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On the Jump set of Solutions of the Total Variation Flow
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ABSTRACT - We show that the jump set of the solution of the minimizing Total
Variation flow decreases with time for any initial condition in BV (V) \ LN (V). We
prove that the size of the jump also decreases with time.
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1. Introduction

The use of total variation as a regularization tool for image denoising

and restoration was introduced by L. Rudin, S. Osher and E. Fatemi in

[19]. If V denotes the image domain, the Total Variation denoising problem

corresponds to solving the minumum problem

min
u2BV (V)

Z
V

jDuj � 1

2l

Z
V

(uÿ f )2 dx; l > 0

8<:
9=;:�1�

One of the main features of (1), confirmed by numerical simulations,

is its ability to restore the discontinuities of the image [19, 14, 16]. The a
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priori assumption is that functions of bounded variation (the BV model

[3]) are a reasonable functional setting for many problems in image

processing and, in particular, for denoising and restoration. Typically,

functions of bounded variation admit a set of discontinuities which is

countably rectifiable [3], being continuous (in the measure theoretic

sense) away from discontinuities. The discontinuity set corresponds to

the edges in the image, and the ability of Total Variation regularization

to recover edges is one of the main features which advocates for the use

of this model in image processing (its ability to describe textures is less

clear, even if some textures can be recovered up to a certain scale of

oscillation).

As a support to this idea, in [10] (see also [13, 12]) it has been proved that

the jump set of the solution u of the TV denoising problem (1) is contained in

the jump set of the datum f , assuming that f 2 BV (V) \ L1(V). Moreover

the size of the jump of u at any point x in its jump set is bounded by the size of

the jump of f . This result was explicitly stated in [18] in a more general

context, even if for the Total Variation it is essentially contained in [10] (see

also [12]).

The purpose of this paper is to prove the corresponding result for so-

lutions of the the minimizing Total Variation flow, with Neumann or Di-

richlet boundary conditions, and for the Cauchy problem in RN. That is, if

u(t) is the solution of the TV flow and Ju(t) denotes the jump set of u(t), we

prove that

Ju(t) � Ju(s) � Ju(0) HNÿ1 a.e. for any t > s > 0:�2�
Moreover, letting [u(t)] be the jump size of u(t), we also show that

[u(t)] � [u(s)] HNÿ1 a.e. on Ju(t) for any t � s � 0:�3�
The inclusions in (2) have already been proved in [10], under the as-

sumption that u0 belongs to the domain of the operator ÿ div
Du

jDuj
� �

in

L1(V). Some sufficient conditions for this to happen were given in [10]. By

exploting (3), in the present paper we get rid of this condition on u(0).

Let us finally describe the plan of the paper. In Section 2 we recall

some basic facts about functions of bounded variation that will be used

in the sequel. In Section 3 we review the result of [10] on the jump of

the solutions of the denoising problem (1), explicitly proving that the

size of the jump of the solution is bounded by the size of the jump of the

initial datum. Finally, in Section 4 we extend this result to the Total

Variation flow.
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2. Notation and preliminaries on BV functions

Let V be an open subset of RN. A function u 2 L1(V) whose gradient Du

in the sense of distributions is a (vector valued) Radon measure with finite

total variation in V is called a function of bounded variation. The class of

such functions will be denoted by BV (V). The total variation of Du on V
turns out to be

sup

Z
V

u div z dx : z 2 C10 (V; RN); jz(x)j � 1 8x 2 V

8<:
9=;;�4�

(where for a vector v � (v1; . . . ; vN) 2 RN we set jvj2 :� PN
i�1

v2
i ) and will be

denoted by jDuj(V) or by
R
V

jDuj. The map u! jDuj(V) is L1
loc(V)-lower

semicontinuous. BV (V) is a Banach space when endowed with the norm

kuk :� R
V

jujdx� jDuj(V).

