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Boundary integral for the Ramachandran index
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ABSTRACT - The computation for the Ramachandran index for Galois coverings and
foliations is reduced to a solely boundary computation. This is a reminescence of
the classical theory.

MATHEMATICS SUBJECT CLASSIFICATION (2012). 19K56, 58J32.

KEYWORDS. Index theory, APS boundary value problems, coverings, foliations.

1. Introduction

Let X be a compact connected Riemannian manifold with boundary Y

and product structure near the boundary. Denote by D a compatible Dirac

operator on X, and by R a pseudo differential boundary condition. One of

the main results of the classical theory is that the L2-realization DR of the

Dirac operator D with boundary condition R is Fredholm and its index is

equal to the Fredholm index of an operator which lives solely on the

boundary. This is called the boundary integral:

RP� : H� ÿ!Range(R);

where H� is the space of Cauchy datas, i.e. the traces of smooth solutions on

the boundary and P� is a certain pseudo differential projection on H�,

called the Calderon projection. The importance of the Calderon projection

in the theory of boundary value problems can hardly be over-emphasized:

we refer the reader to the excellent monograph [4]. In particular, this ap-

plies to the case of the celebrated Atiyah-Patodi-Singer boundary condi-

tion. In this case the index of DR is called the APS index.

(*) Indirizzo dell'A.: Dipartimento di Matematica, UniversitaÁ `̀ La Sapienza'',
P.le Aldo Moro 5, 00185 Roma.
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The above result can be informally summarized as the following motto:

`̀ The APS index is a boundary computation.'', and so immediately sug-

gests the following question: `̀ Does the Ramachandran APS index for

Galois coverings and foliations also reduce to a boundary computation?".

By an adaptation of the argument in [11], we show that the answer to

this question is yes. More precisely, given a Galois covering X!X �X=G,

we exhibit two subspaces of sections on the boundary that are essentially

isomorphic as Hilbert G-modules to (and so in particular have the same G-

dimensions of) the kernel and the cokernel of the Dirac operator as con-

sidered by Ramachandran. For G the trivial group we recover that the APS

index can be expressed by a boundary computation. However, it should be

remarked that in the classical case, the known result on the APS index are

much more refined than what we are recovering here. Namely, as remarked

above, in the classical case, the boundary computation of the APS index is

expressed in terms of a pseudodifferential operator, whereas in our ap-

proach no such description is available.

2. The Dirac operator and geometrical setting

We adopt the same geometric setting as Ramachandran [11]; a com-

prehensive reference for the theory of Dirac operators we will need in the

present paper is the book by John Roe [12]. So let X be a compact manifold

with boundary @X � Y and (D;S; e) a geometric Dirac operator acting on

the sections of a graded Clifford bundle S with grading operator e. For

instance D can be the Dirac operator on a Clifford module S on an even

dimensional manifold, endowed with the canonical Z2-grading. In partic-

ular S is a Z2 graded bundle of Clifford modules on the bundle of Clifford

algebras associated to a Riemannian metric equipped with compatible

Hermitian structure and connection. This means that

� the Clifford action of vector fields on the module C1(X;S) of smooth

sections of S is odd (goes from C1(X;S�) to C1(X;Sÿ) and viceversa)

and skew-adjoint, i.e., hv � s1js2i � hs1jv � s2i � 0 for any vector field v

and sections s1 and s2 of S;

� The connectionrS on S is compatible with the Clifford multiplication

and with Levi Civita connection i.e. it is a derivation of C1(X;S) as a

Clifford module over C1(X;TX):

rS
v (w � s) � (rLC

v w)s� w � rS
v s

for any vector fields v;w and any section s of S. In the following we shall

suppress the superscripts S and LC:
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The resulting Dirac operator is odd

D� : C1(X;S�)ÿ!C1(X;S�):

We assume that all the geometric structure is product type near the

boundary. This means that there exist an open neighborhood Y � [0; 1) of

Y in X, with local coordinates (y;u), on which:

� the Riemannian metric has the form gij(y)dyi 
 dyj � du
 du;

� the Dirac operator has the special form

s � (@u 
 Id� Id
 Q)

where s � Cl(@u) is the Clifford multiplication by the vector field @u

and Q is an essentially selfadjoint Dirac operator on C1(Y ;S) com-

muting with s (Q is even).

