SE-Supplemented Subgroups of Finite Groups

Wenbin Guo (*) - Alexander N. Skiba (**) - Nanying Yang (*)

ABSTRACT - Let G be a finite group, H a subgroup of G and H_{seG} be the subgroup generated by all subgroups of H which are S-quasinormally embedded in G. Then we say that H is SE-supplemented in G if G has a subgroup T such that HT = G and $H \cap T \leq H_{seG}$. We investigate the influence of SE-quasinormally embedded of some subgroups on the structure of finite groups. Our results improve and extend a series of recent results.

MATHEMATICS SUBJECT CLASSIFICATION (2010). 20D10, 20D20, 20D25.

Keywords. S-quasinormal subgroup, S-quasinormally embedded subgroup, FE-supplemented subgroup, formation.

1. Introduction

Throughout this paper, all groups are finite and G denotes a finite group.

An interesting question in theory of finite groups is to determine the influence of the embedding properties of members of some distinguished families of subgroups of a group on the structure of the group.

Recall that a subgroup H of G is said to be S-quasinormal, S-permutable, or $\pi(G)$ -permutable in G (Kegel [22]) if HP = PH for all Sylow subgroups P of G. A subgroup H of G is said to be S-quasinormally embedded or S-permutably embedded in G (Ballester-Bolinches and Pedraza-Aguilera [6]) if each Sylow subgroup of H is also a Sylow subgroup of some

E-mail: wbguo@ustc.edu.cn yangny@ustc.edu.cn

E-mail: alexander.skiba49@gmail.com

^(*) Indirizzo degli A.: School of Mathematical Sciences, University of Science and Technology of China, Hefei 230026, P. R. China

^(**) Indirizzo dell'A.: Department of Mathematics, Francisk Skorina Gomel State University, Gomel 246019, Belarus

S-quasinormal subgroup of G. A subgroup A of G is said to be c-normal (Wang [32]) (c-supplemented (Ballester-Bolinches, Wang and Guo [9])) in G if G has a normal subgroup (a subgroup, respectively) T such that AT = G and $A \cap T \leq A_G$.

Let \mathcal{F} be a class of groups. If $1 \in \mathcal{F}$, then we write $G^{\mathcal{F}}$ to denote the intersection of all normal subgroups N of G with $G/N \in \mathcal{F}$. The class \mathcal{F} is said to be a *formation* if either $\mathcal{F} = \emptyset$ or $1 \in \mathcal{F}$ and every homomorphic image of $G/G^{\mathcal{F}}$ belongs to \mathcal{F} for every group G. A formation \mathcal{F} is said to be saturated or local if \mathcal{F} contains every group G with $G^{\mathcal{F}} \leq \Phi(G)$. A class \mathcal{F} of groups is said to be solubly saturated or Baer-local (see [11, Chapter IV, Definition 4.9]) if \mathcal{F} contains every group G with $G^{\mathcal{F}} \leq \Phi(N)$ for some soluble normal subgroup N of G.

Researches of many authors are connected with analysis of the following general question: Let \mathcal{F} be a saturated formation containing all supersoluble groups and G a group with a normal subgroup E such that $G/E \in \mathcal{F}$. Under what conditions on E then, does G belong to \mathcal{F} ?

We recall some recent results in this direction. If \mathcal{F} is a saturated formation containing all supersoluble groups and G has a normal subgroup E such that $G/E \in \mathcal{F}$, then the following results are true:

- (1) If the cyclic subgroups of E of prime order or order 4 are or S-quasinormal (Ballester-Bolinches and Pedraza-Aguilera [7], Asaad and Csörgö [2]), or c-normal (Ballester-Bolinches and Wang [8]), or c-supplemented (Ballester-Bolinches, Wang and Guo [9], Wang and Li [35]) in G, then $G \in \mathcal{F}$.
- (2) If the cyclic subgroups of $F^*(E)$ of prime order or order 4 are or S-quasinormal (Li and Wang [24]), or c-normal (Wei, Wang and Li [36]), or S-quasinormally embedded (Li and Wang [25]), or c-supplemented (Wang, Wei and Li [34], Wei, Wang and Li [37]) in G, then $G \in \mathcal{F}$.
- (3) If the maximal subgroups of every Sylow subgroup of E are or S-quasinormal (Asaad [1]), or c-normal (Wei [38]), or c-supplemented (Ballester-Bolinches and Guo [5]) in G, then $G \in \mathcal{F}$.
- (4) If the maximal subgroups of every Sylow subgroup of $F^*(E)$ are or S-quasinormal (Li and Wang [26]), or c-normal (Wei, Wang and Li [37]), or c-supplemented (Wei, Wang and Li [34]), or S-quasinormally embedded (Li and Wang [25]) in G, then $G \in \mathcal{F}$.
- (5) If E is soluble and the maximal subgroups of every Sylow subgroup of F(E) are S-quasinormally embedded in G, then $G \in \mathcal{F}$ (Asaad and Heliel [3]).

In these results, $F^*(E)$ is the generalized Fitting subgroup of E, that is, the product of all normal quasinilpotent subgroups of E [21, Chapter X].

Bearing in mind the above-mentioned results, it is natural to ask:

- (I) Is it true that all the above-mentioned results can be strengthened by considering the more general case, where \mathcal{F} is a Baer-local formation?
- (II) Is it true that all the above-mentioned results can be improved by using some weaker condition?

In this paper, we give positive answers to both these questions.

Let H_{seG} be the subgroup generated by all the subgroups of H which are S-quasinormally embedded in G. We call H_{seG} the SE-core of H in G.

DEFINITION 1.1. Let H be a subgroup of G. We say that H is SE-supplemented in G if there exists some subgroup T of G such that HT = G and $H \cap T \leq H_{seG}$.

The key to solving Questions (I) and (II) are the following two results.

THEOREM 1.2. Let E be a normal subgroup of G. If the cyclic subgroups of E of prime order or order 4 are SE-supplemented in G, then each chief factor of G below E is cyclic.

Theorem 1.3. Let E be a normal subgroup of G. If the maximal subgroups of every Sylow subgroup of E are SE-supplemented in G, then each chief factor of G below E is cyclic.

A chief factor H/K of G is called \mathcal{F} -central in G provided $(H/K) \rtimes (G/C_G(H/K)) \in \mathcal{F}$.

In [31], the following result was proved.

