topological space X admits a unique uniformity
(resp. proximity). Any continuous map X — Y between a Hausdorff compact
space X and a uniform space Y is uniformly continuous (cf. [16, ch. 2, § 4]).

1.2 — Completion

Let (X,U) be a uniform space. We shall often skip ¢/ in the notation.

1.2.1. DEFINITION. Afilter 7 onX is Cauchyiffforall E € U, thereisx € X
such that E(x) € F (equivalently, iff VE e U,JA € F, A x A C E, cf. [36, 4.2]).

A uniform space X is complete iff every Cauchy filter has a cluster point
(equivalently, iff it converges).
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Any uniformly continuous map from a dense subset of a uniform space
X into a complete uniform space Y can be extended (uniquely) into a
uniformly continuous map on all of X.

Any uniform space X has a unique Hausdorff completion, namely a
universal Hausdorff complete uniform space X with a uniformly con-
tinuous map 7: X — X. The image 1(X) is dense in X , and the uniformity
(resp. topology) of X is the inverse image of that of X.

1.2.2. DEFINITION. A uniform space X is precompact iff for any £ € U,
X = E(Z) for some finite subset Z C X (equivalently, iff every ultrafilter is
Cauchy; or else, any (4;); € 7 has a finite subcovering).

X is precompact iff X is compact. The uniformity of X is then uniquely
determined by the topology of X, and is also determined by the proximity
of X.

In fact, on any topological space X, compatible Hausdorff proximities v
classify compactifications X: given X, AvB < AXnBX # (; conversely,
given v, the associated (Smirnov) compactification X is the completion of X
with respect to the coarsest uniformity compatible with v (¢f. [38, 7.7, 12.5]).

2. Examples: real blow-up, Berkovich vs. Huber spaces

“Pas un point [...], mais une petite fleche qui est 1a et qui jaillit hors
du point: c’est ce que j'appelle une fulguration.”
G. Chatelet [18, p. 141].

2.1 — Complex realm
2.1.1 — Real blow-up and sectorial uniformity

Let 4" = {z € C, 0<|z| <1} be the punctured circled unit disk.

Viewed as the subset {(x,y) € R?, 0<a? + %2 < 1} of R?, it inherits the
(standard) metric uniformity denoted by A4, The Tukey coverings are
those which admit a finite refinement (4;); such that the non-relatively
compact A;’s contain a small punctured disc (centered at 0).

On the other hand, viewed in polar coordinates as the subset
{(r,0) €10,1] x S'}, 4" inherits another metric uniformity, the sectorial
uniformity denoted by 4. The Tukey coverings are those which admit a
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finite refinement (4;); such that the non-relatively compact A;’s contain an
open sector (centered at 0).

Pagsing from polar to cartesian coordinates (x = rcosf,y = rsin6)
induces a uniformily continuous homeomorphism A, 2 Aty a8 follows
from the formula

(x — x)2+(y y)z (r— 7')2+27'r(1—cos(0 ) < (r— 2 4+ (0 — 0.

Its inverse is not uniformly continuous. The proximities differ: for 4.,
two open sectors (centered at 0) are always near; for 4, they are near iff
they overlap.

The completion of 4, is the compact unit disk 4, while the completion
of A, is the compact cylinder 4 = [0,1] x S! obtained by adding to A*
the circle {0} x S' 2 PY(R) of tangential base-points (sectors bissected by
0 provide a basis of a Cauchy filter converging to # ). One thus has a
commutative square which expresses the real blow-up in the category of
precompact uniform spaces:

AS(‘( A* (() L‘J) A A*
T T
A ¥ 4

A(s{’(‘)

(met)

A(m(‘f) .

Real blow-up applies more generally in the situation of the complement
X of a divisor with normal crossings Z in a complex analytic manifold. In
the sequel, we will view real blow-ups as mere changes of uniform struc-
tures on X, or even mere changes of proximities, and try to avoid manifolds
with boundary.

2.1.2 — g-analogs: spiral uniformities

Let ¢ be a complex number with 0<|q|<1. The ¢"-spiral uniformity
Ay gy 18 defined as follows: the Tukey coverings of Ay, are those which
admit a finite refinement (4;); such that the non-relatively compact A;’s
are stable by ¢.

Instead of checking directly that Tukey coverings have star-refine-
ments, it is more convenient to observe that they are the trace on 4* of
coverings of the compactification 47" defined by adding to 4" the el-
liptic curve C*/q% =~ A" /(x ~ qy). The topology of 475 is defined in such
a way that a basis of neighborhoods of & € 94" is given by disjoint unions
neighborhoods of x in C*/¢Z and ¢"V-orbits of neighborhoods of repre-
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sentatives of « in A4*. This compactification was used by J.-P. Ramis and
his school in their asymptotic study of ¢-difference equations (we refer to
[24], [42] and [2] for background on g¢-difference equations and con-
fluence).

One has a commutative square in the category of precompact uniform
spaces:

A([N.s'p o /A-\ ﬁ) A i .l/’;\
- = (qNsp) — “(met)

A % Pq A *

A? S A

(qNsp) (met)

When q € 10,1[, one has C*/¢? =~ (R/Zlogq) x P'(R) and the spiral uni-
formity is finer than the sectorial uniformity. It is in fact possible to define a
family of uniformities parametrized by S = ]0, 1], in the sense of Appendix 1
(4.3.2), which coincides with the ¢V -spiral uniformity for any ¢ € 10, 1[ and
with the sectorial uniformity for ¢ = 1 (by collapsing the factor R/Z log q to
a point when ¢ — 1). This provides a “uniform framework” for the study of
confluence of g-difference equations towards differential equations when ¢
tends to 1.

