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On the Functionally Countable Subalgebra of C(X)
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ABSTRACT - Let C.(X) = {f € C(X) : f(X) is countable}. Similar to C(X) it is ob-
served that the sum of any collection of semiprime (resp. prime) ideals in the ring
C.(X)is either C,(X) or a semiprime (resp. prime) ideal in C.(X). For anideal I in
C.(X), it is observed that I and v/ have the same largest z.-ideal. If X is any
topological space, we show that there is a zero-dimensional space Y such that
C.(X) = C.(Y). Consequently, if X has only countable number of components,
then C.(X) = C(Y) for some zero-dimensional space Y. Spaces X for which C.(X)
is regular (called CP-spaces) are characterized both algebraically and topolog-
ically and it is shown that P-spaces and CP-spaces coincide when X is zero-
dimensional. In contrast to C*(X), we observe that C.(X) enjoys the algebraic
properties of regularity, X -selfinjectivity and some others, whenever C(X) has
these properties. Finally an example of a space X such that C.(X) is not iso-
morphic to any C(Y) is given.
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1. Introduction

Unless otherwise mentioned all topological spaces X are infinite com-
pletely regular Hausdorff and we will employ the definitions and notation
used in [9]. A celebrated result due to Rudin [23], Pelezynski and Sema-
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deni [21], states that if X is a compact space then X is functionally count-
able (i.e., each member of C(X) has countable image) if and only if X is
scattered (i.e., every nonempty subspace of X contains an isolated point)
see also [19, Proposition 3.1] and [18]. Recently the if part of this interesting
result has been generalized to compact a-scattered spaces in [8]. One
trivially observes that the subset of C(X), where X is any space not nec-
essarily compact, consisting of those members with countable image is a
subring of C(X) containing the real numbers, i.e., an R-subalgebra of C(X),
and we denote it by C.(X). Motivated by the first result mentioned above
and the latter trivial fact we are led to study C.(X) and will try to connect
its algebraic properties to topological properties of X. It turns out C.(X),
although not isomorphic to any C(Y) in general, enjoys most of the im-
portant properties of C(X) (note, some of these properties do not hold for
C*(X) unless X is finite). It seems up to now the only well-known subring of
C(X) which, parallel to C(X) has played a major role in the context of C(X),
is C*(X). But we should notice that C*(X) is in fact C(Y), where Y = X,
that is to say C(X) and C*(X) are of the same type and hence in this sense
the description of a proper subring of C(X) fits C.(X) to a tee. Let us,
without further ado, give an outline of this paper. After presenting some
preliminary results of C(X) which are trivially shared by C.(X) in Section 2,
we introduce the z.-ideals in Section 3, and prove the fact that for any ideal
Iin C,(X), I and v/T have the same largest z.-ideal. It is also observed that
the sum of any family of semiprime (resp. prime) ideals in C.(X) is either
C.(X) or a semiprime (resp. prime) ideal in C.(X). In Section 4, topological
spaces in which points and closed sets are separated by elements in C.(X)
are called c-completely reqular space and it is observed that these spaces
coincide with zero-dimensional ones. Consequently for any topological
space X we prove that there exists a zero-dimensional space Y which is a
continuous image of X and C.(X) = C.(Y). Section 5, is devoted to the in-
troduction of CP-spaces (i.e., spaces for which C.(X) is a regular ring). It is
observed that every P-space is a CP-space and a characterization of CP-
spaces similar to the one for P-spaces is given (see [9, 4J]). In particular, we
show that X is a CP-space if and only if whenever {f,},~; C C.(X) then

() Z(f,) is an open zero-set of the form Z(f), where f € C.(X). Conse-
n=1
quently in zero-dimensional spaces, P-spaces and CP-spaces are the same.

In Section 6, we show that some important algebraic properties of C(X)
such as regularity, X -selfinjectivity and some others are shared by C.(X)
but not by C*(X). Finally in Section 7, we present some examples to show
that C.(X) may not be isomorphic to C(Y) for any topological space Y.
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2. Preliminaries

In this section we aim to state, without proofs, some of the elemen-
tary properties of C.(X) which are needed in the subsequent sections
(note, the proofs are more or less similar to the corresponding ones for
CX)). It is evident that whenever X is connected then C.(X) =R,
otherwise R ¢ C.(X). It is also worth mentioning that if X is either equal
to SN or to Q, then C.(X) is a proper R-subalgebra of C(X) which is not
isomorphic to R or a direct product of copies of R (note, X is strongly
zero-dimensional, see [6, Theorems 6.2.7, 6.2.12], but it is neither a
scattered space nor a P-space, see the first few lines of the introduction

_ftg+lf -y

and our Corollary 5.7). We also note that f v g = — 5 e C.(X)

for all f, g € C.(X), hence C.(X) is a sublattice of C(X). For f € C.(X) and

f > 0 we note that there exists k € C.(X) with f = k%. We also note that
whenever f € C.(X) and f" is defined with f" € C(X), where » € R, then
f7 e CuX). Let us put C;(X) = C.(X) N C*(X), then every homomorphism
9 : Co(X) — C(Y) takes C;(X) into C;(Y). It is clear that if X is pseudo-
compact then C;(X) = Cc(X). But we may have C(X) = C.(X) without the
pseudocompactness of X, for consider X =(—1,00U{1,2,...,n} as the
subspace of IR, then C}(X) = C.(X).

We recall that the socle of C(X), denoted by Cr(X), which is the sum of
all minimal ideals of C(X), consists of all functions in C(X) which vanish
everywhere except on finite number of points of X, see [16, Proposition 3.3].
Clearly Cp(X) is an ideal in both C'(X) and C.(X). Motivated by this we give
the next definition.

DEFINITION 2.1. For a topological space X we put
CfX) = {f € CX) : | fXD)| <00}

It is manifest that C¥(X) is a subring of C.(X) and
Cr(X) € C"(X) C C.(X) C CX).

It goes without saying that if C(X, K) is a subring of C(X) such that each
| € C(X, K) takes values in a countable subring K of R, then it is a subring
of C.X). Let us for the sake of brevity put CX,7)= CiX),
C(X,Q) = C.(X) and note that these subrings are unfortunately not R-
subalgebras of C(X). But in this article we are mainly interested in C.(X)
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and CF(X) and note that the latter two subrings of C(X) are R-subalgebras
of C(X) containing the socle of C(X).