THEOREM 1.4 [31, Theorem 3.1]. Let \mathcal{F} be any formation and E a normal subgroup of G. If each chief factor of G below $F^*(E)$ is \mathcal{F} -central in G, then each chief factor of G below E is \mathcal{F} -central in G as well.

Base on these theorems, we may directly obtained the following results.

COROLLARY 1.5. Let E be a normal subgroup of G. If the cyclic subgroups of $F^*(E)$ of prime order or order 4 are SE-supplemented in G, then each chief factor of G below E is cyclic.

COROLLARY 1.6. Let E be a normal subgroup of G. If the maximal subgroups of every Sylow subgroup of $F^*(E)$ are SE-supplemented in G, then each chief factor of G below E is cyclic.

It is clear that if \mathcal{F} is a Baer-local formation containing all supersoluble groups and G has a cyclic normal subgroup E such that $G/E \in \mathcal{F}$, then $G \in \mathcal{F}$ (see Lemma 2.17 below). Hence from Theorems 1.2, 1.3 and 1.4, we also directly get the following

Theorem 1.7. Let \mathcal{F} be a Baer-local formation containing all supersoluble groups and G has normal subgroups $X \leq E$ such that $G/E \in \mathcal{F}$. Suppose that the cyclic subgroups of X of prime order or order 4 are SEsupplemented in G. If either X = E or $X = F^*(E)$, then $G \in \mathcal{F}$ and each chief factor of G below E is cyclic.

Theorem 1.8. Let \mathcal{F} be a Baer-local formation containing all supersoluble groups and G has normal subgroups $X \leq E$ such that $G/E \in \mathcal{F}$. Suppose that the maximal subgroups of every Sylow subgroup of X are SE-supplemented in G. If either X = E or $X = F^*(E)$, then $G \in \mathcal{F}$ and each chief factor of G below E is cyclic.

It is easy to see that all S-quasinormal subgroups, S-quasinormally embedded subgroups, c-normal subgroups, and c-supplemented subgroups are all SE-supplemented in G. But the converse is not true (see the example in Section 5). Hence Theorems 1.7 and 1.8 give affirmative answers to Questions (I) and (II) and consequently, a large number of known results (for example, the above results in (1)-(5)) are generalized.

All unexplained notations and terminologies are standard. The reader is referred to [11], [4] and [16] if necessary.

2. Preliminaries

Lemma 2.1 [22]. Let G be a group and $H \leq K \leq G$.

- (1) If H is S-quasinormal in G, then H is S-quasinormal in K.
- (2) Suppose that H is normal in G. Then K/H is S-quasinormal in G if and only if K is S-quasinormal in G.
 - (3) If H is S-quasinormal in G, then H is subnormal in G.

From Lemma 2.1 (3) we get

LEMMA 2.2. If H is an S-quasinormal subgroup of G and H is a p-group for some prime p, then $O^p(G) \leq N_G(H)$.

Lemma 2.3. Suppose that A, B are subgroups of G.

- (1) If A is S-quasinormal in G, then $A \cap B$ is S-quasinormal in B [10].
- (2) If A and B are S-quasinormal in G, then $A \cap B$ is S-quasinormal in G [22].
 - (3) If A is S-quasinormal in G, then A/A_G is nilpotent [10].

Lemma 2.4 [6]. Let G be a group and $H \leq K \leq G$.

- (1) If H is S-quasinormally embedded in G, then H is S-quasinormally embedded in K.
- (2) If H is normal in G and E is an S-quasinormally embedded subgroup of G, then EH is S-quasinormally embedded in G and EH/H is S-quasinormally embedded in G/H.
- Lemma 2.5. Suppose that H is an S-quasinormally embedded subgroup of G. If $H \leq O_p(G)$ for some prime p, then H is S-quasinormal in G.

PROOF. Suppose that H is a Sylow p-subgroup of some S-quasinormal subgroup E of G. Then $H=O_p(G)\cap E$. Hence by Lemma 2.3(2), H is S-quasinormal in G.

Lemma 2.6. Suppose that N is a normal subgroup of G and $H \leq K \leq G$. Then:

- (1) $H_{seG} \stackrel{\triangleleft}{-} H$.
- (2) $H_{seG} \leq H_{seK}$.
- (3) $H_{seG}N/N \leq (HN/N)_{se(G/N)}$.
- (4) If (|N|, |H|) = 1, then $H_{seG}N/N = (HN/N)_{se(G/N)}$.
- (5) $(H_{seG})^x = (H^x)_{seG}$, for any $x \in G$.

PROOF. Let L be an S-quasinormally embedded subgroup of G contained in H, q be a prime dividing |L|, Q a Sylow q-subgroup of L and E an S-quasinormal subgroup of G such that $Q \in \operatorname{Syl}_q(E)$.

- (1) Let $x \in H$. Then $L^x \leq H$. If R is a Sylow q-subgroup of L^x , then $R = {Q_1}^x$ for some Sylow q-subgroup Q_1 of L. Without loss of generality, we may assume that $Q_1 = Q$. Obviously, $Q^x \in \operatorname{Syl}_q(E^x)$ and E^x is an S-quasinormal subgroup of G. Hence L^x is an S-quasinormally embedded subgroup of G. This implies that (1) holds.
- (2) By Lemma 2.3(1), $E \cap K$ is an S-quasinormal subgroup of K. Since $Q \leq E \cap K$, Q is a Sylow q-subgroup of $E \cap K$. Hence $L \leq H_{seK}$ and so $H_{seG} \leq H_{seK}$.

- (3) Clearly $LN/N \le HN/N$ and LN/N is an S-quasinormally embedded subgroup of G/N by Lemma 2.4(2). Hence $H_{seG}N/N \le (HN/N)_{se(G/N)}$.
- (4) In view of (3), we only need to prove that $(HN/N)_{se(G/N)} \leq H_{seG}N/N$. Let V/N be an S-quasinormally embedded subgroup of G/N such that $V/N \leq HN/N$. Then $V = V \cap HN = N(V \cap H)$. We now show that $U = V \cap H$ is S-quasinormally embedded in G. Let p be an arbitrary prime dividing |U| and $P \in \mathrm{Syl}_p(U)$. Then $P \in \mathrm{Syl}_p(V)$ since (|N|, |H|) = 1. Hence $PN/N \in \mathrm{Syl}_p(V/N)$. Let W/N be an S-quasinormal subgroup of G/N such that $PN/N \in \mathrm{Syl}_p(W/N)$. Then $PN/N = W_pN/N$ for some S-ylow p-subgroup W_p of W. Hence $PN = W_pN$. Since P and P are all P-Sylow P-subgroups of P-Sylow P-subgroups of P-Sylow P-subgroups of P-Sylow P
 - (5) This is evident.
- Lemma 2.7. Let H be an SE-supplemented subgroup of G and N a normal subgroup of G.
 - (1) If $H \leq K \leq G$, then H is SE-supplemented in K.
 - (2) If $N \leq H$, then H/N is SE-supplemented in G/N.
 - (3) If (|N|, |H|) = 1, then HN/N is SE-supplemented in G/N.
 - (4) H^x is SE-supplemented in G, for all $x \in G$.

