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condition in Carnot groups. We begin with establishing a Sobolev-Poincaré type
inequality for the function u € HW1™(Q, RY) withme (1,2), and then partial reg-
ularity with optimal local Holder exponent for horizontal gradients of weak solu-
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1. Introduction and statements of main results

In this paper, we consider nonlinear sub-elliptic systems of second or-
der in divergence form under the sub-quadratic (1 <m <2) controllable
growth condition in Carnot groups, and settle optimal partial regularity for
horizontal gradients of weak solutions.

More precisely, let 2 C G be a bounded domain in a Carnot group G
with general step, and consider the following system

k
A1 =) XANE u,Xu) =B & u,Xu), ¢€Q ueRY, XueR™

i=1
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with sub-quadratic controllable structure conditions (H1)-(H3) and (C),
where

(H1): A*(&, u,p) is differentiable with respect to p, with bounded and
continuous derivatives, that is, there exists a constant C such that

12) |47 € up)| < CA+PAT, € up) e @xRY x RV, 1<m<2,
Py
0A%(-).
8;17}j
(H2): A%(£,u,p) satisfies the following ellipticity condition

where we denote by A% ;(-) =
i)

where / is a positive constant;

(H3): A?(&,u,p) is Holder continuous with exponent y € (0,1) in the
first and second variables, i.e.,

m—1

(14) [A%E u,p) — AE, i1, p)| < K(u(@"(E, &) + [u—a|" Vi + [p)T,

where K(-): [0,00) — [0,00) is monotonously nondecreasing. Without
loss of generality, it is convenient to take K(-) > 1;

(C) (Controllable growth condition): Denote r = QmQ and require

(1.5) IBXE,u, p)| <alp|"" P +blul " +c,

where @ > 3 is the homogeneous dimension in Carnot groups (see (2.3)
below), and a, b and ¢ are positive constants.

Furthermore, (H1) infers that there exists a continuously nonnegative
and bounded function w(s,t) : [0, 00) x [0, 00) — [0, c0), where w(s,0) =0
for all s, and w(s, t) is monotonously nondecreasing in s for fixed £; w(s, t) is
concave and monotonously nondecreasing in ¢ for fixed s, such that for all
& u,p), &, p) € @ x RN x R,

(L6) |47 € up)— AL Eup)| < CA+ [P+ allpl, Ip — pD.
Wy Py

As is well known, even under reasonable assumptions on A%, B* in the
systems, people cannot in general expect that weak solutions of nonlinear
elliptic systems of equations will be classical (i.e. C2-solutions) like elliptic
scalar equations. This was first shown by De Giorgi [1]. Then the goal is to
establish partial regularity of weak solutions for systems. Such regularity
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means that for any weak solution u of a system, there exists an open subset
Qy C 2 such that Q\Q, has a zero Lebesgue measure and « or its gradient
Du is locally regular in ©,. We refer the reader to monographs of Gia-
quinta [2, 3] and Chen-Wu [4].

There are different methods to prove partial regularity: the direct
approach was first carried out by Giaquinta-Modica [5]; Guisti-Miranda [6]
was earlier to employ the blow-up method; furthermore, Duzaar and
Grotowski in [7] generalized so called .A-harmonic approximation techni-
que in [8] and gave the remarkable proof of partial regularity for systems
with quadratic growth conditions(m = 2). This method has two major ad-
vantages: the first is that we only need to establish a Caccioppoli type
inequality; this avoids having to prove an inverse Hélder inequality. The
other is that one can obtain the optimal Hélder exponent in partial reg-
ularity. Then, Duzaar et al. [9] studied partial regularity of almost mini-
mizers of quasi-convex variational integrals with sub-quadratic growth,
and we also note that the degenerate p-Laplacian version of the method
has been obtained in [10], and applied to the partial regularity in [11]. In
the paper [9], Duzaar et al. actually provide a partially new proof of the
original regularity result of Carozza et al. [12]. Later, Chen and Tan in [13,
14] extended Duzaar and Grotowski’s results [7] to more general nonlinear
elliptic systems under the super-quadratic growth (m >2) and sub-
quadratic growth (1 <m <2), respectively.

Several regularity results were focused on systems constructed by
basic vector fields in Carnot groups. Capogna and Garofalo in [15] showed
the partial Holder regularity for quasi-linear sub-elliptic systems under
the quadratic structure conditions in Carnot groups of step two. Shores in
[16] considered a homogeneous quasi-linear system under the quadratic
growth condition on the Carnot group with general step. She first estab-
lished higher differentiability and smoothness for weak solutions of the
system with constant coefficients, and then deduced the partial regularity.
Their methods depend mainly on generalization of classical direct method
in the Euclidean space. Later, by the method of .A-harmonic approxima-
tion, Foglein in [17] treated the homogeneous nonlinear system

2n
_ZXiA%(f,Xu) =0, a«=1,---,N

i=1

on the Heisenberg group under super-quadratic structure conditions. She
got partial regularity for the horizontal gradient of weak solutions to the
initial system. Then the first author and Niu in [18] considered more gen-
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eral nonlinear sub-elliptic systems (see (1.1)) in Carnot groups under super-
quadratic growth conditions, and established the optimal partial regularity
of the horizontal gradient of weak solutions.

In this paper, we will apply the method of .A-harmonic approximation
adapted to the setting of Carnot groups to study partial regularity for the
system (1.1) under the controllable growth conditions with sub-quadratic
case (1<m<2). The key point is to establish a certain excess-decay esti-
mate for the excess function @. In the case m > 2, this function is given by

@(anpap()) = ’B/)(éO)’(_;l / |:|X/M - p0|2+‘Xu - p0|m] dé’

B,(&)

whereas in the case 1 <m <2, one uses

) D0, p.po) = | By, / VXu) — Vipo) e,
B,(&)

where V(A) =1+ |AP)"2 for A € Hom(R*,RY). It is shown that if
D(&y, p, po) is small enough on a ball B, (&) € £, then for some fixed 0 € (0, 1)
one has the excess improvement @&y, Op, po) < COZ'D(&y, p, po). Iteration of
this result yields the excess-decay estimate which implies the regularity
result. Although the underlying philosophy in this paper is encouraged by
that in [14, 9], some different treatment are necessary. Since basic vector
fields (see (2.1) below) of Lie algebras corresponding to the Carnot group
are more complicated than gradient vector fields in the Euclidean space, we
have to find a different auxiliary function in proving Caccioppoli type in-
equality. Inspired by [17], we choose horizontal variables to construct such a
suitable function (see Remark 1 below); Besides, the non-horizontal deri-
vatives of weak solutions will happen in the Taylor type formula on the
Carnot group and cannot been effectively controlled in the present hy-
potheses. So the method employing Taylor’s formula in [14] is not appro-
priate in our setting. In order to obtain the desired decay estimate, we need
establish and use the Sobolev-Poincaré type inequality (3.1) instead.
The main result in this paper is as follows.

