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Perfect Numbers and Finite Groups
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ABSTRACT - A number is perfect if it is the sum of its proper divisors. We extend this
notion to finite groups by calling a finite group a Leinster groupifits orderis equal
to the sum of the orders of all proper normal subgroups of the group. We provide
some general theory, we present examples of Leinster groups, and we prove some
related results.
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1. Introduction

A number is perfect if it is the sum of its proper' divisors (e.g. 6 and 28
are perfect numbers). Perfect numbers are an ancient object of study.
Euclid proved that the numbers 2/-1(2! — 1) are perfect where ¢ is a posi-
tive integer and 2' — 1 is a Mersenne prime. Euler showed the converse of
this statement, namely that every even perfect number has the form
20-1(2! — 1) where 2! — 1 is a Mersenne prime. It is not known whether there
are infinitely many Mersenne primes; neither is it known whether there
exist odd perfect numbers.
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(*) As usual, a divisor of a number 7 is called proper if it is not equal to 7; in
particular, 1 is a proper divisor of every natural number n > 1. Similarly, a
subgroup is called proper if it is not equal to the whole group; in particular, the
trivial subgroup is a proper subgroup of every non-trivial group.
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Leinster [5] extended the notion of perfect numbers to finite groups. He
called a finite group perfect if its order is equal to the sum of the orders of
all proper normal subgroups of the group. We will call such a group a
Leinster group 2 instead, since the term “perfect group” is customary for a
group equal to its own derived subgroup. Note that a finite cyclic group is a
Leinster group if and only if its order is a perfect number.

The motivation for studying Leinster groups is twofold. First, it is our
hope that studying this class of groups is equally interesting as studying
the class of perfect numbers, and in particular, the problem whether or not
there exist odd perfect numbers has an obvious analogue for Leinster
groups. We are aware of only a single odd order Leinster group, and the
question whether there are others seems quite challenging.

Second, it seems that expressing that the sum D(G) of the orders of the
normal subgroups of a group G is not too large, is an interesting way of
saying that G has relatively few normal subgroups, and we can indeed
deduce structural properties if D(G) is relatively small; this is precisely
what we will do in Section 3.

In Section 4, we will focus on constructing examples. In [5] a method
was introduced to generate examples of Leinster groups in the form of
direct products where one component is a cyclic group. We will push this
method further to find many other examples of this form.

Many of the Leinster groups that we will encounter, are so-called Zas-
senhaus metacyclic groups (finite groups with the property that all Sylow
subgroups are cyclic). In Section 5 we perform a thorough investigation of
Zassenhaus metacyeclic groups, and in particular we combine our theoretical
results with the cyclic extension method of Section 4 to obtain many more
examples of Leinster groups which are Zassenhaus metacyclic.

Our hope was to find infinite families of Leinster groups, but so far we
have only been able to find about 400 examples (not including the 48 cyclic
examples that correspond to the 48 known perfect numbers).

A related, but slightly less natural problem (especially in view of Propo-
sition 4.2 below) is obtained by replacing “normal subgroups” by “subgroups”
or by “cyclic subgroups”. If the order of a finite group is equal to the sum of the
orders of all of its proper subgroups, then the group is cyclic. On the other
hand, there are many finite groups the order of which is equal to the sum of
the orders of all of its cyclic proper subgroups. We refer to [3] for more details.

() In a recent discussion on Mathoverflow [6], Tom Leinster called these
groups immaculate groups.
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2. Perfect numbers and certain Leinster groups

DErFINITION 2.1. (i) If 7 is a positive integer, we let D(n) be the sum of
all (positive) divisors of n, and we define d(n) := D(n)/n.

(ii) If G is a finite group, we let D(G) be the sum of the orders of all
normal subgroups of G, and we define §(G) := D(G)/|G]|.