PROOF. Let T be a subgroup of G such that HT = G and $H \cap T \leq H_{seG}$.

- (1) Since $K = H(T \cap K)$ and $(T \cap K) \cap H = T \cap H \le H_{seG} \le H_{seK}$ by Lemma 2.6(2), (1) holds.
- (2) Since (H/N)(NT/N) = G/H and $(H/N) \cap (NT/N) = N(H \cap T)/N \le H_{seG}N/N \le (H/N)_{se(G/N)}$ by Lemma 2.6(3), H/N is SE-supplemented in G/N.
- (3) Since $(|N|,|H|)=1, N\leq T$. Hence $(T/N)\cap (HN/N)=N(T\cap H)/N\leq NH_{seG}/N\leq (NH/N)_{se(G/N)}$. This shows that HN/N is SE-supplemented in G/N.
- (4) Since HT = G, we have $H^xT^x = G$. On the other hand, since $H \cap T \leq H_{seG}$, $H^x \cap T^x = (H \cap T)^x \leq (H_{seG})^x = (H^x)_{seG}$ by Lemma 2.6(5). Hence H^x is SE-supplemented in G.

Recall that for a class \mathcal{F} of groups, a group G is said to be a minimal non- \mathcal{F} -group if $G \notin \mathcal{F}$ but every proper subgroup of G belongs to \mathcal{F} .

The following result about minimal non- \mathcal{F} -groups is useful in our proofs.

Lemma 2.8 [28, VI, Theorem 25.4]. Let \mathcal{F} be a saturated formation and G a minimal non- \mathcal{F} -group such that $G^{\mathcal{F}}$ is soluble. Then:

- (a) $G^{\mathcal{F}}$ is a p-group for some prime p and $G^{\mathcal{F}}$ is of exponent p or exponent 4 (if P is a non-abelian 2-group).
- (b) $G^{\mathcal{F}}/\Phi(G^{\mathcal{F}})$ is a chief factor of G, and $G^{\mathcal{F}}/\Phi(G^{\mathcal{F}})$ is a non- \mathcal{F} -central in G.

Lemma 2.9 [12, Theorem 2.4]. Let P be a group and α a p'-automorphism of P.

- (1) If $[\alpha, \Omega_2(P)] = 1$, then $\alpha = 1$.
- (2) If $[\alpha, \Omega_1(P)] = 1$ and either p is odd or P is abelian, then $\alpha = 1$.

We use $\mathcal{A}(p-1)$ to denote the formation of all abelian groups of exponent dividing p-1. The symbol $Z_{\mathcal{U}}(G)$ denotes the largest normal subgroup of G such that every chief factor of G below $Z_{\mathcal{U}}(G)$ is cyclic $(Z_{\mathcal{U}}(G) = 1)$ if G has no such non-identity normal subgroups).

LEMMA 2.10 [31, Lemma 2.2]. Let E be a normal p-subgroup of G. If $E \leq Z_{\mathcal{U}}(G)$, then

$$(G/C_G(E))^{\mathcal{A}(p-1)} \le O_p(G/C_G(E)).$$

We use $\Omega(P)$ to denote the subgroup $\Omega_1(P)$ when P is not a non-abelian 2-group; otherwise, let $\Omega(P) = \Omega_2(P)$.

The following lemma may be proved based on some results in [23] on f-hypercentral action (see [28, Chapter II] or [11, Chapter IV, Section 6]). For reader's convenience, we give a direct proof.

LEMMA 2.11. Let P be a normal p-subgroup of G. If either $P/\Phi(P) \leq Z_{\mathcal{U}}(G/\Phi(P))$ or $\Omega \leq Z_{\mathcal{U}}(G)$, then $P \leq Z_{\mathcal{U}}(G)$.

PROOF. Let $C = C_G(P)$ and H/K be any chief factor of G below P. Then $O_p(G/C_G(H/K)) = 1$ by [40, Appendix C, Corollary 6.4].

Suppose that $P/\Phi(P) \leq Z_{\mathcal{U}}(G/\Phi(P))$. Then by Lemma 2.10, $(G/C_G(P/\Phi(P)))^{\mathcal{A}(p-1)}$ is a p-group. Hence $(G/C)^{\mathcal{A}(p-1)}$ is a p-group by Theorem 1.4 in [13, Chapter 5]. This implies that $G/C_G(H/K) \in \mathcal{A}(p-1)$ and so |H/K| = p by [40, Chapter 1, Theorem 1.4]. Therefore $P \leq Z_{\mathcal{U}}(G)$.

Now assume that $\Omega \leq Z_{\mathcal{U}}(G)$. Then $(G/C_G(\Omega))^{\mathcal{A}(p-1)}$ is a p-group by Lemma 2.10. Hence $(G/C)^{\mathcal{A}(p-1)}$ is a p-group by Lemma 2.9. Thus we also have $P \leq Z_{\mathcal{U}}(G)$.

LEMMA 2.12 [2, Lemma 4]. Let P be a p-subgroup of G, where p > 2. Suppose that all subgroups of P of order p are S-quasinormal in G. If a is a p'-element of $N_G(P) \setminus C_G(P)$, then a induces in P a fixed-point-free automorphism.

Lemma 2.13 [17, Theorem 3.1]. Let A, B, E be normal subgroups of G. Suppose that G = AB. If $E \leq Z_{\mathcal{U}}(A) \cap Z_{\mathcal{U}}(B)$ and (|G:A|, |G:B|) = 1, then $E \leq Z_{\mathcal{U}}(G)$.

Lemma 2.14 [39]. Let G be a group and $A \leq G$.

