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Behavior of Welschinger Invariants Under Morse

Simplifications
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ABSTRACT - We relate Welschinger invariants of a rational real symplectic 4-
manifold before and after a Morse simplification (i.e deletion of a sphere or a
handle of the real part of the surface). This relation is a consequence of a real
version of Abramovich-Bertram formula which computes Gromov-Witten
invariants by means of enumeration of J-holomorphic curves with a non-
generic almost complex structure J. In addition, we give some qualitative
consequences of our study, for example the vanishing of Welschinger in-
variants in some cases.
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1. Introduction

On a rational symplectic 4-manifold (X;v), genus 0 Gromov-Witten

invariants can be computed by enumerating irreducible J-holomorphic

rational curves on X, realizing a fixed homology class d 2 H2(X;Z), and

passing through a configuration of c1(X)dÿ 1 points, where J is a

generic almost complex structure on X tamed by v ([12]). Now suppose

that J is midly non-generic, i.e. X contains a unique irreducible J-ho-
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lomorphic curve E with E25ÿ 1, and moreover E is a smooth rational

curve with E2 � ÿ2. In this situation, one can still compute Gromov-

Witten invariants of (X;v) by enumerating J-holomorphic curves on

(X;v), but now also taking into account reducible curves with some

components mapped isomorphically to E. Abramovich and Bertram

first proved this when (X;v; J) is the second Hirzebruch ruled surface

([1]), Vakil extended later this proof to the case of any weak Del Pezzo

surface ([14]), and eventually Ionel and Parker symplectic sum formula

([6]) provides a proof in the general case.

Results of this note are based on real versions of this Abramovich-

Bertram type formula. A real structure c : X ! X on a rational symplectic

4-manifold (X;v) is an involution such that c�v � ÿv. The set RX � Fix(c)

is called the real locus of X. Welschinger invariants provide real analogues

of Gromov-Witten invariants in genus 0 for real rational symplectic 4-

manifolds ([15]).

Suppose that (X;v; c) contains a real smooth rational symplectic curve E

with E2 � ÿ2, and let (X#;v#) be the symplectic sum of (X;v) with S2 � S2

along E, where E realizes the diagonal class in H2(S2 � S2;Z). There exist

two real structures c� and cÿ on S2 � S2 for which E is real, which give rise

to two different real structures c#
� and c#

ÿ on (X#;v#) satisfying (with the

convention that x(;) � 0)

x(RX#
� ) � x(RX) � x(RX#

ÿ )ÿ 2:

One may interpret this construction as follows: blow-down the real (-2)-

curve E to a nodal real 4-manifold, and smooth the node in two different

ways.

The real symplectic manifold (X#;v#; c#
�) is in fact a deformation

of (X;v; c) and in this case one can immediatly extract a real version of

Abramovich-Bertram formula from the complex one without decom-

posing (X#;v#; c#
�) into a symplectic sum, as it has already been no-

ticed by several people ([3], [4], [11], [13]). This is not true for

(X#;v#; c#
ÿ), and one of the main results of this note is a real version of

Abramovich-Bertram formula also in this case. These two different real

versions of Abramovich-Bertram formula allows one to compare Wel-

schinger invariants of (X#;v#; c#
�). This can be thought as a general-

ization of the invariant u introduced by Welschinger in [15], and has

several consequences (e.g. vanishing results) concerning Welschinger

invariants.

Detailed proofs of the statements announced in this note will appear

in [5].
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2. Welschinger invariants

Let (X;v; c) be a real rational symplectic 4-manifold, and let J be an

almost complex structure on X tamed by v which is J-antiholomorphic.