REMARK 2.2. Let X be a space with C(X) = C.(X) and Y be a pseu-
docompact space and Z=X|JY be the free sum of X,Y. Then
C2) = Ce(Z) + C* (D).

REMARK 2.3. Let f € C.(X), then f is a unit in C.(X) if and only if
Z(f) = I, a fact which is not true for C*(X) in general.

We recall that [9, 1D(1)] plays a useful role in the context of C(X). The
following is the counterpart for C,.(X).

LemMa 24. If f,g € Co(X) and Z(f) is a neighborhood of Z(g), then
f = gh for some h € C.(X).

COROLLARY 2.5. If f,g € Co(X), and |f| <|g|",r > 1, then f = gh for
some h € Co(X). In particular, if | f| < |g|, then whenever f" is defined for
r> 1, f"is a multiple of g.

CONVENTION. Let us put Z.(X) = {Z(f) : f € C.(X)}, where X is a to-
pological space.

REMARK 2.6. Lemma 2.4, Corollary 2.5 are also valid in C¥(X) and
C,(X) but not in C;(X).

DEFINITION 2.7. Two subsets A and B of a topological space X are said
to be countably separated (c-separated) in X if there is an element
f € Ce(X) such that f(A) =1, f(B) = 0.

The next result is the counterpart of [9, Theorem 1.15].

THEOREM 2.8. Two subsets A, B of a space X are c-separated if and
only if they are contained in disjoint members of Z.(X). Moreover, c-sep-

arated sets have disjoint zero-set neighborhoods in Z.(X).

COROLLARY 2.9. IfA,A’ are c-separated in X, then there are zero-sets
FZmnmZX)withACX\ZCFCX\A.

Similar to a z-filter, one can define a z.-filter on X.
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DEFINITION 2.10. J # F C Z.(X) is called a z.-filter on X if F" satisfies
the following conditions.

(i) SEF.
(i) Z1,Z2 € F,thenZ1NZs € F.
(ii) ZeF,Z e Z(X)with Z' D Z, then Z' € F.

Clearly, for every ideal I in C.(X), Z 1] ={Z(f) : f € I} is a Z filter
on X and conversely, if F is a Z.filter on X, then Z ![F]=
{f eCuX): Z(f) € F} is an ideal in C.(X). Moreover, every z.-filter F is
of the form F = Z.[I] for some ideal I in C.(X) and for any ideal A in
C.(X), Z71[Z.[A]] is an ideal in C.(X) containing A.

DEFINITION 2.11. An ideal I in C.(X) is called a z.-ideal if whenever
Z(f) € ZJI], f € Cc(X), then f € I.

REMARK 2.12. Clearly, every z.-ideal in C.(X) is an intersection of
prime ideals in C.(X). Prime z.-filters and z.-ultrafilters are defined similar
to their counterparts in [9] and one can easily see that in fact all the results
in [9, Chapter 2] are trivially valid if we replace C(X) by C.(X).

We need the following results too.

THEOREM 2.13. Let Q be any z.-ideal in C.(X). Then the following
statements are equivalent.

1. Q is a prime ideal in C.(X).

2. Q contains a prime ideal in C.(X).

3. Forall f,g € C.(X) with fg = 0, we have either f € Q or g € Q.

4. For each f € C(X), there exists a zero-set in Z[Q] on which f does
not change sign.

COROLLARY 2.14.  Ewery prime ideal in C.(X) is contained in a unique
maximal ideal in C.(X).

REMARK 2.15. Let us define an ideal I in C¥(X) to be a z,-ideal if
Z(f) € Zplll = {Z(g) : g € I}, f € CF(X), then f € I. Now it is easy to see
that the previous two results are also valid in C¥(X) if we replace z.-ideal
by z,-ideal and Z.[Q] by Zr[Q] in these results. It is manifest that these
results are valid for some more applicable subrings, such as C,.(X), C;(X), of
C.(X).
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3. z.-ideals

Ifx € X and M¢ = M, N Cc(X), where M, consists of those elements of
C(X) which vanish at x, then M is a maximal ideal in C.(X), for consider
0 : C.(X) oute R, where ¢(f) = f(x), hence kerp = M¢ and we are done.
Consequently the Jacobson radical of C.(X) is zero, i.e., J(C.(X)) = 0. It is
well-known that the sum of two z-ideals in C(X) is either C(X) or a z-ideal,
see [9, Lemma 14.8]. The usual proof of this result depends on the prop-
erties of fX which are inapplicable to C.(X). But fortunately the proof of

this result in [24] can be modified for C.(X) and is presented below.

LemMA 3.1. Letf,g,l € C.(X), Z(f) D Z(g) N Z() and define
0 , x € Z(@NnZl 0 , xe€Z(@nZl

Mo =9 _fo?

, k@)=<¢  f2 .
gz+l2 ) 90¢Z(9)0Z(l) x¢Z(g)ﬂZ(l)

g+E

Then we have the following conditions.

L [k[V |R] < [f]

2. f=h+k

3. fI2 = k(g? + B), fg? = h(g? + ).
4. bk € C(X).

Proor. It suffices to show that &, k are continuous. By similarity, we
may only show that % is continuous. To this end, we prove that & is con-
tinuous at any point x € Z(g) N Z(l) and this completes the proof. Since
f(x) = 0, we infer that for any ¢ > 0 there exists a neighborhood U of x with
x € U Cf1(—ee). Now by (1) and the fact that f(U) C ( — ¢,¢) we have
U) C (—¢,¢),i.e., his continuous.

COROLLARY 3.2. Let A,B be two z.-ideals in C.X). Then either
A+B=C.X)orA+Bi1isaz-ideal.