(iii) A positive integer n is perfect precisely when d(n) = 2. If d(n) > 2,
it is called abundant, and if 6(n) <2, it is called deficient. The value d(n) is
sometimes called the abundancy index of n.

(iv) Similarly, a finite group G is a Lewnster group if and only if
o(G) = 2. We will also occasionally talk about abundant groups and defi-
cient groups, when o(G) > 2 or J(G) <2, respectively.

As a first example, let # be an odd positive integer and ¢ a positive in-
teger, and let M, ; be the group

@yl =y =Ly lay=a")=C,: Cy.

The following proposition shows that the description of all pairs (n,t) for
which M, ; is a Leinster group is equivalent to the problem of classifying all
perfect numbers.

PropostTION 2.2.  The group M, ; 1s a Leinster group if and only if
t = 1 and n is an odd perfect number, or n = 2! — 1 is a Mersenne prime.

PROOF. The center of M,,; is cyclic of order 2/~1. From this it is easy to
see that

DM,p) =2+ 1A +2+...+2"HDm) = 2'n + 2" — D).

Now D(M,, ;) = 21*1n if and only if (2! — 1)D(n) = 2!n, and this is equivalent
to (2f — 1)(D(n) — n) = . Ift = 1 this occurs if and only if  is an odd perfect
number. So assume that ¢ > 1. Now D(n) — n is a proper divisor of n. But
D(n) — n is the sum of all proper divisors of n. Thus D(n) — n is the unique
proper divisor of 7, which means that % is prime and equal to 2/ — 1. O

Note that in the proof above we used an idea of Leinster [5, Section 1.2];
the groups M, ; are precisely the dihedral groups.

If n is the largest known perfect number then n = 212! — 1) where
2t —1 is the largest known Mersenne prime. In this case, the group M,,;
has order precisely equal to 2n.

In Section 5 below, we will see that these groups belong to the larger
class of so-called Zassenhaus metacyclic groups. More precisely, the group
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M,,; is ZM(n, 2!, —1) in the notation of Section 5, and Theorem 5.7 implies
Proposition 2.2.

3. Restrictions on 6(G)

The goal of this section is to perform a theoretical study of the in-
variants D(G) and J(G) before we try to construct more examples.
Let us start by making three observations about the invariant 6(G).

OBSERVATION 3.1. (i) For any finite group G # 1 we have 6(G) > 1.

(i) For any normal subgroup N of any finite group G we have
o(G/N) < G).

(iii) The function o s mulliplicative in the semse that whenever
G = Gy x G with ged(|G1|, |Gz2]) = 1, then o(G) = 6(G1)d(G2).

Note that a stronger version of Observation 3.1(iii) holds; see Propo-
sition 4.2 below.

The following proposition and its Corollary 3.3 below turn out to be
very useful.

PropPoOSITION 3.2.  If G is a finite nilpotent group with 6(G) < 2 then G
1s cyclic and |G| is a perfect or a deficient number.

ProoF. Let G be a finite nilpotent group with 6(G) < 2 and let P be an
arbitrary Sylow p-subgroup of G for some prime divisor p of |G|; in partic-
ular P is a direct factor of G. By Observation 3.1(i and iii), or alternatively
by Observation 3.1(i), it follows that o(P) < 2.

Now let F' denote the Frattini subgroup of P; then P/F is an elemen-
tary abelian p-group whose rank, say 7, is the minimal number of gen-
erators of P. By Observation 3.1(ii), we have J(P/F) < 2. On the other
hand, if » > 1, then 1+ (p+1)/p < J(P/F) since P/F contains at least
p + 1 subgroups of order p"~!. This forces r = 1; hence P is cyclic. Then
every Sylow subgroup of G is cyclic. Since G is nilpotent, this implies that G
itself must be cyclic. Therefore 6(G) = J(|G|), and we conclude that |G|
must be a perfect or a deficient number. O

The example d(C, x C,)) =2+1/p+1 /p? shows that 6(G) can be ar-
bitrarily close to 2 for a non-cyclic finite nilpotent group G.
An immediate corollary to Proposition 3.2 is the following.
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COROLLARY 3.3. Ewvery nilpotent quotient of a Leinster group is cyclic.