By abuse of notation, we will simply write D � s(@u � Q) to denote the

boundary behavior of the Dirac operator.

Since the Clifford multiplication acts pointwise on the sections of S, the

operator s induces a morphism

s: C1(Y ;S�)! C1(X;S�)

between the sections of the restriction of S to Y . If we denote by

b : C1(X;S�)! C1(Y ;S�)

the restriction to the boundary, then we have the following Green-type

formula with respect to the L2-product on compactly supported sections

which are smooth up to the boundary:

hhs1jDs2iiX ÿ hhDs1js2iiX �
Z
Y

hsbs1; bs2idvolY ;

where hhÿjÿiiX is the L2-inner product on sections of S,

hhs1js2iiX �
Z
X

hs1js2idvolX :

3. The BGK expansion

If Y is a manifold with bounded geometry:

� completeness

� positive injectivity radius

� uniformly bounded curvature tensor (with all the covariant derivatives)
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one is allowed to use the so called BGK expansion (after Berezanskii,

Browder, Garding, Gel'fand and Kac), i.e. the existence of a generalized ei-

gensection expansion for the elliptic selfadjoint differential operator Q. More

precisely, there exists a sequence of measures mj on R and measurable maps

ej : R� Y ÿ!S

such that ej(l; �) is a smooth section of S over Y (for almost every l, with

respect to the meaure mj) with

Qej(l; �) � lej(l; �):
Furthermore for a section s 2 C1c (Y ;SjY ) one has the sequence of functions

on R,

(Vs)j(l) :� hhsjej(l; �)iiY �
Z
Y

hsjej(l; �)idvolY :

Each of these functions is square integrable with respect to the measure

mj, i.e., (Vs)j 2 L2(R; mj) and so V defines a linear operator C1c (Y ;SjY )!
�jL

2(R; mj) which is seen to extend to an isometry of Hilbert spaces

V : L2(Y ;SjY )ÿ!
M

j

L2(R; mj);

i.e., one has Z
Y

jsj2dvolY �
X

j

Z
R

j(Vs)jj2dmj:

Furthermore V intertwines the Borel functional calculus of Q with the

action of jointly (i.e., for any j) Borel measurable functions by multiplication

on L2(R; mj), i.e., one has

(Vf (Q)s)j � f (l)(Vs)j

for any j and

Domain( f (Q)) �
(

s :
X

j

Z
R

jf (l)j2(Vs)j(l)j2dmj(l) <1
)
:

4. Sobolev spaces of sections

It is customary to define a scale Wk(X;S) of Sobolev spaces of sections

by means of the Dirac operator D as follows: for any nonnegative integer k,

the Sobolev space Wk(X;S) is defined to be the completion of C1c (X;S) with
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respect to the Sobolev norm

kskk :� ksk2
2 � kDsk2

2 � � � �kDksk2
2

� �1=2
;

where k � k2 is the L2-norm on C1c (X;S). Note that the support of a section in

C1c (X;S) may have a nonempty intersection with the boundary Y of X.

Negative order Sobolev spaces are defined by duality and are considered as

spaces of distributional sections.

One also considers the topological vector space

W1(X;S) �
\
k�0

Wk(X;S);

endowed with its canonical FreÂchet topology, and

Wÿ1(X;S) �
[
k�0

Wk(X;S)

with the weak-� topology induced by the duality with W1(X;S). It can be

shown (see, e.g., [12]) that a continuous linear operator from Wÿ1(X;S) to

W1(X;S) is represented by a smoothing kernel which is smooth up to the

corners on X� X. Moreover both the kernel and all their covariant deriv-

atives are uniformly bounded.