THEOREM 1. Assume that coefficients A? and B* satisfy conditions
(H1)-(H3) and (C), and w € HW"(Q, RY) be a weak solution to the sys-
tem (1.1) with Q2 C G, 1.e.,

1.9 / A2 1, X)X = / B, Xugde Vg e CF@,RY).
Q Q
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Then there exists an open subset Qy C Q, such thatu € I' L7(Qy, RY ), with y
wm (1.4). Furthermore, Q\Qy = X1 U Xy and meas (2\Qy) = 0, where

51 = {ea € 2 lim sup((ur)) = oo},

Zy = {50 €Q: li% inf|B,(&)| ! /

| Xu — Xu, " dé > o}.
B (&)

To the best of our konwledge, in the Heisenberg group, I"*7 regularity
of weak solutions to sub-elliptic p-Laplacian equations is valid for 1 <p < oo
and was proved by several people during the 90’s in [19, 20, 21], but when
turning to I'' regularity, it is worthy of pointing out that the remarkable
contribution of Holder continuity for the gradient of weak solutions to sub-
elliptic p-Laplacian equations is due to Capogna [22, 23], Marchi [24, 25],
Domokos [26, 27], Manfredi and Mingione et al. [28, 29], but the exponent
p should be near 2, and the limitation 2 < p <4 appears in the most recent
of the cited works. Recently, Garofalo in [30] obtained the I\ regularity of
weak solution which possess some special symmetries for 2 < p. When
turning to partial continuity of weak solutions, our result shows that the
I''” continuity is also valid for exponent 1 <p <2.

The plan of this paper is organized as follows: In Section 2, we in-
troduce two functions and their some useful properties, and collect some
basie notions and facts associated to Carnot groups. Since in the sub-
quadratic case we are dealing with functions belonging to the horizontal
Sobolev space HW'™ with 1<m <2, in the proof of the main results, a
Sobolev-Poincaré type inequality (see (3.1) below) will be used. So we
will prove this inequality and a prior estimate for constant systems in
Section 3. In Section 4, we show a Caccioppoli type inequality for weak
solutions to the system (1.8). Section 5 is devoted to the proof of The-
orem 1, and the process of the proof is split into four steps. An estimate
on weak solutions is established in the first step. Second step begins
with proving three “small conditions” (see (5.13)-(5.15) below), and then
obtain the excess-improvement for the function @ in (1.7). Third step is
to show that we can iterate the statement in the second step. A decay
estimate

D&, p,po) < Cp?¥

is obtained in the last step, where y is the same as (1.4). Then we can infer
the conclusion of Theorem 1 employing Lemma 2 and Lemma 3 below.
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2. Preliminaries

A Carnot group G of step r is a simply connected, nilpotent Lie group

whose Lie algebra g admits a stratification, i.e., g = @V’ such that
J=1

(VLVI]=Vitl j=1,---,r—1and [VL, V"] = {0}. Let X! denote a left-
invariant basis vector field of V! with 1 < < rand 1 < i < my,, where m is
the dimension of V. For the sake of simplicity, we let X; = Xil, k = mq, and
denote by X = (X1, --,X}) the sub-elliptic gradient. We will say that
X;(1=1,--- k) are the horizontal vector fields with the form

@1) X=o+ Y 0500, X0 =0,

J=i+1

where @;(¢) is a polynomial. For a vector valued function
w=@, - uN):G—RY, we let Xu'(i=1,---,k,a=1,---,N) be a
horizontal direction derivative, and say that Xu is the horizontal Jacobian
with entries X;u*.

Denoting

1 2 2 1,1 1 2 2
é:(é ;é 7"'7‘5'): (%‘1,902,'",907,”/1;.%'1,'",x,lnz;"';x’{,"',x;ll) EG)

the distance from origin defined by

22) d() = [Z <Z w 2> ] .

=1 \i=1

For any & neG, we set d&,n)=duy'ol), where yl=—y=
(=l =) is the reverse of , and o is the multiplication rule in G
defined by oé=¢+¢+ P&, & €@, where P: G x G— G has
polynomial components.

Following [31], we introduce the gauge ball and sphere B,(¢) =
{n € G|d(&,n)<r}, 0B.(&) = {n € G|d(&,n) = r} in G, respectively. In what
follows, we denote by wg = |B(0,1)|; the volume of unit ball. Then
|B(E, 7)|g= wer?, where

2.3) Q=> lm
=1

is the homogeneous dimension of G.
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DEFINITION 1. Let 1 < m<oo, and 2 C G be an open set. If u € L"(Q)
satisfies

k
2.4) ol gwroney= %l pneey+ Z [ X2l () < 00,
i=1
we say that u belongs to the horizontal Sobolev space. The space H Wé Q)
is the completion of C3°(L2) under the norm (2.4).

DEFINITION 2. Let Q C G, y € (0,1), and denote
I(Q) = {u e L*Q)|Xu e I'(Q),i=1,---k},

(&) — w(@)|
—— <X

cie.ere A
I'(Q) is a Folland-Stein space with the norm

where I'7(Q2) = {u c LW(Q)‘ \u|y = } We say that

2.5) ol rroy= Ul L)1 XU o)+l + [Xutl .

DEFINITION 3. Let QC G, 1 <m<oo and w>0. We say that
u € L™(Q) belongs to the Campanato space £™*(Q) if

1

m

(26) ||u||£m4t<g): ||u||Lm,(9)+ Sup p_'u / }M(C) - ué’/,|mdé < Q.
€Q.p<diamQ
B,(OnQ

Capogna in [23] proved a Campanato type lemma in Carnot groups.