- (1) If A is subnormal in G and A is a π -subgroup of G, then $A \leq O_{\pi}(G)$.
- (2) If A is subnormal in G and A is nilpotent, then $A \leq F(G)$.

The following lemma is well known.

Lemma 2.15. Let $A, B \leq G$ and G = AB.

- (1) $G_p = A_p B_p$ for some Sylow p-subgroups G_p , A_p and B_p of G, A and B, respectively.
 - (2) $G = AB^x$ for all $x \in G$.

LEMMA 2.16 [28, Chapter I, Lemma 4.1]. Let Q be an irreducible automorphism group of an elementary abelian p-group P of order p^n . Then Q is cyclic with $|Q| | p^n - 1$ and n is the smallest positive integer such that |Q| divides $p^n - 1$.

Following Doerk and Hawkes [11], we use $C^p(G)$ to denote the intersection of the centralizers of all abelian p-chief factors of G ($C^p(G) = G$ if G has no such chief factors).

For every function f of the form

$$(*) \hspace{1cm} f: \mathbb{P} \cup \{0\} \rightarrow \{\text{group formations}\},$$

we put, following [30], $CLF(f) = \{G \text{ is a group } | G/G_S \in f(0) \text{ and } G/C^p(G) \in f(p) \text{ for any prime } p \in \pi(\text{Com}(G))\}$. Here G_S denotes the S-radical of G (that is, the largest normal soluble subgroup of G); Com(G) denotes the class of all abelian groups A such that $A \simeq H/K$ for some composition factor H/K of G.

It is well known that a formation \mathcal{F} is a Bear-local formation if and only if there exists a function f of the form (*) such that $\mathcal{F} = CLF(f)$ (see, for example, [30, Theorem 1]).

LEMMA 2.17. Let \mathcal{F} be a Baer-local formation containing all supersoluble groups and E a subgroup of G such that $G/E \in \mathcal{F}$. If E is cyclic, then $G \in \mathcal{F}$.

PROOF. Without loss of generality, we may assume that E is a minimal normal subgroup of G. Then |E|=p for some prime p. By [30, Theorem 1], $\mathcal{F}=CLF(f)$ for some function of the form (*). It is clear that the group $H=E\rtimes (G/C_G(E))$ is supersoluble. Hence $H\in\mathcal{F}$ and thereby $G/C_G(E)\in f(p)$. Let $C^p/E=C^p(G/E)$. Then $C^p(G)=C^p\cap C_G(E)$ by [11, Chapter A, Theorem 3.2]. But since $G/E\in\mathcal{F}$, $G/C^p\simeq (G/E)/C^p(G/E)\in f(p)$ and consequently $G\in\mathcal{F}$.

3. Proof of Theorem 1.2

Theorem 1.2 is a special case of the following theorem when $\pi_i = \pi(E)$, the set of all prime divisors of |E|.

THEOREM 3.1. Let E be a normal subgroup of G, $p_1 < p_2 < \ldots < p_n$ the set of all prime divisors of |E| and $\pi_i = \{p_1, p_2, \ldots, p_i\}$. Suppose that for each $p \in \pi_i$ and for any Sylow p-subgroup P of E, the cyclic subgroups of P of prime order or order A are A are

PROOF. Suppose that this theorem is false and consider a counter-example (G, E) for which |G| + |E| is minimal. Let $p = p_1$ be the smallest prime dividing |E| and P a Sylow p-subgroup of E. Let $Z = Z_{\mathcal{U}}(G)$ and $C = C_G(P)$. We proceed via the following steps.

(1) E is p-nilpotent.

Without loss of generality, we may assume that i = 1.

If $E \neq G$, then the hypothesis is true for (E,E) by Lemma 2.7(1). Hence E is p-nilpotent by the choice of (G,E). Now assume that E=G and G is not p-nilpotent. Then G has a p-closed Schmidt subgroup $H=H_p \rtimes H_q$ [20, Chapter IV, Theorem 5.4]. We may assume that $H_p \leq P$. By Lemma 2.8, $H_p/\Phi(H_p)$ is a non-central chief factor of H and H_p is a group of exponent p

or exponent 4 (if p=2 and H_p is non-abelian). Hence $|H_p/\Phi(H_p)| > p$ since p is the smallest prime dividing |H|.

- (2) Let $E_{p'}$ be a Hall p'-subgroup of E. Then $E_{p'}$ is normal in G and the hypothesis holds for $(G, E_{p'})$ and for $(G/E_{p'}, E/E_{p'})$.
- By (1), $E_{p'}$ is characteristic in E. Hence $E_{p'}$ is normal in G. Clearly, the hypothesis holds for $(G, E_{p'})$. By Lemma 2.7(3), the hypothesis also holds for $(G/E_{p'}, E/E_{p'})$.
 - (3) E = P is not a minimal normal subgroup of G.

Suppose that $E \neq P$. Then $E_{p'} \neq 1$. Hence every chief factor of $G/E_{p'}$ below $E/E_{p'}$ is cyclic by the choice of (G,E). On the other hand, the minimality of (G,E) implies that $E_{p'}$ has a normal Hall π'_i -subgroup V and each chief factor of G between $E_{p'}$ and V is cyclic. Hence V is a normal Hall π'_i -subgroup of E and each chief factor of G between E and V is cyclic, which contradicts the choice of (G,E). Hence E=P. Suppose that P is a minimal normal subgroup of G. Then every minimal subgroup E of E is E-supplemented in E in E-suppose that E-subgroup of E-subgroup of

(4) G has a non-identity normal subgroup $R \leq P$ such that P/R is a non-cyclic chief factor of G, $R \leq Z$ and $V \leq R$ for any normal subgroup $V \neq P$ of G contained in P.

Let P/R be a chief factor of G. Then $R \neq 1$ by (3) and the hypothesis holds for (G,R). Therefore $R \leq Z$ and so P/R is not cyclic by the choice of (G,P)=(G,E). Now let $V \neq P$ be any normal subgroup of G contained in P. Then $V \leq Z$. If $V \not\leq R$, then from the G-isomorphism $P/R = VR/R \simeq V/V \cap R$ we have $P \leq Z$, which contradicts the choice of (G,E)=(G,P). Hence $V \leq R$.

(5) $P < O^p(G)$.