An analogous construction works on replacing 10, 1] by ¢®+ for any fixed
complex number ¢ with 0<|g|<1. At the limit, one gets the ¢®+-spiral
uniformity A:q’*» ) defined in the same way as 4y, replacing ¢~ by ¢f+:
the Tukey coverings of A(*qmsp) are those which admit a finite refinement
(A;); such that the non-relatively compact A;’s contain a “twisted open
sector” g%+ ¢! (for some open interval I).

2.2 — p-adic realm

2.2.1 — Berkovich vs. Huber spaces

Let now 4" = {z € C), 0<|z| < 1} denote the p-adic punctured circled
unit disk. It inherits a uniformity induced by the metric of C). Its com-
pletion is the circled unit disk 4.

To cope with the total discontinuity of 4, rigid geometry exploits its
structure of affinoid space: 4= SpmC,(T). For any affinoid space
X = SpmA (maximal spectrum of a quotient A of the Tate algebra of
converging functions on the closed unit polydisk), rigid geometry replaces
the naive totally discontinuous topology by a Grothendieck topology X%
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defined in terms of rational domains
ety (o e X, 1) < lg)

where fj,g € A and A = >_ Af;.

Recently, in the context of p-adic dynamics, J. Rivera-Letelier [41] (for
the line) and M. Baker [5] (for any affinoid space) introduced the idea of
using rational domains® to define a uniform space X, rather than a
Grothendieck site X

2.2.1. PROPOSITION. [5] Coverings of the affinoid space X which admit
a finite refinement by rational domains form a Tukey uniformity. The
completion of the associated uniform space X S nothing but the
Berkovich analytic space X attached to X9, In particular, X is
precompact.

2.2.2 REMARK. (4,+) is a topological group. The translations are
uniformly continuous on A4, but + itself is not uniformly continuous (it
does not extend to 4™ x A™).

In analogy with the complex case mentioned above, and with an eye
toward applications to differential equations, one may want to add tan-
gential base-points to the picture.

A natural framework where p-adic tangential base-points exist is Hu-
ber’s theory of adic spaces. The main difference between the Berkovich
space X and the Huber space X attached to an affinoid algebra A is
that, while the topological space X* is defined purely in terms of con-
tinuous multiplicative semi-norms of rank 1 (i.e. real-valued), X' od js the set
of continuous multiplicative semi-norms of any rank, and is endowed with
the topology generated by rational domains. X% is a spectral space®. The
natural inclusion X — X% is not continuous, but admits a continuous
retraction X% 2 X by means of which X*" is the maximal Hausdorff
quotient of X,

(®) technically, they use rather open Laurent domains for convenience, but
rational domains also work and have better stability properties, cf. [5, final rem.].
On the other hand, the extension of the result to general rigid spaces is not known.

(%) i.e. quasi-compact and sober, with a basis of quasi-compact open subsets
stable under finite intersection (equivalently, homeomorphic to a space Spec B, cf.
[25]).



354 Yves André

We refer to [11][26] for p-adic analytic and adic spaces respectively. Let
us describe briefly the case 4 = Spm C,,(T).

In the “tree-like” analytic unit disk 4", one distinguishes four types of
points:

— type 1: these are the points in 4 (“ends of the tree”).

— type 2: they correspond to the sup-norm on disks of radius r € p@<
(“branching points of the tree”). The root 5 of the tree corresponds to the
case r = 1.

— type 3: they correspond to the sup-norm on disks of radius r¢ p@<.

— type 4: they correspond to nested sequences of disks with empty
intersection (“dead-ends of the tree”).

The overconvergent adic unit disk 4%/ is obtained by “attaching” to
each point x of type 2 a “circle” (= ]Pl(Fp)) of tangential base-points 0,
which are closed and belong to the closure of . The affinoid adic unit disk
A" is the complement in 4°%! of one specific tangential base-point 750,
which lies in the closure of # (in fact 4°*! is the closure of 4°? in the adic
affine line; the passage from 4’ to A% is a special case of a universal
construction in the world of adic spaces, ¢f. [26, 1.10] [27, 5.9, 5.10]).

Now the question arises whether like 4", 4°? is the completion of A
with respect to some uniformity. The answer is negative. In fact, there is
no compatible proximity at all on 4%, because of the “asymmetry” of its
topology: if x is a point of type 2 and 6 a tangential base-point in the closure
of x, then @ would be near x since it is in m, but 2 would not be near 6 since
{6} is closed. The only hope to put a compatible “uniformity” on adic spaces
is thus to relax the notion of uniformity by dropping the symmetry con-
dition.

222 — A detour through asymmetric topology

In fact, in the mid 1950s, L. Nachbin and others have tried to formalize
the common properties of uniform spaces and partial orders by dropping
the symmetry condition. This led to the theory of quasi-uniformity and
quasi-proximity (same definitions as above’, but without the symmetry
condition on U and on v, cf. [36]). We refer to [31] for a historical survey,
and for references for the results recalled below.