We now proceed to show that for certain classes of groups, the addi-
tional information that 6(G) is relatively small forces the group to be of a
very specific type.

ProposITION 3.4. Let G be a supersolvable group with o6(G) <
1+ |G| Then G = Cp, Cpg, or Cy, = Cy for some not necessarily distinct
primes p and q.

Proor. First we show that every minimal normal subgroup N of a fi-
nite supersolvable group G is cyclic. For a prooflet G =N; > ... > N, =1
be a series of normal subgroups of G such that every factor group is cyclic.
Then there exists an index 7 such that N; > N and N;;,; "N = 1. Then
N;/Nis1 > NN;,1/N;is1 =2 N/(N;x1 N N) = N. Hence N is cyclic.

Let G be a minimal counterexample to the statement of the theorem
and let N be a minimal normal subgroup of G. By Proposition 3.2 we know
that G cannot be nilpotent. Then |[N| = r for some prime 7. Clearly, G/N is
isomorphic to Cp, Cyy, or C), : C, for some primes p and gq.

First suppose that G/N = C,,. If » = p then G = C or C, x C,. This is
a contradiction since G cannot be nilpotent. If » # p then G =C, : C), a
contradiction.

Now let G/N = C,,. By our assumption on J(G), the prime 7 must be
less than both p and q. Then N is central in G and so G is abelian; a con-
tradiction.

Finally let G/N = C, : C; # Cp, with p # q. Then p > g. By our as-
sumption on &(G), the prime » must be less than ¢ (and also p). Then N is
central in G and G = C, x (C), : Cy). But then the subgroup C, : C, is
normal in G of order larger than |G|*/®. This is also a contradiction. This
proves the theorem. |

REMARK 3.5. (i) The bound in the previous theorem is sharp. For let
both (p —1)/2 and p be primes (Sophie Germain primes). Then for the
supersolvable Frobenius group G = (C, x Cp) : C,_yy/2 the invariant 6(G)
is only slightly bigger than 1 + |G| /2.

(i) The word “supersolvable” cannot be replaced by “solvable” in the
above theorem. For let p = 2/ — 1 be a Mersenne prime, let V be a t-di-
mensional vector space over the field with 2 elements, let H be a Singer
cycle acting on V, and let G be the primitive permutation group V xH.
Then §(G) <1+ |G| '/2.
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Now we impose an even stronger restriction on J(G) for solvable groups
G to conclude that the group is cyclie.

ProposiTiON 3.6. If G is a mnon-trivial solvable group with
oG) <1+ |G|71/ % then G is simple (and hence cyclic of prime order).

Proor. Let G be a minimal counterexample and let N be a minimal
normal subgroup of G of order p” where p is a prime. Then the factor
group G/N is simple, isomorphic to C, where 7 is a prime. If » = p then G
is a cyclic group of order p"™' = p?, by Proposition 3.2, and as such
8(G) =1+ |G|+ |G| ™", a contradiction. So r # p, and N has a comple-
ment C, in G. If C, <G then » =1 and G is cyclic of order pr. Hence
oG)=14+Q1/m+Q/p)+ 1 /pr)>1+ (1/,/pr), a contradiction. Finally, if
C, is not normal in G then G = N x C, and C, acts faithfully and irreducibly
on N. Hence # < [N|—1 and 6@) =1+ Q/r)+1/|G) >1+|G| 2 a
contradiction. O

REMARK 3.7. The word “solvable” cannot be omitted from the state-
ment of Proposition 3.6, as is illustrated by the affine special linear group
ASL(n, p), or by the wreath product S A, where S is some non-abelian
finite simple group.

We now present a classification result of a certain class of Leinster
groups, namely those of order p'q for p, g prime.