Proor. Let A+B #C.(X) and f € (C.(X) be an element with
Z(f) =Z(f"), where f' € A+ B. We are to show that f € A + B. But
f'=g+1,whereg € A, € B. Clearly, Z(f) = Z(f") D Z(g) N Z(l). Now let
h,k be as in the previous lemma, hence f = & + k. But Z(h) 2 Z(g) and
Z(k) D Z(l) and since A, B are z.-ideals we infer that i € A, k € B. Hence
f € A+ B and we are through.
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COROLLARY 3.3. Let F' = {A;};.; be a collection of z.-ideals in C.(X).
Then either Y A; = C.(X) or > A; is a z.-ideal.
iel el
Using the fact that each minimal prime ideal in a subring of a ring R is
the contraction of a minimal prime ideal of R and the fact that minimal
prime ideals in C(X) are z-ideals, we immediately have the following cor-
ollary.

COROLLARY 3.4. Ewvery minimal prime ideal in C.(X) is a z.-ideal.

The next result is the consequence of the previous two corollaries and
Theorem 2.13.

COROLLARY 3.5. Let F = {P;},.; be a collection of minimal prime
ideals in C.(X). Then either > P; = C(X) or P =Y P; is a prime ideal in
CC(X). iel i€l

Let us recall that a subring A of C(X) is called absolutely convex if
felCX), geA, and |f| < |g| imply that fe A. In [24], certain prop-
erties of C(X) are extended, in an easy way, to absolutely convex
subrings of C(X). Although, C.(X) may not be absolutely convex in
general, but if we borrow the proofs of [24, Lemma 2.1, Lemma 5.1,
Theorem 5.2, Theorem 5.3], word-for-word, we obtain the same results
for C.(X) in the following sequence of corollaries, see also [17, Corollary
2.3] and [9, 14B.1].

COROLLARY 3.6. A prime ideal P in C.(X) is absolutely convex.

COROLLARY 3.7.  The sum of a collection of semiprime ideals in C.(X)
18 a semaprime ideal or is the entire ring C.(X).

COROLLARY 3.8. Let P be a prime ideal in C.X). Then the ring
C.(X)/P is totally ordered and its prime ideals are comparable.

The next corollary is much stronger than Corollary 3.5.
COROLLARY 3.9. Let {P;};.; be a collection of semiprime ideals in

C.(X) such that at least one of P;’s is a prime ideal, then > P; is a prime
ideal (or all of C.(X)). iel
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In [20, Proposition 2.4] and [2, Proposition 3.2] and [4, Corollary 2.3] it is
shown that for any ideal I in C(X), I and /I have the same largest z-ideal.
The following is the counterpart for C.(X). But before presenting the re-

sult, we note that whenever f € C.(X) and g = f: |f|"™ € C(X), where 7, is
n=1

a positive real number, then g € C.(X) (note, let f(X) = {a,},_;, then

g(X) = {bi}2,, where by = 3 |ai[" ).

n=1
THEOREM 3.10.  Let I be an ideal in C.(X). Then I and /I have the same
largest z.-ideal.

Proor. We first observe that the sum of all z.-ideals in a proper ideal
is a proper z.-ideal, by Corollary 3.3. Hence it suffices to show that if A is a
ze-ideal in VI, then A C I. To see this, let f € A and by replacilng f by

1 _{F € A, we may assume that |f| <1. Now define g = ;::1 gn‘n,
g € Cc(X), by the above comment. Since Z(g) =Z(f) and f € A we infer
that g € A C V1. Thus ¢" € I for some n > 1. But 2*”z\f|$ <g, ie,
|f] < @7 ¢g™", which implies that ¢g”|f, by Corollary 2.5, therefore f € I

and we are done.

hence

REMARK 3.11.  If we replace C.(X) by C¥(X) and z.-ideals by z,-ideals,
then all the results of this section remain valid for C¥(X). But, we should
emphasize that the function g defined in the previous proof may not be in
some of the natural subrings of C.(X), for example g is not in C,.(X), hence
the previous proof cannot be extended to other subrings of C.(X) in gen-
eral. But we should also emphasize that all the results in this section except
Theorem 3.10, remain valid (with the same proofs) for C,.(X) and more
generally for C(X, K), where K is a subfield of R. Using the comment
preceding Corollary 3.4, the counterpart of Corollary 3.4, can be easily
proved for C;(X), but the other results of this section may not be true for
the latter ring.

4. Zero-dimensional spaces and C.(X)
We begin with the following definition.

DeFINITION 4.1. A Hausdorff space X is called countably completely
regular (briefly, c-completely regular) if whenever F' C X is a closed set and
x¢ F, then there exists f € C.(X) with f(#) = 0 and f(x) = 1.
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Clearly, a Hausdorff space X is c-completely regular if and only if
whenever F' C X is closed and « € X \ F', then x and F' have two disjoint
zero-set neighborhoods in Z.(X). Consequently, there exist g,h € C.(X)
with © € X \ Z(h) C Z(g) C F*.

REMARK 4.2. X is a c-completely regular space if and only if
F ={Z(f) :f € C.(X)} is a base for the closed sets in X or equivalently if
and only if B = {int(Z(f)) : f € C.(X)} is a base for the open sets in X.

If we apply the proof of [9, 3.11(a)] word-for-word, we obtain the fol-
lowing.

PRrOPOSITION 4.3. Let X be a c-completely regular space and A, B be
two disjoint closed sets in X such that A is compact, then there is
f € C(X) with f(A) =0, f(B)=1.

The following fact which incidentally shows the previous result holds if
we replace C.(X) by C(X, K), where K is a countable subfield of R, is crucial
in our study and although its proof is routine, we present some part of it for
the sake of the reader.

ProposITION 4.4. Let X be a topological space. Then the following
statements are equivalent.

1. X s a zero-dimensional space (i.e., a Ti-space with a base con-
sisting of clopen sets).

2. For each closed subset F of X and x € X \ F, there exists f € CT'(X)
with f(F) =0 and f(x) = 1.

3. Foreach closed subset F of X and x € X \ F, there isf € A such that
fF) = 0and f(x) =1, where A is a subring of C(X) whose elements
take values in a countable subring of R.

4. X 1s c-completely reqular space.

Proor. We only show that (4)=-(1). Let x € X and U, be a neigh-
borhood of x. Then there exists f € C.(X) with f(x) =1, f(US) =0 and
f(X) C[0,1]. Since f € C.(X), we infer that there exists » € [0,1] such
that r¢ f(X). Hence xcf'(r,00) =f"Y[r,00)) C U,. But clearly
A, =f1(r,00) = f1[r,o0)) is a clopen set and we are done.

