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Fourier-Mukai Partners of Canonical Covers of Bielliptic

and Enriques Surfaces
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ABSTRACT - We prove that the canonical cover of an Enriques surface does not admit
non-trivial Fourier-Mukai partners. We also show that the canonical cover of a
bielliptic surface has at most one non-isomorphic Fourier-Mukai partner. The
first result is then applied to birational Hilbert schemes of points and the second
to birational generalised Kummer varieties.
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1. Introduction

In [11] Mukai discovered that an abelian variety A and its dual abelian

variety bA are always derived equivalent (or Fourier-Mukai partners), even

though in general they are not even birational. Since this observation a lot

of effort has been put into the investigation of possible Fourier-Mukai

partners of a given variety X. It turns out that, for example, the derived

category determines the variety if the canonical (or anti-canonical) bundle

is ample. Thus, it is natural to consider the case where the canonical bundle

is trivial or torsion. Since the derived category of an elliptic curve de-

termines the curve, the case of surfaces is the next interesting one. If the

Kodaira dimension of the surface is 0, then, as is well known, there are four

possibilities. The surface is either abelian, K3, Enriques or bielliptic.

Bridgeland and Maciocia proved in [3] that an Enriques or a bielliptic
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surface does not admit non-isomorphic Fourier-Mukai partners. In the

other two cases quite a lot is known, see, for example, [6], [18] and [5]. Since

the derived category often reflects geometry, it is interesting to ask what

the relationship between the number of FM-partners of a variety and its

canonical cover is. In this note we work in dimension 2 and prove the fol-

lowing result (see Propositions 3.1 and 4.3).

THEOREM 1.1. If X is a K3 surface which covers an Enriques surface,

then any surface derived equivalent to X is isomorphic to X. If A is an

abelian surface which is the canonical cover of a bielliptic surface, then the

only non-trivial Fourier-Mukai partner A can have is bA.

Thus the additional geometric information imposes restrictions on

the number of Fourier-Mukai partners. We will use the above result to

establish that birational Hilbert schemes of points on K3 surfaces as

above are automatically isomorphic, see Corollary 3.2; we also apply it to

(one class of) Enriques manifolds in Corollary 3.3. Corollary 4.5 estab-

lishes a similar result in the case of birational generalised Kummer

varieties.

The note is organised as follows: In Section 2 we recall the necessary

facts about lattices and canonical covers and describe the known formulae

for the number of Fourier-Mukai partners of a K3 resp. an abelian surface.

In Section 3 we prove the first part of the theorem and Section 4 estab-

lishes the second part.

Throughout we work over the complex numbers and functors between

derived categories are assumed to be derived.

2. Preliminaries

A lattice is a free abelian group L of finite rank endowed with a sym-

metric non-degenerate Z-valued bilinear form b. A lattice is even if for any

l 2 L the integer b(l; l) is even. An isometry between two lattices is a group

homomorphism preserving the bilinear forms. The group of self-isometries

of a lattice L will be denoted by O(L). The dual L� is the group Hom(L;Z)

endowed with the natural extension of the bilinear form on L. There is an

embedding L ,! L� given by l 7! b(ÿ; l) and L is called unimodular if the

map is an isomorphism. An example of a unimodular lattice is the hyper-

bolic plane U, which is the group Z2 endowed with the bilinear form which

on the basis e and f is given by e2 � f 2 � 0 and ef � 1. Another example is
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the unique positive definite even unimodular lattice E8, see [1, Ch. I.2]. If

L is a lattice and k 2 Z, then L(k) denotes the same abelian group with the

bilinear form multiplied by k. Given a sublattice M of a lattice L, its or-

thogonal complement M? is the group of elements l 2 L satisfying

b(m; l) � 0 for all m 2M. We call a sublattice M of a lattice L primitive if

L=M is torsion-free.

The discriminant group of the lattice L is by definition AL � L�=L.

This is a finite group of order jdet(L)j and b induces a symmetric bilinear

form bL: AL � AL ! Q=Z and a corresponding quadratic form qL: AL !
Q=2Z. A lattice L is p-elementary if AL ' (Z=pZ)a for some natural

number a.

Given a lattice L, its genus is the set G(L) of isometry classes of lattices

L0 such that (AL; qL) ' (AL0 ; qL0 ) and the signature of L0 is equal to the

signature of L.

