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ABSTRACT - Let C be a smooth plane curve. A point P in the projective plane is said to
be Galois with respect to C if the function field extension induced by the pro-
jection from P is Galois. We denote by J(C) (resp. ¢'(C)) the number of Galois
points contained in C (resp. in ’? \ C). In this article, we determine the numbers
6(C) and ¢'(C) in any remaining open cases. Summarizing results obtained by
now, we will present a complete classification theorem of smooth plane curves by
the number J(C) or &' (C). In particular, we give new characterizations of Fermat
curve and Klein quartic curve by the number §'(C).
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1. Introduction

Let the base field K be an algebraically closed field of characteristic
p > 0and let C C P* be a smooth plane curve of degree d > 4. In 1996, H.
Yoshihara introduced the notion of Galois point (see [14, 17] or survey
paper [5]). If the function field extension K(C)/K(Pl), induced by the
projection 7p : C — P! from a point P € %, is Galois, then the point P is
said to be Galois with respect to C. When a Galois point P is contained in C
(resp. P? \ C), we call P an inner (resp. outer) Galois point. We denote by
6(C) (resp. §'(C)) the number of inner (resp. outer) Galois points for C. It is

(*) Indirizzo dell’A.: Department of Mathematical Sciences, Faculty of Science,
Yamagata University, Kojirakawa-machi 1-4-12, Yamagata 990-8560, Japan.
E-mail: s.fukasawa@sci.kj.yamagata-u.ac.jp



94 Satoru Fukasawa

remarkable that many classification results of algebraic varieties have
been given in the theory of Galois point.

Yoshihara and K. Miura determined §(C) and &' (C) in characteristic
p = 0 ([14, 17]). In characteristic p > 0, M. Homma [13] settled 6(H) and
&' (H) for the Fermat curve H of degree p° + 1. Recently, the present au-
thor determined 6(C) when p > 2 or d — 1 is not a power of 2 ([3, 4]), and
¢'(C) when d is not divisible by p, d = p, or d = 2° in p = 2 ([3, 4, 7]). The
following problems remain open ([4, Part III, Problem], [5, Problem 2]).

PrOBLEM. (1) Let p = 2 and let e > 2. Find and classify smooth plane
curves of degree d = 2° + 1 with 6(C) = d.

2) Let p >0, e > 1 and let d = p°l, where [ is not divisible by p. As-
sume that (p¢,1) # (p,1), (2%, 1). Then, determine & (C).

In this article, we give a complete answer to these problems.

THEOREM 1. Let p =2, let e > 2 and let C be a smooth plane curve of
degree d = 2° + 1. Then, o(C) = dif and only if C is projectively equivalent
to the curve given by

(1c) IT @+ay+o®+ ey =0,

o€lge

where c € K \ {0,1}.

THEOREM 2. Let the characteristic p > 0, let e > 1, let | be not divisible
by p, and let C be a smooth plane curve of degree d = p°l>4. If
(%, D) # (2°,1), then 0'(C) < 1.

Summarizing Theorems 1 and 2 and the results of Yoshihara, Miura,
Homma and the present author, we obtain the following classification
theorem of smooth plane curves by the number §(C) or §'(C).

THEOREM 3 (Yoshihara, Miura, Homma, Fukasawa). Let C be a smooth
plane curve of degree d > 4 in characteristic p > 0. Then:

T o(C)=0,1,d or (d — 1° + 1 Furthermore, we have the following.
@ 5C)=d—-1>+1 if and only if p >0, d=p°+1 and C is
projectively equivalent to the Fermat curve.
(i) o(C)=d>51ifand only if p=2, d=2°+1 and C is projectively
equivalenttothe curve defined by [] (x + oy + o®) +cy® 1 =0,
wherec € K\ {0,1}. %€l
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(i) C)=d=4 if and only if p#2,3 and C is projectively
equivalent to the curve defined by x* +y* +1 =0.

(ID) §(C)=0,1,3,7 or (d — 1* — (d — 1)® + (d — 1)%. Furthermore, we
hawve the following.

@) ) =d-1D"—d—-1°+d—1*ifand only if p>0,d—1
18 a power of p and C is projectively equivalent to the Fermat
curve.

1) JC) =T if and only if p=2, d=4 and C is projectively
equivalent to Klein quartic curve.

(i) &'(C) = 3 and three Galois points are not contained in a com-
mon line if and only if d is not divisible by p, d — 1 is not a
power of p, and C is projectively equivalent to the Fermat curve.

(iv) &(C) = 3 and three Galois points are contained in a common
line if and only if p = 2, d = 4 and C is projectively equivalent
to the curve defined by

@+ + @+ )@+ )+ @G+ Y +e=0,
where ¢ € K\ {0,1}.

This is a modified and extended version of the paper [4, Part IV] (which
will have been published only in arXiv).

2. Preliminaries

Let C C IP* be a smooth plane curve of degree d > 4 in characteristic
p > 0. For a point P € C, we denote by TpC C P? the (projective) tangent
line at P. For a projective line [ ¢ P* and a point P € C N1, we denote by
Ip(C, 1) the intersection multiplicity of C and [ at P. We denote by PR the line
passing through points P and R when P # R, and by np : C — P';R — PR
the projection from a point P € 2. If R € C, we denote by ep the ramifica-
tion index of 7p at R. It is not difficult to check the following.

LEMMA 1. Let P € P2 and let R € C. Then for np we have the following.
(1) If R = P, then eg = Ir(C,TrC) — 1.
(2) If R # P, then ep = I(C, PR).

Let P be a Galois point. We denote by Gp the group of birational maps
from C to itself corresponding to the Galois group Gal(K(C)/n) K(PY). We
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find easily that the group Gp is isomorphic to a subgroup of the auto-
morphism group Aut(C) of C. We identify Gp with the subgroup. When we
use the symbol y for an automorphism of the curve C, we use the symbol y*
for the automorphism of the function field K(C) corresponding to 7.

If a Galois covering 0 : C — ('’ between smooth curves is given, then the
Galois group G acts on C naturally. We denote by G(R) the stabilizer
subgroup of R. The following fact is useful to find Galois points (see [15, IT1.
7.1, 7.2 and 8.2]).