(" beware that the equivalent statements mentioned in parenteses are no
longer equivalent in this generalized setting.
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One has forgetful functors:
{quasi-uniform spaces} — {quasi-proximity spaces} — {topological spaces}

but now, any topological space becomes quasi-uniformisable - in fact
in several functorial ways, for instance via the finest compatible
quasi-uniformity. The finest compatible quasi-proximity is given by
AvB<= ANB #0085

Any locally quasi-compact space X has a coarsest compatible quasi-uni-
formity (the Kiinzi quasi-uniformity), generated by finite intersections of
X xU)u(X\ K)xX),for K C U, K quasi-compact, U open (cf [31, § 3]). If
X is spectral (or more generally if X has a basis of quasi-compact open
neighborhoods), then the Kiinzi quasi-uniformity is also generated by finite
intersections of (X x U)U((X \ U) x X), for any basis of quasi-compact
opensubsets U C X (indeed, this quasi-uniformity is clearly coarser than the
Kiinzi one, and it induces the same topology), and it is functorial with respect
to quasi-compact (= spectral) maps.

Any continuous map X — Y between a quasi-compact quasi-uniform
space X and a uniform space Y is (quasi-)uniformly continuous [327°.

Cauchy filters, complete and precompact spaces, are defined as above.
A topological space is quasi-compact iff it is complete with respect to every
compatible quasi-uniformity [36, § 4.15]. We shall sometimes write Y = X
to indicate that X is dense in Y and Y is complete with respect to a quasi-
uniformity compatible with that of X, even though in this asymmetric
setting, such a quasi-uniform space Y is by no means unique.

2.2.3 — A p-adic analog of real blow-up

Let X = Spec A be again an affinoid space as above. From the above
remarks, one gets:

(®) it is induced for instance by the (functorial) Pervin quasi-uniformity
generated by finite intersections of (X x U)U((X \ U) x X), for open subsets
U cC X, cf [38, §19.7, 19.14]).

(*) the author learned this result just after noticing that the counter-example on
p. 55 of [36] is wrong - a fortunate mistake: proving that (along Lambrinos’ theorem
but contrarily to what is stated in loc. cit.) the Pervin quasi-uniformity on [0,1] is
indeed finer than the unique compatible uniformity is an instructive exercise for a
newcomer in asymmetric topology - an exercise which can be done with a sheet of
graph paper!



356 Yves André

2.2.3. PROPOSITION. Finite intersections of subsets of the form
(X xD)UX\U) x X), where U runs through the rational domains in
X generate the coarsest quasi-uniformity compatible with the topology
of X It is complete, and the continuous map X — X is (quasi-)
uniformly continuous. In particular, the quasi-uniformity X, on X
induced by X is precompact.

One thus has a commutative square in the category of precompact
quasi-uniform spaces:

p

rad {\ > -
X% = ‘\((ul) - X% = /\(un)

@.1) 1

7 /) 7
/\(ml) - /\(nn)-

—

This applies in particular to 4, and the situtation is somehow analogous to
the real blow-up setting, the missing point 0 being replaced by the missing
open unit disk 4__ at co (4 = Pl(Cp) \ 4).

2.2.4 REMARK. There is a strong analogy between the passage from
X" (with its Grothendieck topology defined in terms of rational domains)
to the spectral space X on one hand, and the passage from a real-alge-
braic variety with its semi-algebraic Grothendieck topology to the real
spectrum (which is a spectral space) on the other hand. In both cases, this
passage does not alter the topoi [26, 1.1.11] [14, ch. 7]. Similarly, there is a
spectrum attached to the subanalytic Grothendieck topology of complex
analytic manifolds (cf [35, § 1]). It might be interesting to understand
these spectral spaces in terms of quasi-uniformities, especially in view of
the role of the subanalytic site in the study of singularities of meromorphic
differential modules [29] [35].

224 — Formal uniformities and p-adic blow-up

On the p-adic disk 4 with its standard formal structure, one can also
consider the non-Hausdorff uniformity defined by the equivalence relation
|z — 2| <1. Its Hausdorff completion is the discrete line A'(F,). Blowing
up a point in the closed fiber Al(Fp) changes not only the uniform strue-
ture (the Hausdorff completion of 4 becomes Al(Fp) 11 AI(F,,) ), but also
the topology. From this viewpoint, a p-adic blow-up is far from being an
analog of a real blow-up.
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More generally, if Y is the Raynaud-Berthelot generic fiber of a O, -
formal scheme ), there is a canonical non-Hausdorff uniform structure
(defined by the tube of the diagonal) for which the completion map is the
specialization map sp : Y — |)|, || being equipped with the discrete to-
pology.

3. Uniform sheaves
3.1 — Uniform coverings

Sheaves can be thought as a way of patching compatible local data.
Likewise, we shall think of uniform sheaves as a way of patching uni-
Sformly compatible local data, uniformity being understood as a suitable
condition on coverings.

The obvious guess is to use Tukey coverings, but they have a drawback:
they don’t define a Grothendieck topology in general. For instance,

(U; = 1—1,iD;cn is a Tukey covering of the (metric) uniform real line R,

1 1
and for each i, (Uy =] - z+JT - +JLD, 1...2i-1 1s a Tukey cover-

ing of U;, but (Uy);; is not a Tukey covering of R. For this reason, we shall
consider a more flexible notion of uniform covering.