LEMMA 2. LetéecQcC G,om>1r>0, and Q<u < Q+m, then

@7 LB € I, 7=

Throughout the paper, we shall use the functions V =1V,
W =W, : R" — R" defined by

2—m

28) V© =¢/A+ AT, W =e/d+]ef )
for each ¢ € R" and m > 1. By the elementary inequality ||x|| 2 < [le]]; <
2% ||| = applied to the vector x = (1, |¢[*™™) € R? we conclude that

2—m 2—m

29 (1+1P) " <1+ iP <2 (1+16F)
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which immediately yields
2.10) WEI < [VE| < 2 W().

The purpose of introducing W is the fact that in contrast to |V|%, the
function |W|~ is convex (see [9]).

The following lemma includes some useful properties of the function V,
which can be found in Lemma 2.1 of [12].

LEmMA 3. Letm € (1,2) and V, W : R" — R" be the functions defined
i (2.8 ). Then there holds for any ¢, € R and t > 0:

i < < .
. —min(jal, [af) < V()| < min(jai], )

@). [Vitep| < max(t,t%)[V(cyl;
@). [Vic1 + ) < Cm)(V(cp| + V()]s

). %|§1—C2| < Ve —V@l/A + |aP+He'T < Comm)le — ol
(B). V(1) — Vic)| < Cm,m)|V(cy — c)l;
(6). [V(c1 —c2)| < Clm,M)|V(cy) — V(co)| for all ¢y with |co| < M.

The inequalities (1)-(3) also hold if V is replaced by W.

For later purpose we state the following two simple estimates which can
be easily deduced from Lemma 3 (1) and (6). Let ¢;, ¢p € R" with || < M it
follows that

@.11) o1 — @2[P< Com, M)V () — Vi),
for |¢; — ¢o| < 1, while for |¢; — g > 1
2.12) 61 — G| < COm, M)V (cy) — V(go)|”.

The next lemma due to [9] is a more general version of the Lemma 2.7
in [12].

LEmma 4. Let 0 <v<l,a,b >0, v € LP(B,(&)) and g be a non-nega-
tive bounded function satisfying

90 < v(s) +a / V(2 az o

B, (%)
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for all g <t<s < p. Then there exists a constant C = C(v) such that

@ =aofs [ ()

B, (o)

2
dé+b].

We conclude this section with an algebraic fact from [32]

1 .
LEMMA 5. Foreveryt € <— 5 0) and i > 0, it holds

1 5 B 9 td
Of(ﬂ +Ip+s(p—p)l) $ .

<
—2t4+1’

(2.13) 1<

R
(w2 + 1o+ 1P
for any p,p € RN, not both zero if 11 = 0.
3. Sobolev-Poincaré type inequality and a prior estimate in the sub-
quadratic case

LEMMA 6 (Sobolev-Poincaré type inequality). Let m € (1,2) and
u € HWY™(B (&), RY) with B,(&y) C Q, then

ey | Bl [ ’W(w)

p
B, (o)

Q-—m
2 w

Q-m
dc

1

1
<o [BGOIS / W (Xu)Pdé
B, (&)
Furthermore, the analogous inequality is valid with W replaced by V
defined in (2.8), and in particular, the inequality also holds if we

2
substitute 2 for ) —Qm

Proor. Similarly to the proof of Theorem 2 in [9]. Following [33,
Lemma 3.2], there exist ¢ > 1 and C > 1 such that for & € B(&, p)
| Xu(n)| ,
e, !

(3.2) [u(©) — ug,,| < C /

B(yr(éo)
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Since W?/™(t) is non-decreasing and convex, we apply W2/™(t) to both
sides of the last inequality and have by Jensen’s inequality and recalling
W) =0:

’M/(é) - uéo‘p

(3.3) WZ/’"(
p

C 1-Q 172/ m
—/d 1% X d
)s ”G/ & W™ (X)),

where the number @ is the homogeneous dimension in G, and

07 n ¢Bcp(éo),
W(Xu@l), n € Be (&)

Since W(|Xu(p)|) € L™ (B,(&)) by Lemma 3(1), it implies W (|1 Xu)|) €
L"(G). Then Theorem 2.7 in [19] applied with W2/ (|Xu|), « = 1 yields

W (|1 Xu(p)|) = {

r w e
[ (s
P
LBy (&)
- Q—m
" g
_ / Wz/m(|u(é)_ufowﬂ|>Qmdé
p
L By(&)
ol 3 1
<> / ( / dl‘Q(ér/)Wz/’”(Xu(n)l)dn) dé
G \G
c 172/ m m '
S; W= (|1 Xu(&)]) ™ d&
LG
C n
- [ wexuana .
| B,(&)

or

Q-m
2Q

Dol

2Q
@) — ug,,\ [T :

B,y(fo) B/)(fO)

Note that W(¢/2) > W(¢)/2, we conclude the result (3.1) from (3.4).
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LEMMA 7. Let w € HWYL(Q, RY) be @ weak solution of
(3.5) / ALXp X dé = 0
Q

forany ¢ € CL(Q, RM), where A;-/} 1s a constant matrix satisfying the strong
Legendre-Hadamard condition:

AL i > el luf, ne RN, ue RN

Then u is smooth and theve exists Co > 1 such that for any B,(&)) C Q

3.6) Bsu(p)(|u—u607p|2+p2|Xu|2+p4|X2u}2) < C0|Bp(§0)|(—;1p2/ |Xu|2df.
e B,)

ProOF. Shores [16] has shown that a weak solution v € HW3(Q, RYM)
of (3.5) belongs to C* in the subset Q) C 2, and Wang and Niu [18] have
established the following estimate:

3.7 Bsu(p)(|?J—véo_’p|2+p2|Xv|2+p4}X27)}2) §C0|Bp(§o)|(—;1p2 / \Xv|2df.
s B

Then we can argue as in the proof of Proposition 2.10 in [12] to obtain the
conclusion.
4. Caccioppoli type inequality

Denote by Bil (RkN ) the collection of bi-linear forms defined in RN ,
and suppose A € Bil(R*Y). We say that a function h € HW"(Q, RY) is
A-harmonic, if / satisfies

4.1) / AXh, Xp)dé =0, VgeClQ,RM).
Q

Similarly to [9], one can establish the following .A-harmonic approx-
imation lemma for the case 1 <m <2 in Carnot groups.