Factr 1. Let 0 :C — C'" be a Galois covering of degree d with Galois
group G and let R,R' € C. Then we have the following.

(1) For any o € G, we have 0(c(R)) = O(R).

) If O(R) = O(R'), then there exists an element o € G such that
oR) =R

(8) The order of G(R) is equal to eg at R for any point R € C.

4) If O(R) = O(R'), then er = ep.

(5) The tndex eg divides the degree d.

We recall a theorem on the structure of the Galois group at a Galois
point (see [4, Part II]). Let d — 1 = p°l (resp. d = p°l), where [ is not di-
visible by p, let { be a primitive [-th root of unity, and let k& = [[',(0) : I¥,,].
Let P=(1:0:0) be an inner (resp. outer) Galois point for C. The pro-
jection 7p : C — P! is given by (x:y:1) — (y : 1). We have a field ex-
tension K(x,y)/K(y) via np. Let y € Gp. Then, the automorphism y € Gp
can be extended to a linear transformation of P? (see [1, Appendix A, 17
and 18] or [2]). Let A, = (a;;) be a 3 x 3 matrix representing y. Since
7 € Gp, y"() = y. Then, (a1 + az2y + 023) — (a31% + agz2y + agz)y = 0 in
K(x,y). Since d > 4, we have ag; = ags = ag; = age = 0 and age = ags. We
may assume that ags = agg = 1. Since 7! = 1, we have a}; = 1. We take a
group homomorphism Gp — K \ 0;y — a;1(p), where ay1(y) is the (1,1)-
element of A,. Then, we have the splitting exact sequence of groups

0 — (Z/pZ2)* — Gp — ({) — 1,

and the following theorem.

THEOREM 4. Let C C P be a smooth curve and let P be an inner (resp.
outer) Galois point. Then, k divides e and Gp = (7./p7)"° x ({).

REMARK 1. The condition that & divides e is equivalent to that [ divides
p° — 1. We give a proof here. If k divides e, [,({) = I, is a subfield of [..



Complete Determination of the Number of Galois Points ete. 97

Since { € [V, "1 = 1. Since the order of ¢ in the multiplicative group
[Fpe \ 0is [, [ divides p® — 1. The converse also holds.

We denote the kernel (resp. quotient) by Kp (resp. by Qp). An element
o € Kp (resp. a generator t € Qp) is represented by a matrix

1 ap() aso) ¢ a(®) a3(0)
A,=lo 1 0 (resp.AT: 0 1 0 )
0 0 1 0 0 1

where a12(0), a13(0), a12(1), a13(r) € K. For each non-identity element
y € Gp, there exist ¢ € Kp and i such that y = o7’. Then, there exists a
unique line L,, which is defined by (44 — DX + (a12(0) + a12(t)Y +
(a13(0) + a13(t))Z = 0, such that y(R) = Rforany R € L,.Notethat P € L,
if and only if y € Kp. Furthermore, for ¢ € Kp and R # P, L, = RP if and
only if o(R) = R. For a suitable system of coordinates, we can take
a12(7) = ay3(t) = 0.

Finally in this section, we note the following facts on automorphisms
of P

LEMMA 2. We denote by Aut(PY) the automorphism group of PL.

1) Let P1,Py,P3 € P! be three distinct points and let yy,ys € Aut(Ph.
If yi(Py) = 75(Py) for 1 =1,2,3, then y; = p,.

(2) Let P1,Ps € P! be distinct points and let G C Aut(PY) be a finite
subgroup. If y(P1) = P1 and y(Pg) = Ps for any y € G, then G is a
cyclic group whose order is not divisible by p if p > 0.

(3) Let | be not divisible by p, let P € P, and let G C Aut(P') be a
subgroup of order l. Assume that G is cyclic and ©(P) = P for any
7 € G. Then, there exists a unique point Q such that @ # P and
Q) = Q for any t € G.

Proor. The fact (1) is easily proved, if we use the classical fact that any
automorphism of P! is a linear transformation. We prove (2). We may as-
sume that P; = (1:0) and P, = (0:1). Let y € G. Since y(P;) = P; and
1(P2) = Pq, 7 is represented by a matrix

a(y) 0
&<0 J’

where a(y) € K. Then, the homomorphism ¢ : G — K\ 0: y — a(y) is in-
jective and w(G) is cyclic. Let m be the order of y(G). Then, w(G) is con-
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tained in the set {x € K\ 0ja™ — 1 = 0}. If m is divisible by p, the set
consists of at most m/p elements. Therefore, m is not divisible by p. We
have the conclusion.

We prove (3). We may assume that P = (1 : 0). Let = be a generator of
G. Since 1(P) = P and t is an automorphism of order [ not divisible by p, tis

represented by a matrix
b
Ar = é ;
0 1

where ( is a primitive I-th root of unity and b € K. Then, 7’ is represented by
the matrix

¢ -1

¢ b

Let @ = (x : 1). Then, /(@) = Q if and only if (( — 1)x + b = 0. We have
the conclusion. O

3. Only-if-part of the proof of Theorem 1

Letp =2,let ¢ = 2° > 4 and let C be a plane curve of degreed = ¢ + 1.
Assume that 6(C) = d. Let Py, ..., P4 be inner Galois points for C. By the
results of the previous paper [4, Part 111, Lemma 1, Propositions 1, 3 and
4], we have the following.

PrOPOSITION 1. Assume that 6(C) = d. Then, we have the following.

(1) Galois points Py, ..., P are contained in a common line.

(2) For any i and any element o € Gp, \ {1}, the order of ¢ is two.

(3) For any 1 and any elements o,7 € Gp, \ {1} with ¢ # 1, Ly # Tp,C
and Lq # L. In particular, the set {Tp,CNTp,C|12 <i<d} con-
sists of exactly d — 1 points.

By the condition (1) and Fact 1(2), for each 1 with 3 < 1 < d, there exists
7; € Gp, such that ©;(P1) = Pa. Let {Q} = Tp,C N Tp,C. In addition, we
hawve the following by the condition (2).
4) For any v with 3 <1 <d, 7;(P2) = Py and 7;(Q) = Q.
() For any 1,5 with 3 <1i,j <d, 7;1;(P1) =Py, 77(P2) = P2 and
77(Q) = Q.
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LEmMA 3. For a suitable system of coordinates, we may assume that
Pi=1:0:0,Po=0:0:1)and@ =(0:1:0).