A measurable set E � V is said to be of finite perimeter in V if (4) is

finite when u is substituted with the characteristic function xE of E. The

perimeter of E in V is defined as P(E;V) :� jDxEj(V). We denote by LN

and HNÿ1, respectively, the N-dimensional Lebesgue measure and the

(N ÿ 1)-dimensional Hausdorff measure in RN.

Let u 2 [L1
loc(V)]m. We say that u has approximate limit at x 2 V if

there exists z 2 Rm such that

lim
r#0

1

jB(x; r)j
Z

B(x;r)

ju(y)ÿ zjdy � 0:�5�

The set of points where this does not hold is called the approximate dis-

continuity set of u, and is denoted by Su. Using Lebesgue's differentiation

theorem, one can show that the approximate limit z exists at LN-a.e. x 2 V,

and is equal to u(x): in particular, jSuj � 0.

If x 2 V n Su, the vector z is uniquely determined by (5) and we denote

it by ~u(x). We say that u is approximately continuous at x if x 62 Su and
~u(x) � u(x), that is if x is a Lebesgue point of u with respect to the Le-

besgue measure.

For u 2 BV (V), the gradient Du is a Radon measure that decomposes

into its absolutely continuous and singular parts Du � Dau�Dsu. Then

Dau � ru dx where ru is the Radon-Nikodym derivative of the measure

Du with respect to the Lebesgue measure in RN. The function u is ap-

proximately differentiable LN a.e. in V and the approximate differential
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coincides with ru(x) LN a.e. The singular part Dsu can be also split in two

parts: the jump part Dju and the Cantor part Dcu. We say that x 2 V is an

approximate jump point of u if there exist u�(x) 6� uÿ(x) 2 R and

jnu(x)j � 1 such that

lim
r#0

1

jB�r (x; nu(x))j
Z

B�r (x;nu(x))

ju(y)ÿ u�(x)j dy � 0

lim
r#0

1

jBÿr (x; nu(x))j
Z

Bÿr (x;nu(x))

ju(y)ÿ uÿ(x)j dy � 0;

where

B�r (x; nu(x)) �fy 2 B(x; r) : hyÿ x; nu(x)i > 0g
Bÿr (x; nu(x)) �fy 2 B(x; r) : hyÿ x; nu(x)i50g:

We denote by Ju the set of approximate jump points of u. If u 2 BV (V), the

set Su is countably HNÿ1 rectifiable, Ju is a Borel subset of Su and

HNÿ1(Su n Ju) � 0 (see [3]). In particular, we have that HNÿ1-a.e. x 2 V is

either a point of approximate continuity of ~u, or a jump point with two limits

in the above sense. Eventually, we have

Dju � Dsu Ju
� (u� ÿ uÿ)nuHNÿ1

Ju
and Dcu � Dsu (VnSu):

For x 2 Ju we set [u(x)] � u�(x)ÿ uÿ(x) .

For a comprehensive treatment of functions of bounded variation we

refer to [3].

3. The jump set of solutions of the TV denoising problem

Given a function f 2 L2(V) and l > 0 we consider the minimum problem

min
u2BV (V)

Z
V

jDuj � 1

2l

Z
V

(uÿ f )2 dx �: F l(u) :�6�

Notice that problem (6) always admits a unique solution ul, since the

functional F l is strictly convex.

As we mentioned in the Introduction, one of the main reasons to in-

troduce the Total Variation as a regularization term in imaging problems

is its ability to recover the discontinuities of the function f . In this section

we recall a result proved in [10] showing that the jump set of ul is always

158 V. Caselles - K. Jalalzai - M. Novaga



contained in the jump set of f , that is, the model (6) does not create any

new discontinuity besides the existing ones. We refine the proof given

in [10] proving that the size of the jump decreases. This fact was observed

in [18] where it was proved in the more general context of weighted total

variation.

Let us recall the following Proposition, which is proved in [15, 1].

PROPOSITION 3.1. Let ul be the (unique) solution of (6). Then, for any

t 2 R, ful > tg (respectively, ful � tg) is the minimal (resp., maximal)

solution of the minimal surface problem

min
E�V

P(E;V)� 1

l

Z
E

(tÿ f (x)) dx:�7�

In particular, for all t 2 R but a countable set, ful � tg has zero measure

and the solution of (7) is unique (up to a negligible set).