The following result of Nikulin, see [14, Thm. 14.4.2], will be used quite

frequently in the sequel.

PROPOSITION 2.1 (Nikulin). Let T be an even indefinite nondegenerate

lattice satisfying the following conditions:

(a) rk(T) � rk(ATp
)� 2 for all prime numbers p 6� 2.

(b) if rk(T) � l(AT2
), then qT2

contains a component u(2) or v(2).

Then the homomorphism O(T)! O(AT) is surjective and the genus of

T contains only one class. Here ATp
denotes the p-component of the finite

abelian group AT, l denotes the number of generators, u(2) is the dis-

criminant group of the lattice U(2) and v(2) is described in [14].

We will frequently need the formulae for the number of Fourier-Mukai

partners of a K3 surface or an abelian surface established in [6] and [5]

respectively. Let X be a K3 or abelian surface with transcendental lattice

TX (sometimes written as T(X)) and period CvX . We define the group

GHodge :� OHodge(TX ;CvX) � g 2 O(TX) j g(CvX) � CvXf g:
It is known that the genus of a lattice with fixed rank and discriminant is a

finite set. On the other hand, given a marking W for X, i.e. a lattice iso-

morphism between H2(X;Z) and the K3 lattice L � U�3 � E8(ÿ 1)�2 (U

and E8(ÿ 1) were defined above), we can use it to define an embedding

GHodge ,! O(T), where T � W(TX). Using that the discriminant groups of a

lattice and its orthogonal complement are isomorphic, we get an action of

GHodge on O(AT? ).
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Consider a K3 surface X and set G(NS(X)) � G(L) � L1; . . . ;Lkf g. Then

the number of Fourier-Mukai partners FM(X) of X is given by

jFM(X)j �
Xk

i�1

jO(Li) n O(ALi
)=GHodgej:(2:1)

If A is an abelian surface we have a surjective morphism

j: FM(A)! Peq(T(A);U�3);B 7! iB;

so that jÿ1(iB) � B; bBn o
and where the set on the right is the set of GHodge-

equivalence classes (GHodge is defined as above) of primitive embeddings of

T(A) into U�3. We furthermore have

jPeq(T(A);U�3)j �
Xk

i�1

jO(Li) n O(ALi
)=GHodgej;(2:2)

where the Li are the lattices in the genus of NS(A).

We also need to recall the notion of canonical cover. Namely, let X be a

smooth projective variety with torsion canonical bundle vX whose order is

n. The canonical cover eX is the unique (up to isomorphism) smooth pro-

jective variety with trivial canonical bundle with an eÂtale map p: eX ! X of

degree n such that p�OeX � Lnÿ1

i�0

vi
X . Furthermore, there is a free action of

the cyclic group G � Z=nZ on eX such that the morphism p is the quotient

morphism.

3. K3 surfaces covering Enriques surfaces

Recall that an Enriques surface is a compact complex surface S of

Kodaira dimension 0 with H1(S;OS) � H2(S;OS) � 0. Any Enriques sur-

face is projective, its canonical bundle is torsion of order 2 and the cano-

nical cover of an Enriques surface is a K3 surface. Conversely, a quotient of

a K3 surface by a fixed-point free involution is an Enriques surface. Note

that we have an isomorphism Pic(S) ' H2(S;Z) obtained from the ex-

ponential sequence. Dividing out torsion we get the lattice E8(ÿ 1)�U.

Pullback to the covering K3 surface gives the lattice E :� E8(ÿ 2)�U(2),

which is often referred to as the Enriques lattice. An Enriques surface is

generic if the Picard group of the covering K3 surface is precisely E.

By general results in [12] (which are based on Proposition 2.1) we know

that a K3 surface of Picard rank � 12 does not have any Fourier-Mukai
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partners. Thus, if we consider K3 surfaces covering Enriques surfaces we

only have to consider Picard ranks 10 and 11.

PROPOSITION 3.1. Let S be an Enriques surface and let X be the

covering K3 surface. If Y is a surface such that Db(X) ' Db(Y) (this forces

Y to be a K3 surface as well), then X ' Y.