Let X be a uniform space, and let X - X be the Hausdorff com-
pletion.

3.1.1. DEFINITION. We say that an open covering (U;); of X is uniform iff
it is the inverse image by 1 of an open covering of X.

This is stronger than asking that (U ;)i is a covering of U: for instance,
open sectors U; (centered at 0 and of angle <2r) which cover 4* do not
form a uniform covering of 4, (but they do for A,,), alhough their
completions form a covering of 4.

Tukey open coverings are uniform (indeed, they are the inverse
image by : of Tukey open coverings of X) . The converse is true if X is
precompact, in which case any uniform covering admits a finite sub-
covering.

3.1.2. LEemMA. (1) For any open subset U C X, there is a (unique) big-
gest open subset U C X such that 1 1) =

@) UcU=u«0). IfrY(U) = U, then U is the interior of U.

@ UnU =UNUY.
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(4) For any collection of open subsets U; of X, | U C yuoy.

(B) (Uy); is a uniform open covering of a given open subset U C X iff
Uy is a covering of U.

(6) The topology of any open subset V C X has a basis of the form (U_,-),
where Uj is some basis of the topology of (V).

(7) Any open subset V C X admits a covering of the form (U;);, where
(U;); s some uniform open covering of 1~ (V).

Proor. (1) U is clearly the union of all open subsets V X such that
(V)=U.

(2) For the identification U= «0) C X , we refer to [16, 11.26.9. cor. 1].
Replacing X by «(X), we have to show that U/ ¢ U, i.e. any non-empty open
subset V C U meets U. But V N X is non-empty by density of X, and is
contained in U since U NX = U. It follows that U is contained in the in-
terior of U.

tUNX=U , the reverse inclusion is immediate.

(3) The inclusion UNT’ ¢ (UNU'Y follows from {(UNT") = UNU".
The reverse inclusion is immediate.

(4) Follows from (| U;) = J U;.

(5) Follows from the fact that if (V;); is a covering of U , s0is (1(V)),
taking into account item 2.

(6) We may replace X by «(X). We know that X is regular (as any uni-
form space), and so is its subset V. In particular, any point € V has a
basis of neighborhoods in V' which are interiors W of closed subsets W of
X. By item 2, W = (W N X).

(7) is a straightforward consequence of items (5) and (6). O

3.1.3 REMARK. These definitions and arguments extend to the quasi-
uniform situation, when X is a completion of a quasi-uniform space X,
except items 6 and 7 which use the regularity of uniform spaces. Ac-
tually, only the fact that any point has a basis of open neighborhoods
which are interiors of their closures is used. This holds for instance in
the situation of an affinoid adic space X%’ endowed with its canonical
quasi-uniform structure as above. Indeed, any point has a basis of ra-
tional domains W. Let p : X% — X be the canonical map. Then, p(W) is
compact, and p~1p(W) is the closure of W in X% and W is the interior of
pLp(W).

This does not hold, in contrast, for 4°*': the maximal point 5 of the disk
does not have a basis of open neighborhoods of the form U, U C 4, since U
always contains #oo.
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3.2 — Uniform G-topology and uniform sheaves
Let X be again a uniform space.

3.2.1. DEFINITION. The uniform G-topology of X has for open sets the
open subsets U of X, and the G-coverings of U are the uniform coverings of
U (viewed as a uniform subspace of X).

3.2.2. LemMA. This defines a saturated Grothendieck topology (cf.
[15, 9.1.2]), which is functorial with respect to uniformly continuous
maps.

Recall that it is possible to glue saturated Grothendieck topologies (cf.
[15, 9.1.3]).

Proor. This is a Grothendieck topology since:

— (U) is a uniform covering of U,

— if V. U are open subsets, and (U;); a uniform coverlng of U, then
(U; n'V); a uniform covering of V (indeed u(l; N V)= (U U)n V= V)

— if (U;); is a uniform covering of U, and (Uj); is a uniform coverlng of
U;, then (Uj);; is a uniform covering of U (indeed UUU =U; UZ 0.

It is saturated since:

— If V is a subset of the open set U and if there is a uniform covering
(Uy); of U such that V N U, is open, then V is open,

— any open covering (Uy); of U which admits a uniform refinement (V;);
is uniform (indeed, (V 7); is a refinement of (U,);, hence both cover 0.

It is clear that this Grothendieck topology is functorial with respect to
uniformly continuous maps, since such maps extend to the completions. [

3.2.3. DEFINITION. A uniform sheaf is a sheaf for the uniform G-to-
pology. We denote by X the uniform topos, i.e. the topos of uniform
sheaves on X.

It is functorial with respect to uniformly continuous maps X — Y.

3.2.4. PROPOSITION.  For any uniform space X, 1 induces a morphism
of sites fmm X (with its uniform G-topology) to X, whose associated map

of topot X2 X isan equivalence. A quasi-inverse X = X 18 given by

h(Q)U) = GO), h*(FYV) = Fa (V).
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Proor. Let h! lge the functor from t}}e site X (with the uniform G-
topology) to the site X given by A~1(U) = U. By definition of the uniform

G-topology, it is continuous, i.e. induces by composition a functor XX

which is /.. On the other hand, for any F € X, G € X, one has a canonical
map Mor (2*(F),G) — Mor (F, h.(G)) which is clearly injective. It is also
surjective by item 7 of the Lemma 3.1.2: the value of a morphism 2*(F) — G
at V can be written as £ 1(V)) = F (Up;) — 6(V) = G(( Uj)j) for a suitable
uniform covering (U;); of V' N X, and can thus be expressed in terms of the
values of a morphism F — h.(G) at the U;’s. Hence " is left adjoint to &..
Since h*(F) = 1, it is also a right adjoint, hence is exact. Therefore h comes
from a morphism of sites %, which is left quasi-inverse to .