Suppose that $P \not\leq O^p(G)$. Then from the *G*-isomorphism $O^p(G)P/O^p(G) \simeq P/O^p(G) \cap P$, we see that *G* has a cyclic chief factor of the form P/V, where $O^p(G) \cap P < V$, which contradicts (4).

(6) $\Omega(P) = P$.

If $\Omega(P) < P$, then by (4), $\Omega \le Z$. Hence $P \le Z$ by Lemma 2.11, which contradicts the choice of (G, P).

(7) There is a prime $q \neq p$ such that q divides |G:C|.

Let G_p be a Sylow p-subgroup of G. Suppose that $|G:C|=p^n$. Then any chief factor of G_p below P is a chief factor of G, which implies that $P \leq Z$.

The final contradiction.

By (6), $\Omega(P) = P$. Let V_1, V_2, \dots, V_t be the set of all cyclic subgroups of P of order p and order 4 (if P is a non-abelian 2-group). We may assume that $P/R = (V_1R/R)(V_2R/R) \cdots (V_tR/R)$ and V_iR/R is a group of order p for all i = 1, 2, ..., t. Suppose that for some i we have $V_i T = G$, where $T \neq G$. Then $P = V_i(T \cap P)$, where $T \cap P \neq P$. Let $N = N_G(T \cap P)$. It is clear that $|P:T\cap P|$ is either p or 4. Hence either N=G or |G:N|=2and NP = G. In the former case, G has a cyclic chief factor $P/T \cap P =$ $V_i(T \cap P)/T \cap P \simeq V_i/V_i \cap T \cap P$. In the second case, G has a cyclic chief factor $P/P \cap N$. But in view of (4), both these cases are impossible. Hence by Lemma 2.5, V_1, V_2, \dots, V_t are S-quasinormal subgroups of G. This shows that if Q is a every Sylow subgroup Q of G, then $V_iQ = QV_i$ for every $i \leq t$ and so V_i is subnormal in V_iQ by Lemma 2.1(3). Consequently, V_i is normal in V_iQ . Suppose that p=2. Then V_iQ is nilpotent and so $Q \leq C_G(V_i)$. Therefore $O^p(G) \leq C_G(P/R)$. This implies $C_G(P/R) = G$, which contradicts (4). Hence p > 2. We claim that $O^p(G) \neq G$. Indeed, if $O^p(G) = G$, then V_1R/R is normal in G/R by Lemma 2.2 and so $P/R = V_1 R/R$ is cyclic, a contradiction. Next we show that $O^q(G) \neq G$ for some prime $q \neq p$. Assume that $O^q(G) = G$ for all primes $q \neq p$. Then for every chief factor H/K of G of order p we have $C_G(H/K) = G$. In particular, $L \leq Z(G)$ for every minimal normal subgroup L of G contained in R. This implies that $C_P(a) \neq 1$ for every $a \in G$. Hence by (4) and Lemma 2.12, G/C is a p-group, which contradicts (4). Thus $O^q(G) \neq G$ for some prime $q \neq p$. By the choice of G, we have $P \leq Z_{\mathcal{U}}(O^p(G))$ and $P \leq Z_{\mathcal{U}}(O^q(G))$. Thus, by (5) and Lemma 2.13, we obtain that $P \leq Z$. The final contradiction completes the proof.

4. Proof of Theorem 1.3

Theorem 1.3 is a special case of the following theorem when $\pi_i = \pi(E)$.

THEOREM 4.1. Let E be a normal subgroup of G, $p_1 < p_2 < \ldots < p_n$ the set of all prime divisors of |E| and $\pi_i = \{p_1, p_2, \ldots, p_i\}$. Suppose that for each $p \in \pi_i$, the maximal subgroups of any Sylow p-subgroup of E are SE-supplemented in G. Then E has a normal Hall π'_i -subgroup $E_{\pi'_i}$ and each chief factor of G between E and $E_{\pi'_i}$ is cyclic.

PROOF. Assume that this theorem is false and let (G, E) be a counterexample for which |G| + |E| is minimal. Let $p = p_1$ be the smallest prime dividing |E| and P a Sylow p-subgroup of E. Let $Z = Z_{\mathcal{U}}(G)$. We proceed the proof via the following steps.

(1) E is p-nilpotent.

We may consider, without loss of generality, that i=1. Assume that E is not p-nilpotent. Then:

(a)
$$E=G$$
.

Indeed, if E < G, then |E| + |E| < |G| + |E|. Hence the hypothesis is true for (E,E) by Lemma 2.7(1). The choice of (G,E) implies that E is p-nilpotent, a contradiction.

(b)
$$O_{n'}(G) = 1$$
.

Let $D = O_{p'}(G)$. By Lemma 2.7(3), the hypothesis is true for (G/D, ED/D). Hence, if $D \neq 1$, then G/D is p-nilpotent by the choice of (G, E). Therefore G is p-nilpotent, a contradiction.

(c) If
$$P \leq V < G$$
, then V is p-nilpotent.

In fact, by Lemma 2.7(1), the hypothesis holds for V. Hence V is p-nilpotent by the choice of G.

(d) $O_{p'}(L) = 1$ for all S-quasinormal subgroups L of G.

By Lemma 2.1(3), L is subnormal in G. It follows that $O_{p'}(L)$ is subnormal in G. Hence $O_{p'}(L) \leq O_{p'}(G) = 1$ by Lemma 2.14(1).

(e) If N is an abelian minimal normal subgroup of G, then G/N is p-nilpotent.

In view of (b), N is a p-group and so $N \leq P$. Thus the hypothesis is true for (G/N, E/N) by Lemma 2.7(2). The choice of (G, E) implies that G/N is p-nilpotent.

(f) G is p-soluble.

In view of (e), we need only to show that G has an abelian minimal normal subgroup. Suppose that this is false. Then p=2 by the Feit-Thompson odd theorem. By Lemmas 2.1(3) and 2.14(1), we see that every non-identity subgroup of P is not S-quasinormal in G. Hence for every non-identity S-quasinormally embedded in G subgroup $L \leq V$, where V is a maximal subgroup of P, and for any S-quasinormal subgroup W of G such that $L \in \operatorname{Syl}_2(W)$ we have $L \neq W$. Moreover, $W_G \neq 1$. Indeed, if $W_G = 1$, then W is nilpotent by Lemma 2.3(3). Hence $O_{2'}(W) \neq 1$, which contradicts (d). Note also that for any minimal normal subgroup N of G we have NP = G (otherwise, N is 2-nilpotent by (c), a contradiction). It follows that N is the unique minimal normal subgroup of G. Therefore $N \leq W$ (since $W_G \neq 1$) and consequently $N \cap P = N \cap L$.

