REND. SEM. MAT. UN1v. PADOVA, Vol. 129 (2013)
DOI 10.4171/RSMUP/129-14

SE-Supplemented Subgroups of Finite Groups
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ABSTRACT - Let G be a finite group, H a subgroup of G and Hy. be the subgroup
generated by all subgroups of H which are S-quasinormally embedded in G.
Then we say that H is SE-supplemented in G if G has a subgroup 7' such that
HT = G and HN T < Hgg. We investigate the influence of SE-quasinormally
embedded of some subgroups on the structure of finite groups. Our results
improve and extend a series of recent results.
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1. Introduction

Throughout this paper, all groups are finite and G denotes a finite
group.

An interesting question in theory of finite groups is to determine the
influence of the embedding properties of members of some distinguished
families of subgroups of a group on the structure of the group.

Recall that a subgroup H of G is said to be S-quasinormal, S-permu-
table, or n(G)-permutable in G (Kegel [22]) if HP = PH for all Sylow
subgroups P of G. A subgroup H of G is said to be S-quasinormally em-
bedded or S-permutably embedded in G (Ballester-Bolinches and Pedraza-
Aguilera [6]) if each Sylow subgroup of H is also a Sylow subgroup of some
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S-quasinormal subgroup of G. A subgroup A of G is said to be c-normal
(Wang [32]) (c-supplemented (Ballester-Bolinches, Wang and Guo [9])) in
G if G has a normal subgroup (a subgroup, respectively) 7' such that
AT =Gand ANnT < Ag.

Let F be a class of groups. If 1 € F, then we write G* to denote the
intersection of all normal subgroups N of G with G/N € F. The class F is
said to be a formation if either F = or 1 € F and every homomorphic
image of G/G” belongs to F for every group G. A formation F is said to be
saturated or local if F contains every group G with G7 < &(G). A class F
of groups is said to be solubly saturated or Baer-local (see [11, Chapter
IV, Definition 4.9)) if F contains every group G with G* < ®(N) for some
soluble normal subgroup N of G.

Researches of many authors are connected with analysis of the fol-
lowing general question: Let F be a saturated formation containing all
supersoluble groups and G a group with a normal subgroup E such that
G/E € F. Under what conditions on E then, does G belong to F ?

We recall some recent results in this direction. If F is a saturated
formation containing all supersoluble groups and G has a normal subgroup
E such that G/E € F, then the following results are true:

(1) If the cyclic subgroups of £ of prime order or order 4 are or S-
quasinormal (Ballester-Bolinches and Pedraza-Aguilera [7], Asaad and
Csorgo [2]), or c-normal (Ballester-Bolinches and Wang [8]), or c-supple-
mented (Ballester-Bolinches, Wang and Guo [9], Wang and Li [35]) in G,
then G € F.

(2) If the cyclic subgroups of F*(£) of prime order or order 4 are or S-
quasinormal (Li and Wang [24]), or c-normal (Wei, Wang and Li [36]), or S-
quasinormally embedded (Li and Wang [25]), or c-supplemented (Wang,
Wei and Li [34], Wei, Wang and Li [37]) in G, then G € F.

(3) If the maximal subgroups of every Sylow subgroup of £ are or S-
quasinormal (Asaad [1]), or c-normal (Wei [38]), or c-supplemented (Bal-
lester-Bolinches and Guo [5]) in G, then G € F.

(4) If the maximal subgroups of every Sylow subgroup of F*(¥) are or
S-quasinormal (Li and Wang [26]), or c-normal (Wei, Wang and Li [37]), or
c-supplemented (Wei, Wang and Li [34]), or S-quasinormally embedded
(Li and Wang [25]) in G, then G € F.

(5) If E'is soluble and the maximal subgroups of every Sylow subgroup of
F(F) are S-quasinormally embedded in G, then G € F (Asaad and Heliel [3]).

In these results, /(%) is the generalized Fitting subgroup of £, that is,
the product of all normal quasinilpotent subgroups of £ [21, Chapter X].
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Bearing in mind the above-mentioned results, it is natural to ask:

(I) Is it true that all the above-mentioned results can be strengthened
by considering the more general case, where F is a Baer-local formation?

(IT) Is it true that all the above-mentioned results can be improved by
using some weaker condition?

In this paper, we give positive answers to both these questions.
Let H,; be the subgroup generated by all the subgroups of H which
are S-quasinormally embedded in G. We call H,, the SE-core of H in G.

DEFINITION 1.1. Let H be a subgroup of G. We say that H is SE-sup-
plemented in G if there exists some subgroup T of G such that HT = G and
HNT < Hgy.

The key to solving Questions (I) and (II) are the following two results.

THEOREM 1.2. Let E be a normal subgroup of G. If the cyclic subgroups
of E of prime order or order 4 are SE-supplemented in G, then each chief
factor of G below E s cyclic.