It remains to show that / is an equivalence. We conclude by using the
criterium of SGA 4 II1. 4.1:

(1) h! respects finite limits (indeed these are just finite intersections
of open subsets, and item 3 of Lemma 3.1.2 applies),

(2) for any open V C X, there is a covering (V; — V); with V; € Im k!
(this is item 7 of the lemma),

(3) if (WY (U;) — h~1(U)); is a covering, then so is (U; — U); (this fol-
lows from item 5 of the lemma),

(4) h7! is fully faithful (this is immediate, since morphisms between
open subsets are just inclusions). O

If X is Hausdorff complete, X is nothing but the topos of sheaves on
the underlying topological space Xj,,. In general, there is a canonical

morphism from )/f;, to X, given by the composition % — me ~ X é X.

If X is precompact, the topos X can be defined without reference to X,
since the uniform coverings of U C X are the Tukey open coverings of U.
In fact, in this case, X depend only on the induced proximity (cf. end of § 1),
and uniform sheaves could also be named proximal sheaves.

For instance, bounded continuous numerical functions (resp.uniformly
continuous functions) form a uniform sheaf on any precompact uniform
space (of course, they do not define a sheaf in the usual sense in general).

3.3 — Examples

3.3.1 — Real blow-up and sectorial uniformity again

Real blow-ups do not change the topology of (open) complex manifolds,
but change their uniform G-topology: there are more uniform coverings.
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For instance, locally constant sheaves in the usual sense define
locally constant sheaves for the sectorial uniform G-topology (but not
for the standard metric uniform G-topology). More generally, con-
structible sheaves are constructible for the sectorial uniform G-to-
pology.

Let us come back to the case of the punctured disk 4, with its sec-
torial uniformity. By the previous proposition (and the remark following
it), uniform sheaves on 4, are “equivalent” to sheaves on the compact
cylinder 4°*°, but can be characterized without reference ot 4°*°. However,
points of A" are not enough to provide a conservative system of fiber
functors on 4, one has to consider also the tangential points, as the
following example shows.

A useful uniform sheaf on A, is (’)Z(ii’i, whose sections on U are given
by those holomorphic fonctions on U which have moderate growth any
germ of sector (centered at 0) contained in U. For instance, if U C A" is
defined by Rez > 0, then e~ /% € (’)Zg‘i(U).

The inclusion (’)Zg’e‘i%(’) 4 is @ monomorphism of uniform sheaves but
not an isomorphism. It induces an isomorphism on fibers at any point of 4,
but not at tangential points.

3.3.2 — Spiral uniformities again

In the same vein, the sheaf-theoretic construction of g-Fourier and
Pincherle transforms proposed by J. Roques [42], which involves glueing
the completion A7 and its mirror under z+— 1 /%, q—1/q, could be re-
written purely in terms of appropriate uniform sheaves on C*, without
having to compactify.

3.3.3 — Berkovich and Huber spaces again

Let us first recall that for any complete non-archimedean field %, there
are full embeddings of categories

Any, — Rig — Adj,, X7 — X" X

between the categories of strictly analytic Hausdorff Berkovich k-analytic
spaces, rigid-analytic varieties and (analytic) adic spaces over k, which re-
spect the subcategories of affinoid objects. o

For any X" € Rigy, this induces an equivalence of topoi X = X",

and for any X" € Any, and a morphism Xrig 2, Xan which, combined with
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the previous equivalence, induces an equivalence between X and the

subtopos of X% consisting of sheaves F such that for any pair of points
(2, 0) with 0 € {7}, Fy = F,. Similarly, for the respective étale topoi, cf.
[26, 1.1.11, 8.3, 2.3].

Let us come back to the case of an affinoid space X = SpmA (over
k =C,, to fix ideas). Combining the previous equivalences of topoi
with Proposition 3.2.4 (taking into account Remark 3.1.3), one ob-
tains:

3.3.1. PROPOSITION. The commutative square (2.1) induces a commu-
tative square of topoi

Xre P, Xan
(3.1) T =3

ye 2] —_—N—
/\(ud) L’ ‘X(un)-

For instance, the abelian sheaves © and @' exist in each of these topoi, and
correspond to each other. For a smooth curve, the morphismd : O/k — Q!
is not an isomorphism (failure of the Poincaré lemma): it induc/eg an iso-
morphism on fibers at any point of X, but not at points of X** = X4,y which
do not lie on X.

3.4 — Another notion of uniform sheaves

Instead of patching uniformly compatible local data, one may want to
patch compatible uniform local data. This leads to a completely different
notion of “uniform sheaves”, as objects of the category 2-colimp, {Sheaves
on B}

Concretely, objects are pairs F =# € U, Fg € E), morphisms are
defined by Mor(F1, Fz) = colimgcg,ng, Mor(Fg, g, F g, g). Global sections
are given by I'’F = colimgc, [ (Fg) (which is not the same as I'(6* F) since
entourages do not form a basis of neighborhoods of the diagonal in gen-
eral). One can define a cohomology theory for such objects in a straight-
forward way.