In an analogous way, one defines a scale of boundary Sobolev spaces by

means of the essentially selfadjoint operator Q on Y . Namely, for a non

negative integer k one defines Wk(Y ;SjY ) as the closure of C1c (Y ;S) under

the norm

ksk � kQsk2 � � � �kQksk2
� �1=2

:

One has

Wk(Y ;S) � Domain((Q�Q)k=2 : L2(Y ;SjY )! L2(Y ;SjY ));

so that one can use this identity to define fractional Sobolev spaces Wk(Y ;S)

with a real positive k. By means of the BGK expansion one sees that the

trace operator b : C1c (X;S) ÿ! C1c (Y ;SjY ) extends to a well defined

bounded operator

Wk(X;S)ÿ!Wkÿ1=2(Y ;SjY ); k 2 N:

Analogously, by using D� in place of D, one defines the spaces of sec-

tions Wk(X;S�) and Wk(Y ;S�).
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5. The APS boundary condition

We now relax the compactness assumption on X by requiring instead

that X is a cocompact Galois cover with deck transformation group G. All

the bundles and operators from the previous section will therefore be as-

sumed to be G-equivariant, while the measure on X will be assumed to be

G-invariant.

Following an idea of Roe, Ramachandran introduces the crucial concept

of selfadjoint boundary condition. It is a G-equivariant operator

B : C1c (Y ;S)ÿ!C1(Y ;S) \ L2(Y ;S)

such that

� B extends to a selfadjoint bounded operator on L2(Y ;S)

� sB� Bs � s
� if s1; s2 2 C1c (X;S) are such that Bbsi � 0 then hhDs1; s2iiX �
hhs1;Ds2iiX .

In the above formulas, s is the Clifford multiplication by the unit normal

vector to the boundary Y and b is the restriction to the boundary (see

section 2).

It is no surprise that the prototypical selfadjoint boundary condition is

the Atiyah-Patodi-Singer operator.

Let us recall its definition. The operator s of Clifford multiplication by

the unit normal vector to the boundary Y satisfies ss� � 1 and s2 � ÿ1.

Being odd, this gives

s � 0 ÿs��
s� 0

 !
:

The even operator

Q � Q� 0

0 Qÿ

 !

commutes with s, so that the operator

BAPS �
B�APS 0

0 BÿAPS

 !
�

x[0;�1)(Q�) 0

0 x(0;�1)(Qÿ)

 !
;

where xA is the characteristic function of a Borel measurable subset A of R,

satisfies the equation sBAPS � BAPSs � s. One easily checks that BAPS
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satisfies the other two properties characterizing selfadjoint boundary

conditions. Also, by the equations sBAPS � BAPSs � s and ss� � 1, we get

sBAPSs
� � 1ÿ BAPS, i.e., the relation

1ÿ s�B�APSs
�
� � BÿAPS;(5:1)

which will play a crucial role in our proof of the boundary behavior of Ra-

machandran G-index.

For k a positive integer, let Wk
APS(X;S) �Wk(X;S) be the subspace of

sections satisfying the A.P.S. boundary condition:

Wk(X;S)APS :� fs 2Wk(X;S) : BAPSbs � 0g:
Ramachandran proves that D acting on W1

APS(X;S) is essentially self-

adjoint.

This follows and idea of John Roe and is builded on the existence of

compatible bounded operators R(k)
1 and R(k)

2

R(k)
i : Wk(X;S)ÿ!Wk�1

APS(X;S); k 2 N

such that

DR(k)
1 ÿ 1 � r(k)

1 ; R(k)
2 Dÿ 1 � r(k)

2

where the r(k)
i are smoothing operators. To be precise, to say that D acting

on W1
APS(X;S) is essentially selfadjoint means that its minimal domain is

W1
APS(X;S) and that on this domain the operator D coincides with its adjoint

as unbounded operator on a Hilbert space. The operators R(k)
i are shown to

exist by a standard technique of gluing an interior parametric with a

boundary one. The regularizing properties of this parametrix also imply

that the domain of Dk is contained in Wk(X;S). Moreover, by the spectral

theorem, if f is a rapidly decreasing Borel function on R, then

f (D) : Wÿk1 (X;S)ÿ!Wk2 (X;S)

for every pair of nonnegative integers k1 and k2 and therefore f (D) is re-

presented by a smooth kernel. There is probably no need to recall that the

fundamental example of this phenomenon is the smoothing operator given

by the heat operator eÿtD2

, playing a crucial role in the classical APS formula.