THEOREM 1.3. Let E be a normal subgroup of G. If the maximal
subgroups of every Sylow subgroup of E are SE-supplemented in G, then
each chief factor of G below E s cyclic.

A chief factor H/K of G is called F-central in G provided
(H/K)x(G/Ce(H/K)) € F.
In [31], the following result was proved.

THEOREM 1.4 [31, Theorem 3.1]. Let F be any formation and E o
normal subgroup of G. If each chief factor of G below F*(E) is F-central in
G, then each chief factor of G below E is F-central in G as well.

Base on these theorems, we may directly obtained the following results.

COROLLARY 1.5. Let E be a normal subgroup of G. If the cyclic
subgroups of F*(E) of prime order or order 4 are SE-supplemented in
G, then each chief factor of G below E s cyclic.

COROLLARY 1.6. Let E be a normal subgroup of G. If the maximal
subgroups of every Sylow subgroup of F*(K) are SE-supplemented in G,
then each chief factor of G below E is cyclic.



248 Wenbin Guo - Alexander N. Skiba - Nanying Yang

It is clear that if F is a Baer-local formation containing all supersoluble
groups and G has a cyclic normal subgroup £ such that G/E € F, then
G € F (see Lemma 2.17 below). Hence from Theorems 1.2, 1.3 and 1.4, we
also directly get the following

THEOREM 1.7.  Let F be a Baer-local formation containing all super-
soluble groups and G has normal subgroups X < E such that G/E € F.
Suppose that the cyclic subgroups of X of prime order or order 4 are SE-
supplemented in G. If either X = E or X = F*(K), then G € F and each
chief factor of G below E is cyclic.

THEOREM 1.8. Let F be a Baer-local formation containing all su-
persoluble groups and G has normal subgroups X < K suchthatG/E € F.
Suppose that the maximal subgroups of every Sylow subgroup of X are
SE-supplementedin G. Ifeither X = EorX = F*(K), then G € F and each
chief factor of G below E is cyclic.

It is easy to see that all S-quasinormal subgroups, S-quasinormally
embedded subgroups, c-normal subgroups, and c-supplemented sub-
groups are all SE-supplemented in G. But the converse is not true
(see the example in Section 5). Hence Theorems 1.7 and 1.8 give af-
firmative answers to Questions (I) and (II) and consequently, a large
number of known results (for example, the above results in (1)-(5)) are
generalized.

All unexplained notations and terminologies are standard. The reader
is referred to [11], [4] and [16] if necessary.

2. Preliminaries

LeEmMA 2.1 [22].  Let G be a group and H < K < G.

(1) If H is S-quasinormal in G, then H is S-quasinormal in K.

(2) Suppose that H is normal in G. Then K /H is S-quasinormal in G if
and only if K is S-quasinormal in G.

3) If H is S-quasinormal in G, then H is subnormal in G.

From Lemma 2.1 (3) we get

LemmMa 2.2.  If H is an S-quasinormal subgroup of G and H is a p-group
for some prime p, then OP(G) < Ng(H).
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LeEmMA 2.3.  Suppose that A, B are subgroups of G.

1) If A is S-quasinormal in G, then A N B is S-quasinormal in B [10].

(2) If A and B are S-quasinormal in G, then A N B is S-quasinormal
n G [22].

) If A is S-quasinormal in G, then A/Ag is nilpotent [10].

LEMMA 2.4 [6]. Let G be a group and H < K < G.

(1) If H is S-quasinormally embedded in G, then H is S-quasinor-
mally embedded in K.

2) If H 1s normal in G and E is an S-quasinormally embedded
subgroup of G, then EH is S-quasinormally embedded in G and EH /H 1is
S-quasinormally embedded in G/H.

LEmmA 2.5. Suppose that H is an S-quasinormally embedded sub-
group of G. If H < O,(G) for some prime p, then H is S-quasinormal in G.

Proor. Suppose that H is a Sylow p-subgroup of some S-quasi-
normal subgroup £ of G. Then H = 0,(G) N E. Hence by Lemma 2.3(2),
H is S-quasinormal in G.

LEMMA 2.6.  Supposethat N is a normal subgroup of Gand H < K < G.
Then:

(1) HseG <H.

(2) HseG < HseK-

3) HseGN/N < (HN/N)se(G/N)'

4) If (IN|, |H|) = 1, then Hy@eN /N = (HN /N)sc/n)-

(5) (HseG)x = (Hm)seG? fof"a any x € G.

Proor. Let L be an S-quasinormally embedded subgroup of G con-
tained in H, ¢ be a prime dividing |L|, @ a Sylow g-subgroup of L and £ an S-
quasinormal subgroup of G such that @ € Syl ().

(1) Let « € H. Then L* < H. If R is a Sylow g-subgroup of L", then
R = @," for some Sylow g-subgroup Q; of L. Without loss of generality, we
may assume that @; = Q. Obviously, Q" € Syl (£*) and E” is an S-quasi-
normal subgroup of G. Hence L* is an S-quasinormally embedded sub-
group of G. This implies that (1) holds.