Now we show that $V_{seG} \neq 1$ for any maximal subgroup V of P. In fact, suppose that $V_{seG} = 1$ and let T be a subgroup of G such that VT = Gand $V \cap T \leq V_{seG} = 1$. Then T is a complement of V in G. This induces that T is 2-nilpotent since the order of a Sylow 2-subgroup of T is equal to 2. We may, therefore, assume that $T = N_G(H_1)$ for some Hall 2'subgroup H_1 of G. It is clear that $H_1 \leq N$. By [15], any two Hall 2'subgroups of N are conjugate in N. By Frattini Argument, G = NT. Then $P = (P \cap N)(P \cap T^x)$ for some $x \in G$ by Lemma 2.15(1). Let $T_1 = T^x = N_G(H_1^x)$. It is clear that $P \cap T_1 \neq P$. Hence we can choose a maximal subgroup V_1 in P containing $P \cap T_1$. By the hypothesis, there exists a subgroup T_2 such that $G = V_1T_2$, where $V_1 \cap T_2 \leq (V_1)_{seG}$. If $(V_1)_{seG}=1$, then as above, we have that T_2 is 2-nilpotent and we may assume that $T_2 = N_G(H_2)$ for some Hall 2'-subgroup H_2 of G. By [15] again, we have $((H_1)^x)^y = H_2$ for some $y \in G$. Therefore, G = VT = $VT_1 = V_1T_2 = V_1T_1^y = V_1T_1$ by Lemma 2.15(2) and $P = V_1(P \cap T_1) = V_1$. This contradiction shows that $(V_1)_{seG} \neq 1$. Let L be any non-identity Squasinormally embedded subgroup of G contained in V_1 and W be an S-

quasinormal subgroup of G such that $L \in \operatorname{Syl}_2(W)$. Then $L \cap N = P \cap N$, which implies $P = (P \cap N)(P \cap T_1) = (L \cap N)(P \cap T_1) \leq V_1$, a contradiction.

Therefore for every maximal subgroup V of P we have $(V_1)_{seG} \neq 1$. But then from above, we know that $N \cap P \leq V$. Hence $N \cap P \leq \Phi(P)$ and so N is 2-nilpotent by [20, Chapter IV, Theorem 4.7], a contradiction. Hence, (f) holds.

The final contradiction for (1).

Let N be any minimal normal subgroup of G. Then in view of (b) and (f), N is a p-group and so G/N is p-nilpotent by (e). This implies that N is the unique minimal normal subgroup of G and $N \not\leq \Phi(G)$. Hence G is a primitive group and thereby $N = C_G(N) = F(G)$ by [11, Chapter A, Theorem 17.2]. Let M be a maximal subgroup of G such that $G = N \times M$. Let $M_p \in \operatorname{Syl}_n(M)$ and V be a maximal subgroup of P such that $M_p \leq V$. Then $VM \neq G$ and so $VM^x \neq G$ for all $x \in G$ by Lemma 2.15(2). Since V is SE-supplemented in G, there is a subgroup T of G such that VT = Gand $V \cap T \leq V_{seG}$. Suppose that $V_{seG} = 1$. Then T is a complement of V in G. It follows that $|T_p|=p$, where $T_p\in \mathrm{Syl}_p(T)$. Then T is p-nilpotent since p is the smallest prime dividing |G|. Hence $T_{v'} \stackrel{\triangleleft}{=} T$, where $T_{v'}$ is a Hall p'-subgroup of T. Since G is p-soluble, any two Hall p'-subgroups of G are conjugate. Therefore there is an element $x \in G$ such that $T_{p'} \leq M^x$. If $T_p \leq M^x$, then $T \leq M^x$ and $G = VT = VM^x$, a contradiction. Hence $T_p \not\leq M^x$. But $G/N \simeq M^x \leq N_G(T_{p'})$ (since G/N is p-nilpotent) and $T_p \leq N_G(T_{p'})$. Therefore $G = \langle M^x, T_p \rangle = N_G(T_{p'})$, which contradicts (b). Hence $V_{seG} \neq 1$. Let $L \neq 1$ be an S-quasinormally embedded subgroup of G such that $L \leq V$ and W an S-quasinormal subgroup of G such that $L \in \mathrm{Syl}_p(W)$. Suppose that L = W. Then by Lemma 2.2, $N \leq L^G =$ $L^{PT_{p'}} = L^{P} \leq V$, a contradiction. Hence $L \neq W$. Then in view of (b) and Lemma 2.1(3), we have $W_G \neq 1$. This implies that $N \leq L \leq V$ and so V = VN = P. This final contradiction shows that (1) holds.

(2) E = P.

See (3) in the proof of Theorem 1.3.

(3) If N is a minimal normal subgroup of G contained in P, then $P/N \leq Z_{\mathcal{U}}(G/N)$, N is the only minimal normal subgroup of G contained in P and |N| > p.

Indeed, by Lemma 2.7(2), the hypothesis holds on G/N for any minimal normal subgroup N of G contained in P. Hence $P/N \leq Z_U(G/N)$ by the

choice of (G,E)=(G,P). If |N|=p, $P\leq Z_{\mathcal{U}}(G)$, a contradiction. If G has two minimal normal subgroups R and N contained in P, then $NR/R\leq P/R$ and from the G-isomorphism $RN/N\simeq N$ we have |N|=p, a contradiction. Hence, (3) holds.

(4)
$$\Phi(P) \neq 1$$
.