COROLLARY 4.5. Let X be a Hausdorff space, then X is a zero-
dimensional space if and only if its topology coincides with the weak
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topology induced by C.(X) ( CF(X)) or by a subring of C.(X) such as A in
part (3) of the above proposition.

It is well-known that as far as the algebraic properties of C(X) are
concerned we may always assume that X is a completely regular space. In
what follows we similarly observe that as far as algebraic (lattice) prop-
erties of C.(X) (C¥(X)) or some other natural subrings of C.(X) are to be
investigated, we may impose the blanket assumption of the zero-di-
mensionality on X.

THEOREM 4.6. Let X be any space (not necessarily completely reg-
wlar). Then there is a zero-dimensional space Y which is a continuous
image of X and C.(X) =2 C.(Y).

Proor. We define x ~ &' on X if f(x) = f(«') for all f € C.(X). Clearly,
this is an equivalence relation on X. Put Y = {[x] : « € X}, where [x] is the
equivalence class of x € X. We define ¢ : X — Y by ¢(x) = [x]. Now for each
f € C(X), let us define 9, € RY by g, (y) = f(x), where y = [x], hence
f=g00.Nowput C' = {g, : f € C.(X)} C RY and we observe that g € C’
if and only if g o ¢ = f for some f € C.(X). Let us now consider the weak
topology on Y which is induced by C’. Therefore C' C C(Y) and since for
each open set G in R we have ¢~1(¢"(@)) = f~1(G), we infer that ¢ is con-
tinuous. We also note that for i,y € Y with y # ¥/, there exists g € (' with
9) # g(y'), hence Y is Hausdorff. It is also manifest, by definition, that for
each g, € C’" we have |gr(Y)| = | f(X)| < X,. Finally, it is trivial to see that
0:C.(Y) — C.(X), where 0(g) = g o ¢ is an isomorphism. Hence it remains
to be shown that Y is zero-dimensional. To this end, let H C Y be an open
setand y € H. Then y € gy ay,b1) Ngyt(az, b2) N ... N g, @y, b,) C H for
some g1, 92, ...,9, € C'ya;,b; € R,1=1,2,... m. Since for each g; we have
lg:(Y)| < N,, we infer that without loss of generality we may assume that
a;,b;i¢g/(Y), i=1,2,...,n. Consequently, y € g;y'(as,b1)N gyl(az,bs)
N...Ng, Nan, by) = g7 a1, bil N gy laz, b2l N ... N g, a,, b,] C H, hence
y € D, C H, where D, = gy (a1,b1)Ngztaz, b2)N...Ng,Yay,b,) is a
clopen set and we are done.

REMARK 4.7. In the previous proof we note that if C(X, K) is a subring
of C.(X) whose elements take values in a countable subring K of R, then
0(CX,K)=C(Y,K),ie., CX,K)=C(,K). In particular, C.(X)=C.(Y),
C;(X) = C;(Y) and one can also easily show that C¥(X) = CF(Y).
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The following interesting result shows that if X is a space whose class of
components is not large, then C.(X) is C(Y) for some zero-dimensional
space Y.

COROLLARY 4.8. Let X be a topological space whose set of components
1s countable. Then C.(X) =2 C(Y) for some zero-dimensional space Y.

Proor. In view of the previous theorem there exists a zero-dimen-
sional space Y such that Y is a continuous image of X and C.(X) = C.(Y).
But it is clear that Y is totally disconnected (i.e., the only nonempty con-
nected subsets of Y are the singletons). Consequently, Y must be countable
and therefore C,(X) = C.(Y) = C(Y).

COROLLARY 4.9. Let X be a topological space with only n components.
n

Then Co(X) = CF(X) = [[ R;, where R; = R for i =1,2,...,n. Moreover
n i=1

CX,K) =~ ][ K;, where K; =K for 1 =1,2,...,n and K is a countable
=1 n n

subring of R, hence C.(X) =[] Qi, where @; = Q and Ci(X) =[] Z;,

where Z; = 7. i=1 i=1

5. Countably P-space

In this section we introduce countably P-spaces. We recall that X is a P-
space if and only if C(X) is a regular ring, see [9, 4J]. We observe trivially if
C(X) is regular, then so too is C.(X), but the converse is not true in general.
Motivated by this, we offer the following definition.

DEFINITION 5.1. A space X is called a countably P-space (briefly, CP-
space) if C.(X) is regular.

ExXaMPLE 5.2. Let X =[0,1]1J N be the free sum of [0,1] and the
natural numbers N. Clearly, X is a CP-space which is not a P-space.

ProrposiTiON 5.3.  Every P-space is a CP-space.

Proor. Let X be a P-space. We must show that for each f € C.(X),
there exists g € C.(X) with f = f2g. Since C(X) is regular, there is & € C(X)
with f = f2h. Consequently, f = f2g, where g = h?f. It is also evident that
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1 , whenever x¢ Z(f). Hence g € C.(X) and we

Z(f) € Z(g) and g(x) =@

are done.

REMARK 5.4. Lemma 2.4, gives another proof of the above result, for
Z(f) = Z(f?) for all f € C.(X), hence f = f?g for some g € C.(X).

It is well-known that X is a P-space if and only if every G;-set is open,
see [9, 4J(3)]. The following which plays a crucial role in our study is the
counterpart of the previous fact in C.(X).