A proof that ful > tg and ful � tg both solve (7) is found in [15,

Prop. 2.2]. The proof of Proposition 3.1 then follows from the co-area

formula and from the following comparison result for solutions of (7) (see

[1, Lemma 4]):

LEMMA 3.2. Let f ; g 2 L1(V) and E and F be respectively minimizers of

min
E

P(E;V)ÿ
Z
E

f (x) dx and min
F

P(F;V)ÿ
Z
F

g(x) dx :

Then, if f5g a.e., jE n Fj � 0 (in other words, E � F up to a negligible set).

From Proposition 3.1 and the regularity theory for surfaces of pre-

scribed curvature (see for instance [2]), one has the following regularity

result.

COROLLARY 3.3. Let f 2 Lp(V), with p > N. Then, for all t 2 R the

super-level set Et :� ful > tg (respectively, ful � tg) has boundary of

class C1;a, for all a5(pÿN)=p, out of a closed singular set S of Hausdorff

dimension at most N ÿ 8. Moreover, if p � 1, the boundary of Et is of

class W2;q out of S, for all q51, and is of class C1;1 if N � 2 .

Before stating the main result of this section, we recall two simple

Lemmata (see [11]).
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LEMMA 3.4. Let U be an open set in RN and v 2W2;p(U), p � 1. We

have that

div
rv�������������������

1� jrvj2
q

0B@
1CA � trace A(rv)D2v

ÿ �
a.e. in U;

where

A(j)ij :� 1

(1� jjj2)
1
2

dij ÿ
jijj

(1� jjj2)

 !
j 2 RN:

LEMMA 3.5. Let U be an open set in RN and v 2 W2;1(U). Assume that u

has a minimum at y0 2 U and

�8� lim
r!0�

1

jB(y0; r)j

Z
B(y0;r)

u(y)ÿu(y0)ÿru(y0) � (yÿ y0)ÿ 1

2
hD2v(y0)(yÿ y0); yÿ y0i

���� ����
r2

dy� 0 ;

then D2v(y0) � 0.

Recall that, if v 2 W2;1(U), then (8) holds a.e. in U [20, Th. 3.4.2].

THEOREM 1. Let f 2 BV (V) \ L1(V). Then, for all l > 0,

Jul
� Jf�9�

up to a set of zero HNÿ1-measure. Moreover

[ul(x)] � [ f (x)] HNÿ1-a.e. on Jul
:�10�

PROOF. Notice that (10) implies (9), so that it is enough to prove (10).

Let us first recall some consequences of Corollary 3.3. Let

Et :� ful > tg, t 2 R, and let St be its singular set given by Corollary 3.3.

Since f 2 L1(V), around each point x 2 @Et n St , t 2 R, @Et is locally the

graph of a function in W2;p for all p 2 [1;1) (hence in C1;a for any

a 2 (0; 1)). Let Q be a countable dense set in R such that ful > tg is a set of

finite perimeter for any t 2 Q. If we let N :� S
t2Q

St, we then have

HNÿ1(N ) � 0.

Since we can write (as in [3])

Jul
�

[
t1;t22Q;t15t2

@Et1
\ @Et2

;
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in order to prove (10) it suffices to show

t2 ÿ t1 � [ f (x)] HNÿ1-a.e. on @Et1
\ @Et2

;�11�
for all t1; t2 2 Q with t15t2 .