By Lemma 3 and Proposition 1(2)(4), 7; is given by a matrix

0 1
Ari = ai 0 )
az 0 0

for some a; € K. Then, 7;7; is given by the matrix

a]z 0
Afi = 0 @iy 0
0 0 a?

i
Let H(C) be the subgroup of Aut(P?) consisting of any y € Aut(P%)
satisfying

(h1) y(P1) = Py, y(P2) = Pz and y(Q) = @,

(h2) {y(P)|3 <i<d}={Pi3<i<d}, and
(h3) »(C) = C.

LemMA 4. The group H(C) is a cyclic group whose order is at most
d—2=q—-1

Proor. By the condition (hl) of H(C), for any y € H(C), y is re-
presented by a matrix

0 0
A, = b 0
0 1

S O 2

for some a,b € K. We prove that y depends only on the image of P3. Pre-
cisely, we show that for y;, 7, € H(C), if y,(Ps) = y5(P3), then y; = y,. To
prove this, it suffices to show that y =1 if y(P3) = P3. Assume that
y(P3) = Ps. Since y fixes three distinct points Py, P2, Ps on the line P; Py, y
is identity on the line P;Ps, by Lemma 2(1) in Section 2. We have a = 1,
since P1Ps is given by Y = 0. On the other hand, by the condition (h3),
(Tp,C) = Tp,C. Then, the point @ given by Tp,C N Tp,C is fixed by 7.
Note that @y # Q, P1 by Proposition 1(3)(1) and Fact 1(3). Since y fixes
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three distinct points P;, @, Qo on the line P1Q and P;Q is given by Z = 0,
we have b = 1.

By the above discussion and the condition (h2), the order of H(C)
is at most d—2=q—1. We consider the group homomorphism
H(C) — P, P; = P! given by restrictions, which is well-defined by the
condition (h1l) of H(C). Then, this is injective by the above discussion.
It follows from Lemma 2(2) that H(C) is cyclic. O

We consider the set S = {r37;/3 <1 < d}. Then, S C H(C) by Proposi-
tion 1(5)(1). Since the cardinality of Sis ¢ — 1, S = H(C) by Lemma 4. Since
H(C) is cyclie, there exists 7 such that r37; is a generator of H(C). There-
fore, t37; is given by the matrix

200
A‘ngi: 0 C 0 5
0 0 1

where ( is a primitive (¢ — 1)-th root of unity. We denote t37; by 7.

By Proposition 1(3), there exists an element o € Gp, \ {1} such that the
(1,2)-element a;2(0) and (1, 3)-element a,3(o) of a matrix A, representing o
are not zero (see also Section 2). If we take a linear transformation ¢ with
Y — (1/a12(0))Y and Z+— (1/a3(0))Z, then ¢(P;)=P; for i=1,2,
HQ)=Q,poyod  =yand pogod ' is represented by the matrix

111
Ay=10 1 0
0 01

Therefore, we may assume that ¢ is represented by the matrix A, = A,.
The automorphism /¢y~ is represented by the matrix

1 ¢ &
01 0
0 0 1

In particular, y’oy~ € Gp, for any j with 1<j<q—1. Since the
cardinality of the set {}ioy7[1<j<q-1}CGp is q¢—1, Gp =
{pJoy7|1 <j<q—1}U{l}. Then, the rational function g(x,y):=
[T (x+ oy +o?) € K(x,y) is fixed by any element of Gp,. Therefore,

o€l

g(ocq, y) € K(y). There exists h(y) € K(y) such that g(x,y) + h(y) =0 in
K(x,y). Let h(y) = hi(y)/h2(y), where hy,he € K[yl. Then, g(x,y)ha(y) +
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hi(y) =0 on C. Let f(x,y) be a defining polynomial. Then, there exists
v(x,y) € Klx,y] such that f(x,yv(e,y) = gle,yha(y) + hi(y) as ﬂly—
nomials. Since P; € C is smooth and the tangent line 7p,C = P1Q is
given by Z = 0, the coefficient of #* for f(x,y) as in (K[y])[x] is a con-
stant. Comparing the coefficient of degree 2¢ in variable x, we have
v(x,y) € K[yl and v(x,y) = he(y) up to a constant. Then, hs(y) divides
hi(y) and we have h(y) € K[y]. Therefore, we may assume that
[, y) =g, y) + h(y), where h(y) € Klyl. By the condition that the
tangent line 7p,C = P,Q is given by X =0, g(x,y) +cy?™ =0 for
some c¢ € K\ 0. Therefore, we have a defining equation f(x,y) =
g, y) + ey =0.

Finally in this section, we investigate conditions for the smooth-
ness of C. Let GX,Y,Z):=Z""'¢X/Z,Y/Z) and let F(X,Y,Z):=
Zt 1f(X/Z, Y/Z). Then, by direct computations, we have F(Z,Y,X) =
F(X,Y,Z). Since there exist exactly d points contained in C' and the
line defined by Y =0, such points are smooth. Therefore, singular
points should lie on Y # 0. Let A(x,z) = G(x,1,2z). We consider % as an
element of K(2)[x]. Then, the set {o+ ozl € '} € K(z), which con-
sists of all roots of h(x,z) =0, forms an additive subgroup of K(z).
According to [8, Proposition 1.1.5 and Theorem 1.2.1], we have the
following.

LEMMA 5.  The polynomial h(x,z) € K(z)[x] has only terms of degree
equal to some power of p. In particular, hy(x,z) = 27 + 2z, where h, is a
partial derivative by .

Assume that (x,z) € C is a singular point, i.e. h.(x,2) = h.(x,2) =0
Then, (x,z2) is I[';-rational by Lemma 5. We have c # 1 by the following.

LemMA 6. The equality {h(x,2)|x,z € Iy} = {0,1} holds.