(2) By Lemma 2.3(1), £ N K is an S-quasinormal subgroup of K. Since
Q <ENK, Q is a Sylow g-subgroup of £ N K. Hence L < H,x and so
HseG < HseK-
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(3) Clearly LN/N <HN/N and LN /N is an S-quasinormally embedded
subgroup of G/N by Lemma 2.4(2). Hence H,N /N < (HN /N)s@/n)-

(4) In view of (3), we only need to prove that (HN/N)q/n <
Hy,aN/N. Let V/N be an S-quasinormally embedded subgroup of G/N
such that V/N < HN/N. Then V=V NHN = N(V n H). We now show
that U = V N H is S-quasinormally embedded in G. Let p be an arbitrary
prime dividing |U| and P € Sylp(U). Then P € Sylp(V) since (|N|, |H]) = 1.
Hence PN/N € Syl,(V/N). Let W/N be an S-quasinormal subgroup of
G/N such that PN/N € Syl,(W/N). Then PN/N = W,N/N for some
Sylow p-subgroup W, of W. Hence PN = W,N. Since P and W, are all
Sylow p-subgroups of PN, P = (W,)" for some n € N. By Lemma 2.1(2), W
is S-quasinormal in G. Then, clearly, W" is S-quasinormal in G. Now since
P = (W)" € Syl,(W"), we see that U is S-quasinormally embedded in G.
Therefore U < Hg,g. It follows that V/N = UN/N < Hy,,qN /N and con-
Sequently (HN/N)se(G/N) < HseGN/N'

(5) This is evident.

Lemma 2.7. Let H be an SE-supplemented subgroup of G and N a
normal subgroup of G.

(1) If H < K <G, then H is SE-supplemented in K.

(2) If N < H, then H/N s SE-supplemented in G/N.

@) If (N|,|H|) =1, then HN /N is SE-supplemented in G/N.
(4) H" is SE-supplemented in G, for all x € G.

Proor. Let T be a subgroup of G such that HT' =G and H N T < H.

(1) Since K=H(T'NK) and (TNK)NH=TNH < Hyqg < Hgx by
Lemma 2.6(2), (1) holds.

(2) Since (H/N)NT/N)=G/H and (H/N)N(NT/N)=NHNT)/N <
Hy N /N < (H/N)sq/ny by Lemma 2.6@), H/N is SE-supplemented in
G/N.

(3) Since (|N|,|H|)=1,N <T.Hence(T/N)N(HN/N)=N(TNH)/N <
NHq/N < (NH/N)sq/ny- This shows that HN /N is SE-supplemented
in G/N.

(4) Since HT = G, we have H*T* = G. On the other hand, since
HNT<Hyg, H*NT* = HNT)" < Hyq)" = (H")sq by Lemma 2.6(5).
Hence H” is SE-supplemented in G.

Recall that for a class F of groups, a group G is said to be a minimal non-
F-group if G ¢ F but every proper subgroup of G belongs to F.
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The following result about minimal non-F-groups is useful in our
proofs.

LeEmMA 2.8 [28, VI, Theorem 25.4]. Let F be a saturated formation and
G a minimal non-F-group such that G” is soluble. Then:

(a) G” is a p-group for some prime p and G” is of exponent p or ex-
ponent 4 (if P is a non-abelian 2-group).

() G7/D(GT) is a chief factor of G, and G /D(GT) is a non-F-central
m G.

LEMMA 2.9 [12, Theorem 2.4]. Let P be a group and o a p'-auto-
morphism of P.

Q) If [, 22(P)] = 1, then o = 1.
) If [o, 21(P)] = 1 and either p is odd or P is abelian, then o = 1.

We use A(p — 1) to denote the formation of all abelian groups of ex-
ponent dividing p — 1. The symbol Z;(G) denotes the largest normal
subgroup of G such that every chief factor of G below Z,(G) is cyclic
(Z4(G@) = 1 if G has no such non-identity normal subgroups).

LeEmMA 2.10 [31, Lemma 2.2]. Let E be a normal p-subgroup of G. If
E < Z,(G), then

(G/Ca(E) PV < 0,(G/Cq(R)).

We use Q(P) to denote the subgroup Q;(P) when P is not a non-abelian
2-group; otherwise, let Q(P) = Qs(P).

The following lemma may be proved based on some results in [23] on
f-hypercentral action (see [28, Chapter II] or [11, Chapter IV, Section 6]).
For reader’s convenience, we give a direct proof.

LEmMa 2.11. Let P be a mormal p-subgroup of G. If either
P/D(P) < Zy(G/DP)) or Q < Zy(G), then P < Zy(G).

Proor. LetC = Cg(P)and H/K be any chief factor of G below P. Then
0,(G/Cq(H/K)) = 1 by [40, Appendix C, Corollary 6.4].