LEmMA 8. Let 4 and L be fixed positive numbers, 1<m<2, and
k,NeN with k>2. If for any given &>0, there exists o=
ok,N, A, L,e) € (0, 1] with the following properties:
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(D) forany A € Bil(R*Y) satisfying

4.2) A, v) > AV and A, < L||7], v, 7€ R,
D) for any g € HWY™(B,(&y), RY) satisfying
3 By [ W de < 1° < 1and
B,(&)

(4.4) ‘iBﬁ@o)yGl / A(Xg. Xg) dé’ <16 sup [Xgl, g € CYB,(E). {RY)
(S0
B, (&o)

then there exists an A-harmonic function h

ne = {ne EW B, (BBl [ wom az <1
B,(&)

such that

_ —Th\|?
(4.5) 1B, / ‘W(g ; )‘ dé < 2.
B,(&)

To establish the main result, our first aim is to establish a suitable
Caccioppoli type inequality.

LEMMA 9 (Caccioppoli Type Inequality). Let u € HW™(Q, {R") be a
weak solution to the system (1.1) under the conditions (H1)-(H3) and (C).
Then for every &y = (é(l), 8D EQ u € R, po € {RkN and any p sat-
isfying 0 < p< min{l, dist(&y, 0Q2)}, it holds

1B, 20| / VXU~ po)? dé

Bp/Z(CVO)

o P NNE

B, (%)

HE () (14 Ipol™)] 0% [+B,(E)| / (1 X" +|u|"+1)déE ,
B,(&)
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where we denote K(-) = K(|uo| + |pol), & = @, éé, e ,f,lc) 18 the horizontal
componentofE= (&, -+, ENeCG o= max{2m/(m — 2y), m/(m—1—y)} >2
and the constant C. = C.(a,b,c,n,N,m,L, ., M).

Proor. Let B,(&) cC , p/2 <t<s<p, and a standard cut off
function n € C3°(B,(&))) satisfy 0 < < 1, |Vy| < é and 7 = 1 on By(&p).

Inspired by the way of [17], we let v = u(&) — up — po(fl — é(l)), and then
define two functions

“.7) p=m, ¢==0=nw,

one has

4.8) Xo+X¢d=Xu—po

and

4.9) X[, 1Xel" < Com (10" +| | ).

Using hypothesis (H2), from Lemma 5, and as the elementary inequality
(4.10) 1+ |af+[b — aff< 3(1+ |a|2+|b|2),

we have

/ [A3 (&, u, po + Xo) — AFE, u, po)| Xip™dE

Bs(é(})
1
o
B,(&) 0
A 0X
/ /8 (é,u po+ <p)d9Xj¢ﬁXW&dé
(4.11) Bs(&) 0
2 (m—2)/2 9
> [ / 1+ Ipo+ 0((Xo+po) —po)F] " d0IXgla
Bs(&) 0
. (m—2)/2
> / (1+ |p0|2+|X(P—100|2) Xo[fds
Bg(&y)

(m—2)/2
> 30212 / (1+|100|2+|X§0|2) Xo[Pdé.
Bs(éo)
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From (4.11), it follows that

(m—2)/2
3(”%72)/2/{ / (1 + |]00|2+|X(0|2) |X(0|2d5
By(&o)

< / [AZ(E, u, po + Xp) — AT, u, po)| X dE

Bs(io)
~ [ acuxoxea- [ AxcupXed
By(&)) B,(&)
+ / [AZ(E . po + X) — A2E w0, Xu) XigPde
B(&y)
412 <- / A3 po) — A7 (& 10 + po(E = &), po) | Xig?d
B(&)
[ [Ar(e + pue - ) - Axo. o po] Xigra
Bs(éo)
1
B / /aAi (& u, Xu — e(ifu — X — po)) A0X,8 X, de
ap;
Bs(éo) 0 J
+ / Bi(E,u, Xu)pde
B(&)
=1+1T+ 111+ 1V,

where we have used (4.8), (1.8) and the fact that

/ A2y, w0, po)X o dE = 0.

Br(&)

Noting that ¢ = v on By(&)), and (4.10), the left-hand side in (4.12) can be
estimated by

(m—2)/2
(4.13)  3m=2/2) / (1+\po|2+|X(p\2) " \Xo[2dé
Bi(&)

(m—2)/2
— 3(’%—2)/21 / (1 + |p0|2+\XQ}|2) |X’l)|2df

By(&o)
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) ) o\ (1-2)/4 2
>comi [ ] (1+ o) " = ] g
B(&)
> C(k,N,m,)) / [V(Xu) — V(po)|dé
By(&)

> O N ) [ Ve
Bi(&o)
where we have applied Lemma 3(4) in the second inequality and Lemma

3(6) for the final inequality.
The structure condition (H3) yields

(4.14) I< / K()(1+ |po])"?[v) | X p|dE.

Bs(fo)

To obtain a suitable estimate for /, we need take the domain B,(¢&,) into four
parts: Bs(&o) N {|v/s| > 1} N{|Xp| <1}, Bo(&) N{|v/s| > 1} n{|Xg| > 1},
By(&) n{lv/s| <1} n{|Xg| > 1}, By(&)Nn{|v/s| <1} n{|Xg| <1}, and
will use Young’s inequality, (2.11) and (2.12), repeatedly.