PROPOSITION 3.8. Let G be a group of order p'q wheve p and q are
primes and t s a positive integer. Then G is a Leinster group if and only if
p = 2 and one of the following occurs:

(1) g =21 — 1 4s a Mersenne prime and G is cyclic;
(2) q =2'—11is a Mersenne prime and G = M.

Proor. The “if”-part is clear by Euclid’s result and Proposition 2.2.

Conversely, suppose that G is a Leinster group of order p'q where p
and q are primes and ¢ is a positive integer. Notice that p # ¢ because
otherwise D(G) would be congruent to 1 modulo p. A similar observation
yields that O4(G) # 1 and O,(G) # 1. Hence |04(G)| = q and |0,(G)| = p*
for some positive integer k at most ¢. Let N = O,(G) and let H be a Sylow
p-subgroup of G. Then G = N xH. By Corollary 3.3, the group H is
cyclie.
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We claim that p and q cannot be both odd. For if p > 3 and ¢ > 3 then
we have
t+l
1 ¢g+1 p g+l <2
pp-1 ¢ p-1 ¢

)

which is a contradiction.

Let ¢ = 2. Then H is a cyclic subgroup of index 2 in G hence normal in G
and so G = H x N is cyclic. In this case |G| is even but not divisible by 4. By
Euler’s theorem, this implies that |G| = 6 and case (1) occurs.

We can assume that ¢ > 3. Then p = 2. In this case

2Mg=D(G)=(1+2+  +2)(1+g) + @+ +2q
_ (2t+1 _ 1)q + (2k+1 _ 1)7

which implies that ¢ = 2541 — 1.

If k =t then G is cyclic, |G| is an even perfect number, and hence, by
Euler’s result, case (1) occurs.

We can assume that k<t. Now the cyclic group H/O2(G) of order
2% can be considered as a subgroup of Aut(N) which has order
q—1=21_2 Hence 2% must divide 2**! — 2 which can only occur
if t =k + 1. Since Aut(N) has exactly one element of order 2, namely
the element which inverts a generator of N, we see that G =~ M, ;. We
conclude that case (2) occurs. O

4. Cyclic extension method

The functions D and ¢ are multiplicative in the integers in the sense
that whenever n and m are coprime integers we have D(nm) = D(n)D(m)
and d(nm) = d(n)d(m). The functions D and J that we have introduced for
groups, are also multiplicative, even in a broader sense.

DEFINITION 4.1. Let G, H be finite groups. Following Leinster [5], we
say that G and H are coprime if they have no common composition factor. In
particular, if G and H are finite groups with coprime orders, then they are
coprime.

ProrosiTioN 4.2 ([5]). Let G, H be coprime finite groups. Then
DG x H)=D(G)DH) and oG x H) = 6(G)o(H).

Using this result, three Leinster groups were constructed in [5],
namely S3 X C5, A5 X 015128, and Aﬁ X 03667’76-
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In this section we take this method further by finding more Leinster
groups of this type. The idea is the following. For each group G, we try to
find a cyclic group C, coprime to G, such that G x C is a Leinster group. In
order to achieve this, we compute J(G) and we keep track of the list of
prime divisors of the cyclic composition factors of G; we call this list A. Our
goal is to find a positive integer n not divisible by any of the primes in 4,
such that d(n) = 2/6(G); it will then follow from Proposition 4.2 that the
group G x C, is a Leinster group. This reduces the problem to the fol-
lowing purely number theoretical question.

QUESTION 4.3. Given q € Q and a list A = {p1,...,pr} of primes, try
to find a positive integer n such that 5(n) = q, and such that p; fn for all
1e{l,... .k}

Even if A = (), this question is known to be extremely hard, and it is
related to very fundamental open questions about perfect numbers. For
instance, the question whether there exists a positive integer n with
o(n) =5/3 is known to be equivalent to the existence of odd perfect
numbers [1]. We also mention that there is an ongoing effort to try to
determine for as many rationals g as possible whether they are contained
in the image of J; see, for example, [8].