Suppose that P/®(P) < Zy(G/P(P)). Then by Lemma 2.10,
(G/CeP/DP)) P is a p-group. Hence (G/C)*P~ is a p-group by
Theorem 1.4 in [13, Chapter 5]. This implies that G/Cs(H/K) € A(p — 1)
and so |H/K| = p by [40, Chapter 1, Theorem 1.4]. Therefore P < Z;(G).
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Now assume that Q < Z;,(G). Then (G/CG(Q))A("’_D is a p-group by
Lemma 2.10. Hence (G/C)"?~ is a p-group by Lemma 2.9. Thus we also
have P < Z,/(G).

LEMMA 2.12 [2, Lemma 4]. Let P be a p-subgroup of G, where p > 2.
Suppose that all subgroups of P of order p are S-quasinormal in G. If ais a
p'-element of Ng(P)\ Ca(P), then a induces in P a fixed-point-free auto-
morphism.

LEMMA 2.13 [17, Theorem 3.1]. Let A, B, E be normal subgroups of G.
Supposethat G = AB. IfE < Zi,,(A) N Zy(B) and (|G : A|, |G : B|) =1, then
E < Z,G).

LeEmMA 2.14 [39].  Let G be a group and A < G.

(1) IfA is subnormal in G and A is a n-subgroup of G, then A < O,(G).
(2) If A is subnormal in G and A is wilpotent, then A < F(G).

The following lemma is well known.

LEmMA 2.15. Let A,B < G and G = AB.

(1) G, = A,B, for some Sylow p-subgroups G,, A, and B, of G, A and
B, respectively.
2) G =AB" forall x € G.

LEmMmA 2.16 [28, Chapter I, Lemma 4.1]. Let @ be an irreducible
automorphism group of an elementary abelian p-group P of order p".
Then Q is cyclic with |Q| | p" — 1 and n is the smallest positive integer
such that |Q| divides p™ — 1.

Following Doerk and Hawkes [11], we use CP(G) to denote the inter-
section of the centralizers of all abelian p-chief factors of G (CP(G) = Gif G
has no such chief factors).

For every function f of the form

(%) f:PuU{0} — {group formations},

we put, following [30], CLF(f)={Gis a group|G/Gs< f(0) and
G/CP(G) € f(p) for any prime p € 7(Com(())}. Here G denotes the S-
radical of G (that is, the largest normal soluble subgroup of G); Com(G)
denotes the class of all abelian groups A such that A ~ H/K for some
composition factor H/K of G.
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It is well known that a formation F is a Bear-local formation if and only
if there exists a function f of the form (*) such that 7 = CLF(f) (see, for
example, [30, Theorem 1]).

LeEmMA 2.17. Let F be a Baer-local formation containing all super-
soluble groups and E a subgroup of G such that G/E € F. If E is cyclic,
then G € F.

Proor. Without loss of generality, we may assume that £ is a
minimal normal subgroup of G. Then |E| = p for some prime p. By [30,
Theorem 1], 7 = CLF(f) for some function of the form (*). It is clear
that the group H = E x(G/Cq(E)) is supersoluble. Hence H € F and
thereby G/Cg(E) € f(p). Let CP?/E = CP(G/E). Then CP(G) = CP N Cx(E)
by [11, Chapter A, Theorem 3.2]. But since G/E € F, G/CP ~
(G/E)/CP(G/E) € f(p) and consequently G € F.

3. Proof of Theorem 1.2

Theorem 1.2 is a special case of the following theorem when n; = n(&),
the set of all prime divisors of |E|.

THEOREM 3.1. Let E be a normal subgroup of G, p1 <pe < ... <py the
set of all prime dwisors of |E| and n; = {p1,p2,...,pi}- Suppose that for
each p € m; and for any Sylow p-subgroup P of K, the cyclic subgroups of P
of prime order or order 4 are SE-supplemented in G. Then E has a normal
Hall mi-subgroup E,,; and each chief factor of G between E and En; 1s cyclic.

Proor. Suppose that this theorem is false and consider a counter-
example (G, E) for which |G| + |E| is minimal. Let p = p; be the smallest
prime dividing |E| and P a Sylow p-subgroup of E. Let Z = Z;(G) and
C = C;(P). We proceed via the following steps.

(1) E is p-nilpotent.

Without loss of generality, we may assume that ¢ = 1.

If £ # G, then the hypothesis is true for (¥, F) by Lemma 2.7(1). Hence
E is p-nilpotent by the choice of (G, E). Now assume that £ = G and G is
not p-nilpotent. Then G has a p-closed Schmidt subgroup H = H, xH, [20,
Chapter IV, Theorem 5.4]. We may assume that H, < P. By Lemma 2.8,
H,/®(H))is a non-central chief factor of H and H, is a group of exponent p
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or exponent 4 (if p = 2 and H,, is non-abelian). Hence |H,,/®(H )| > p since
p is the smallest prime dividing |H].