CAst 1. On the part Bs(&y) N {|v/s] > 1} N {|X¢| <1}, we see

v
K1+ Ipo) ™[] 51X

m 2m/(m—2y)
(4.15) <COXp+CE)|Y| +CE KM+ o)™

2m/(m—2y)
s%7

2
<COVXP+CO|V (<) | +0@ K1 + [pol)""] 7
where we have used the fact s’ <1 and 2m/(m — 2y) > 2.
CASE 2. On the set By(&y) N {|v/s| > 1} N {|Xp| > 1}, it holds

1 7))’ )
KC)(1+ [pol)"2 2] 51Xl

S

(4.16) SC(6)|X(0\M+C(8)‘g‘m+C(e){K(.)(1+ |p0|)m/28}}m/(m*}'*1>

m/(m—y—1) 9

SC(E)lV(Xv)\ZvLC(e)‘V(g) ‘2+C(s) [K( (1 + \p0|)m/2} 2

where we have used m/(m —y — 1) > 2.
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Case 3. On the set By(&y) N{|v/s| <1} N {|Xp| > 1}, observing
m/(m — 1) > 2, one has

K()(1+ |po])" ol X
<K()(1 + |po])"™?s7|X |
<&l X" +CE[K(- )1 + |po))"?s']
< Ce)[VX0)P+C() [K( (1 + [po|)"/2] " Vs?.

(4.17)

m/(m—1)

Case 4. For By(&) N {|v/s| <1} N {|Xg| <1}, there is
K()(1+ |pol)"? o1 X 0|

<K( )1+ |po))"?s" | Xg]

<& XpP+C@[K(- )1 + o))" 5]

< C(&)[VXW)P+C@) [K( (1 + |po])" ] s>

(4.18)

Combining these estimations with (4.14), we get

1<CG) / V(Xv)[2dé + Ce) / ‘V(g)‘zdé
(4.19) B X

+CE K+ Ipol)""?] 1By&les?
where o = max{2m/(m — 2y),m/(m —1 — )} > 2.
Similarly to I, it follows that

v

11 <C(e) / V(Xv)Edé + Ce) / ’V(g)rdﬁ
(4.20) Bs(&o) By(&o)

qm/(m—1)
+CE) KA+ Ipol)"*7 | Bu@lgs™-

By (H1), Lemma 5 and (4.10), it holds

; 9 (m—2)/2
r<c / / (1+ Xu + 0[(Xu —X¢) — Xul| ) 0| |X4||Xp|de
0

By(&)

9 o\ (m-2)/2
421 <C / (1+ XuP+iXu - XgP) " IXQ|IXpld
Bs(é[))
(m—2)/2
<C / (1+ Pl +xgP) " IXSlIXgldE,

Bs(&o)
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Noting that X¢ C B,\B; and —1/2<(m — 2)/2<0, we split the domain
B;(&p) into four parts: By(&) N{|X¢| > 1} n{|Xg| > 1}, Bs(&y) N {|X$| < 1}n
{IXp| <1}, By(&) N {IXg| > 1} N {|Xp| <1}, and By(&)N {IX¢| <1}n
{|Xp| > 1}. Similarly to 7, it follows that

2 v o2
422 II<C / V(X — po) 2dé + / ’V(m)‘ del.
B(&p)\Bi(&y) By(&y)
Using Holder inequality, one has
v <c / (X" + [l +1) " |plde

B(&))

(4.23) 11 .
<c| [ (xupsrnad | [ lerae
B(&) B(&)

Analogously as I, we take the domain B,(&,) into two parts.
Cast 1. For Bs(&) N {|Xv| > 1}, by Sobolev type inequality, Young’s
inequality and (2.12) it follows that

1-1 1

/ (1Xu|" 4 |u|"+1)dé / lp|"dé
B(&) B (&)
-
<c| [ @xarvrea| | [ o
B(&)) B;(&)
i _(1_%)"7}21
<co)| [ (Xal iz el [ rae

_Bs(éo) a Bs(éo)
B _(17%)7)71[1
<C(e) / (Xul"+ ful +1)dé +Ce / IV (X0) Pde] .

| B.(&) By (&)

1
m

(4.24)

CASE 2. On the set By(&y) N {|Xv| < 1}, we have

X" < | Xv[*+1,
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and then it follows that
1} ¥
[ @xarswrenaz| | [ erae
Bs(éo) Bs(éﬂ)
(1_%)77:51
4B <o| [ @
B(&y)

Ce / WV (X0)Rdz| + CelByE
B(&)

where we have used (2.11).
Combining these estimates in IV, we have

4.26) IV <Ce / |V (Xv)|Pdé

By(&)

L) / (X" ] +1)de +CelByEg
B,(&)

Substituting (4.13), (4.19), (4.20), (4.22) and (4.26) into (4.12), we finally
arrive at

C / [V(Xv)[Pdé

By(&y)

<Gy / (|V(Xv)|2+‘V(%) ‘2>dé

B;(&)\Bi(&)

+Cs/<|V(Xv)|2+‘V(%) ‘2>df+C4 [K(')(1+|p0|m/2)r|33(50)|G82y

Bs(éo)

+Cs / (| Xu|™+|u|"+1)dé
Bs(éo)

The proof is now completed by applying Lemma 4.
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REMARK 1. The function v taken in the proof is different from that in
[14], essentially.

5. Proof of the main result

In this section, we will complete the proof of Theorem 1 via four steps,
and hence consider u € HW™(Q, RY) (1<m <2) to be a weak solution of
the system (1.1).

FIrsT STEP. We claim that if p <1 and ¢ € CF(B,(&), {RY) with

sup [X¢| <1, then there exist some constants Cs = Cs(m,M,Cp) > 1
B,(&)

such that
Bi@lg" [ Az, Gonpo)Xu — poXe* de
B, (&)
6.1 < Cs sup Xl [0 (pol, 2o, . 0)) P00+
P o)
+ B0, p. p0) + PP o] + [pol).
where we denote F(z) = [K(x)(1 + 0)° T with ¢’ = max { 1,y y}

Proor. Noting the fact

[ | 42, 0xu s a - opoce - m)de] Xgd

B,(&) -0
1 p
_ / / oA, 0, 0% + 1 —e>po>d0]X¢“dé
(5.2) B,(&) -0

- / [AZ(Ey, 0, Xut) — A%(E, o, po)lX9*dE

B,(&)

— [ (Ao x0-ax¢ x| Xpde+ [ B xowde,
B, (&) B, (&)
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we have

63) [ 42, oo, po)Xu— poXo"