PROOF. By the Derived Torelli theorem for K3 surfaces the existence

of a derived equivalence between X and Y is equivalent to the existence of a

Hodge isometry between the transcendental lattices T(X) ' T(Y). Let us

begin with generic Enriques surfaces, that is, the Picard rank of the cov-

ering K3 is 10. It is a fact that the orthogonal lattice of E in the K3 latticeL is

isometric to E�U, see (2.9) in [13]. Now, [13, Thm. 1.4] gives that any

isometry of E�U extends to an isometry of L. By the Torelli theorem for

K3 surfaces we conclude that X ' Y .

Ohashi [16, Prop. 3.5] classified the NeÂron-Severi lattices of K3 surfaces

of Picard rank 11 covering an Enriques surface. We have the following two

series

FN :� U(2)� E8(ÿ 2)� ÿ2Nh i; N � 2;

GM :� U � E8(ÿ 2)� ÿ4Mh i; M � 1:

In the second case, the NeÂron-Severi group contains the hyperbolic plane

and hence any isometry of the transcendental lattice extends to the K3

lattice by [14, Thm. 14.4.4]. Therefore, the K3 surfaces belonging to the

second case do not have any non-trivial FM-partners. Consider the lattices

FN. It is clear that for any p 6� 2 the rank of the p-component of the dis-

criminant group is at most 1. Hence, condition (a) in Proposition 2.1 is sa-

tisfied. One also easily sees that condition (b) is satisfied as well. Equation

2.1 gives the result. p

COROLLARY 3.2. Let X and Y be two K3 surfaces covering Enriques

surfaces and assume that the Hilbert schemes of m points (m 2 N)

Hilbm(X) and Hilbm(Y) are birational. Then there exists an isomorphism

Hilbm(X) ' Hilbm(Y).

PROOF. The assumption implies that Db(X) ' Db(Y), see [19, Prop. 10].

Now apply the above proposition. p

Of course, the same argument works, for example, for Hilbert schemes

of points on K3 surfaces of Picard rank at least 12.
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We can apply this result to Enriques manifolds which were introduced

in [15]. An Enriques manifold is a connected complex manifold which is not

simply connected and whose universal cover is a hyperkaÈhler manifold. A

particular example is obtained as follows. Let S be an Enriques surface and

let X be the K3 surface covering it. For any odd n � 1 the induced action of

the group G � Z=2Z (corresponding to the involution on X) on Hilbn(X) is

free and the quotient is an Enriques manifold R with p1(R) � Z=2Z.

COROLLARY 3.3. Let R � Hilbm(X)=G and R0 � Hilbm(X 0)=G be bira-

tional Enriques manifolds, where X and X 0 cover generic Enriques

surfaces. Then there exists an isomorphism R ' R0.

PROOF. The universal covers are birational as well and the claim fol-

lows at once from the previous corollary and the observation that under our

assumption the surface X (' X 0) admits only one fixed-point free involution,

see [16, Prop. 2.2]. p

The situation changes if one also considers twisted FM-partners of a

given K3 surface X. Recall that given a K3 surface X 0 and a class a in the

Brauer group of X 0, one can consider the abelian category of a-twisted

sheaves on X 0 and its bounded derived category Db(X 0; a). A twisted FM-

partner of X is a twisted K3 surface (X 0; a) such that there is an equivalence

Db(X 0; a) ' Db(X) (see, for example, [7] for more information). We have an

explicit formula in [9] which allows us to compute the number of twisted

FM-partners FMd(X) of X for any given order d of a. If the NeÂron-Severi

lattice is 2-elementary, as is the case for the Enriques lattice, then [9, Cor.

4.5] states that there are no twisted FM-partners for d 6� 1; 2. Applying

this to a K3 surface X with Pic(X) � E, we have

FM2(X) � jOHodge(T(X)) n I2(AT(X))j;
where I2(AT(X)) is the set of isotropic elements in AT(X) of order 2. We know

that the group OHodge(T(X)) is cyclic and that its Euler function value di-

vides 12, the rank of T(X), see [6, Prop. B.1]. Thus, jOHodge(T(X))j � 42. On

the other hand, it is easily checked that I2(AT(X)) has more than 42 ele-

ments. Thus, the cover X of a generic Enriques surface has a twisted

Fourier-Mukai partner. It is to be expected that the same holds for higher

Picard numbers.