THEOREM 5.5. A space X 1s a CP-space if and only if every zero-set in
Z(X) is open. Moreover, in this case whenever { fi};° is a countable set in

C.(X), ﬁ Z(f;) is an open zero-set in Z.(X).
i=1

ProoF. Let X be a CP-space and f € C.(X), then f = f?¢ for some
g € C(X). Clearly, e = fg is an idempotent in C.(X) and Z(f) = Z(e) is
open. Conversely, if Z(f) is open for all f € C.(X), we are through by

Remark 5.4. Finally, let I be the ideal in C.(X) generated by {f;}.2;, i.e.,
I = io:fiCc(X). Since C.(X) is regular, one can write [ = io: @e;Co(X),

i=1 i=1
where each ¢; is an idempotent in C.(X) and e;e; = 0 for all i # j, see
[13, Lemma 2] or [7, the proof of Proposition 1.4]. We note that
whenever e;(x) # 0 for some x € X, then ¢;(x) = 0 for all i ;é j. Clearly,
NZ(\f)=N%Zg = ﬂ Z(e;). Now we define g = Z and it is
i= gel i=1 21(1 z)
evident g € C(X), Z(g) = ﬂ Z(e;). Hence if we show that g € C.(X), then
i=1
we are done. But for each x € X there exists at most a unique 7 > 1
e;()
2i(1 +e;(x))  20t1
.}, ie., g € C.(X).

such that e;(x) # 0, therefore g(x)= and conse-

111
quently g(X) c {0a2_27§7§7"

REMARK 5.6. Let X be a CP-space. Then CF'(X) (C(X, K), where K is a
countable subfield of R and in particular C,(X)) is a regular ring too. To see
this, one can just apply the proof of either Proposition 5.3 or Remark 5.4,
verbatim. We should remind the reader that the previous theorem which is
basic in our study (see for example, Remark 6.10) may not be true for
CF(X), but our proof shows that it is in fact true for the subring C(X, K)
and in particular for C,(X). Finally we must also emphasize that it is trivial
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to see that each regular subring of C'(X) should contain an isomorphic copy
of Q, hence C;(X) can never be regular.

COROLLARY 5.7. Let X be a zero-dimensional CP-space. Then every
Gs-set A containing a compact set S contains a zero-set in Z.(X) contain-
g S. In particular, every zero-dimensional CP-space is a P-space.

00
Proor. LetA = () U,, where each U, is an open set. Since A O S, we
n=1

infer that S and X \ U, are disjoint for all » > 1. Thus by Proposition 4.3,
there exists a zero-set F, € Z.(X) with SCF, C U, for all n>1,
S € N F,. But by the previous theorem () F,, = Z(f) for some f € C.(X)

n=1 n=1
and we are through, for S C Z(f) C A. The final part is now immediate.

Next, let us put O;; =0, N Cy(X) and M;) =M, NC,X), where p € X
and O, is the ideal of C(X) consisting of all /' in C(X) for which Z(f) is a
neighborhood of p. It goes without saying that M, is a maximal ideal in
C.(X) and O;; is a z.-ideal in C,(X). The following is now the counterpart of
[9, 4J] for C.(X) and for its proof it suffices to apply the corresponding
proof for C(X) word-for word and also invoke the previous theorem.

THEOREM 5.8. Let X be a topological space. Then the following state-
ments are equivalent.

. X is a CP-space.

. C(X) is a reqular ring.

. Each ideal in C.(X) is a z.-ideal.

Each prime ideal in C.(X) s a maximal ideal.

. Foreach p € X, M}, = O,

Every zero-set in Z.(X) is open.

. Each ideal in C.(X) is an intersection of maximal ideals.
. Forallf,g € C.X), (f,9) = (f*> + ¢>.

. Forevery f € C.(X), Z(f) (X \ Z(f)) is C-embedded.

If{fi i€ N} C CuX), then F% Z(f;) is an open zero-set in Z.(X).
i=1

© 00 =1 S Ul O

—
o

Finally, we conclude this section with the following remarks.

REMARK 5.9. Let X be any CP-space. Then by Theorem 4.6 and
Corollary 5.7, there is a P-space Y which is a continuous image of X.
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REMARK 5.10. In Theorem 5.8, if we replace z.-ideal by z,-ideal and
put 05 =0, NCF(X)and Mf; = M, N CF(X), then all the equivalences (2)-
(9) in this theorem are valid for C¥(X) . But we should also remind the
reader that all the previous equivalences (2)-(10) are true with the same
proofs for C(X, K), where K is a countable subfield of R and in particular
for C.(X). It is also emphasized that whenever X is a zero-dimensional
space the proof of Corollary 5.7, shows that for a countable subfield K of R,
C.(X) (C(X)) is regular if and only if C(X, K) is regular. As for C;(X), we
recall that C;(X) can never be a regular ring.

6. C.(X) vs. C(X)

A commutative ring R is called self-injective (X, -selfinjective) if every
homomorphism from an ideal (countably generated ideal) of R into R can be
extended from R into . Commutative regular rings, in general, are rarely
N -selfinjective, see [10, Example 14.7]. But surprisingly in [7, Theorem 1], it
is shown that C(X) is regular if and only if C(X) is X -selfinjective. Another
interesting property of C(X) is the fact that whenever the set of isolated
points is dense in X, then C(X) is a self-injective ring if and only if C(X) is
isomorphic to a direct product of fields, see [3, Theorem 4.2, Proposition 4.4].
We also recall that if C(X) satisfies the latter condition, then it is in fact
isomorphic to a direct product of the field of the real numbers, that is to say,
C(X) keeps its faithfulness to the real numbers. In this section, we show that
C.(X) enjoys all these interesting properties too. We should also remind the
reader that C*(X) can never have any of these properties, unless X is a finite
space, in which case, C(X) = C*X) = C.(X) = CF(X) = Cp(X) = 1R,

iel
where R; =R and |I| = |X| and clearly C,(X) =[] Q;, where Q; = Q,
Ci(X) = [ Z;, where Z; = 7. 1el
el
Before observing the validity of the last property mentioned above for
C.(X), we need the next lemma.

LeEmMaA 6.1.  Let 0 £ I be an ideal in C.(X) (C(X)) which is a field as a
ring. Then I = R. Similarly, if 0 # I is an ideal in C(X, K) which is a field,
where K 1s a subfield of R, then I = K.

Proor. Since [ is a field, it has an identity, e € C.(X) say. Hence
0 # e = e?is anidempotent and eC.(X) C I, for I is an ideal in C.(X). Clearly
eC.(X) is an ideal in I too, hence eC.(X) = I (note, I is a field). It is also
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evident that every ideal of C.(X) which is inside 7, is an ideal of I too. Hence
Iis the only nonzero ideal of C.(X) which is in /. Consequently, / is a minimal
ideal in C.(X). Now eC,(X) = C.(X)/(1 — e)C.(X) implies that (1 — ¢)C.(X)
must be amaximal ideal in C,(X). Letx € Z(1 — e) and define ¢ : C.(X) — R
by ¢(f) = f(x), hence C.(X)/ker¢ = R. But clearly (1 —e)C.(X) C kerp
and therefore (1 — ¢)C.(X) = ker ¢, by the maximality of (1 — ¢)C.(X). Thus
I =eC.(X) = C.(X)/ker p = R, and we are done. Finally, this proof can be
carried over verbatim for C(X) and C(X, K).