Let ® = &(H,), X/® be a minimal subgroup of H,/®, x € X \ @ and
L = (x). Then |[L| =p or |L| =4. Hence L is SE-supplemented in G.
Suppose that L, # L. Then for some proper subgroup 7 of G we have
LT =G. Hence H=L(HNT) and HNT # H. Because @ < ®(H), we
have (HNT)®<H. Since the maximal subgroup of L is contained in @,
|H:(HNT)?| =p. Hence |H,/®|=|H:HNT)P| =p. This contra-
diction shows that Ly = L is S-quasinormally embedded in G since L is
cyclic. Hence L is S-quasinormally embedded in H by Lemma 2.4(1). Then
by Lemma 2.5, L is S-quasinormal in H. It follows from Lemma 2.1 that
L&/d =X /P is S-quasinormal in H/®. This shows that every minimal
subgroup of H,/® is S-quasinormal in H/® and hence |H,/®|=p by
Lemma 2.11 in [29], a contradiction. Hence £ is p-nilpotent.

(2) Let E\y be a Hall p'-subgroup of E. Then E,y is normal in G and the
hypothesis holds for (G,Ey) and for (G/Ey,E/Ey).

By (1), E is characteristic in £. Hence £}y is normal in G. Clearly, the
hypothesis holds for (G, E)y). By Lemma 2.7(3), the hypothesis also holds
for (G/E,,E/Ey).

(8) E = P is not a minimal normal subgroup of G.

Suppose that £ # P. Then E, # 1. Hence every chief factor of G/E,
below E/E, is cyclic by the choice of (G,E). On the other hand, the
minimality of (G, E) implies that £}, has a normal Hall 7;-subgroup V and
each chief factor of G between K, and V is cyclic. Hence V' is a normal Hall
n-subgroup of £ and each chief factor of G between E and V is cyclic,
which contradicts the choice of (G, E). Hence £ = P. Suppose that P is a
minimal normal subgroup of G. Then every minimal subgroup L of P is S-
quasinormal in G. Indeed, since L is SE-supplemented in G, there exists
some subgroup 7 of G such that LT = G and L N T < L. Suppose that
LNT=1.Then TN Pisnormal in G and |P : (T N P)| = p. 1t follows that
TNP =1 and so |E| = |P| = p. Consequently, £ < Z. This contradiction
shows that L < T. Hence L = L, is S-quasinormally embedded in G.
Then by Lemma 2.5, we see that every minimal subgroup of P is S-qua-
sinormal in G. Therefore |P| = p by Lemma 2.11 in [29], a contradiction.
Hence (3) holds.

(4) G has a non-identity normal subgroup R < P such that P/R is a
non-cyclic chief factor of G, R < Z and V < R for any normal subgroup
V # P of G contained in P.
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Let P/R be a chief factor of G. Then R # 1 by (3) and the hypothesis
holds for (G, R). Therefore R < Z and so P/R is not cyclic by the choice
of (G, P) = (G,E). Now let V # P be any normal subgroup of G contained
in P. Then V<Z. If V £ R, then from the G-isomorphism P/R =
VR/R~V/VNR we have P < Z, which contradicts the choice of
(G,E)=(G,P). Hence V <R.

(B) P <0P(G).

Suppose that PLOP(G). Then from the G-isomorphism OP(G)P/OP(G) ~
P/OP(G) N P, we see that G has a cyclic chief factor of the form P/V, where
OP(G) N P <V, which contradicts (4).

6) QP)=P.

If Q(P)<P, then by (4), 2 < Z. Hence P < Z by Lemma 2.11, which
contradicts the choice of (G, P).

(7) There is a prime q # p such that q divides |G : C|.

Let G, be a Sylow p-subgroup of G. Suppose that |G : C| = p". Then any
chief factor of G, below P is a chief factor of G, which implies that P < Z.

The final contradiction.

By (6), Q(P) = P. Let V1, Vs, ..., V; be the set of all cyclic subgroups of
P of order p and order 4 (if P is a non-abelian 2-group). We may assume
that P/R = (ViR/R)(VoR/R)---(ViR/R) and V;R/R is a group of order p
for all 1 =1,2,...,t. Suppose that for some ¢ we have V;T = G, where
T # G. Then P =V,(T' N P), where TNP # P. Let N =Ng(TnP). 1t is
clear that |P : T'N P| is either p or 4. Hence either N =G or |G : N| =2
and NP = (. In the former case, G has a cyclic chief factor P/TNP =
ViTnP)/TNP~V;/V;nTnNP. In the second case, G has a cyclic chief
factor P/P N N. But in view of (4), both these cases are impossible. Hence
by Lemma 2.5, Vi, Vs, ..., V; are S-quasinormal subgroups of G. This
shows that if Q is a every Sylow subgroup @ of G, then V;Q = QV; for every
1 < t and so V; is subnormal in V;Q by Lemma 2.1(3). Consequently, V; is
normal in V;Q. Suppose that p =2. Then V;Q is nilpotent and so
Q < C(V;). Therefore OP(G) < Cg(P/R). This implies Cg(P/R) = G,
which contradicts (4). Hence p > 2. We claim that OP(G) # G. Indeed, if
OP(G) =G, then ViR/R is normal in G/R by Lemma 2.2 and so
P/R = V1R/R is cyclic, a contradiction. Next we show that O%(G) # G for
some prime q # p. Assume that O%(G) = G for all primes ¢ # p. Then for
every chief factor H/K of G of order p we have C;(H/K) = G. In par-
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ticular, L < Z(G) for every minimal normal subgroup L of G contained in
R. This implies that Cp(a) # 1 for every a € G. Hence by (4) and Lemma
2.12, G/C is a p-group, which contradicts (4). Thus O%(G) # G for some
prime ¢ # p. By the choice of G, we have P <Z,(0P(G)) and
P < Z,,(0%4@G)). Thus, by (5) and Lemma 2.13, we obtain that P < Z. The
final contradiction completes the proof.