We have implemented a relatively straightforward backtracking
algorithm for Question 4.3, the details of which we have diverted to
Appendix A.

We have applied our algorithm on a few specific cases:

e dihedral groups of order 2n with % odd, up to order 10 (100 ex-
amples), for instance

D9798637554 X C204150168209 = D2-34-19-37-97-887 X C132-612<324641 )

e a list of 950 simple groups, including the 26 sporadic groups (15 ex-
amples), for instance

Mzz % Css009909630 = M2z X C2.5.13.79.109.157.:313 ;

e all groups of order < 2015, only excluding order 1536 (for which there
are 408641062 different groups) (192 examples). Note that we can omit
groups of prime power order, since every nilpotent quotient of a Leinster
group has to be cyclic by Corollary 3.3.

The interested reader can find the complete lists of these examples on
our webpage [9].
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In Section 5, we will use the cyclic extension method to find even more
examples, but only after we have developed some theoretical results about
the normal subgroup structure of Zassenhaus metacyclic groups.

REMARK 4.4. The Leinster groups of the form Dy, x C,, that we
found, all have the peculiar property that n contains a lot of small prime
factors, whereas m is usually prime or a small square times a prime. We do
not know how to make this observation more formally explicit, nor do we
have an explanation for this behaviour.

Notice that up to now, only one Leinster group of odd order is known,
namely the group

4.1) G = (Cr27 x C7) x Cg1912192.113

of order 355433 039577. The existence of odd order Leinster groups was
stated as an open question by Tom Leinster on MathOverflow, and the
example above was first discovered by Frangois Brunault only one day after
the question was asked [6].

5. Zassenhaus metacyclic groups

Many of the Leinster groups that we found so far, are Zassenhaus meta-
cyclie groups (or ZM-groups for short), i.e. groups with the property that all
Sylow subgroups are cyclic; in particular such a group is metacyclic. The goal
of this section is to investigate the normal subgroup structure of these groups,
and to use our results in order to find more examples of Leinster groups.

The structure of these groups has been completely determined by
Zassenhaus.

DEFINITION 5.1. A triple (m, n,r) satisfying the conditions
ged(m,n) = ged(m,r —1)=1 and " = 1(modm)
will be called a ZM-triple, and the corresponding group
(a,b]a"=b"=1,b"ab=a")
will be denoted by ZM(m, n, 7).

REMARK 5.2. If (m,n,r) is a ZM-triple, then m is necessarily odd.
Indeed, if m were even, then the relation " =1 (mod m) would force 7 to
be odd, contradicting ged(m,r — 1) = 1.



26 Tom De Medts - Attila Maréti

THEOREM 5.3 (Zassenhaus). Let G be a ZM-group. Then there exists a
ZM-triple (m,n,r) such that G = ZM(m,n,r). We have |G| =mn and
G = (a) (so |G'| =m), and G/G'" is cyclic of order n.

Conversely, every group isomorphic to ZM(m,n,r) is a ZM-group.
ProOOF. See, for example, [4, IV, Satz 2.11]. O

LemvMa 54. Let G =ZM(m,n,7) = (a,b|a™ =b"=1,b""ab = a").
Then

(bsat)d _ bsd at(1+rs+72°'+4“+r(d’”s)

)

for all natural numbers s,t,d.
Proor. This is an easy computation, using induction on d. O
COROLLARY 55. Let G=2ZM(m,n,r)=(a,bla™ =b"=1,b""ab=a").
Then
(@ 1ba)? = bl ,
for every natural number d.
PrROOF. For d = 1, this follows from the defining relation b~'ab = a".