Suppose that $\Phi(P) = 1$. Then P is an elementary abelian p-group. Let N_1 be any maximal subgroup of N. We show that N_1 is S-quasinormal in G. Let B be a complement of N in P and $V = N_1 B$. Then V is a maximal subgroup of P. Hence V is SE-supplemented in G. Let T be a subgroup of G such that G = TV and $T \cap V \leq V_{seG}$. If T = G, then $V = V_{seG}$ is S-quasinormal in G by Lemma 2.5. Hence $V \cap N = V_{seG} \cap N = N_1B \cap N = N_1(B \cap N) = N_1$ is Squasinormal in G by Lemma 2.3(2). Now assume that $T \neq G$. Then $1 \neq T \cap P < P$. Since G = VT = PT and P is abelian, $T \cap P$ is normal in G. Hence $N \leq T \cap P \leq T$ and consequently $N_1 \leq N \cap T \cap V \leq N \cap V_{seG} \leq N$. Clearly, $N \leq V$. Hence $N_1 = N \cap V_{seG}$. By Lemma 2.5 and since the subgroup generated by all S-quasinormal in G subgroup of V is also S-quasinormal in G (cf. [29, Lemma 2.8(1)]), we see that V_{seG} is S-quasinormal in G. Thus by Lemma 2.3(2), N_1 is S-quasinormal in G. This shows that every maximal subgroup of N is S-quasinormal in G. Hence some maximal subgroup of N is normal in G by Lemma 2.11 in [29]. This contradiction shows that $\Phi(P) \neq 1$.

The final contradiction.

By (4), $\Phi(P) \neq 1$. Let N be a minimal normal subgroup of G contained in $\Phi(P)$. Then the hypothesis is still true for G/N. Hence $P/N \leq Z_{\mathcal{U}}(G/N)$ by the choice of (G,E). This means that $P/\Phi(P) \leq Z_{\mathcal{U}}(G/\Phi(P))$. Then by Lemma 2.11, we obtain that $P \leq Z$. This final contradiction completes the proof.

5. Final remarks

In Section 1, we have seen that a large number of known results follow from our results. Now we consider some further applications.

1. A group G is said to be *quasisupersoluble* [18] if for every its non-cyclic chief factor H/K and every $x \in G$, x induces an inner automorphism on H/K. It is cleat that every supersoluble group is quasisupersoluble. Moreover, in [18] it is proved that the class of all quasisupersoluble groups

is a Baer-local formation. Hence from Theorems 1.7 and 1.8 we also obtain the following results.

THEOREM 5.1. Let G be a group with normal subgroups $X \leq E$ such that G/E is quasisupersoluble. Suppose that the cyclic subgroups of X of prime order or order 4 are SE-supplemented in G. If either X = E or $X = F^*(E)$, then G is quasisupersoluble.

THEOREM 5.2. Let G be a group with normal subgroups $X \leq E$ such that G/E is quasisupersoluble. Suppose that the maximal subgroups of every Sylow subgroup of X are SE-supplemented in G. If either X = E or $X = F^*(E)$, then G is quasisupersoluble.

2. Recall that a subgroup H of G is said to be weakly S-permutable (S-supplemented) in G [29] if there are a subnormal subgroup (a subgroup, respectively) T G and an S-quasinormal subgroup H_{sG} of G contained in H such that HT = G and $H \cap T < H_{sG}$.

The following example shows that in general the set of SE-supplemented subgroups of a group is wider than the set of all its S-supplemented subgroups and the set of all its S-quasinormally embedded subgroups. Consequently, the set of SE-supplemented subgroups of a group is also wider than the set of all S-quasinormal subgroups, the set of weakly S-permutable subgroups, the set of all c-normal subgroups and the set of all c-supplemented subgroups since these subgroups are either S-supplemented or S-quasinormally embedded in G.

EXAMPLE 5.3. Let Ly be the Lyons simple group. Then $|Ly|=2^8\cdot 3^7\cdot 5^6\cdot 7\cdot 11\cdot 31\cdot 37\cdot 67$. Hence in view of [14] there is a group D with minimal normal subgroup N such that $C_D(N)=N\leq O_{67}(D),\ D/N\simeq Ly$ and $N\leq \varPhi(D)$. Let Q be a group of order 17. Let $G=D\wr Q=K\rtimes Q$, where K is the base group of the regular wreath product G. Then $P=\varPhi(K)=N^{\natural}$ (we use here the terminology in [11, Chapter A]). Moreover, in view of [11, Chapter A, Proposition 18.5], P is the only minimal normal subgroup of G. It is clear also that $|P|>67^2$.

Since P is an elementary abelian 67-group, then in view of Maschke's theorem, $P=P_1\times P_2\times \ldots \times P_t$, where P_i is a minimal normal subgroup of PQ for all $i=1,2,\ldots,t$. Suppose that $Q\leq C_G(P_i)$ for all $i=1,2,\ldots,t$. Then $Q\leq C_G(P)$. Hence $PQ=P\times Q=C_G(P)$ is normal in G and so G is normal in G. This contradiction shows that for some G we have G0 is 1.

Hence $S := P_irtimesQ = Q^S$. Since Q is a Sylow 17-subgroup of G, it is Squasinormally embedded in G. Hence $S = S_{seG}$ and consequently S is SEsupplemented in G. Suppose that P_i is an S-quasinormally embedded subgroup of G and let V be an S-quasinormal subgroup of G such that $P_i \in \text{Syl}_n(V)$. Since 17 divides 67 + 1 and does not divide 67 - 1, $|P_i| = 67^2$ by Lemma 2.16. By Lemma 2.1(3), V is subnormal in G and V/V_G is nilpotent by Lemma 2.3(2). Suppose that $V_G = 1$. Then V is a subnormal nilpotent subgroup of G. It follows from Lemma 2.14(2) that $V \leq P$. Thus $V = P_i$ is S-quasinormal in G. It is clear that $O^{67}(G) = G$. By Lemma 2.2, we see that P_i is normal in G. This induces that $P = P_i$ and so $|P| = 67^2$, a contradiction. Therefore $V_G \neq 1$ and so $P \leq V_G$. But then $P \leq P_i$, a contradiction again. Thus P_i is not an S-quasinormally embedded subgroup of G. Similarly one can proved that any maximal subgroup of P_i is not an Squasinormally embedded subgroup of G. Hence S is not S-quasinormally embedded in G and if L is any non-identity S-quasinormally embedded subgroup of G contained in S, then $L=Q^x$ for some $x \in S$. Moreover, obviously, S has no non-identity S-quasinormal in G subgroups, that is, $S_{sG} = 1$. Now we show that S is not S-complemented in G. Indeed, if S is Scomplemented in G, then S has a complement T in G since $S_{sG} = 1$. Clearly, $T \leq K$. Hence $K = K \cap TS = T(K \cap S) = TP_i$. But since $P_i \leq P = \Phi(K)$, we obtain T = K, which implies $T \cap S \neq 1$. This contradiction shows that S is not S-supplemented in G.

Base on the above, we also see that the results in [29] in the case where the subgroup D in [29, Theorems] is of prime order or 4 can be obtained by our results in this paper.