4. Proof of Theorem 1.3
Theorem 1.3 is a special case of the following theorem when n; = 7(E).

THEOREM 4.1.  Let E be a normal subgroup of G, py <ps < ... <p, the
set of all prime divisors of |E| and m; = {p1,p2, ..., pi}. Suppose that for
each p € m;, the maximal subgroups of any Sylow p-subgroup of E are SE-
supplemented in G. Then E has a normal Hall ©;-subgroup En;_ and each
chief factor of G between E and E’,é_ 1s cyclic.

PrOOF. Assume that this theorem is false and let (G, E) be a coun-
terexample for which |G|+ |E| is minimal. Let p = p; be the smallest
prime dividing |£| and P a Sylow p-subgroup of E. Let Z = Z,(G). We
proceed the proof via the following steps.

(1) E is p-nilpotent.

We may consider, without loss of generality, that 7 = 1. Assume that £
is not p-nilpotent. Then:

(a) £ =G.
Indeed, if £ <G, then |E| + |E| < |G| + |E|. Hence the hypothesis is true

for (K, E) by Lemma 2.7(1). The choice of (G, E) implies that £ is p-nil-
potent, a contradiction.

() Oy(G) =1.
Let D=0,(G). By Lemma 2.7(3), the hypothesis is true for

(G/D,ED/D). Hence, if D # 1, then G/D is p-nilpotent by the choice of
(G, E). Therefore G is p-nilpotent, a contradiction.

(¢) If P < V<G, then V is p-nilpotent.

In fact, by Lemma 2.7(1), the hypothesis holds for V. Hence V is p-
nilpotent by the choice of G.
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(d) OyL) =1 for all S-quasinormal subgroups L of G.

By Lemma 2.1(3), L is subnormal in G. It follows that O,(L) is sub-
normal in G. Hence Oy (L) < Op(G) =1 by Lemma 2.14(1).

(e) If N is an abelian minimal normal subgroup of G, then G/N is p-
nilpotent.

In view of (b), NV is a p-group and so N < P. Thus the hypothesis is true
for (G/N,E/N) by Lemma 2.7(2). The choice of (G, ) implies that G/N is
p-nilpotent.

) G is p-soluble.

In view of (e), we need only to show that G has an abelian minimal
normal subgroup. Suppose that this is false. Then p =2 by the Feit-
Thompson odd theorem. By Lemmas 2.1(3) and 2.14(1), we see that every
non-identity subgroup of P is not S-quasinormal in G. Hence for every non-
identity S-quasinormally embedded in G subgroup L <V, where V is a
maximal subgroup of P, and for any S-quasinormal subgroup W of G such
that L € Syl,(W) we have L # W. Moreover, Wi # 1. Indeed, if Wi = 1,
then W is nilpotent by Lemma 2.3(3). Hence O (W) # 1, which contradicts
(d). Note also that for any minimal normal subgroup N of G we have
NP = G (otherwise, N is 2-nilpotent by (c), a contradiction). It follows that
N is the unique minimal normal subgroup of G. Therefore N < W (since
We # 1) and consequently NNP =NnNL.

Now we show that Vs # 1 for any maximal subgroup V of P. In fact,
suppose that Vyc =1 and let T be a subgroup of G such that VI' =G
and VNT < Vye =1. Then T is a complement of V in G. This induces
that 7' is 2-nilpotent since the order of a Sylow 2-subgroup of T is equal
to 2. We may, therefore, assume that 7' = Ng(H;) for some Hall 2'-
subgroup H; of G. It is clear that H; < N. By [15], any two Hall 2'-
subgroups of N are conjugate in N. By Frattini Argument, G = NT.
Then P=(PNN)PNT*) for some x <G by Lemma 2.15(1). Let
Ty = T = Ng(H:"). It is clear that PN T; # P. Hence we can choose a
maximal subgroup Vi in P containing P N T;. By the hypothesis, there
exists a subgroup T such that G = V1T, where Vi N Ty < (V1)geq. If
(V1)seq = 1, then as above, we have that Ty is 2-nilpotent and we may
assume that Ty = Ng(Hz) for some Hall 2'-subgroup H; of G. By [15]
again, we have ((H,)")Y = Hy for some y € G. Therefore, G = VT =
VT, = ViTs = V1T1¥ = V1T1 by Lemma 2.15(2) and P = V(PN T4) = V1.
This contradiction shows that (V1) # 1. Let L be any non-identity S-
quasinormally embedded subgroup of G contained in V; and W be an S-
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quasinormal subgroup of G such that L € Syl,(W). Then LNN =PnNN,
which implies P=PnNN)PNT)=LNN)PNT,) <V, a contra-
diction.