By building a parametrix for the initial boundary value problem on the

cylinder [0;1)� Y , Ramachandran is able to exhibit a 1-parameter family

of operators E(t) mapping Wÿk1 (X;S) into Wk2 (X;S) for every couple of

nonnegative integers k1 and k2, and such that for k1; k2 > 0 the difference

eÿtD2 ÿ E(t) : Wÿk1 (X;S)ÿ!Wk2 (X;S)
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satisfies

keÿtD2 ÿ E(t)k � Cta; 0 � t � 1;

for some C; a > 0. Here the norm on the left is the operator norm in the

space of bounded operators between Wÿk1 (X;S) and Wk2 (X;S). This result

is a direct consequence of the Duhamel principle.

Finally, note that since the APS boundary condition is an even op-

erator, it is meaningful to consider the spaces of boundary conditions

Wk(X;S�)APS defined by

Wk
APS � fs 2 Wp(X;S�) : B�APSbs � 0g:

Also, one considers the L2-realization of the operator D� with boundary

condition B�APS. They are the operators

D�x[0;�1)(Q�) : W1(X;S�)APSÿ!L2(X;Sÿ)

and

Dÿx(0;�1)(Qÿ) : W1(X;Sÿ)APSÿ!L2(X;S�)

defined as the restrictions of D� to the subspaces W1(X;S�)APS.

The argument used by Ramachandran in [11, Theorem 4.1] shows that

D�x[0;�1)(Q�) is closed, and that its Hilbert space adjoint is Dÿx(0;�1)(Qÿ) . More

precisely, Ramachandran's argument shows that the adjoint of D� is the

operator Dÿ with the adjoint boundary condition s�(1ÿ B�APS)s��. But, by

equation (5.1), this is precisely the boundary condition BÿAPS.

6. The finite dimensionality of the Breuer Fredholm index

We recall the setting. Here Xÿ!X=G is a regular covering of a com-

pact manifold with boundary X=G. In particular the action of G a discrete

group is free and cocompact and the deck transformation group is exactly

G. This is the same of G principal bundle. Since S is a G-equivariant bundle,

we have a natural induced linear action of G on the space of sections

L2(X; S). Denote by EndGL2(X; S) the normed algebra of all bounded op-

erators on L2(X; S) commuting with the G-action. It is a semifinite von

Neumann algebra equipped with a semifinite trace TrG : This is easily seen

choosing a fundamental domainD. The L2 space of section decomposes as a

Hilbert space tensor product L2(D)
 l2(G) with the G-action given by the

left regular representation. Correspondingly one can identify the relevant

von Neumann algebra with B(L2(D))
 vn(G) where vn(G) is the von
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Neumann algebra of the discrete group G which is manifestly semifinite.

The trace trG is given by the evaluation of the coefficient in the identity of

G in the representation of the elements of l2(G) as sequencesX
g2G

ag � g; ag 2 C:

It follows that B(L2(D))
 vn(G) is also semifinite with the trace identified

with
trB(L2(D) 
 trG :