REFERENCES

- M. ASAAD, On maximal subgroups of finite group, Comm. Algebra 26 (1998), pp. 3647-3652.
- [2] M. ASAAD P. CSÖRGÖ, Influence of minimal subgroups on the structure of finite group, Arch. Math. 72 (1999), pp. 401–404.
- [3] M. ASAAD A. A. HELIEL, On S-quasinormally embedded subgroups of finite groups, J. Pure Appl. Algebra, 165 (2001), pp. 129–135.
- [4] A. BALLESTER-BOLINCHES L. M. EZQUERRO, Classes of Finite Groups, Springer, Dordrecht, 2006.
- [5] A. Ballester-Bolinches X. Y. Guo, On complemented subgroups of finite groups, Arch. Math. 72 (1999), pp. 161–166.
- [6] A. BALLESTER-BOLINCHES M. C. PEDRAZA-AGUILERA, Sufficient conditions for supersolvability of finite groups, J. Pure Appl. Algebra, 127 (1998), pp. 113–118.

- [7] A. Ballester-Bolinches M. C. Pedraza-Aguilera, On minimal subgroups of finite groups, Acta Math. Hungar. 73 (1996), pp. 335–342.
- [8] A. BALLESTER-BOLINCHES Y. WANG, Finite groups with some C-normal minimal subgroups, J. Pure Appl. Algebra, 153 (2000), pp. 121–127.
- [9] A. BALLESTER-BOLINCHES Y. WANG X.Y. Guo, c-supplemented subgroups of finite groups, Glasgow Math. J. 42 (2000), pp. 383–389.
- [10] W. E. DESKINS, On quasinormal subgroups of finite groups, Math. Z. 82 (1963), pp. 125–132.
- [11] K. DOERK T. HAWKES, Finite Soluble Groups, Walter de Gruyter, Berlin-New York, 1992.
- [12] T. M. GAGEN, Topics in Finite Groups, Cambridge University Press, 1976.
- [13] D. GORENSTEIN, Finite Groups, Harper & Row Publishers, New York-Evanston-London, 1968.
- [14] R. Griess P. Schmid, The Frattini module, Arch. Math. 30 (1978), pp. 256–266.
- [15] F. GROSS, Conjugacy of odd Hall subgroups, Bull. London Math. Soc. 19 (1987), pp. 311–319.
- [16] W. Guo, The Theory of Classes of Groups, Science Press-Kluwer Academic Publishers, Beijing-New York-Dordrecht-Boston-London, 2000.
- [17] W. Guo A. N. Skiba, On factorizations of finite groups with F-hypercentral intersections of the factors, J. Group Theory, 14(5) (2011), pp. 695–708.
- [18] W. Guo A. N. Skiba, On some classes of finite quasi-F-groups, J. Group Theory, 12 (2009), pp. 407–417.
- [19] X. Y. Guo, On p-Nilpotency of Finite Groups with Some Subgroups c-Supplemented, Algebra Colloquium, 10 (3) (2003), pp. 259–256.
- [20] B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin-New-York, 1967.
- [21] B. HUPPERT N. BLACKBURN, Finite Groups III, Springer-Verlag, Berlin-New-York, 1982.
- [22] O. Kegel, Sylow-Gruppen and Subnormalteiler endlicher Gruppen, Math. Z. 78 (1962), pp. 205–221.
- [23] R. LAUE, Dualization for saturation for locally defined formations, J. Algebra, 52 (1978), pp. 347–353.
- [24] Y. Li Y. Wang, The influence of minimal subgroups on the structure of a finite group, Proc. Amer. Math. Soc., 131 (2002), pp. 337–341.
- [25] Y. Li Y. Wang, On π -quasinormally embedded subgroups of finite groups, J. Algebra, 281 (8) (2004), pp. 109–123.
- [26] Y. Li Y. Wang, The influence of π-quasinormality of some subgroups of a finite group, Arch. Math. 81 (2003), pp. 245–252.
- [27] M. RADAMAN M. AZZAT MOHAMED A. A. HELIEL, On c-normaliti of certain subgroups of prime power order of finite groups, Arch. Math. 85 (2005), pp. 203–210.
- [28] L. A. Shemetkov, Formations of finite groups, Moscow, Nauka, Main Editorial Board for Physical and Mathematical Literature, 1978.
- [29] A. N. SKIBA, On weakly s-permutable subgroups of finite groups, J. Algebra, 315 (2007), pp. 192–209.
- [30] A. N. SKIBA L. A. SHEMETKOV, Multiply 2-Composition Formations of Finite Groups, Ukrainsk. Math. Zh. 52(6) (2000), pp. 783-797.
- [31] A. N. SKIBA, A characterization of the hypercyclically embedded subgroups of finite groups, J. Pure Appl. Algebra, 215 (2011), pp. 257–261.

- [32] Y. Wang, c-normality of groups and its properties, J. Algebra, 180 (1996), pp. 954–965.
- [33] Y. WANG, Finite groups with some subgroups of Sylow subgroups c-supplemented, J. Algebra, 224 (2000), pp. 467–478.
- [34] Y. WANG H. WEI Y. LI, A generalization of Kramer's theorem and its applications, Bull. Australian Math. Soc. 65 (2002), pp. 467–475.
- [35] Y. WANG Y. Li J. WANG, Finite groups with c-supplemented minimal subgroups, Algebra Colloquium, 10 (3) (2003), pp. 413–425.
- [36] H. Wei Y. Wang Y. Li, On c-normal maximal and minimal subgroups of Sylow subgroups of finite groups, II. Comm. Algebra, 31 (2003), pp. 4807– 4816.
- [37] H. Wei Y. Wang Y. Li, On c-supplemented maximal and minimal subgroups of Sylow subgroups of finite groups, Proc. Amer. Math. Soc. 132 (8) (2004), pp. 2197–2204.
- [38] H. Wei, On c-normal maximal and minimal subgroups of Sylow subgroups of finite groups, Comm. Algebra, 29 (2001), pp. 2193–2200.
- [39] H. Wielandt, Subnormal subgroups and permutation groups, Lectures given at the Ohio State University, Columbus, Ohio, 1971.
- [40] M. Weinstein, Between Nilpotent and Solvable, Polygonal Publishing House, 1982.

Manoscritto pervenuto in redazione il 26 Gennaio 2012.