This notion seems less useful (in the area of differential equations which
we have in mind) than the other notion of uniform sheaves. On the other
hand, it extends in a straightforward way to quasi-uniformities and to
generalized uniformities in the sense of Appendix 1.
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4. De Rham cohomology and uniform sheaves

“En géométrie algébrique, un point est beaucoup plus petit qu’en géo-
métrie analytique: une fonction sur le complément a une singularité
1/2" (resp. essentielle). On peut interpoler entre les deux.”

P. Deligne [23].

4.1 — Complex realm

4.1.1 — Algebraic vs. analytic De Rham cohomology

Let now X be the complement of a finite set Z of points in a projective
smooth curve X over C. Let M be an algebraic coherent module on X with
connection V. Its algebraic De Rham cohomology is

Hjp(V) = H* (M 5 M Q).

Let (M™*, V) be the associated analytic coherent module with connection
of the analytic curve X" attached to X. By the Poincaré lemma, V*" is an
epimorphism, and we denote its kernel by £ (local system of analytic
solutions). The analytic De Rham cohomology is

(41) E)R(v(m) _ 1_1*(Mcm v::% Man ® Q}(M) o~ H*(Xan,ﬁan).

The canonical morphism Hj)p(V) ﬂ Hpp(V*) is an isomorphism if V
regular [22]. In the presence of irregular singularities, it is not: one has the
Deligne index formula [22] which involves the irregularities (= Fuchs-
Malgrange numbers) at the points of Z:

4.2) 1orV) = xpr(V") + Z 1ry(V).

xeZ

With 7pp(VP) = rk M - 2(X%) = vk M - 1pp((Ox, d)).

4.1.2 — The uniform viewpoint

In order to analyse the irregular singularities, one usually introduces
the real blow up of X* (a manifold with boundary) and some sheaves on it,
cf-e.g. [43, 3.4, 5b].

Alternatively, one can use the sectorial uniformity X on X(C) (ob-
tained by glueing sectorial uniformities around the points in Z) and some
uniform sheaves. Recall that the uniform G-topology of X, has the same
open sets as X(C) but less coverings.
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Let O}g"d) C Oxw be the uniform (or proximal) sheaf of analytic func-
tions with moderate growth around Z, cf. 3.3.1. This makes X(s,) a ringed
site. One has I' (O%fﬁ)) = I'(Ox) (rational functions with poles at Z).

Let (M™% vmod) he the coherent O}}ifg‘f)—module with connection ob-
tained from (M, V) by tensoring with (’);?(_‘::i. By the moderate Poincaré

lemma (cf. [43, 3.4, 5b] and [45, 7.3]), V"*? is an epimorphism of uniform
sheaves (via the comparison of topoi 3.2.4), and we denote its kernel by
£"°% (uniform sheaf of moderate solutions).

4.1.1. THEOREM. Omne has canonical isomorphisms
(4.3) Hipp(V) 2 Hpp(V"™) 2 H* (X0, L77).

Moreover £™? is a constructible uniform sheaf on Xsee) (the ex-
ponentials e91/? which occur typically in the Turrittin formal decomposi-
tion around the points of Z are sections of (’)}ijf) in suitable sectors), and
this leads to a combinatorial proof of Deligne’s index formula.

All this is nothing but a translation of [43, 3.4] in the language of uni-
form sheaves (which allows not to leave the topological space X(C)), using
the comparison of topoi 3.2.4.

4.1.3 — Finer zooms

Complex analytic singularities are not “isolated”, but surrounded by a
“halo” of infinitely near singularities, which Deligne’s disc unfolds and
materializes [23]. This disc is obtained by compactifying C with a circle:
CU(S! % 10, 00])/(C* ~ (S* x 10, oc[), and is endowed with a sheaf of rings
O, following the rule

{analytic functions with exp. growth < k' in I}

Ix 1K K .
< kL= {analytic functions with exp. decay > k" in I}

Via asymptotic expansions, global sections of O in k¥’ <k can be identified
with Gevrey series of order 1/k. The definition sets of exponentials €21/ as
sections of O give rise to “Deligne’s daisies”. Counting their petals leads to a
combinatorial proof of refined Gevrey index formulas [34]. Using a bit of
non-standard analysis, J. Martinet [40] has sorted out the relevant in-
finitely near singularities, and proposed a simpler and geometrically more
suggestive “halo”.

On the other hand, the subanalytic site also allows a fine analysis of
singularities: for instance, it allows to recover, using the sheaf of tempered
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solutions, the exponentials ¢®1/? which occur in the formal decomposition
(up to a multiplicative scalar) [35].

It would be interesting to describe these finer zooms in terms of suitable
uniform sheaves for a suitable uniform structure on X. A first step would be
to consider the ¢f+-spiral uniformities introduced in 2.1.2 (for variable g).

4.2 — p-adic realm

4.2.1 — Algebraic vs. analytic De Rham cohomology

Let now X be the complement of a finite set Z of points in a projective
smooth curve X over C,. Let M be an algebraic coherent module on X with
connection V. We denote by (M, V%) the associated analytic coherent
module with connection of the analytic curve X** attached to X.