Proor. If z=0, then h(x,z) =0. We fix zp € I, \ 0. We consider

Iz, z0) = 20 [] (x+ o+ o%2¢) € Fy[]. For each o € I, there exists a un-
a€liy

ique ff € I, with 8 # o such that o + o2z = f + [%20. Therefore, the car-

dinality of the set So := {o + oz|o € F,} is ¢/2 = 2°71. By direct compu-

tations, We find that any element of Sy is a root of the separable polynomial

ho(x) = Z zo a2 Wthh is of degree q/2. Then, h(x,z¢) = ho(ac) as elements
of [y [x]. Then by direct computations, we have hy(x)(ho(x) + 1) = 2o(x? + x)
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as elements of I',[x]. Assume x € [';. Then, o(x)(lo(x) + 1) = 0. Therefore,
h(x,z0) =0 or 1. If we take x I, \ Sy, then ho(x) #0 and hence,
h(x,2) = 1. O

4. If-part of the proof of Theorem 1

We use the same notation as in the previous section, g, f, F', and so on.
Let C be the plane curve given by Equation (1¢) with ¢ € K \ {0,1}. As in
the previous section, C is smooth. We prove J(C) = d. We consider the
projection np, from P; = (1:0:0). Then, we have the field extension
K(x,y)/K@y) with f(r,y) = glx,y) +cy?™ =0. Since (x+ oy + o?)+
By+ P2 =x+ @+ Py + @+ PP, we have f(x+ oy + o2, y) = f(x,y) for
any o € [, Therefore, Py is Galois. By the symmetric property of
FX,Y,Z) for X, Z, we find that a point (0 : 0 : 1) is also inner Galois for C.
We also find that there exist a tangent line 7' such that Io(C,T) = 2 for
some @ € C N T. Therefore, C is not projectively equivalent to the Fermat
curve of degree q + 1 (see, for example, [13]). According to [4, Part III,
Lemma 1 and Proposition 1], we have 6(C) = d.

REMARK 2. The projective equivalence class of the plane curve given
by Equation (1c) is uniquely determined by a constant ¢ € K \ 0. There-
fore, infinitely many classes exist. Precisely, we have Lemma 7 below.

LEMMA 7. Leta,b € K\ 0and let C, (resp. Cy) be the plane curve given
by Equation (le) with ¢ =a (resp. ¢ =b). If there exists a projective
transformation ¢ such that $(C,) = Cy, then a = b.

Proor. Let Pi,...,P; be inner Galois points for C,, which are con-
tained in the line defined by Y = 0. Then, Py, ... P, are also inner Galois
for C,. Since the tangent lines TpC, and TpCy at P = (% : 0 :1) with
o € I, are given by the same equation X + oY + «2Z =0, Tp,Co =Tp,Cy
for :=1,...,d. We may assume that Py =(1:0:0), Po=(0:0:1) and
P3=(1:0:1). Let Q2=(0:1:0) and let Q3 =(1:1:0). Then, Tp,C, N
szca = Tplcb N TPZCb = {Qz} and Tplca n Tpgca = TPIC;, mTp:;Cb = {Qg}
Let ¢ be a linear transformation such that ¢(C,) = Cj.

If ¢(P1) = P; for some 7 # 1, then we take o € pr(Cb) for some j such
that o(P;) = Py, by Fact 1(2). Then, o o $(P;) = P;. Therefore, there exists
a linear transformation ¢ such that ¢(C,) =C, and ¢(P;)=P;. If
¢(P2) = P; for some 3 <17 <d, then we take 7€ Gp,(Cy) such that
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7(P3) = P, by Fact 1(2). Then, t o ¢(P2) = Ps. Therefore, there exists a
linear transformation ¢ such that ¢(C,) = Cj, ¢(P1) = P; and ¢(P2) = Ps. If
¢(P3) = P; for some 4 < 7 < d, then we take y € H(C}) such that y(P;) = Ps,
where H(Cy) is the group for C} discussed in the previous section. Then,
7o ¢(P3) = P3. Therefore, there exists a linear transformation ¢ such that
¢(Ca) = Cb, ¢(PL) = Pi for ¢ = 1,2,3 and ¢(Qj) = Qj for ] = 2,3. Since
#(P1) = P1,4(Ps) = P and $(Q2) = Q2, ¢ is represented a matrix

00
As=[0 4 0
0 0

for some Ay,49,43 € K\ 0. Since ¢(P3) = Ps and $(Q3) = @3, we have
A1 = g and 43 = Jg. Then, ¢ is identity. Therefore, by considering the de-
fining equations of C, and Cj, we should have a = b. O

REMARK 3. Ifc¢ = 1, then the plane curve C defined by Equation (1c¢) is
parameterized as Pl — P2 :(s:1) s (s? : s7 + s : 1). The distribution of
Galois points for this curve has been settled in [6].

5. Proof of Theorem 2 (The case where [ > 3)

If we have two outer Galois points, then we note the following (see
Section 2).

LEmMA 8. Let P, Py be outer Galois points for C. Then, any element
y € Gp can be extended to a linear transformation of P2, and hence
1(Pg) € P2 is also outer Galois for C.

Let d=p°, where e¢>1, [ >3 and [ divides p°—1, and let
P =(1:0:0) be an outer Galois point. It follows from a generalization of
Pardini’s theorem by Hefez [9, (5.10) and (5.16)] and Homma [12] that the
generic order of contact for Cis equal to 2, i.e. [p(C, TrC) = 2 for a general
point R € C (see also [10, 11]).

Let M c % be a projective line with P € M. Note that (M) = M for
any y € Gp, by the forms of the matrices A, and A, as in Section 2. The
homomorphism rp[M] : Gp — Aut(M), which is induced by the restriction,
is well-defined. Then, the kernel Ker rp[M] is a subgroup of Kp and the
cardinality of Ker rp[M] is a power of p, since y € Ker rp[M] if and only if
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L, = M. We denote it by p"I. Since the kernel Ker rp[M]is a subspace of
Gp as I',-vector spaces, we have the following diagram.

(z/pz)®*IM] =~ Ker rp[M]

! !
0 —  (Z/p2)* - Gp - O — 1
l l I

0 — (Z/pz)®™M  — Tmrp[M] — () — 1
Using lower splitting exact sequence as groups, we have the following.
LEMMA 9.  The integer | divides p°~"™1 — 1 for any line M with P € M.

Hereafter in this section, we assume that P € P?\ {P} is an outer
Galois point for C.