B,(&)
1
_ / / A2, oo, PO — o) | X7
B,(&) 0

1
< [{ 1, oo =42, o, 0K+~ 0| X~ po] 0} sup Xl 0
g B q

p(Co
B,(&) 0
+ / A7 o0, X0) = A0+ polé — £, ) sup Xl d¢
B, (&) o)
[ ARG @ €. X — A3 . X sup Xl de
B,(&) Byl&)
+ / (@lp" P +bluf +o)l| d
B,(&)
=0 +II' +III" + IV,

Using (H1) and the estimate (1.6) yields (Note that m — 2<0)
1
0/

1 # 9 7»12—2
<C / /{(l—klpoIZ) +(1+|po+9(Xu—p0)\ ) ]
B \0

1.1
7t

54 I'< / dt

B, (&)

A?pi (o, %0, Do) *A?pf (o, uo, po +0Xu —po)) | X — poldé
R R

1

2

1

m=2 2
x {(1+p0|2+|p0+0(Xu—p0)2) " o|pol. |H(Xu—pg)|)} dt}|Xu—p0|dé

m—2
< [ (1+ i ixuf) T ok(pol, o poDlu - pojdg
B,(&)

<C [ (11— gl = poled(pol, X0 — pod.
B,(&)
Let
(5.5) By =: B,(&) N {|Xu—po| <1}, Bo=: B,(&) N {|Xu — po| > 1}.
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Then it follows that by first Hoélder’s inequality and then Jensen’s in-
equality

66 I'<C / X — poled([pol, [ Xuu — pol)dé
By

+C / X0 — pol*ak(pol, 1K — pol)dé
By

1 1
2 2

<c / X0 — pof2dé / o(|pol. 1Xu — pol)dé
B B,(&)

2 2

e / X — pol"dé / o(|pol, 1Xu — pol)dé
By

B,(&)

1

2 2

<c / V) — Vipo) e / o(lpol, [Xu — pol)dé
B, (&) B,(&)

2

LC / V) — Vpo) P / o|pol, |Xu — pol)dé
B,(&) B, (&)

Dol—

< 201B,@), | [B, @) / VXu) — Vipo) Pdé

B,(%o)

1B @lg [ ool X - poa
B, (&)

< C|B, ()|, 920, p, po)est (m, <|Bp<éo>\01 / | Xu — p02d5>
By

1

+<|Bﬁ(éo>y(; / Xu—polmdf) )
By
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< CIB, (&)l P* (&, p. po)ect (|po|, QBp(fo)}Gl / V(Xu)— V(po>|2dé> )

B,(&)
= C|B,(&)| oo, . o) Ipol, P40, p, o))
where we have used the estimates (2.11) and (2.12).
By employing (H3), the estimates (2.11) and (2.12), Young’s inequality,

and noting the fact that K( - ) monotone nondecreasing and K(-) > 1 and
that p < 1, we deduce

< / KC)p/( + [po™(1 + [Xul)bdé

B, (o)
= / K()p' (L + IpolY [(1 + Ipo)? + [Xu — po\%} dé
B,(%o)
GN)) SEC)p'(L+ [pol) ™2 1B,(Eo) g+ / K()p'(L + |po|) | Xu — po|2dé

B1+B>
< KPP [pol 4By + K + o IBoG)

KA+ ol 7B, G0+ / (X pol™de + / X0 poffdé
Bg Bl

12
< |By(E0)| g @(Gos p, po) + 8K+ Ipo)* | [By(&)| g "

Similarly to (4.19) to estimate /1I’, the domain B,(&) is divided into four
parts as previously mentioned. Then we obtain that by Lemma 3(6) and
Lemma 3.1

Ir < / K( )+ [Xu#|o]'dé

By (&)

2
< C(e,m, M) / .V(”) de + / VXu) — Vipo) e
p
(5.8) B, (&) B,(&)

2m

+ 00K+ o))" ]G
< Ce,m, Cp, MYB(0, p, po)| B,(E0)]

2m
m

+C@ K+ pol)? ] 7B,
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With the help of the assumptions that sup |p| < p <1, using Hélder’s in-
B, (&)
equality, Sobolev type inequality and Young’s inequality, we get

(69 IV <C / (1™ Pl +1) gl

B,(&)
(1L r—1
<C / X || g|dE + C / lu —uo — po(& — &)| |pldé
B,(&) B, (&)
+ Cp|By(E0)| [1 + (ol + lppol) ]
a-h L

<C / |\ Xu|"dé / |p|"d&

B, (&) B,(&)

+Cp|By&)| [1+ (ol + [pol)" |

a-h i
vel [ - e - cpla: | torae
B,(&) B,(&)
a-h 1
<c / (X — pol™+po|™)dé / o[ de
B,(&) B, (&)
=t
e / 1Xe — po|"dé / ol dé
B,(&)) B, (&)
+ Cp|ByE0)| [+ (ol + ool
el !
<cl [ wu-pitae] | [ e
B,(&) B,(&)

r=1 L
v v

e [ mrae| | [ ras

B,(&) B, (&)
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r—1 1
m I

+c / Xt — pol™de / ol dé

B, (&) B, (&)

+ Cp|B (G| [1+ (ol + Ipol)" ]

r—1

G r

<c / X0 — pol"de / ol"de

B,(&) B, (&)
+Cp|B,(&)| [1 + (Juol + |100|)T71+|p0\m<1_%)}
<c [ Wu-ppazec [ loldc+ColB, )
B, (&) B,(&)
' [1 + (Jueo| + IPOI)HHPOIMH)}
<C [ xu- s Cp|B,Gol + ColB,)
B, (&)
|1+ (ol + o)™ +pol
On the case By =: B,(&) N {|Xu — po| < 1}, by (2.11) and Young’s in-
equality, one gets
X — po|™< |Xu — pol*+1 < |V (Xu) — V(po) +1,
and then
(5.10)  (5.9) < Cp|B,E)| (1 + fato] + Ipol)"™"+(1 + [ato] + Ipol)"
+C|Bp(60)|¢(é()apap0)

On the other hand, on By =: B,(&) N {|Xu — po| > 1}, by (2.12) and
Young’s inequality, one has

(5.11) (5.9)SCp‘B/)(fO)‘[(1+|uO|+‘p0|)r—1+(1+|u0|+|p0|)m}
+ C|B,(&)| P&, p, po).