In this situation, £* = Ker V" is no longer locally constant, not even
constructible (for instance, in the case of the homogeneous differential
equation of order 2 satisfied by logz on 4%, the dimension of the fibres of
L at points of type 2 drops to 1).

According to F. Baldassarri, in the absence of Liouville numbers among
Turrittin exponents (for instance, if X and V are defined over a number
field), formal solutions at Z converge (the formal decomposition is analytic)
[6] and the canonical morphism

Hiyp(V) 5 Hpp(V)
is an isomorphism [7] (this actually holds in any dimension, cf. [3, ch. 4]).

4.2.1 REMARK. Since X can be covered by finitely many affinoids, it
can be described as the completion of X(C,) with respect to a uniformity
defined in terms of rational domains [5, 4.3, rem. 3]. This leads to an
interpretation of analytic De Rham cohomology as De Rham cohomology
of a suitable uniform sheaf with connection on X(C,),). For coherent
modules, working on analytic spaces or adic spaces (or in the rigid con-
text) makes no difference, and one could also use the De Rham coho-
mology of V% (and a quasi-uniform interpretation on X (Cp)aay)-

42.2 — The overconvergent setting

Let us assume that X comes from a projective smooth Oc,-scheme X,
with reduction /’ffp, and that Z comes from a étale closed subscheme Z C X.



366 Yves André

It is then natural to consider the cohomology of V over the com-
plement V of the tube of ZF , Which is an affinoid domain in X" - or
rather (to ensure finite- dlmenswnahty) the cohomology of V on the
corresponding “dagger space”. As in [12, 5.1], we see the latter as a
germ of neighborhoods V' of V (say, in X*"), and associate to it the
dagger algebra

Al = colimy O(V)
(for instance, in the case of 4= SpmC,(T) C A', C,(T )= U C,(r17)).

One has Spm AT = V. The category of sheaves on such germs 1s defined as
the 2-colimit of the categories of sheaves of sets on open neighborhoods of V
(¢f [12, 5.2] [SGA4, Exp. VI]; the situation is similar to that of 3.4).

422 REMARK. A simpler approach consists in using the over-
convergent adic space V% (obtained, as a set, by attaching to V% one
tangential base point for each point in Z, ¢f. 2.2.1). It is endowed with a
sheaf of rings which coincides with Opw on V%, and has A’ as ring of
global sections. One has V% = lim V'* whence a map V% — “lim” V",
This allows to replace ind-sheaves on *“lim ” V' by genuine sheaves on
Vad]‘.

The étale site of V% endowed with Oy is reminiscent of the sub-
analytic site endowed with the sheaf of tempered analytic functions (i.e.
analytic functions with moderate growth at the boundary) in the complex
case, in its capacity of capturing the exponentials e9/?) which occur in the
formal decomposition of differential modules [35]. Note that the defining
sets of the e?1/?’s (p-adic analogs of the petals of Deligne’s daisies) are
étale neighborhoods of V (e.g. for the Dwork exponential ¢/, it is the
Artin-Scheier cover defined by y? —y 1 = z71).

423 — Overconvergent De Rham cohomology

Let (M', V') be the Af-module with connection obtained from (M, V)
by taking global sections and tensoring with Af. There is a natural map

K ¢ * Ty * TVT T 1
Hiyp(V) 5 Hyp(Vh = M S MY @0 Q1X)).

Let us assume that (M’ V') comes from an overconvergent F-iso-
crystal £ on X— (so that H}‘)R(V') =H, (5)) If V is regular, ¢ is an
isomorphism (thls actually holds in any dlmensmn [9]), but it is not in
general.
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The p-adic index formula [19, 5.0-12] concerns H}‘)R(VT) rather than
H})p(V) and involves the p-adic irregularities:

(4.4) AoR(VD) = TR M - 7,30 (Xp )+ Y ira(V).

erFp

4.2.3 REMARK. The proof given in loc. cit. and summarized in [30, 4.4.1]
is global, and uses at some point GAGA and Deligne’s index formula over C.
It is used in K. Kedlaya’s “p-adic proof” of the Weil conjectures [30, 6.5.3]...
which is thus not completely p-adic! Fortunately, F. Baldassarri [8] has re-
cently given a purely p-adic local proof of (4.4) in the spirit of Robba’s original
approach to the p-adic index formula. His result does not assume the over-
convergence of VI (which is too restrictive a condition if one wishes to
compare ypp(V) and y,r(V') by interpolation, using neighborhoods of V).

The p-adic local monodromy theorem combined with the Matsuda-
Tsuzuki-Crew identification of p-adic irregularities with Swan conductors
(cf [1, 7.1.2]) allows to write (4.4) in the form:

(4.5) Ior(VD) =Tk M - 130 (X )+ > swal©)

xezip

(¢f- [30, 4.4.1] for details). For instance, if £ is a unit-root F-isocrystal, it
corresponds to p-adic étale sheaf /JF on X' with finite local monodromy
[20], one has H;‘)R(VT) ~ H*(X+ F, et,[l ), and (4.5) corrresponds to the
Grothendieck-Ogg-Shafarevich formula for ﬁ—

One might hope for an interpretation of (4. 5) more in the spirit of the
combinatorial interpretation 4.1.2 of Deligne’s index formula. In the
special case where £y has finite global monodromy (which is for instance
the case if tk M = 1 [20]) V1 is isotrival, and the Coleman-Berkovich
étale sheaf S [12], or rather its avatar on V“dT would serve as a substitute
for the sheaf (’)m"d) it restores the Poincaré lemma in the p-adic situation
[12, 9.3] (i.e. tensoring with it makes the connection an epimorphism), and
the kernel of Vs is a locally constant étale sheaf whose cohomology co-
incides with Hjp (V).