PROPOSITION 2.  Assume that 1 > 3. Then:

(1) v[PPs] = e, and there exists a unique point Q € P* with Q # P such
that y(Q) = Q for any y € Gp.

Let Q be the point as in (1). Furthermore, we have the following.

(2) If L > 5, then Py = Q.

@) If l=4 and P # Q, then Q € C or there exist two outer Galois
point Pz, Py such that y(Py) = Py for any y € Gp,.

4) Ifl=3 and Ps # Q, then @ € C.

Proor. Lety e Gp\ Kp and let L, be the line, which is a fixed locus,
defined as in Section 2. The set CNL, consists of d points, because
TrC = PR #L,ifR € CNL,byFact1(3)and Lemmal(2). Lett € Qpbea
generator and let L. be the line, defined as in Section 2. We denote v[PPs]
by v and assume that v<e.

We consider the case where y(Ps) = Py for some y € Gp \ Kp. Let
o € Kp,. Then, o(R) € L, and o(R) # R if R € C N L,, by Fact 1(1)(3) and
that L, consists of exactly d points. Furthermore, o(P) € Tor,)CN
Tory)C = {P},if R1,Ry € CN L, with Ry # Rs. Therefore, we should have
o(P) = P. This is a contradiction tov<e.

We consider the case where y(Ps) # Py for any y € Gp \ Kp. Assume
that y;(Pz2) = 7.(P2) for y;,7, € Gp. Note that any element y € Gp is re-
presented as y = o7’ for some ¢ € Kp and some i (see Section 2). Let
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7, = o1t and y, = 027, Where a1, 02 € Kp. Since (r‘-jaz_lalrj)ri_j(Pg) =Py
and t7a;'017 € Kp, we have i =7 and y;'y; € Kp by the assumption.
Furthermore, we have y;'y; € Ker rp[PPs], since p;'y;(P)=P and
73 171(P2) = Ps. Therefore, we have p~"l + 1 outer Galois points on the line
PPy, by Lemma 8 and that the group Im rp[PPs] is isomorphic to
(ZIpZ)* ™" % (0). -

Let R € C N L,. We consider points on the line PR. Let 4Gp(R) = p’I,
where Gp(R) is the stabilizer subgroup at R. Then we have p°~? flexes of
order (#Gp(R) —2) by Fact 1(3). We note that (p°l —2)p°~? > p°(l — 2).
Furthermore, for each outer Galois points, we spent at least degree
(d— 1D —2)) as the degree of the Wronskian divisor. Therefore, it
follows from the degree of Wronskian divisor ([16, Theorem 1.5]) that

(" 1+ 1)(d — Dpl — 2) < 3d(d — 2).

Then, we have
Pl + Dp°d —2)<3d = 3p°L.

Therefore, (p°~ "1+ 1)(I — 2) — 3l <0. Note that p°~” —1 > [ by Lemma 9.
Then, (12 + 1+ 1)(I — 2) — 31<0. This is a contradiction. Therefore, v = e.

In particular, the group Im 7p[PPs] is a cyclic group of order . By
Lemma 2(3) in Section 2, a fixed point by the group Im 7p[PPs] which is
different from P is uniquely determined. We denote it by Q. Then, (@) = @
for any y € Gp, since y = g1’ for some ¢ € Kp and some i. We have (1).

We prove (2). Assume that Py # Q. Since the group Im 7p[PPs] is a
cyclic group of order [, we have [ + 1 outer Galois points on the line PPs, by
Lemma 8. Furthermore, for each outer Galois point, we spent at least
degree (d — 1)p°(l — 2) as the degree of the Wronskian divisor, similarly to
the proof of (1). Therefore, it follows from the degree of Wronskian divisor
(16, Theorem 1.5]) that

U+ 1)(d—1)p°(l —2) < 3d(d — 2).
Then, we have

1+ 1)p°(l — 2)<3d = 3p°i.

Therefore, (I + 1)(I — 2) — 31<0. Then, 2 — 4] — 2<0. We have [ < 4.

We prove (3). Assume that P; # @ and @ ¢ C. Since Im rp[PPs] is a
eyclic group of order I, the cardinality of C N PP, is equal to [ and there
exists [+ 1 outer Galois points on PP, by Fact 1(3), Lemma 8 and the
assumption. Let CN PPy = {Ry,...,R;} and let P, Ps,...,P;.; be outer
Galois points.
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Let [ = 4. The restriction rp[PP3](z) of the generator t € Qp is a gen-
erator of Im 7p[PP;). We may assume that t(R;) = R;,; for i =1,2,3,4,
where R5 = R;1. We can take IS Im rpj[}ﬁ] such that ;7_,-(R1) = Rs for
7 =2,3,4,5 by Fact 1(2). We consider the case where at least three ele-
ments of {7;} are of order 4. We may assume that #,, 13, 714 are of order 4.
Assume that nj(R2) = Ry for any 7 with 2 <j <4. Then, we have
nj(R4) = Rg. Since three points on the line PPy has the > same images under
19, 113, M4, these are the same automorphism of the line PPy by Lemma 2(1).
Then, 7; fixes Py, P3, Py for j = 2,3, 4, because 7;(P;) = P;. This implies that
n; is identity on PPy, by Lemma 2(1). This is a contradiction. Therefore,
there exists j such that ﬂj(Rz) = Rg_ Then, we have 7’]]'(R3) = R,. Therefore,
7 coincides with 7; on the line PP;. Then, ©(P;)) = n(Pj) = P; # Q. This
implies that 7 fixes P;, P; and Q. This is a contradiction.

We consider the case where there exist distinct j, & such that »; and 7, is
of order 2. Then, 7’]]-(R2) =R, ﬂj(Rg)iR4 and 17]-(R4) = Rj3. This holds also
for #,. Then 1j =1 on the line PPg_by Lemma 2(1). Then, qj(Pk) =
e(Pr) = Py. Since the group Im rp[PP] is cyclic, n(Py) = Py for any
n € Im rp; [PPs], by Lemma 2(3). If we take j =38 and k = 4, then we have
the conclusion, since any element of Gp, is a product of elements of Xp, and
of Qp}..