REMARK 6.2. The above proof shows that if 7 is a nonzero minimal
ideal in C(X) or in either C.(X) or CF(X) (resp. C(X,K), where K is a
subfield of R), then we must have / =~ R (resp. I = K). It is interesting to
note that if in the ring C(X, K) we assume that K is just a subring of R
which is not a field, then C(X, K) cannot contain a nonzero minimal ideal. In
particular, the socle of C;(X) is zero.

COROLLARY 6.3. Let [[F; é C.(X), where every F; is a field. Then
iel
F; =R foralli € 1. Similarly, if [ F; L C(X, K), where every F; is a field
iel

and K is a subfield of R, then F; = K for all v € I.

Proor. We may consider F; as F; = {(aj> ca; € Fy,a; =0, for all

j # 1}. Hence each F; is an ideal in [ | F; which is also a field. Consequently,
il

p(F;) = A; C C(X) is an ideal which is also a field in C.(X) for all i € I.

Hence, by the previous lemmawe have A; = R,i.e., F; =2 A; = R and we are

done. The proof for C(X, K) is similar.

REMARK 6.4. One can clearly observe that C;(X) can never be iso-
morphic to any direct product of fields, for C;(X) cannot be a regular ring .
More generally, in view of the previous remark, no direct product of fields
can be even a direct summand of C;(X).

It is well-known and easy to see that if 7 is an ideal in a commutative
reduced ring R, then [ is essential in R (i.e., I intersects every nonzero
ideal nontrivially) if and only if Ann(J) ={r e R: vl =0} =0, see also
[16]. Using this trivial fact we prove the following interesting result.

THEOREM 6.5. The following statements are equivalent.

1. C.(X) 1s a selfinjective ring and the set of isolated points of X s
dense in X.



62 M. Ghadermazi - O. A. S. Karamzadeh - M. Namdari

2. Cc(X) = [[ Ry, where R; = R for all i € I and every nonzero ideal of
il
CX) intersectseCc(X) nontrivially and C(X), C.(X) have the same socle.

Proor. (1)=(2). Let Cr(X) = Y @e;,C(X), where ¢ = e% and each

keK
¢;,C(X) is a minimal ideal in C(X), be the socle of C(X), see [16]. By the
comment preceding Remark 2.2, Cp(X) C C.(X). Clearly ¢;,C(X) = ¢;,C.(X)
foreachk € K. Since C(X) = ¢,C(X) ® (1 — ¢;,)C(X), we infer that each ideal
of C.(X) inside ¢,C(X) is also an ideal of C(X). Hence, each ¢,C(X) is a
minimal ideal of C,(X) and therefore Cr(X) C C.p(X), where C.p(X) is the
socle of C.(X). Inasmuch as the set of isolated points of X is dense in X we
have Ann(Cr(X)) =0 in C(X), by [16, Proposition 2.1], a fortiori,
Ann(Cp(X)) = 0 in C.(X). By the above comment, we note that Cr(X) is es-
sential in both C(X) and C.(X). This incidentally also shows that every
nonzero ideal of C(X) intersects C.(X) nontrivially. We now claim that
Cr(X) = C.p(X). To see this, we recall that in any commutative ring R
every ideal inside the socle of R is a direct summand of the socle, see [16],
hence we must have C.p(X) = Cr(X) ® A, where A is an ideal in C.(X).
Now by the essentiality of Cr(X) we infer that A = 0 and we are done.
Finally, let us define ¢ : C.(X) — H erCe(X) = R by o(f) = (er.f). Since

Ann(C.z(X)) = 0, we infer that ¢ 1s one one. Next, we claim that ¢ is also
onto. To see this, let (e f) € R, where f;; € C.(X) for all k € K and we are
to find f € C.(X) with ¢(f) = (erf) = (exfi). Put 1 = (fi) € H T}, where

Ty = C.(X) for all k € K. Now by considering Cr(X) as an 1deal in H Ty,

we define 0 : Cp(X) — C.(X) by 0(x) = Ax for all x € Cp(X) (note, in fact 0
is defined by 6(e;.) = ey f; for all k € K). Now by the selfinjectivity of C.(X),
0 can be extended to 6% : C.(X) — C.(X). Hence 0(g) = 0" (g) = gf for all
g € Cp(X), where f = 0"(1) € C.(X). Thus 0(e,) = e,.f, hence 0(e;) = e f =
e fr for all k € K and consequently ¢(f) = (exf) = (e fi:) and we are done.

Thus we have already shown that ¢: C.(X) — [] exC.(X) is an iso-
keK
morphism. But each R, = ¢;,C.(X) is a minimal ideal in C.(X) which is also

aring with e, as its identity. Since each ideal of R}, is also an ideal of C.(X)
(note, Cc(X) = ¢,C.(X) ® (1 — ¢,)Cs(X)), we infer that R, cannot have a
nonzero ideal (note, R} is a minimal ideal in C.(X)). Consequently, Ry, is a
field and in view of Lemma 6.1, we must have R;, = R for all k € K and this
completes the proof.

(2)=Q). It is well-known that the direct product of any collection of
fields is a selfinjective ring, see also [12]. It remains to be shown that the set
of isolated points of X is dense in X. But by [16, Proposition 2.1], the density
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of these points in X is equivalent to Ann(Cr(X)) =0 in C(X). Clearly,
> @R, is the socle of [[ B; and it is essential in [ ;. This immediately
el iel iel

implies that Cr(X) is essential in C.(X) and therefore Ann(Cr(X)) =0 in
C.(X), for C.(X) is reduced. We now claim that Ann(Cy(X)) = 0in C(X) too.
If not, then C,(X) N Ann,,, (Cr(X)) = Ann_ , (Cr(X)) # 0, which is absurd.
Hence as we observed earlier Ann(Cp(X)) = 0 in C(X) implies that the set
of isolated points of X is dense in X.