4.2.4 REMARK. R. Huber [27] has attached to tangential base-points in
V@t (corresponding to Zg ) some local monodromy groups, and used them
successfully in the context of ¢-adic étale sheaves on V1 ¢ =£p (c¢f also
[39]). It would be very desirable to build a similar theory in the case of p-
adic coefficients, especially in connection with the p-adic local monodromy
theorem and the p-adic index formula.
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Appendix 1. Uniformity and stratifications

4.3 — Uniformaty, “Grothendieck style"

Let C be a category. Let T be an object of C whose finite powers exist in
C. An entourage of T is given by an object £ and a triple of morphisms
YA E E PL2 1 such that p; 0 0 = 1p. They form a category whose final
object is T2.

4.3.1. DEFINITION. A umniformity on T is a sieve U of entourages of T,
stable by fibred product (over T2), and such that

— for any E € U, there is E' € U such that (&' x T) x s (T x E') (to-
gether with 0 and p;, p3) exists in &/ and maps to E,

— for any E € U, the entourage obtained by switching p; and py is
in U.

4.3.2. ExamPLE. Let S be a topological space, and Cg be the category
of topological spaces T with a surjective continuous map to S. A uniformity
then corresponds to the usual notion, except that 72 is replaced by T xg T;
the induced uniformity in the fibers should be compatible with the
topology, and vary continuously on S.

This example is fundamental in sectional representation theory
(Dauns, Hofmann, et al. [21]), which aims at a general recipe for re-
presenting topological algebras B as algebras of continuous (or bounded
continuous) sections of objects of Cg (for suitable “spectra” S), endowed
with a uniformity. This recipe generalizes both Grothendieck’s con-
struction in the commutative discrete case (B = I'Og viewed as sections
of an étalé space) and Gelfand’s construction in the commutative C* case
B = I'(R x S)/S)).

4.4 — Stratifications

Let U be a uniformity on 7', which we assume to be a ringed space (or a
topos).

4.4.1. DEFINITION. A U-stratification is an Op-module M together with
an isomorphism p; M = p; M (parallel transport) over some E € U, which
0" maps to 1, and with the usual cocyle relation (on (£ x T) x s (T' x E")
for £’ as above).
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4.4.2. EXAMPLE. Let T be the complement of finitely many points x; in
a projective complex curve T, and let M be a coherent analytic module on
T. A connection V on M induces a stratification on any simply-connected
open U C T (e.g. a sector of angle <2 pointing at x;). If one replaces T by
its étale site, one gets a stratification without having to restrict to U.

4.4.3. EXAMPLE. Grothendieck’s n-stratifications are U/-stratifications
for the uniform structure defined by the »-th infinitesimal neighborhood of
the diagonal. Convergent and overconvergent isocrystals (cf. [13] [33, 3.4])
are U-stratifications for the (non-separated) uniform structure defined by
the tube of the diagonal (cf. 2.2.4) - or some strict neighborhoods thereof.

Appendix 2. Uniformity and bornology

In the mid 30s, bounded sets became important in functional analysis in
the hands of J. von Neumann and A. Kolmogorov, who used them to define
locally convex polar topologies. Bornological rings and modules also play a
crucial role in the above-mentioned sectional representation theory [21].
They have been recently reconsidered by F. Baldassarri as a possible
common framework for complex-analytic geometry and overconvergent p-
adic geometry.

4.4.4. DEFINITION. A bornology on a set X is a covering (B;); which is
stable under inclusions and finite unions. The B;’s are called bounded sets,
and (X, (B;);) a bornological space. A bounded map between bornological
spaces is a map which sends bounded subsets to bounded subsets.

For instance, given a topological space X, the subsets with quasi-com-
pact closure form a bornology, which is functorial in X.

Any uniformity gives rise to two bornologies: the precompact bornology
(consisting of the precompact subsets), and the (coarser) canonical bornol-
ogy (consisting of subsets B such that for any entourage E thereis a finite set
Z C X and apositive integer » such that £°"(7) contains B, [16, I1, § 4, ex. T]).
Both play a crucial role in the classical context of topological spaces™® - ¢f. [37],

() in a locally convex space, the canonical bornology coincides with the von
Neumann bornology (consisting of subsets absorbed by any neighborhood of the
origin). An interesting critical evaluation of the role of bornologies in functional
analysis may be found in [46].
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where (uniform) topological concepts are carefully compared to bornological
concepts.

More generally, any quasi-uniformity gives rise to a precompact bor-
nology and to a canonical bornology. One can then use functorial quasi-
uniformities (such as the finest compatible quasi-uniformity) to attach
functorially a bornology to a topology, in many different ways. It might be
interesting to study this family of functors in the spirit of [17].

Sectional representation theory [21] offers another type of connection,
through duality, beetwen certain uniform spaces and certain bornological
algebras.
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