We prove (4). Let I = 3. Assume that P, # Q and Q ¢ C. We may assume
that t € Gp satisfies that 7(R;) = R; 1 fori = 1,2,3, where Ry = R;. We can
take # € Gp, such that #(R;) = Rg, by Fact 1(2). Then, we have n(Rz2) = Rs
and 5(R3) = R;. This implies that t coincides with 5 on PPs, by Lemma 2(1).
Therefore, t(P2) = 5(P2) = P2 # Q. This is a contradiction. O

Let Q € P \ {P} be the point such that y(Q) = @ for any y € Gp, as in
Proposition 2. We may assume that @ = (0 : 1 : 0) for a suitable system of
coordinates. Then, the line PQ = PP; is defined by Z = 0. Using Propo-
sition 2(1), we can determine the defining equation of C, as follows.

ProPOSITION 3. The curve C is projectively equivalent to a plane
!
curve whose defining equation is of the form f(x,y) = ( 3 ocmx”") +

0<m<e

hy) = 0, where o, ... 0y € K and h(y) € K[yl is a polynomial. Further-
more, a0 7 0, the dertvative h'(y) is of degree d — 2, and polynomials h(y)
and h'(y) do not have a common root.

Proor. Leto € Kp and let t € Op be a generator, as in Section 2. We
may assume that t*(x) = {x and t*y = y for t* : K(C) — K(C), where (is a
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primitive [-th root of unity. Let A, be a matrix representing ¢ € Kp as in
Section 2. Since L, is defined by Z = 0, the (1, 2)-element of A, is zero. Since
the group Kp is a IV, ({)-vector space, we have a system of basis 01, . .., bn,
where km =e. For any o € Kp, the (1,3)-element of A, is given by
a1by + - - + o by, for some (o, ...,0,) € @",(). We define go(x) =

[T (@+ 2i04b;), where the subscript (o, ...,0,) € &"1%,(0) is taken

over all elements. Let g = gf). Then, we find easily that yg(x) = g(x) for
any element y € Gp. Therefore, there exists an element i(y) € K(y) such
that g(x) + (y) = 0 in K(C). Then, i(y) is a polynomial of degree at most
d by considering the degree of C. On the other hand, the set

{ Z a;ibiloy € FP(C)} C K, which consists of all roots of go(x) = 0, forms an

additive subgroup of K. According to [8, Proposition 1.1.5 and Theorem
1.2.1], the polynomial gy has only terms of degree equal to some power of
p, ie. go = we? + - + oaxP + ogx for some o,..., o € K. Since go is
separable and has p° roots, we have o, # 0.

Finally, we prove that the degree of 2/(y)is d — 2, and i(y) and //(y) do not
have a common root. Since /(y) is of degree at most d = p°l, i/ (y) is of degree
at most d —2. Let F(X,Y,2) =f(X/Z,Y|2)Z%, Go(X,Z) = go(X | Z)Z"
and H(Y,Z) = MY /Z)Z". Then, Fx = IG5 (0gZ"" 1), Fy = Hy and F =
IG5 Y (g XZP"~2) + Hy. We have Fx(X, Y, 0) = 0. Since d = p°l, Fy(X, Y, 0) =
Hy(Y,0)=0. Assume that 7/(y) is of degree at most d — 3. Then,
F;(X,Y, 00 =0+H;(,0) = 0. Therefore, C has singular points on the line
defined by Z = 0. This is a contradiction to the smoothness of C. On the other
hand, if there exist b € K such that i(b) = 1'(b) = 0, then a point (a : b : 1)
with go(a) = 0 is a singular point. O

LEmMa 10. Let C be the plane curve given by the equation as in
Proposition 3. Then, Q € P*\ C and Q # Ps.

Proor. It follows from Lemma 2(1) and Fact 1(4) that L, = PP; for
any o € Kp,. Therefore, any ramified point B € C of np,with Z # 0 is tame.
Let ng be the projection from Q. Note that mg(x :  : 1) = (x : 1). By the
form of ng, if & — x is a local parameter at (xo,yo) € C, then (o, %) isnot a
ramification point. For a point (, 7o) with £, (o, 70) = lgo(@e) ™ # 0, — %o
is a local parameter. Therefore, ramification points of 7g in Z # 0 is con-

!
tained in the locus 3_925 = — @ =0, which is equivalent to 2/(y) = 0.

Therefore, there exist d — 2 lines [y, ..., lj_» which contain P and d rami-
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fication points of ng, by Proposition 3. Since Py # P, for any ramification
point R of 7, the cardinality of the set PR N {R' € C|Q € TrC} C P2RN

d-2
U l;isat mostd — 2.
i=1

Assume that Q € C. It follows from Fact 1(3) that IQ(C,P_Q) =d. By
Fact 1(3) again, (@) = Q for any y € Gp,. Let R € C be a ramification point
of mg in Z # 0. It follows from Lemma 1(2) that @ € TrC. Since y(Q) = Q
for any y € Gp,, Q € Ty C for any y € Gp,. Then, the cardinality of
CNPy;Risdand Q € TrC for any R’ € C N PyR. This is a contradiction to
that the cardinality of PR N {R' € C|Q € T C} is at most d — 2. There-
fore, @ € P?\ C.

Assume that @ € P2 \ C and @ = Ps. Then, the set C N PP, contains [
points, since the group Im 7p[PPs] is cyclic of order I. Let 2 € Qp, be a
generator and let L., be the line defined as in Section 2. Then, the locus
2= | oa(L,,) consists of p° lines. By considering the order of Gp,, the

a GICPZ
ramification locus of 7 in the affine plane Z # 01is contained in the locus 2.