Thus we infer that by combining these estimates and noting the defi-
nition of F(7)

(3.12) IV < CBE, p, po)|B,(E0)| +CF (o] + [po)| B, (E0)] o
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Now, we can get (5.1) immediately by combining estimates I’, II’, I1I'
and IV’ with (5.3).

We next establish an initial excess-improvement estimate, assuming
that the excess @ is initially small enough. Precisely,

SECOND STEP (Excess-improvement). Consider a weak solution
uw e HW"(Q, RN ) satisfying the condition of Theorem 1. Then we claim
that for a fixed y € (0, 1), there exist positive1 constants C7,Cg and o sat-
isfying conditions in Lemma 8, and 6 € (0,-), such that the smallness
conditions hold for some p € (0, py1:

52
(5.13) o| X, |, Pio, p, X)) < 7.
(5.14) D&, p, Xu)e, ,) < min l ;—45—21{2,72?
‘ O Pt = 16’ 8CZC2C(m, M) o

where C(m, M) is a positive constant defined in Lemma 3 (6), and
(5.15) 2070 Hi=1(1 + |(Xu)z, ,|) < 0/2.

Then three inequalities above imply the following growth condition
(5.16) DG, Op, (Xu)z, ) < 07| @Gy, p, (X)) + Cop? Hi ™ |
where Hy = H(1 + My).

Proor. Paying attention to properties of w(s,t) in (1.6), we choose a
suitable ¢y > 0 satisfying

5 1 L M209(1 — )
5.17 to <min{ —, —————— — 40 “HZp?, 1 —— —~
G0 s mm{le’ 8C2CZC(m, M) o7 2 !
such that

52
1 <—.

(5.18) oMy, tp) < 16
Moreover, let us pick p, > 0 such that pg}’ < to 5—5 Which ensures
that (ACs + CHHy™™

(5.19) 20y Hi™ < 8/2, 2Csp Hy™ < to/2.
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Taking p € (0, py] to correspond with
(5.20) |(Xu)¢0’/,[ <My/2, D&, p, Xu),,)<to/2,

it follows that (5.13)-(5.15) are valid.

For simplicity, we will use the abbreviate @(p) = ®(&, p, (Xu)g, ,) in the
sequel. For ¢ > 0 to be determined later, we take 6 € (0,1) and Y € [0,1] to
be corresponding constant from the .4-harmonic approximation lemma
(Lemma 8), and set

w=u— (U, — The,20,) — (Xu)go‘p(fl - é(l))a

and

T = COon, MICsT (), T(p) =/ B(p) + 402 Hp.
Noting (5.13) and (5.14) yields

0
(5.21) o 2(|@w, | 02(0) ) + @2(p) < 5,

and by (5.1), we derive (note that the definition of 7'(p))

(5.22) ’ B,,(fo)| 51 / [Azp; (50, ug, p, (Xu) &, p)Xw} X;p"dé
B,(&)

1/2 1/2 1/2 5

_Tw (|(Xu) },cp (P) @ =(p) + D(p) + p H(|(Xu)§07/,|) sup Xl

C(m, M)I (p) B, (&)

o.p

<Y [a)l/Z (|,

0
) + 0+ | suplXo
p(Co

<Y sup |X¢|.
B, (&)

Then from the definition of Y, Lemma 3(6) and (2.10), we have

623) Bl [ Wawa:
B,(&)
< B,Gol;! / VwdE < Com, Myd(p) < Y°.
B,(&)

Inequalities (5.22) and (5.23) fulfill the conditions of .A-harmonic ap-
proximation lemma, which ensures us to find an .A-harmonic function
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h € WY(B,(&), RY) such that

2
dé < Y%,

(5:24) |By)| / IWXR)Pdé < 1, [By(&)|,; / ‘W(
B B,(&)

w—Th)

With the help of Lemma 3(3) and (6), we have

#0p) = Byl [ |Vow - v () [a:

oy
By, (&)

<ClBy@ly [ [v(xu- @,
(5.25) Byy(&o)

<ClBy@l [ V(X @), TG )| a2

By,(&)

2
+ 0|V (), ~Kuye,, — Y0, 20) |

2
d¢

L0,0p

where the constant C depends only on m, k and N.
Next, we proceed to estimate the right-hand side of (5.25). Decom-
posing By,(&y) into the set with

|XZL — (X’LL)CVO‘/, — T(Xh)(éoﬁggl,ﬂgl and that with ‘X’M - (X’I/L)éo‘/, _T(Xh)(fo-,zel)>| > 1,
then by Lemma 3 (1) and Hoélder inequality, we obtain

’(Xu) — Xu)e, , — YXh) ¢, 20

o0p

= b’Bep(foﬂGl {Xu — Xu)g, p — T(Xh)(fo,Zﬁ/))} df‘

(5.26) Bp(&o)

< Byolg [ - G, — YO0,
B, (&o)

<V2(EVE 4 BV,

where we have abbreviated

_ 2
= ’BB/)(fO)|Gl / ‘V<Xu - (Xu)fo,/’ - T(Xh)(foszf)ﬂ)) ‘ dc.
By,(&)
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Now, since |V (¢)| = V(|¢|), and V(¢) is monotone increasing in g, it fol-
lows that from (5.25), and Lemma 3(1) and (2)

G20 PO <C (E +VAEV? 4 El/’")) < C(E + 52/’"),

where the constant C depends only on m, @ and N. Then it remains for us to
estimate Z. By considering the cases |Xk| < 1 and |Xh| > 1, separately and
keeping in mind (5.24), we get

Bl [ il <2ve
B,(&)
where we have used Lemma 3(1).

Noting the assumption ’(Xu) éw,‘ < My, 0 €(0,1/4), (5.14) and Lemma
7, we deduce

(), | + Y| KB, 20| <My + T sup ||
B,2(&)

<M+ TCB G [ xnia:

B, (%)

(5.28)

<M; +2\/§TC()
<M;+1.