We shall need the notion of Breuer-Fredholm operator. So let M be a Von

Neumann agebra with a trace t : M� ÿ! [0;1] one has a natural notion of

dimension of a closed subspace affiliated to M, i.e. a subspace V whose

projection PrV belongs to M. This is by definition the relative dimension

t(PrV ). Relative dimension is the cornerstone of a theory of Fredholm

operators inside M: This story goes back to the seminal work of Breuer [5,

6]. For this reason relatively Fredholm operators are called Breuer-

Fredholm. A Breuer-Fredholm operator has a finite real index with some

stability properties as in the classical theory. More precisely an operator

T affiliated to M (this means that T can also be unbounded but all its

spectral projections belong to M) is called Breuer-Fredholm if the pro-

jection to the kernel of T is finite relatively to M and the range contains

the range of a cofinite projection. All of this fits in the setting of Hilbert

modules over a von Neumann algebra [7, 13]. In the specific setting of a

von Neumann algebra of a discrete group these are pre-Hilbert spaces H

together with a unitary action of G. Furthermore there is a technical but

simple condition of projectivity which is automatically satisfied in our

situation. Using the von Neumann algebra of G a suitable notion of

(renormalized) real valued additive dimension of G-Hilbert modules is

well defined. In particular if H1 and H2 are G-Hilbert modules that are

essentially isomorphic i.e. there exists a bounded equivariant map

f : H1ÿ!H2 with dense range they have the same dimension [13]. Indeed

the unitary appearing in the polar decomposition of f gives an iso-

morphism of Hilbert modules. We shall select a subalgebra U of

EndGL2(X; S) where the trace is finite. We say that a bounded G-equi-

variant endomorphism A of L2(X; S) belongs to U if

� A has a smooth integral kernel k, i.e., there exist a G-equivariant

smooth section of the vector bundle Hom(p�2S; p�1S) on X � X such

that

A � p1� � k � p�2;
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i.e., there exist k(x; y) 2 Hom(Sy;Sx) smoothly depending on x and y,

such that k(gx; gy) � g k(x; y)gÿ1 and

(As)(x) �
Z
X

k(x; y)s(y)dy; s 2 L2(X;S);

� k is fibrewise uniformly bounded in the L2-norm, i.e. there exists a

constant C
R
X

kk(x; y)k2dy < C and
R
X

kk(x; y)k2dx < C for all x; y 2 X;

� k is smoothing, i.e., the maps sy 7! k(�; y)sy and sx 7! hsxjk(x; �)i are

smooth maps from the total space of the bundle S to L2(X;S).

It is not difficult to show that U is an algebra, see [12, Lemma 15.2] and it is

contained in the von Neumann algebra by definition because it is made of

operators commuting with G. Since k(x; x)2End(Sx), taking its trace we

get a smooth real valued function on X; moreover, since k is G-equivariant

and the the trace of an endomorphism depends only on its conjugacy class,

x 7! trk(x; x) descends to a smooth function on the compact manifold X=G.

One then finds that the G-trace of an element A of U is given by

TrG(A) �
Z

X=G

tr k(x; x)dx:

In particular, TrG(A) < �1 for any A in U. Also notice that, if both A1 and

A2 lie in the subalgebra U , then

TrG(A1A2) � TrG(A2A1):

One says that a closed subspace H � L2(X;S) is G-finite dimensional if

the ortogonal projection on H has finite G-trace. When this happens one

defines

dimG(H) :� TrG(PH):

In particular, H is G-finite dimensional whenever PG lies in U. A remark-

able instance of this is the following: since the Dirac operator D is G-

equivariant, for every rapidly decreasing Borel function f on R the op-

erator f (D) is an element of U, and so in particular the projections on the

kernels of D� and Dÿ are in U. It follows that the G-index of D is finite:

indG(D) :� dimG(Ker D�)ÿ dimG(Ker Dÿ) < �1:
Since S is Z2-graded, so are the spaces of sections L2(X;S) and the algebra

of operators EndGL2(X; S), and the notion of G-trace immediately gen-
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eralizes to the notion of G-supertrace. Denoting by e : L2(X; S)! L2(X; S)

the Z2-grading operator, the operator eeÿtD2

interpolates between e and the

operator

PKer (D�) 0

0 PKer (Dÿ)

 !

Moreover, the G-supertrace of eeÿtD2

is independent of t > 0, and one

finds the McKean-Singer formula

indG(D) � StrG(eeÿtD2

); 8t > 0:

By computing the limit for t! 0 of the right hand side, Ramachandran

finds

indG(D) �
Z
X

ch(sD)Td(X)ÿ hG(0)� dimGKer (Q�)

2

where sD is the principal symbol of the Dirac operator and

hG(0) :� 1���
p
p

Z1
0

TrG(Q�eÿtQ2
� )dt

is the Ramachandran G-eta invariant. Notice that if G is the trivial group,

the Ramachandran G-index formula reduces to the classical APS index

formula.