For d > 1, the result then follows from Lemma 5.4 with s =1 and
t=1-—r. O

THEOREM5.6. LetG = ZM(m,n,r) = (a,b | a™ =b" = 1,b"lab = a").
For every divisor d of n, we write
e(d) := gcd(rd —1,m).
Then for every divisor d of n and every divisor k of e(d), the group
Nig = <ak, bd>

18 a normal subgroup of G. Conversely, every normal subgroup N of G is
of the form N = Ny 4 for some divisor d of n and some divisor k of e(d).
The group Niq has order mn/kd.

Proor. Let d be a divisor of n, and let k¥ be a divisor of
e(d) = ged(r? — 1,m). The group N; kd = <ak, bd> is normalized by b because
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already o is normalized by b. On the other hand, a 'b% = blal"" =
bd(afl)e(d) by Corollary 5.5; and since k | e(d), this element is again con-
tained in N}, 4. Hence N, 4 is also normalized by @, and we conclude that Ny 4
is a normal subgroup of G.

Conversely, let N be an arbitrary normal subgroup of G. We first claim
that N is necessarily of the form N = (a*, b?) for certain natural numbers k
and d dividing 7 and n respectively. Indeed, let g = b%a’ be an arbitrary
element of N. Then [¢,b] = g~ 'b1gb = a/"~V, and hence a!"~V € N. Since
ged(r — 1,m) = 1, it follows that a’ € N as well, and then also b* € N. This
proves our claim.

Observe that it follows from Lemma 5.4 that k is the smallest positive
integer such that a* € N, and similarly d is the smallest positive integer
such that b% € N.

It remains to show that k | e(d). Since b? € N, Corollary 5.5 shows again
that a®® € N. Since k is the smallest positive integer such that a* € N, this
implies that & | e(d). We conclude that N = N, 4 for some divisor d of » and
some divisor & of e(d).

Finally, we show that the order of N4 is mn/kd. Indeed, we have
already observed that every element g € Ny 4 can be written as g = b*a!
where s is a multiple of d and ¢ is a multiple of k; we conclude that there are
precisely (n/d)(m/k) such elements. O

We now have a complete understanding of the normal subgroups of a
ZM-group, and this allows us to compute D(G) for any ZM-group G.

THEOREM 5.7. Let G = ZM(m, n,r) be an arbitrary Zassenhaus meta-
cyclic group. Then

d _
56 -3 de(d) _ S 5(gedr? — 1,m))

dln d dln d .

Proor. We simply add up the orders of all normal subgroups. By
Theorem 5.6, every divisor d of n gives rise to normal subgroups Ny, for
each divisor k of e(d), and

SN mn _mn D(e(d))
ha =Y =
Fle(d) fan kd o d o ed)

Summing over all divisors d of n, and observing that |G| = mn, we obtain
the required formula. O
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Notice that if d = 1, then e(d) = ged(r — 1,m) = 1, and if d = n, then
e(d) = ged(®" — 1,m) = m. As a corollary, we get a very simple formula for
the case where » is a prime.

COROLLARY 5.8. Let G =ZM(m,p,r) be a Zassenhaus metacyclic
group where p is a prime. Then

D(G) = |G| +D(m) and hence oG) =1+ @

Proor. This follows immediately from Theorem 5.7 and the previous
observation. O

The case where m is prime also gives rise to a simpler formula.

COROLLARY 5.9. Let G =ZM(p,n,r) be a Zassenhaus metacyclic
group where p is a prime, and let o be the order of r» modulo p. Then
1<o|ged(n,p —1), and

D(G) = pD(n) + D(n/x) and hence oG) = d(n)+ d(n/a) .