Caccioppoli type inequality applied on By,(¢)) yields
(529) = S Cc [|B29/)(60)|51
Bag,(&o)

w— gy — ((Xn), ,+ TR, 20 ) € =€)
v 20p

2
dé+U

where

U= [K (|uéo.p |+ ‘ (Xu)e, , + XX, 200 D(l + ’(Xu)éo,p+T(Xh)(éo,29p) Dm/z} G(ZHP)zy

m‘rgl(l_%)
+ B0y / (1Xu|™ +[u|"+1)dE

B, (&)
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By lemma 3(3), one gets

2
w— g, — (Xu)e +YXR)¢, 20 ) (E — &)
(5.30 V( G (( )go,p%p & ,zem) 0 ) ‘ g
By, (&o)
u— (g, — The20,) — (Xu),, (& — &) — TR\ [
20p
< 174 d
- / Th(E) — The, 20, — YXh)e, 20(E — &) :
Bagy(&o) + 20/)
2
<c / (‘V (w - Th@) i V(T (&) — ey 20p — X, 200 — fé>> ‘ ) ad .
20p 20p
Bagy (&)

To estimate the right-hand side we employ (2.10), Lemma 3(2) (note that
1 > 1) and (5.24) to infer

20 =
~ w— ThE\ |
ol [ (%)

B3, (&)

- Th
< C‘Bzop(fO)|Gl )W(WTP(@>
Bz, (&o)

5.31 _ T
(6:30) <C@O9B,&)|, 'W(prh@)
B,(&)

<@ 2B ¢, / ‘W(

B,(%o)

¢

d¢

d¢

2
w— Th(é)) de

p

<0227,
Using Lemma 3, lemma 7, (2.10) and (5.24) leads to

2
v (T I(E) — Iz, 29y — (XR) e, 20 — éé)) ’ 2
20p

(5.32)  [BuyCo)lg
B, (&p)

-1
< T%|Bag, (&)
By, (&p)

2
v (h@ sy~ € éé>> ‘ i
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gC'(Zébo)z“fz]Bzep(«fo)E;1 / ’V(X%)]zdé

By, (&)

< C@OpYY2 sup |X20[*
Bﬂ/z(éo)

< C@OPY?|B,(E)|, / |(Xh)[Pdé

B, (%o)

<cerrriB @l [ wam
B,(&)
< CHPY2.

Using the smallness condition Y(Xh)¢, 29 < 2v2CyY <1 and the
definition of H( -) yields

{ <|%.p|+‘Xu) +T(Xh)<5020p>D (1+‘Xu) +T(Xh)<fozap>D } (20p)”

+1)(2+ |, )W] (@)

< [K(M +| @,
)

< H(|(xu),

C() WP

Applying Sobolev type inequality, and noting % (1 - %) =
Q m Q(T 1) _
Q+m(l—?) Q42 —Q+ Q( 1)>Q+2, Op<1

and y € (0, 1), we have

mml(1 1>

(5.33) / (1Xu|™ -+ +1)dE
By, (&p)

m (1 _l)

m—1

< |gm /(|Xu — pol"+|pol™)d& + /|u|’"dé+ we(E0)(20p)?

Bz, (&) Bz, (&)

17:21(17}')

< gm-1 / | Xu — po|™dé

B, (o)



Holder Continuity for Sub-Elliptic Systems Under etc. 199

r—1

m—1
ﬁ _1 m”i (1_%)
+ (LB ) [oeo@p?]) [ upa
B2y, (o)
')77,y)—ll(1_%>
m ﬁ _I
< 2m=D / | Xu — po|™dé + [wg (20p) 0 (1+‘p0|m71<1 ,.>>
Bagy (&)
=
m—1
m mr—1) Q ﬁ
o[ wueprae] o+l oseon]
B3, (&)
= =
<C / | Xu — polmdf T / Xu — p0|md€
B2, (&) B3y, (&)

+ gl + [po)" Pl + |po|>’"]%<6p>Q+2y}

Assume that:
@0) D&, p,po) < 1.

Then on the case |[Xu — po| < 1, from Holder inequality, (2.11) and the
definition of H, it follows that

(5.33) < Carg@Op)* P H (1 + M),

-1 1
where we have used the fact that V—l + Ll (1 — —) =
r—1(1+@)<2(r—1) m = m = r
m—1 7 m—1"

While on the case |[Xu — po| > 1, using (2.12) together with the defini-

tion of H, we derive that

(5.33) < Cag@Op)* P HT(1 + M).

Combining all the above estimates with (5.29), and let ¢ = HQ“, we
arrive at

(5.34) 5<C [921(2 L HA 4+ M)(ZH/))Z}} :

where C; depends only on Q,N,m,M,. and Cp. For given y € (0, 1),
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Choosing 0 € (0, i) suitable such that C;6* < 6%, we easily find (note that
the definition of T)

(5.35) POp) < 07 [@(p) + CSHF (1 + M)

where the constant Cg has the same dependencies as Cr.

THIRD STEP. We claim that for every n € N,

(5.36) (X, | <M, D(0"p)<t.

It allows us to make iteration from the assertion in Second step and have

(5.37) (0" p) < 67 (; (0" p) + Cg(e“@p)Z}'H(%) .

Proor. Like in the proof of the Third step in [18], we obtain the con-
clusion, and we omit the details here.

FourTH sTEP. We claim that u € I''(Qy, {RY), where Q) C Q is an
open subset such that Haar meas (Q\Q) = 0.
Proor. We have from Third step that
D(0"p) < *ty, form e N.

Since for every p € (0, pyl, there exists a positive constant », such that

0" py<p < 0"py,

we have that for given 6 and p,,

o) =BGl [ IV pof e

B,(&)
-1
S ’B97L+1/)()(£0) G / |V(Xu - po)‘z dé
Byipy G)
S C‘Benl,o(é())|c_;1 / |V(X% - Z)())|2 dé
By, &)

2y
=CD(0"py) < CO"ty < C(Hl pﬁ) < Cp”.
0
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Noting that (5.20) is still valid for any & sufficiently close to &, there exists a
ball B,(&,) centered at &), such that for any & € B,.(&)),

(5.38) B, p) < Cp?.

Therefore we infer that V(Xu) € Ez”‘(Bp(fo), RY) with 1= Q + 2y. Using
Lemma 2 and Lemma 3 implies Xu € I'7(B,(&), RM).
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