Recall that the mass m(C) of a real rational J-holomorphic curve C in

(X;v; c) is the number of solitary real nodes of RC in RX (i.e. nodes locally

given over R by the equation x2 � y2 � 0). Let us fix a homology class d in

H2(X;Z), an integer 0 � r � c1(X)dÿ 1, a connected component S of RX,

and a real configuration x of c1(X)dÿ 1 points in X containing exactly r

points in S and
c1(X)dÿ 1ÿ r

2
pairs of complex conjugated points. When J

is generic, Welschinger proved in [15] that the number of irreducible real

rational J-holomorphic curves C, counted with multiplicity (ÿ 1)m(C), in-

cident to x and realizing the class d is finite and depends only on d and r.

This number is a Welschinger invariant of (X;v; c), and we denote it by

WRX;S(d; r). We omit the reference to S when S � RX, or to r when

r � c1(X)dÿ 1.

Suppose now that J is mildly non-generic as above, in particular the

(ÿ 2)-curve E is real. Counting real rational J-holomorphic curves in X

with multiplicity (ÿ 1)m(C) does not give a number depending only on d and

r, since J is non-generic ([15], [7]).

DEFINITION 2.1. Let C be a nodal real rational J-holomorphic curve in

X intersecting the (-2)-curve E transversally. We denote respectively by a
and b the number of real and pairs of complex conjugated intersection

points in C \ E. For any integer k � 0, we define the two kth multiplicities

of C as follows:

m�k (C) � (ÿ 1)m(C)
X

k�ak�2bk

a
ak

� �
b

bk

� �
and

mÿk (C) � (ÿ 1)m(C)�b2b if a � 0 and k � b;

0 otherwise:

(

As above choose d 2 H2(X;Z), an integer 0 � r � c1(X)dÿ 1, a con-

nected component S of RX nRE, and a generic real configuration x of

c1(X)dÿ 1 points in X containing exactly r points in S and
c1(X)dÿ 1ÿ r

2
pairs of complex conjugated points. For each integer k � 0, we denote by

Rk(d; x) the set of all irreducible rational real J-holomorphic curves in X

passing through all points in x and realizing the class dÿ kE. The set

Behavior of Welschinger Invariants Under Morse Simplifications 149



Rk(d; x) is finite, and any curve in Rk(d; x) is nodal and intersects E

transversally. Moreover Rk(d; x) is non-empty only for finitely many va-

lues of k. We define the two following numbers:

W�
RX;S(d; r) �

X
k�0

X
C2Rk(d;x)

m�k (C):

Let (X#;v#; c#) be as above with c# � c#
� , and let S# be the component of

RX# containing the deformation of S. Note that the homology groups

H2(X;Z) and H2(X#;Z) are canonically identified ([6]).

THEOREM 2.2. Under the above hypotheses, one has:

(i) if x(RX#) � x(RX), then

WRX#;S# (d; r) � W�
RX;S(d; r);

(ii) if x(RX#) � x(RX)� 2, then

WRX#;S# (d; r) � Wÿ
RX;S(d; r):

As an immediate consequence of Theorem 2.2, the numbers W�
RX;S(d; r)

depend only on d and r. As mentioned in the introduction, part (i) in

Theorem 2.2 is an immediate consequence of Abramovich-Bertram for-

mula and was known before ([3], [4], [11], [13]).

3. Applications

Here we announce some consequences of Theorem 2.2, in particular

when X is CP2
6, the complex projective plane CP2 blown up in 6 points.

3.1 ± Computation for degree 6 curves with 6 fixed nodes

Let us also denote by gCP2
6 the projective plane CP2 blown up at 6 points

lying on a smooth conic E. Here we enumerate real rational curves real-

izing twice the anti-canonical class d � 2c1(CP2
6)_ in gCP2

6 and CP2
6.