REMARK 6.6. If we replace C.(X) by CF(X) in the previous theorem,
then using the same proof without the slightest change, the result remains
valid for CF(X) too. But the result fails for C(X,K), where K is any
countable subring of R, for C(X, K) can never contain the nonzero socle of
C(X). In particular, it also fails for C,.(X), C;(X).

Before proving the remaining property for C.(X), let us recall that a
subset S of a commutative ring R is said to be orthogonal, provided xy = 0
foralla,y € Swithe #y. If SNT = & and S U T is an orthogonal set in R,
then @ € R is said to separate S from T if s?a =s for all s €S and
a € Ann(T), see [12], [14] for more details. We recall the following fact
which is in [12, Theorem 2.2] and [14, Proposition 1.2].

LEmMMA 6.7. Let R be a reduced ring (not necessarily commutative).
Then the following statements are equivalent.

1. R is selfinjective (X, -selfinjective).

2. R 1s regular and whenever SUT is an orthogonal (countable or-
thogonal) set with S N'T = (&, then there 1s an element in R which
separates S from T.

We also need the following fact.

LEMMA 6.8.  The following statements are equivalent in C.(X) (C(X)).

1. If SUT is an orthogonal set in C.(X) (C(X)) with SNT = &, then
there exists f € Co(X) (f € C(X)) which separates S from T.

2. For any orthogonal set L in C.(X) (C(X)) there exists f € C.(X)
(f € CX)) with g*f =g for all g € L.

Proor. We only give a proof for C.(X) (note, the same proof works
for C(X)).
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(1)=(2). It is evident.

(2)=(1). We are to show that there exists & € C.(X) such that 2T =0
and g?h = g for all g € S. By (2), there exists f; € C.(X) with g?f; = g for all
g<eSUT. We also note that SU@T) is an orthogonal set, where
2T = {2t :t € T}. Hence there exists f; € C.(X) with ¢’ =g for all
g € SU@T). For each g € T we have 4¢%f; = 4¢ and 4¢%f, = (29)°f> = 2¢
Now put h=2f—fi €C.X), hence 4¢°h=0 and therefore
*h =0=(gh)?, ie, gh=0 for all geT. Finaly, if geS, then
9*h = 2¢°f> — ¢*f1 = 29 — g = g and this completes the proof.

REMARK 6.9. By applying the proof of the previous result one can
easily show that this lemma is also true in any reduced ring R (not nec-
essarily commutative) with 2x # 0 for all 0 # x € R, see also [25]. We
should also remind the reader that in the previous lemma, we may replace
S, T and L by countable orthogonal sets.

THEOREM 6.10. Let X be a topological space. Then C.(X) is a reqular
ring if and only if C.(X) is an N -selfinjective ring.

Proor. If C,(X) is X -selfinjective, then C,(X) is regular, by Lemma
6.7. Conversely, by Lemma 6.7, and Remark 6.9, it suffices to show that
whenever S is a countable orthogonal set in C.(X), then there exists
f € Cu(X)with g?f = gforallg € S.To see this, let S = { f;}:2;, wheref; # 0
for all 7 € I. Since C.(X) is regular and in view of Theorem 5.5, we infer that

ﬂ Z(f;) = Z(h) is an open set, where h e C.X). Now we define
G =X\ Z(f) forallt > 1. Sincef; f; = 0, we have G; N G; = J for all i ;Aj,
and we also note that each G; is a clopen set. Finally, we define G = U G;

i=1
and hence X = ( U Gi ) JX \ G). Therefore we may define f : X — R by

F@) = {Jg(m ! ;g ie., flg =/ forall i > 1 and f(x) = 0 for all 2¢ G,

hence f is continuous by [9, 1A2)]. We also note that |f(X)| <
»(X)‘ <R, hence f e Cu(X). Clearly, f@)=fi) for all x e G; =
=1

X\ Z(f;) and Z(f;) C Z(f) for each i > 1, hence ff; :fi2 for all f; € S and we
are done.

REMARK 6.11. We should emphasize that Theorem 6.10, is not true for
C?(X) in general. The reason that the above proof does not work for C¥ (X)
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lies in the fact that the second part of Theorem 5.5, may not be true for
C*(X), see Example 7.1, Remark 7.4. But we should remind the reader that
the proof of Theorem 6.10, can be applied word-for-word to show that the
theorem is also true for C(X,K), where K is a subfield of R, and in
particular for C,.(X). But as we observed earlier C;(X) is never a regular
ring, a fortiori is never N -selfinjective.

7. C.(X) may not be a C(Y)

We have already shown that whenever C(X) is R -selfinjective (note,
C(X) is regular too), then so too is C.(X). In this section we show that C(X)
may be selfinjective, but C.(X) may not be so. We also observe that
whenever C(X) is 8 -selfinjective, then not every regular subring of C(X) is
R, -selfinjective (we should emphasize that in this case C.(X) is both regular
and X, -selfinjective). Finally we present an example of a space X for which
C.(X) is not isomorphic to any C(Y). In the following example, we see that
C(X) = C.(X) is selfinjective, but C¥(X) is not even N, -selfinjective. We
should remind the reader that all three rings are regular.

ExampLE 7.1. Let X be an infinite countable discrete space. We may
put C(X) = [ B;, where R; = R for all ¢ > 1. Hence C(X) = C.(X) is a

=1
selfinjective Zregular ring. Finally, we claim that C*'(X), although a regular
subring of C(X), is not R -selfinjective. To see this, put

R= {(a» € HRZ' : there are only finitely many distinct az}
1=1

Clearly, R = C(X).NowputX = AUB,ANB = &, where |A| = |B| = X,.
For each i € A, let us define f; = (a;) € C(X), where a; = r; # 0, a; = 0 for
all j # 1, moreover we assume that all »; are distinct and for all = € B, we
define g; = (b;) € C(X), where b; =1, b; =0 for all j# . Clearly, if
S={fi:icA},T={g;:j€B},then SNT = ¢ and SUT is an orthog-
onal set in CF(X). We claim that there is no element in C¥(X) which
separates S from 7. Let & = (¢;) € CF'(X) separate S from T and obtain a
contradiction. We must have f2h=F; for all i € A and g;h =0 for all i € B.

1 . .
Consequently, we must have ¢; = - for all t € A and ¢; = 0 for all j € B.