Note that the set () o(L.,) consists of a unique point, which is not con-
JEKPZ

tained in C, by Fact 1(3) and that the set C N PP, contains two or more
distinet points. Since the set C' N a(L.,) consists of exactly d points for any
o € Kp,, the number of ramification points in Z # 0 is exactly p® x d. On
the other hand, for each b € K with //(b) = 0, there exist exactly d points
(a, b) such that f(a,b) =0, since a,09 # 0 and h(b) # 0 by Proposition 3.
Therefore, 2/(y) has exactly p° roots. Let R be a ramification point of 7
which is contained in Z # 0. Since R is tame (stated above), eg is com-
/
puted as the order of Zz = h;y) at R plus one. Since ez = [ for any
x
ramification point R € C with Z # 0, the polynomial #'(y) is divisible by
(y — »t it B(@b) = 0. Therefore, &'(y) should be of the form
c(y — b)) - (y — by)' !, which is of degree p¢(l — 1). Since //(y) is of
degree p°l —2, by Proposition 3, we have p° = 2. Since [ > 3 divides
p® —1 =1, this is a contradiction. O

ProoF OF THEOREM 2 (when [ > 3). It follows from Lemma 10 that
Py #£Qand Q ¢ C. If [ > 5 or [ = 3, then this is a contradiction to Propo-
sition 2(2)(4). Assume that [ = 4. Then, by Proposition 2(3), there exists two
distinet outer Galois points Ps, P4 such that y(P4) = P4 for any y € Gp,.
Then, the point P, satisfies the condition of “Q” as in Proposition 2(1) for
P3. Then, this is a contradiction to Lemma 10. O
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6. Proof of Theorem 2 (The case where [ < 2)

Let p>3,lete>1,1let [ <2 and let C be a smooth plane curve of de-
gree d = p°l > 4. We denote by L., C ’* the line defined by Z = 0. Let
P € P? \ C be Galois with respect to C. Assume that P =(1:0:0). Let
y € Gp and let A, be a 3 x 3 matrix representing y. Then,

a11(p) a2y a3(y)
A= 0o 1 o |
0 0 1

where ap1(y) =+1 and ai2(),a13(y) € K. Then, y*(x) = an(y)x +
a12()y + a13(y). Note that Kp={y e Gplai1(y) =1}. Let gx,y):=
[T @+ ai2(0)y + ai3(e)). Note that the set of roots {aia(o)y+

oekp

a13(0)lo € Kp} C K(y) forms an additive subgroup of K(y). Ac-
cording to [8, Proposition 1.1.5 and Theorem 1.2.1], g(x,y) €
Klyllx] has only terms of degree equal to some power of p in variable x.
Therefore, g(x,y) = o)’ + ao1(y)a? " + -+ oyl + og(y)x  for
some ,(y), . .., %) € K[y] with dego;(y) < p° —p' for i =0, ..., e. Then,

ae(y) =1land og(y) = [] (a12(0)y + ai3(0)).
G'EKP\O

Assume that [ = 1. Then, Kp = Gp and g € K(y), since o*g = g for any
o € Gp. There exists (y) € K(y) such that g(x, y) + h(y) = 0in K(x,y). Let
I(y) = hn(y)/hay), where hy,hs € Klyl. Then, gGe, y)ha(y) + ha(y) = 0 on
C. Let f(x,y) be a defining polynomial. Then, there exists v(x, y) € K[x,y]
such that f(x,y)v(e,y) = g, he(y) + hi1(y) as polynomials. Since
(1:0:0) & C,f(x,y) has the term of degree p° in variable x. Comparing the
coefficient of degree p° in variable x, we have v(x, y) € K[y] and v(x, y) =
he(y) up to a constant. Then, hy(y) divides h1(y) and we have h(y) € K[y].
Therefore, g(x,y) + h(y) is a defining polynomial.

LeEmMa 11.  Assume that | = 1. Then, the defining equation of C is of the
Jorm g(x,y) + h(y) = 0, where g(x,y) € Klyllx] has only terms of degree
equal to some power of p in variable x.

Assume that §/'(C) > 2. Let Py € P \ (C U {P}) be Galois with respect to
C. By taking a suitable system of coordinates, we may assume that
Py =(0:1:0). Then, PP; = L.. Similar to the previous section, we con-
sider the group homomorphismrp : Gp — Aut(PP;), which isinduced by the
restriction. The cardinality of the kernel Ker rp is a power of p. We denote
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it by p”. Obviously, 0 < v < e. Then, Ker rp = {6 € Gp|a(P2) = P2}, since
P, € L, if and only if 6(P2) = P; for o € Kp. Since a12(o) = 0 if and only if
o € Kp, ay(y) is of degree p° — p* in variable y.

Lemma 12. Ifl =1, thenv =e.

Proor. We assume that v<e. Then, the defining polynomial
gx,y) + h(y) has the term oy(y)x, which is of degree p®—p” >0 in
variable y. Since Py =(0:1:0) is Galois, the defining polynomial
g(x,y) + h(y) has only terms of degree equal to some power of p in
variable y, by Lemma 11. Therefore, p® — p’ = p*(p°~¥ — 1) is a power of
p. Then, p°~? — 1 = p® for some integer b. This implies b = 0 and p = 2.
This is a contradiction. O

By Lemmas 11 and 12, we have a defining equation g(x) + h(y) = 0,
where ¢, 2 have only terms of degree equal to some power of p. It is not
difficult to check that C is singular. This is a contradiction.

Assume that [ = 2. Let r € Gp \ Kp. Then, t(x,y) = (— 2 + a12(0)y +
a13(1),y) for some a12(7),a13(r) € K. Then, Gp = {ot'lc € Kp,i=0,1}.
Note that ot(x, y) = ( — x + (a12(0) + a12(0))y +(a13(0) + a13(1)), ). There-
fore, gla, ) := [T 7" (@) = glae,y) x g(— 2+ a12(D)y + a13(0), ) = — g* (e, y) —

7€Gp
g, )g( — a2(v)y — a13(1), ), since g(x,y) is linear in variable x. Since
v, y) = glx,y) for any y € Gp, there exists h(y) € K(y) such that
fx,y) := g, y) + h(y) = 0in K(x,y). Then, h(y) is a polynomial and f(x, %)
is a defining polynomial (similarly to the case [ = 1).

LeEmMaA 13.  Assume that | = 2. Then, the defining equation of C is
of the form g*(x,y) + g(x,y)glay + b,y) + h(y) = 0, where a,b € K and
g € Klyllx] has only terms of degree equal to some power of p in
variable .