Fix t1; t2 2 Q with t15t2, and let B0R be the ball of radius R > 0 in RNÿ1

centered at 0. Let CR :� B0R � (ÿ R;R), and denote x 2 CR as

x � (y; z) 2 B0R � (ÿ R;R). Given x 2 @Et1
\ @Et2

n N , by Corollary 3.3

there is R > 0 such that, after a suitable change of coordinates, we can

write the set @Eti
\ CR, i � 1; 2, as the graph of a function vi 2 W2;p(B0R),

p 2 [1;1), such that x � (0; vi(0)) 2 CR � V and rvi(0) � 0. Without loss

of generality, we assume that vi > 0 in B0R, and that Eti
is the supergraph of

vi. Since t15t2 we have Et2
� Et1

, which gives in turn v2 � v1 in B0R. We

may also assume that

HNÿ1 fy 2 B0R : v1(y) � v2(y)gÿ �
> 0:�12�

Notice that, since @Eti
is of finite HNÿ1-measure, we may cover

@Et1
\ @Et2

n N by a countable set of such cylinders. By [3, Th. 3.108], for

HNÿ1-a.e. y 2 B0R the function f (y; �) belongs to BV ((ÿ R;R)), and the

jumps of f (y; �) are the points z such that (y; z) 2 Jf . Recalling that vi is a

local minimizer of

min
v

Z
B0

R

�������������������
1� jrvj2

q
dyÿ 1

l

Z
B0

R

Zv(y)

0

(ti ÿ f (y; z)) dz dy �: Ei(v);

by taking a positive smooth test function c(y) witn compact support in B0R,

and computing

lim
e!0�

Ei(v� ec)ÿ Ei(v)

e
� 0;

we deduce that

div
rvi(y)�������������������������

1�jrvi(y)j2
q

0B@
1CA� 1

l
ti ÿ f �(y; vi(y)� � � 0; HNÿ1-a.e. in B0R:�13�

In a similar way, we get

div
rvi(y)�������������������������

1�jrvi(y)j2
q

0B@
1CA� 1

l
ti ÿ f ÿ(y; vi(y)� � � 0; HNÿ1-a.e. in B0R:�14�
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Finally we observe that, since v1; v2 2 W2;p(B0R) for any p 2 [1;1) and

v2 � v1 in B0R, by Lemma 3.5 we have that rv1(y) � rv2(y) and

D2(v1 ÿ v2)(y) � 0 HNÿ1-a.e. on fy 2 B0R : v1(y) � v2(y)g. Using both in-

equalities (13) and (14) and Lemma 3.4, it follows that

05t2 ÿ t1 � l trace(A(rv1(y))D2v1(y))ÿ trace(A(rv2(y))D2v2(y))
ÿ �

� f �(y; v2(y))ÿ f ÿ(y; v1(y))

� f �(y; v2(y))ÿ f ÿ(y; v1(y)) ;

HNÿ1-a.e. on fy 2 B0R : v1(y) � v2(y)g, which gives (11) and concludes the

proof. p

4. The jump set of solutions of the Total Variation flow

Let V be an open bounded set with Lipschitz boundary. We consider

the Total Variation flow

@u

@t
� div

Du

jDuj
� �

in QT � (0;T)� V;

Du

jDuj � n
V � 0 in QT � (0;T)� @V;

�15�

with the initial condition

u(0; x) � f (x); x 2 V:�16�
Let us recall that (15) it is the L2-gradient flow of the total variation as

defined in [9]. In the general case we shall follow [4, 8]. The purpose of this

Section is to prove the following result.

THEOREM 2. Let f 2 LN(V) \ BV (V). Let u(t) be the solution of (15)

with initial condition (16). Then u(t) 2 L1(V) \ BV (V) for any t > 0, and

Ju(t) � Ju(s) � Jf 8t > s > 0:�17�
Moreover

[u(t)] � [u(s)] � [ f ] HNÿ1 a.e. 8t > s > 0:�18�
The proof of Theorem 2 is based on the approach in [10] and uses the

estimate (10). Let us first recall some basic facts about the operator

ÿ div
Du

jDuj
� �

in Lp spaces. Since it suffices for our purposes, we shall only
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consider the case p 2 N

N ÿ 1
;1

� �
. For any p 2 [1;1], let us define the

space

X(V)p :� z 2 L1(V;RN) : fdiv(z) 2 Lp(V)
n o

:

If z 2 X(V)p and w 2 BV (V) \ Lq(V), pÿ1 � qÿ1 � 1, we define the

functional (z �Dw) : C10 (V)! R by the formula

h(z �Dw); Wi :� ÿ
Z
V

w W div z dxÿ
Z
V

w z � rW dx:

Then (z �Dw) is a Radon measure in V, and (z �Dw) � z � rw if

w 2W1;1(V) \ Lq(V).