1
Therefore i € C.(X) \ CF(X), which is the desired contradiction.
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Let us recall that a commutative ring R is called a Baer ring if for any
subset S of R we have Ann(S) = eR, where ¢ = €. A space X is said to be
extremally disconnected if every open set in X has an open closure, see
[9, 1H]. In [3, Theorem 3.5] it is shown that C(X) is a Baer ring if and only
if X is an extremally disconnected space.

For the proof of the following result, see [3, Theorem 4.2] and Lemma 6.7.

THEOREM 7.2. Let X be a topological space. Then the following state-
ments are equivalent.

1. C(X) is a Baer regular ring.

2. X 1s an extremally disconnected P-space.

3. C(X) 1is a selfinjective ring.

4. If SUT is an orthogonal set in X with SNT = , then there exists
an element in C(X) which separates S from T.

The next trivial result is needed.

LEmma 7.3. Let T and R be two commutative rings with R C T and R
contains all idempotent elements in T. Then whenever T is a Baer ring, so
too is R.

Proor. Let S C R be a subset, then Anng(S) = Anny(S) N R. But
Annp(S) = eT, e? = e € T, since T is a Baer ring. Hence, by our assumption
e € R. Now it is clear that eT' N R = eR and we are through.

Finally we conclude this article by presenting the next two remarks, of
which, the first one shows the validity of the title of this section and the
second one gives some reasons for our interest in C.(X) and C¥(X) and it
also includes an open question. Incidentally, in the remark which follows,
we observe that C(X) and C,(X) (more generally C(X, K), where K is any
field) are selfinjective, but neither C.(X) nor C¥(X) are so. It is left to the
reader to show that C.(X) is X -selfinjective, but CF(X) is not, although it is
a regular ring.

REMARK 7.4. There is a topological space X such that there is no space

Y with C.(X) = C(Y). To see this, let X be a discrete space which is un-

countable (i.e., |X| = |R]|). Then C(X) = ] R;, and C,(X) = [] @;, where
eX X

R; =R, Q; = Q for all i € X, are clearly selfinjective. Now let X = A UB,

where A,B are uncountable with A NB = 4. There exists a one-one

mapping f of X onto R\ {0}. Now for each i€ A, let us put
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fi = (;) € Co(X), where a; = f(¢) and a; = 0 for all j # 4, hence all com-
ponents of f; are zero except one. For each i€ B, we also put
9i = (b;) € Co(X) with b; = f(2) and b; = 0 for all j # i. Finally, we put
S={fi:i€A},T={g;:1€ B}.Itisevidentthat SN7T = Zgand SU T is
an orthogonal set in both C.(X) and C¥(X). We now claim that there is no
element in C,.(X), a fortiori, in C¥(X) which separate S from T (note, this
shows that the latter two rings are not selfinjective, by Lemma 6.7 ). To see
this, let 2 € C.(X) be such an element and obtain a contradiction. We must

1
have g?h = g for all g € S, hence h(i) = m for all 7 € A. But f is one-one

and A is uncountable, hence |2(X)| is uncountable which is a contradiction.
Finally, we claim that the space X is the one we promised at the outset of
the remark. Since X is an extremely disconnected P-space, we infer that
C(X) is a Baer regular ring, by Theorem 7.2. Hence, by Proposition 5.3,
C.(X) is aregular ring and it is also a Baer ring, by Lemma 7.3. Finally we
show that C.(X) = C(Y), where Y is any space, leads us to a contradiction.
To see this, we note that C(Y) is a Baer regular ring too. Hence by
Theorem 7.2, Y is an extremally disconnected P-space and C(Y) is a
selfinjective ring. But we have already shown that C.(X) is not selfinjective
and this is the desired contradiction.

REMARK 7.5. Let us put A = C(X, K), where K is a countable subring
of R. It is interesting to recall that when K is a subfield of R and X is a
zero-dimensional space, then X is a P-space if and only if A is a regular
ring, see Corollary 5.10 (note, in this case the subfield K need not even be
countable, see the proof of Proposition 5.3). Clearly there are infinitely
many subrings such as A in C(X), but unfortunately none of them can be an
R-subalgebra of C(X). But it seems when it comes to the study of C(X) in
general, then those subrings of C(X) which are R-subalgebras are more
appropriate to be considered. Although for the above subring A we may
consider the R-subalgebra R[A] (i.e., the R- algebra generated by A over
R) of C.(X), but none of the nontrivial results (for example, Theorems 5.5,
5.8, 6.5, 6.10) in this article which are true for C.(X) may remain valid for
R[A]. In particular, when X contains isolated points then the socle of C(X)
(i.e., Cp(X)) which is nonzero, see [2] and [16], appears naturally in both
C.(X) and CF(X) too, but we must remind the reader that none of the
previous subrings of C(X) such as A can contain Cr(X) (note, these subr-
ings cannot even contain any ideal of C(X) containing a nonzero idempo-
tent). Again for each subring such as A one might put Ar = A + Cr(X) to
get the subring Ap of C.(X) containing Cr(X), but clearly Ar and C.(X)
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cannot share the nontrivial results in this article (for example, even an easy
and natural one such as Proposition 5.3, may not hold for Ay). Finally in
contrast to C.(X) (for example, we may recall the interesting result of
Rudin, Pelczynski and Semadeni in the introduction) some of its natural
subrings such as A and in particular C.(X) and C;(X) can never be iso-
morphic to any C(Y), for otherwise they must contain an isomorphic copy
of R which is impossible. With regard to the latter remark, the interested
reader is encouraged to characterize all topological spaces X (not ne-
cessarily compact) for which C(X) = C.(X) (resp. C.(X) = C(Y) for some
space Y), an interesting question which is unsettled yet. But unfortunately
it seems (at least to us) that these topological spaces cannot be easily de-
scribed (note, compact scattered spaces have this property and there are
uncountable non-compact spaces enjoying this property too, see also
Corollary 4.8). All these facts and perhaps some others make us believe
that among the subrings of C(X) whose elements have countable image,
C.(X) and Cp(X) seem to be the natural companions for C(X) which along
with C*(X) can be considered in investigating the connections between the
algebraic properties of C(X) and the topological properties of X.
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