We consider Py = (0 : 1 :0). It follows from Lemma 13 that there exist
polynomials g¢i(x,y) € K[x][y] and hi(x) € K[x] such that g¢;(x,y) has
only terms of degree equal to some power of p in variable ¥ and
fil,y) == G2, y) + g1, y)g1 (@, cx + d) + hy(x) is a defining polynomial of
C for some c¢,d € K. Let g1(x,y) = B,@)y”" + B, 1@)y? L + -+ By(x)y,
where f,(x) =1 and f,_(x),..., ) € K[x]. Since f(x,y) and fi(x,y) are
defining polynomials of C, we have ¢f (x,y) = fi(x,y) for some c € K.
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LEmMA 14. Ifl =2, thenv =e.

Proor. Assume that v <e. Firstly we prove that p =3 andv =e¢ — 1.
Now, ag(y) is of degree p° — p > 0. Considering the polynomials ¢*(x, ),
g, yg(ay + b,y) and h(y), f(x,y) has the term oco(y)ac which is of degree
2(p® —p') in variable y. We consider this term for fi(x,y). Since
g1, g1, cx +d) = 3 Bi(@)g1(x, cx + d)y” has only terms of degree

equal to some power oflp in variable y and 2(p°® — p") is not a power of p in
p > 2, the term of the highest degree of «3(y)2* does not appear here.
Therefore, this term should appear in gl(ac y) (up to a constant). Slnce the
polynomial g (x y) = > Bi@)p;(w)y? "+ has only terms of degree p' + p/ =

i,
pi(1 + pi~") with i §ja§ld 0 < 1,7 < einvariable y, we have 2p*(p°~" — 1) =
p'(1 +p~%) for some i,j with 7 <j. Then, we should have i =v and
2(p®~ — 1) =14 p/~%. This implies that 2p°~* — p/~i = 3. If j = i, then
p = 2. This is a contradiction. If j # 4, then p/~{@2p**7* —1) = 3. We
should have p = 3,7 — i =1and p® ! = 1. Since 7 = v and i <J as above,
t=v=e¢—1and j=e.

Secondly we prove that p =3, ¢ =1 and v = 0. Note that p® —p
=1 in p = 3. Since the polynomial ¢*(x,y) = Z ot (9)o (y )ac? “+»’ has the

e—1 __
2p

term 20 ()P *1, which is of degree 2p°~! in Varlable ¥, and the polynomial
91(@, y)g1(x, cx + d) has only terms of degree equal to some power of p in
variable ¥, the term of the highest degree 2p“~! + p° + 1 of 20(0(2/)901"’+ 1
appears in gl(ac y) (up to a constant). Since gl(ac Y) = Z[)’Z(ac)/)’7(x)yp +”'

and p' + p/ = 2p°! implies that i =j = e — 1, 2 1(96‘)?/270 has the term
of the highest degree 2p°~! + p® + 1 of 200(y)a” *1. Let k be the degree of
f,_1(x). Since f,_;(x) has the term of degree at least (p® + 1)/2, we have
(P°+1)/2 <k <p°—p°t =2p L Then, f, (@)f,@)y? *!is of degree
k+ @° —p°t) =k +2p°! in variable x. Since (p° +1)/2 + (p® —p°~!) =
P+ (p° —2p° 1 +1)/2 = p° + (p°~! +1)/2, the term of the highest degree
of B, 1 (@)By(x)y? ! appears in g2(x, y). Since g2(x, ) = 3 o (o ()P P

k+ (p° —p°!) = p +p/t for some i; <j;. Since pé’]+ Ppl1+1)/2<
k+ (p° —p°1)=pt +pit, we have j; =e and i; = e — 1. Therefore,
k=2p1 =p°—p° 1 =p°—p’. We have ¢ —1=0, since degp;(x) =
p¢ — pvif and only if 7 = 0.

Finally, we consider the remaining case where p =3, e =1 and
v=0. Then, g(x,y) =a— (y+pPx and gi(x,y) =1 — ©nx+ )%y
for some o,f 09,0 €K with o,00 #0. Note that glay+b) =
(ay + b)(a+ o)y + (b + B))(a — o)y + (b — B)). Since flx,y) = g*(,y)+
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g(ay + b, x)g(x, y) + h(y), the coefficient of xy® of f(x, %) is equal to the one of
g(ay + b, y), which is equal to «®a(a + o)(a — o). If a(a + «)(a — o) # 0, then
the coefficient of xy°® of fi(x,y) is not zero. However, by considering
G2, y) + g1 (@, cx + d)g1 (2, y), that is zero. Therefore, we should have
ala 4+ o)(a — o) = 0. Then, g(ay + b) is of degree at most two. If g(ay + b, y)
is of degree at most one, then two of the three conditionsa = 0,a + o = 0 and
a — o = 0 hold. Then, we have a = « = 0. This is a contradiction to o # 0.
Therefore g(ay + b) is of degree two. Then the coefficient of 23y of f(x, y) is
not zero. Since y? appears only in g2(x, y) or ky(y) for fi(x,y) and g3(x, y) =
y® — 200n + Byt + (e + f)*y2, the coefficient of 332 of fi(x, y) is zero.
This is a contradiction. O

By Lemma 14, we have p” = p°. Then, g(x,y) € K[x] and g;(x,y) €
Klyl. We denote g(x,y) by g() and g¢gi(x,y) by g¢i1(y). We have
f@,y) =@+ g@)glay) + gd) + 1g?(y) + i2 for some A1, 2 € K. Let
G(X,Z)= Zrg(X/Z) and let G1(Y,Z) = Z",(Y /Z). Then, F(X,Y,Z) =
ZPPf(X)Z,Y)Z) = G*(X,Z) + GX,Z)G(aY,Z) + gb)ZP") + MGE(Y, Z) +
J2Z% . Let o (resp. ) be the coefficient of XZP*~! (resp. YZP'~1) for
G(X,Z) (resp. G1(Y,Z)). Then, Fx =2G(X, Z)aZV "1 + aZP Y G(aY,Z)+
g0)ZP"), Fy =aoZP 1GX,2)+2,G1(Y,Z)pZP" ' and Fy=-2GX,Z)-
aXZP' 72 —aXZP2(G(aY,Z) +g(b) 2P )+ GX, Z)(— afYZP )~ 2),G1(Y,Z)
pYZP* 2. Therefore, Fx(X,Y,0) = Fy(X,Y,0) = F;(X,Y,0) =0 and we
have singular points on the line L.

We have the assertion of Theorem 2.
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