Proor. The fact that (p, n, r) is a ZM-triple implies that pfr — 1 while
p |7 —1; hence 1<o|n. Observe that d(e(d) =1+ 1/p or de(d) =1
depending on whether p | #? — Lor p/r? — 1, or equivalently, whether « | d
or oy d. It thus follows from Theorem 5.7 that

ole(d
dln
1 1 1
= (“ s DD
dn.afd dn,old
111
din d p d|no|d

5(n/oc)

d

=dn) +——

The resulting formula for D(G) follows since |G| = pn. O

Another interesting case is the case r = m — 1.
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COROLLARY 5.10. Let G = ZM(m,n,m — 1), and write n = 2's with s
odd. Then

8(G) = &(s) - (1 + 5(m)(1 - %)) .

Proor. Recall that m is always odd. On the other hand,

1=7"=(-1)"(modm), and since m is odd, this can only be true if n
is even; hence t > 1. Next, observe that for every divisor d of =,

1 if dis odd;

e(d) = ged((= 1 = 1,m) = {m if d is even.

It now follows from Theorem 5.7 that

56 -3 5(e(fld))

dln

1 1
) St >, gom)
|n,d odd d|n,d even

= &(s) (1 + 5(m)<1 - %)) .

We have used Corollaries 5.8, 5.9 and 5.10 in order to try to find ex-
amples of Leinster groups that are Zassenhaus metacyclic. In order to
make our search more efficient, we have combined our theoretical results
with the “cyclic extension method” that we have introduced in Section 4.

O

ExamMpLE 5.11. There is little hope to find examples of Leinster
groups of the form ZM(m,p,r) with p prime. Indeed, suppose that
ZM(m,p,r) is a Leinster group; then it follows from Corollary 5.8 that
o(m) = p, i.e. m is a so-called multiperfect number. But m is odd, and the
existence of odd multiperfect numbers is still unknown.

ExampLE 5.12. We have tried to apply the cyclic extension method on
groups of the form ZM(m, p,r). Note that for p = 2, a group of the form
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ZM(m, p,r) is necessarily a dihedral group, and we have already dealt with
such groups separately in Section 4. If p is odd, however, we have not
found any other example than the odd order Leinster group (4.1). (We
have tried all odd values for m up to 107, and every prime p dividing the
exponent of the group of units modulo 7.)

ExampLE 5.13. We now use Corollary 5.9 to find Leinster groups by
extending groups of the form G = ZM(p, n, 7). Note that it is impossible to
extend a group G to a Leinster group (using the cyclic extension method) if
(@) > 2. Also observe that G has the structure of a semidirect product
Cp xC,, and that Aut(C,) = C,,_1; we will therefore restrict to values of n of
the form n = 2! - dwith d | p — 1, d odd. (The reason for the factor 2! is that
our cyclic extension method can only find cyclic factors that are coprime to
G, and in particular it will never find cyeclic factors of even order as soon as
n is even.)

It is interesting to observe that given p (and d | p — 1), we can compute
an upper bound for ¢ (and hence for ») from the observation that 6(G) < 2.
Indeed, we claim that

(5.1) t <logy(pd + 1)+ ve(p — 1) — 1,

where vo(x) is the 2-valuation of x, i.e. the exponent of 2 in the factorization
of x. To prove our claim, let s = vo(p — 1), so that p — 1 = 2% - £ for some odd
¢, and suppose to the contrary that ¢ > logy(pd+1)+s—1. Then
20=5+1 > pd 4 1; in particular ¢ > s. Let o be the order of » modulo p, as in
Corollary 5.9; then « | ged(n, p — 1), hence we can write « = 2¥¢c with k < s
and ¢ | d. It follows that

o(n/a)

oG) =don) +———
pa

N
— o2 - o) + X&) 0O

2kpe
B @21 — 1) . 5(d) . Qt-k+1 _ 7). o(d/c)
N 2t 2ipe
241 1 pd-6(d/c)
>
> ot + 2tpc 2,

contradicting the fact that 6(G) < 2. This proves the inequality (5.1). Notice
that our bound is sharp, in the sense that equality can hold when d = 1 and p
is equal to a Mersenne prime p = 2! — 1; in that case, we get precisely the
groups M, ; that we found in Section 2. It is also useful to notice thatif d > 1,
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then already the bound arising from d(n) < 2, namely
(5.2) t <logy(1+ (9 — 1) —1,

is often stronger than the bound in (5.1), and taking both bounds (5.1) and
(5.2) into account helps to reduce the computation time.