Following [7], we observe that for any z 2 X(V)p there exists a function

[z � nV] 2 L1(@V) satisfying k[z � nV]kL1(@V) � kzkL1(V;RN), and such that for

any u 2 BV (V) \ Lq(V) we haveZ
V

u div z dx�
Z
V

(z �Du) �
Z
@V

[z � nV]u dHNÿ1:

DEFINITION 4.1. We define the operator Ap � Lp(V)� Lp(V), with
N

N ÿ 1
� p � 1, by:

(u; v) 2 Ap if and only if u; v 2 Lp(V), u 2 BV (V) and there exists

z 2 X(V)p with kzk1 � 1, such that (z �Du) � jDuj , [z � nV] � 0 and

v � ÿdiv(z) in D0(V):

By v 2 Apu we mean that (u; v) 2 Ap . By L1
w((0;T); BV (V)) we denote

the space of weakly measurable functions w : [0;T]! BV (V) (i.e., the map

t 2 [0;T]! hw(t);fi is measurable for any f 2 BV (V)� where BV (V)� de-

notes the dual of BV (V)) such that
RT
0

kw(t)k dt51.

DEFINITION 4.2. A function u 2 C([0;T]; Lp(V)) is a strong solution

of (15) if u 2 W1;1
loc (0;T; Lp(V)) \ L1

w((0;T); BV (V)) and there exists

z 2 L1 (0;T)� V; RN
� �

with kzk1 � 1 such thatZ
V

(z(t) �Du(t)) �
Z
V

jDu(t)j for a.e. t > 0:�19�

[z(t) � nV] � 0 in @V for a.e. t > 0:�20�
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and
ut � div z in D0 (0;T)� V� �:

PROPOSITION 4.3. The operator Ap is m-accretive in Lp(V), that is for

any f 2 Lp(V) and any l > 0 there is a unique solution u 2 Lp(V) of the

problem

u� lApu 3 f :�21�
Moreover, if u1;u2 2 Lp(V) are the solutions of (21) corresponding to the

right hand sides f1; f2 2 Lp(V), then

ku1 ÿ u2kp � k f1 ÿ f2kp:

Moreover the domain of Ap is dense in Lp(V) when p51.

We denote by Rl f the solution of (21) and by Rk
l f its k-iterate, for any

k � 1. We also recall the notion of strong solution for nonlinear semigroups

generated by accretive operators.

DEFINITION 4.4. A function u is called a strong solution in the sense of

semigroups of
du

dt
�Apu 3 0

with u(0) � f if

u 2 C([0;T]; Lp(V)) \W1;1
loc ((0;T); Lp(V))

u(t) 2 Dom(Ap) a.e. in t > 0 and u0 � Apu(t) 3 0 a.e. t 2 (0;T)

u(0) � f :

8><>:�22�

By Crandall-Ligget's semigroup generation theorem [17], using Pro-

position 4.3 as in [6, 10], one obtains the following result:

THEOREM 3. Let f 2 Lp(V) if
N

N ÿ 1
� p51, or f 2 Dom(A1) if

p � 1. Then there is a unique strong solution in the sense of semigroups

u(t) � S(t)f :� lim
l#0;kl!t

Rk
l f 2 C([0;T];Lp(V)) of the problem

du

dt
�Apu 3 0; u(0) � f :�23�

Moreover, the semigroup solution is a strong solution of (15) and con-

versely, any strong solution of (15) is a strong solution in the sense of

semigroups of (23).
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REMARK 4.5. Notice that given p 2 [
N

N ÿ 1
;1] the limit lim

l#0;kl!t
Rk

l f is

taken in Lp(V).

To prove Theorem 2, we need the following Lemma.