Therefore for every maximal subgroup V of P we have (V1) # 1. But
then from above, we know that N NP <V.Hence NNP < &(P) and so N
is 2-nilpotent by [20, Chapter IV, Theorem 4.7], a contradiction. Hence, (f)
holds.

The final contradiction for (1).

Let N be any minimal normal subgroup of G. Then in view of (b) and
(f), N is a p-group and so G/N is p-nilpotent by (e). This implies that N
is the unique minimal normal subgroup of G and N £ &(G). Hence G is a
primitive group and thereby N = Cg(N) = F(G) by [11, Chapter A,
Theorem 17.2]. Let M be a maximal subgroup of G such that G = N x M.
Let M), € Syl,(M) and V be a maximal subgroup of P such that M, <V.
Then VM # G and so VM* # G for all x € G by Lemma 2.15(2). Since V
is SE-supplemented in G, there is a subgroup 7" of G such that VT =G
and VN T < V. Suppose that Vi, = 1. Then T is a complement of V
in G. It follows that |T),| = p, where T, € Syl (T). Then T is p-nilpotent
since p is the smallest prime dividing |G|. Hence Ty <T, where T}, is a
Hall p’-subgroup of 7. Since G is p-soluble, any two Hall p’-subgroups of
G are conjugate. Therefore there is an element x € G such that
Ty <M IfT, <M thenT < M*¥and G = VT = VM?, a contradiction.
Hence T, £ M*. But G/N ~ M"* < Ng(T)y) (since G/N is p-nilpotent)
and T, < Ng(T)). Therefore G = (M*,T,) = Ng(T)), which contradicts
(b). Hence Vg # 1. Let L #1 be an S-quasinormally embedded sub-
group of G such that L <V and W an S-quasinormal subgroup of G such
that L € Syl,(W). Suppose that L = W. Then by Lemma 2.2, N < L¢ =
LTy = L <V, a contradiction. Hence L # W. Then in view of (b) and
Lemma 2.1(3), we have Wy # 1. This implies that N <L <V and so
V = VN = P. This final contradiction shows that (1) holds.

2 E=P.
See (3) in the proof of Theorem 1.3.

3) If N is a manimal normal subgroup of G contained in P, then
P/N < Z,(G/N), N is the only minimal normal subgroup of G contained
m P and |[N| > p.

Indeed, by Lemma 2.7(2), the hypothesis holds on G/N for any minimal
normal subgroup N of G contained in P. Hence P/N < Z;(G/N) by the
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choice of (G,E) = (G,P). If [N| =p, P < Zy;/(G), a contradiction. If G has
two minimal normal subgroups R and N contained in P, then NR/R < P/R
and from the G-isomorphism RN /N ~ N we have |N| = p, a contradiction.
Hence, (3) holds.

@) &(P) £ 1.

Suppose that @(P) = 1. Then P is an elementary abelian p-group. Let Ny
be any maximal subgroup of N. We show that N; is S-quasinormal in G. Let
Bbeacomplement of Nin Pand V = N;B. Then V is a maximal subgroup of
P. Hence V is SE-supplemented in G. Let T be a subgroup of G such that
G=TVandT NV < Ve If T = G,then V = V,,q is S-quasinormal in G by
Lemma 2.5. Hence VAN =V, NN =N{BNN = N{(BNN)=N;is S-
quasinormal in G by Lemma 2.3(2). Now assume that 7 # G. Then
1#TNP<P.Since G = VT = PT and P is abelian, 7' N P is normal in G.
Hence N < TNP < Tandconsequently Ny < NNTNVINNVge <N.
Clearly, N £ V. Hence N; = N N V. By Lemma 2.5 and since the sub-
group generated by all S-quasinormal in G subgroup of V is also S-quasi-
normal in G (cf. [29, Lemma 2.8(1)]), we see that V,; is S-quasinormal in G.
Thus by Lemma 2.3(2), N7 is S-quasinormal in G. This shows that every
maximal subgroup of N is S-quasinormal in G. Hence some maximal sub-
group of N is normal in G by Lemma 2.11 in [29]. This contradiction shows
that &(P) # 1.

The final contradiction.