If one twists X as well, then for any natural number N there exist N

non-isomorphic algebraic K3 surfaces X1; . . . ;XN of Picard rank 20, which

can be assumed to be Kummer surfaces, and Brauer classes a1; . . . ; aN on
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these surfaces such that the twisted derived categories Db(Xi; ai) are all

derived equivalent, see [7, Prop. 8.1]. Since any Kummer surface covers an

Enriques surface by [8], we see that allowing twisting creates arbitrarily

many twisted FM-partners.

4. Abelian surfaces covering bielliptic surfaces

Recall that a bielliptic surface is a complex projective surface S of

Kodaira dimension 0 with H1(S;OS) � C and H2(S;OS) � 0. It turns out

that any such surface is a quotient of a product of two elliptic curves E� F

by the action of a finite group G. Note that we allow E and F to be iso-

morphic. The group G acts on E by translations and on F in such a manner

that F=G ' P1, so, in particular, it does not act by translations only. The

canonical bundle of S is torsion of order 2; 3; 4 or 6. In fact, there are only

the following possibilities for G and some of them include restrictions on F

(see [1, Ch. V.5]). We will write A for the canonical cover eS.

(1) The group G is cyclic of order n � 2; 3; 4 or 6. The order of G is equal

to the order of the canonical bundle of S and the canonical cover A is

isomorphic to E� F, where F has complex multiplication for

n � 3; 4 and 6.

(2) The group G is Z=3Z�Z=3Z. The curve F has complex

multiplication, the order of the canonical bundle is 3, so

A'E�F=(Z=3Z).

(3) The group G is Z=2Z�Z=2Z. Then A � E� F=(Z=2Z).

(4) The group G is Z=4Z�Z=2Z. The curve F has complex multi-

plication and A � E� F=(Z=2Z).

Note that in the cases (2) and (4) the Picard rank of eS is either 2 or 4,

depending on whether E is isogenous to F or not. Also recall that if an

abelian surface has Picard rank 4, then it is isomorphic to a product of

elliptic curves, see [22, Thm. 4.1].

We start with two preliminary lemmas.

LEMMA 4.1. Let L be the lattice U(3). Then the morphism O(L)! O(AL)

is surjective.

PROOF. It is easy to see that O(L) is isomorphic to Z=2Z�Z=2Z, the

isometries being the identity id,ÿid, the map i which interchanges the two

generators of the hyperbolic plane e and f and the compositionÿ id � i. The
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group AL is Z=3Z�Z=3Z. The bilinear form bL can be described as fol-

lows: The elements of the form (x; 0) resp. (0; x) are isotropic, bL(x; x) � 1
3 for

all x and bL(x; y) � 2
3 for x 6� y, x 6� 0; y 6� 0. The surjectivity of the cano-

nical map follows by an easy computation. p

LEMMA 4.2. The lattice U(3) is the only one in its genus.

PROOF. One can use the classification of indefinite two-dimensional

lattices as found for example in [4, Ch. 15] and check that the discriminant

forms of the other three two-dimensional lattices of determinantÿ 9 are not

isometric to the discriminant form of U(3). p

PROPOSITION 4.3. Let S be a bielliptic surface.Then the canonical

cover A of S has at most one non-trivial FM-partner, namely bA.

PROOF. Firstly, let A be an abelian surface which is isomorphic to a

product of elliptic curves. Then any Fourier-Mukai partner of A is iso-

morphic to A. Indeed, let B be a FM-partner of A. By Orlov's results in [17]

there exists a Hodge isometry T(A) ' T(B) and, since by assumption the

NeÂron-Severi group of A contains a hyperbolic plane, we can again use [14,

Thm. 14.4.4] to conclude that this isometry extends to a Hodge isometry

H2(A;Z) ' H2(B;Z). By [21, Thm. 1] this shows that A ' B (since A is self-

dual being a product of elliptic curves). In particular, the canonical cover of a

bielliptic surface does not have any non-trivial FM-partners in case (1). This

also holds in the cases (2), (3) and (4) if r(eS) � 4.