LEMMA 4.6. Let (un)n2N be a sequence of functions in BV (V) \ L1(V).

Assume that Jun � Ju0
, for all n 2 N, and un ! u strongly in L1(V). Then,

HNÿ1-almost every point of V n Ju0
is a Lebesgue point for u. In particular,

if u 2 BV (V), then Ju � Ju0
. Moreover, if all the functions un are con-

tinuous at x 2 V, then also u is continuous at x.

PROOF. The thesis follows observing that if x 2 V is a Lebesgue point

for all the functions un, then it is also a Lebesgue point for u, and the same is

true for a continuity point. p

PROOF OF THEOREM 2. We divide the proof into three steps.

Step 1. Assume that f 2 Dom(A1) \ BV (V). Recall that Rl f denotes

the solution of (21), and Rk
l f its k-iterate, for any k � 1. In this case, as

mentioned in Remark 4.5, we know from [17] that Rk
l f ! u(t) in L1(V)

when l! 0� and kl! t. Then the result follows from Theorem 1 and

Lemma 4.6.

Step 2. Let f 2 LN(V). By Theorem 3, u 2 C([0;T]; LN(V)). We also

know from [6] that u(t) � S(t) f 2 C((0;T]; L1(V)) and u(t) 2 BV (V) for any

t > 0. Moreover, the following estimate is a consequence of the 0-homo-

geneity of the operator A1 [4, 6]

d

dt
S(t)f





 




1
� 2
k f k1

t
for any t > 0:�24�

This implies that u(t) 2 Dom(A1) for any t > 0. Notice that by Step 1 and

Theorem 1, we know that

Ju(t) � Ju(s) for all t > s > 0:�25�

Moreover, by (10) we have

[u(t)] � [u(s)] HNÿ1-a.e. on Ju(t); for all t > s > 0:�26�

Step 3. Let f 2 LN(V) \ BV (V). We shall prove that Ju(t) � Jf

(modulo an HNÿ1 null set) for any t > 0.
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Let Z � Ju(t) be such that [u(t; �)] � e > 0 on Z and let x0 be a point of

HNÿ1-density 1 in Z.

Let us consider tn # 0�, tn5t. By (25) we have Ju(tn) � Ju(tnÿ1) and

Z � Ju(tn) for all n 2 N (modulo a HNÿ1-null set). By (26) we also have

[u(tn; x)] � [u(t; x)] � e HNÿ1-a.e. on Z:

Now, observe that Z
V

jDu(t)j �
Z
V

jDf j:�27�

Since

lim sup
t!0�

Z
V

jDu(t)j �
Z
V

jDf j � lim inf
t!0�

Z
V

jDu(t)j:

we have that

lim
t!0�

Z
V

jDu(t)j �
Z
V

jDf j:�28�

By Step 2 we know that u(t)! f in LN(V). Then Du(t)! Df as t! 0�
weakly* as vector measures in V. Since (28) holds, we also have that

jDu(t)j ! jDf j as t! 0� weakly* as measures in V ([3], Proposition 1.62).

Let r > 0 be such that jDf j(@B(x0; r)) � 0. By [3, Proposition 1.62] we

get

jDf j(B(x0; r)) � lim
n!1 jDu(tn)j(B(x0; r)) � eHNÿ1(Z \ B(x0; r)):

It follows that, for all points x0 of HNÿ1 density 1 in Z, we have

lim inf
r!0�

jDf j(B(x0; r))

vNÿ1rNÿ1
� e;

where vNÿ1 is the area of the (N ÿ 1)-dimensional ball. This implies that

Z � Jf (modulo anHNÿ1 null set). Thus, Ju(t) � Jf (modulo anHNÿ1 null set)

for any t > 0. p

REMARK 4.7. Theorem 2 still holds, with analogous proof, in the case of

zero Dirichlet boundary conditions or in RN [5, 8, 6]. Moreover, as in [10]

(see also [18]), it also holds for the anisotropic Total Variation flow, when

the anisotropy is smooth and elliptic.
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