By (4), @(P) # 1. Let N be a minimal normal subgroup of G contained in
@(P). Then the hypothesis is still true for G/N. Hence P/N < Z,,(G/N) by
the choice of (G,E). This means that P/®(P) < Z;(G/®(P)). Then by
Lemma 2.11, we obtain that P < Z. This final contradiction completes the
proof.

5. Final remarks

In Section 1, we have seen that a large number of known results follow
from our results. Now we consider some further applications.

1. A group G is said to be quasisupersoluble [18] if for every its non-
cyclic chief factor H/K and every x € G, x induces an inner automorphism
on H/K. It is cleat that every supersoluble group is quasisupersoluble.
Moreover, in [18] it is proved that the class of all quasisupersoluble groups
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is a Baer-local formation. Hence from Theorems 1.7 and 1.8 we also obtain
the following results.

THEOREM 5.1.  Let G be a group with normal subgroups X < E such
that G/E is quasisupersoluble. Suppose that the cyclic subgroups of X of
prime order or order 4 are SE-supplemented in G. If either X = E or
X = F*(F), then G is quasisupersoluble.

THEOREM 5.2. Let G be a group with normal subgroups X < E such
that G/E is quasisupersoluble. Suppose that the maximal subgroups of
every Sylow subgroup of X are SE-supplemented in G. If either X = E or
X = F*(E), then G is quasisupersoluble.

2. Recall that a subgroup H of G is said to be weakly S-permutable (S-
supplemented) in G [29] if there are a subnormal subgroup (a subgroup,
respectively) T G and an S-quasinormal subgroup H; of G contained in H
such that HT = Gand HNT < H.

The following example shows that in general the set of SE-supple-
mented subgroups of a group is wider than the set of all its S-supplemented
subgroups and the set of all its S-quasinormally embedded subgroups.
Consequently, the set of SE-supplemented subgroups of a group is also
wider than the set of all S-quasinormal subgroups, the set of weakly S-
permutable subgroups, the set of all c-normal subgroups and the set of all
c-supplemented subgroups since these subgroups are either S-supple-
mented or S-quasinormally embedded in G.

ExampLE 5.3. Let Ly be the Lyons simple group. Then |Ly|=
28.37.5%.7.11-31-37 - 67. Hence in view of [14] there is a group D with
minimal normal subgroup N such that Cp(N) =N < Og:(D), D/N ~ Ly
and N < &(D). Let @ be a group of order 17. Let G = D Q = K x Q, where
K is the base group of the regular wreath product G. Then P = ®(K) = N*
(we use here the terminology in [11, Chapter A]). Moreover, in view of [11,
Chapter A, Proposition 18.5], P is the only minimal normal subgroup of G.
It is clear also that |P| > 672.

Since P is an elementary abelian 67-group, then in view of Maschke’s
theorem, P = P; X Py X ... x Py, where P; is a minimal normal subgroup
of PQ foralli=1,2,... t. Suppose that @ < Cq(P;) for alli=1,2,... t.
Then @ < Cg(P). Hence PQ = P x Q = C(P) is normal in G and so @ is
normal in G. This contradiction shows that for some ¢ we have Cq(P;) = 1.
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Hence S := PyrtimesQ = Q5. Since Q is a Sylow 17-subgroup of G, it is S-
quasinormally embedded in G. Hence S = S,,¢ and consequently S is SE-
supplemented in G. Suppose that P; is an S-quasinormally embedded
subgroup of G and let V' be an S-quasinormal subgroup of G such that
P; € Syl (V). Since 17 divides 67 + 1 and does not divide 67 — 1, |P;| = 672
by Lemma 2.16. By Lemma 2.1(3), V is subnormal in G and V/V{; is nil-
potent by Lemma 2.3(2). Suppose that V; = 1. Then V is a subnormal
nilpotent subgroup of G. It follows from Lemma 2.14(2) that V < P. Thus
V = P; is S-quasinormal in G. It is clear that 0%"(G) = G. By Lemma 2.2,
we see that P; is normal in G. This induces that P = P; and so |P| = 672, a
contradiction. Therefore V; # 1 and so P < V. But then P < P;, a con-
tradiction again. Thus P; is not an S-quasinormally embedded subgroup of
G. Similarly one can proved that any maximal subgroup of P; is not an S-
quasinormally embedded subgroup of G. Hence S is not S-quasinormally
embedded in G and if L is any non-identity S-quasinormally embedded
subgroup of G contained in S, then L = Q" for some x € S. Moreover,
obviously, S has no non-identity S-quasinormal in G subgroups, that is,
Ssq = 1. Now we show that S is not S-complemented in G. Indeed, if S is S-
complemented in G, then S has a complement 7"in G since Sy; = 1. Clearly,
T <K.Hence K=KnNTS =TKEnNS)=TP;. But since P; < P = &(K),
we obtain 7' = K, which implies 7'N S # 1. This contradiction shows that S
is not S-supplemented in G.

Base on the above, we also see that the results in [29] in the case where
the subgroup D in [29, Theorems] is of prime order or 4 can be obtained by
our results in this paper.
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