Given a real structure on gCP2
6, we denote by gRP2

6 its real part. Note thatgRP2
6 is not necessarily RP2 blown up in 6 real points lying on a conic. Given

a generic configuration x of c1(CP2
6)dÿ 1 � 5 real points in gCP2

6, we set

n�
x(fRP2

6
)
(dÿ kE) :� P

C2Rk(d;x)

m�k (C).
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PROPOSITION 3.1. For any choice of S, there exists a configuration of 5

real points in gCP2
6 such that:

n�ÿ5 nÿÿ5 n�ÿ3 nÿÿ3 n�ÿ1 nÿÿ1 n�1 nÿ1

d 522 522 236 236 78 78 0 0

dÿ E 472 0 280 0 152 0 72 0

dÿ 2E 6 0 6 0 6 0 6 0

COROLLARY 3.2. The surface CP2
6 has the following Welschinger

invariants:

x(RP2
6) ÿ5 ÿ3 ÿ1 1 3

WRP2
6
;S(d) 1000 522 236 78 0

The value WRP2
6
(d) when x(RP2

6) � ÿ5 has been first computed by the

first author ([3], [4]). The numbers WRP2
6
(d) when x(RP2

6) � ÿ3;ÿ1; 1, as

well as WRP2tS2;RP2 (d) have been first computed by Itenberg, Kharlamov

and Shustin ([10]). The vanishing of WRP2tS2;S(d) is actually a general fact:

PROPOSITION 3.3. If (X;v; c) is a real symplectic 4-manifold with

disconnect real part, then for any d 2 H2(X;Z), any r � 2, and any choice

of S, one has

WRX;S(d; r) � 0:

3.2 ± Behavior of purely real Welschinger invariants with respect to Euler

characteristic

Given a real toric Del Pezzo surface X equipped with its tautological

real toric structure and a class d 2 H2(X;Z), one has ([8])

WRX(d) � WRX(d; c1(X)dÿ 3):

Theorem 2.2 provides a natural generalization of this formula in the par-

ticular cases when X is S2 � S2 or CP2
6 .

THEOREM 3.4. Let (X1;v1) and (X2;v2) be two symplectic 4-manifolds

deformation equivalent to either CP1 �CP1 or CP2
6 equipped with their

standard symplectic form. Choose a real structure c1 on X1 , and a real

structure c2 on X2. Then for any d 2 H2(X;Z), one has

WRX1;S1
(d) �WRX2;S2

(d) if x(RX1) � x(RX2):
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Note that Theorem 3.4 does not generalize immediately to any sym-

plectic 4-manifold. Indeed, according to [2] one has WRP2 (9; 2)5WRP2 (9; 0),

i.e. Theorem 3.4 does not hold in the case of CP2 blown up in 26 points.

3.3 ± Modified Welschinger invariants

In the case when RX is not connected, one may slightly modify the

definition of Welschinger invariants given in section 2. Namely, given S a

connected component of RX, the modified mass of a real rational curve C is

defined as the number of solitary real nodes of C lying in S. Counting real

curves with this sign produces a new invariant, denoted by eWRX;S.

Our method also allows us to compute these invariants in the case of

CP2
6. In particular we have the following two propositions.

PROPOSITION 3.5. eWRP2tS2;RP2 (d) � 160 and eWRP2tS2;S2 (d) � 96:

The value of eWRP2tS2;RP2 (d) has been first computed by Itenberg,

Kharlamov and Shustin ([10]).

PROPOSITION 3.6. For any class d 2 H2(CP2
6;Z), we haveeWRP2tS2;RP2 (d) � eWRP2tS2;S2 (d) � 0:

The positivity of eWRP2tS2;RP2 (d) whenever d contains a real algebraic

curve has first been established in [10].

3.4 ± Relation to tropical Welschinger invariants of F2

We end this note relating some tropical Welschinger invariants of F2

to genuine Welschinger invariants of the quadric ellipsoid Q. The only

real homology classes of Q are multiple of the hyperplane section h. We

say that a tropical curve in R2 is of class aB� bF in TF2 if its Newton

polygon has vertices (0; 0), (0; a), (b; a), and (2a� b; 0). We denote by

WTF2
(dB) the irreducible tropical Welschinger invariant of TF2 for

curves of class dB ([9]).

PROPOSITION 3.7. For any positive integer d

WQ(dh) �WTF2
(dB):
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