We have implemented our ideas, and we ran the program for all primes
less than 5 x 107; we found 51 examples of Zassenhaus metacyclic Leinster
groups in this fashion, for instance

20
ZM(2622511, 27, o0 = 2) x Cs245021.10490041-5370900991.171868831711.343737663421 -

(Note that we have not computed r explicitly, which explains our slightly
different notation involving o.)

ExampPLE 5.14. Finally, we have applied our cyclic extension method
on groups of the form ZM(m, n, —1). Surprisingly, all the examples that we
found, have n equal to a power of 2, with the only exception of the case
m = 127 and n = 7, resulting again in the only known odd order Leinster
group (4.1). We ran the program for all values of m less than 108, and we
found 125 examples, for instance

ZM(92571007, 25, —1) x Csaise67 = ZM(T1 - 1021 - 1277,25, —1) x Csz15067 -

(There is, of course, some overlap with our earlier lists.)
Again, the interested reader can consult the complete lists on our
webpage [9].

Appendix A. An algorithm for Question 4.3

In this appendix, we provide some details for our implementation of the
algorithm that, given q € Q, tries to find » € N such that 6(n) = ¢, where n
is subject to certain conditions, as explained in Question 4.3. Because of
this inherent difficulty of the problem, we provide a backtracking algo-
rithm that starts in a systematic way to try to find solutions, but that tracks
back as soon as one of several parameters reaches a certain bound.

The basic idea of the algorithm is the following; we will discuss the
parameters afterwards. The algorithm takes three input arguments:

e the value for q of which we want to find a preimage for J,
e alist M of “forbidden prime divisors”, and
e a depth parameter d.
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We begin our algorithm with ¢ = a/b with ged(a,b) =1 and M = A. If
b =1, then » has to be a multiperfect number; we have simply hard-coded
the first few cases in our algorithm.

Assume now that b > 1. Observe that d(n) can only be equal tot = a/b if
n is a multiple of b; moreover, we then have that d(n) > J(b). It follows that
if ¢ = a/b<d(b), or in other words, if a <D(b), then we can never find a
solution to the equation d(n) = q.

If a = D(b), then of course n = b is a solution to the equation d(n) = t.
We are left with the case a > D(b); since » has to be a multiple of b, we
proceed by trying values of the form n = bc. The values for ¢ that we try,
are of the form ¢ = b'¢/, where ged(b, ¢’) = 1, and such that every prime
divisor of b’ is a prime divisor of b. Then d(n) = é(bb")o(c¢’), and so
o(n) = a/b if and only if d(c') = ab’/D(bY).

For each of the choices for b’ that we will consider (the choice of which
will be bounded by several of our parameters), we call our algorithm re-
cursively, with

e g replaced by ab’/D(b),
o M extended with the list of prime divisors of b, and
e depth d increased by one.

We continue this process until we find a solution (because at some point
q = a/b is such that a = D(D)), or until one of the parameter bounds is
exceeded or one of the constraints (namely the divisibility conditions p; }n
and the inequalities a > D(b)) is no longer fulfilled.

The parameters that we use in order to decide when to track back, are
the following; we mention a possible sensible bound between parentheses
as an example, but depending on the situation it might be useful to change
these bounds:

the value of the denominator b (10%°),
the number of different prime divisors of the denominator b (9),
the highest exponent in the factorization of b (7),

e the number of different prime divisors in the list of forbidden
primes (12),

e the sum of the exponents in the factorization of & (5 in depth 0 and 2
in higher depths),

e the maximal recursion depth (10).

We have implemented our ideas in Sage [7], and the interested reader
can consult the program code on our webpage [9].
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