We will now deal with the cases (3) and (4) with Picard rank 2, thus A be

an abelian surface such that NS(A) is isometric to U(2). Then A has pre-

cisely one non-isomorphic Fourier-Mukai partner, namely bA. This holds

because the lattice U(2) is even, indefinite and 2-elementary. Therefore, by

Proposition 2.1 any Hodge isometry of its orthogonal complement T(A)

extends to H2(A;Z). Using [21, Thm. 1] this implies that any non-trivial

FM-partner of A is either A or bA.

The next step is to consider (3) in the case that r(eS) � 3. First note, that

NS(E� E) � U � ÿ2h i for a curve E without complex multiplication, but

we can also have E� F with F isogenous to E and in this case

NS(E� F) � U � ÿ2Nh i for some N � 1. Dividing out Z=2Z gives a lat-

tice of the form L � U(2)� ÿ4Nh i. Arguing as in the last part of the proof

of Proposition 3.1, we conclude that in this case there is also at most one

non-trivial FM-partner. Lastly, we now turn to case (2). We only have to

consider the case where E is not isogenous to F, so r(eS) � 2. The NeÂron-

210 Pawel Sosna



Severi group of E� F is generated by E� 0f g and 0f g � F with the two

generators spanning the hyperbolic plane U. It is easy to see that

NS(E� F=(Z=3Z)) � U(3). Combining Lemmas 4.1 and 4.2 with the

counting formula recalled in Section 2 concludes the proof of the

proposition. p

REMARK 4.4. Two abelian varieties A and B are derived equivalent

if and only if there exists a symplectic isomorphism A� bA ' B� bB,

see [18]. If A � E� F and B � E0 � F0 we hence have E� F � E� F '
E0 � F0 � E0 � F0. This is not sufficient to conclude that A ' B: In [20]

Shioda gives a counterexample to such a statement even in smaller di-

mensions. Namely, there exist elliptic curves C, C0 and C00 such that

C � C0 ' C � C00 but nevertheless C0 6�� C00.

The above result has the following implication.

COROLLARY 4.5. If A is an abelian surface as in the proposition and

the generalised Kummer variety Km(A) (m � 2) is birational to Km(B) for

some abelian surface B, then B is either isomorphic to A or bA.

PROOF. This follows at once, since the assumption implies that

Db(A) ' Db(B) (see the proof of [23, Prop. 3.3]). p

REMARK 4.6. Similar to the K3-case we expect the situation to become

more complicated when we consider twisted surfaces.

REMARK 4.7. An interesting question is whether any FM-partner of

an abelian surface admitting a principal polarisation also admits a principal

polarisation. This would follow from a stronger statement, namely that a

principally polarised abelian surface does not have any non-trivial FM-

partners: This is not entirely implausible by the above results for surfaces

which are products of elliptic curves and by results in [18] which state that

the statement holds in the generic case, that is, when End(A) � Z.

Namely, for a (not necessarily principally polarised) generic abelian vari-

ety A the number of FM-partners of A is equal to 2s(A), where s(A) is the

number of prime divisors of det(NS(A))=2.

REMARK 4.8. As a further example how the close geometric connection

between a bielliptic surface S and its canonical cover is reflected on the level

of derived categories one can show that, if n� 2, no object E in Db(S) is
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rigid, that is, Hom1(E;E) 6� 0 for all E, where Homi(E;E) :� Hom(E;E[i]).

In particular, spherical and exceptional objects do not exist on such a

bielliptic surface (recall that an object E in the derived category Db(X) of a

smooth projective variety X of dimension d is spherical if E
 vX ' E and

Homi(E;E) � C for i � 0; d and 0 otherwise; an object E is called excep-

tional if Hom(E;E) � C and Homi(E;E) � 0 for all i 6� 0). Indeed, the

statement is true for the covering abelian surface A by [2, Lem. 15.1].

Denoting the quotient morphism A! S by p, the statement follows from

Homi(p�E; p�E) � Homi(E; p�p�E) � Homi(E;E
 p�OeX) �

�
Mnÿ1

k�0

Homi(E;E
 vk
X):

Note that the situation is completely different for Enriques surfaces.

Indeed, any line bundle L on an Enriques surface X is an exceptional

object since Homi(L;L) � Exti(L;L) ' Exti(OX ;OX) ' Hi(X;OX). Also

note that there are no spherical objects on a generic Enriques surface (see

[10, Prop. 3.17]), but they do exist on non-generic ones.
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