7. The boundary integral

To investigate the boundary behavior of the Dirac operator D it is

convenient to recall that on a collar Y � [0; 1) the Clifford bundle S is

equipped with an isomorphism to the pullback bundle of the restriction S
��
Y

along the projection Y � [0; 1)! Y . Via this isomorphism, the unit normal

vector field @u on the boundary and the Clifford multiplication s � Cl(@u)

act on the smooth sections of S on the collar. Moreover, the action of @u and

s on C1(Y � [0; 1);S) commute, since

rS
@u

(ss) � rS
@u

(@u � s) � rLC
@u

(@u) � s� @u � rS
@u

(s) � srS
@u

(s):

In the above equation, the fact that the metric on the collar has the form

gij(y)dyi 
 dyj � du
 du has been used to get rLC
@u

(@u) � 0. Also, the
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Clifford multiplication s gives isomorphism

s� : S�
��
Y
ÿ!S�

��
Y

;

thus, we have induced isomorphisms Id� s� : S�
��
Y
� S�

��
Y
! S

��
Y

and

Id� sÿ : S
��
Y
! S�

��
Y
� S�

��
Y
! S

��
Y

. With these isomorphisms in mind,

the Dirac operator near the boundary can be rewritten as

(Id� sÿ)D(Id� s�) : C1(Y � [0; 1);S�
��
Y
� S�

��
Y

)ÿ!
C1(Y � [0; 1);S�

��
Y
� S�

��
Y

):

Since D � s(@u � Q) on the collar, this is precisely the operator

0 ÿ@u � Q�
@u � Q� 0

 !
;(7:1)

while the boundary condition BAPS is turned into the boundary condition

x[0;1)(Q�) 0

0 1ÿ x[0;1)(Q�)

 !
(7:2)

on S�
��
Y
� S�

��
Y

. In the derivation of (7.1) and (7.2), the commutation rela-

tion Qs � sQ and the identity s2 � ÿ1 have been used.

Now letH� be the closed G-sub-Hilbert module of L2(Y ;S�) defined as

the range of

x(ÿ1;0)(Q�) : L2(Y ;S�)! L2(Y ;S�);

and define a map

g� : Ker (D�x[0;�1)(Q�))ÿ!H�

simply by restriction to the boundary. By the well known unique con-

tinuation property of the Dirac operator [4], a solution j of the equation

D�j � 0 that vanishes on the boundary (ghost solution) must vanish on the

whole of X; thus restriction to the boundary gives a continuos injection of

Ker (D�x[0;�1)(Q�)) into H.

By the spectral Browder-Garding resolution one can represent j in the

form

j � eÿluz0
j (l)

where z0
j (l) � 0 for l > 0 (it follows from the boundary condition), note that

there are more conditions on the boundary values z0
j (l) in fact, being in L2
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just means

X
j

Z1

0

Z0

ÿ1
eÿ2lujz0

j (l)j2dmj(l)du(Lebesgue) <1:

Moreover we know that the boundary values are smooth. Then we simply

define the continuous trace map

jÿ! (x(ÿ1;0)z
0
j (l))j:(7:3)

Denoting byH� the closure of the range of g� then g� becomes an essential

isomorphism of G Hilbert modules, so

dimG Ker (D�) � dimGH�:
This is a well known fact about Hilbert G modules: if f is an essential iso-

morphism (i.e. injective with range dense) then the isometry appearing in

the polar decomposition of f preserves the G dimension of the modules.

Doing the same for the kernel of Dÿ defines gÿ and Hÿ and

dimG Ker (Dÿ) � dimGHÿ:
So we have reduced the Ramachandran index to a boundary computation.

Note thatH� andHÿ are ortoghonal as happens in the classical theory. We

can call H� �? Hÿ the space boundary values.

REMARK 7.1. Everything works in exactly the same way for the Ra-

machandran index for a foliation transverse to the boundary equipped with

a holonomy invariant transverse measure n. In this case one obtains a Borel

field of boundary values whose n dimension equals the dimension of the

kernel of the operator. We briefly describe the situation. Let X a compact

manifold with boundary endowed with an even dimensional foliation F
which is transverse to the boundary. Assume that the foliation is given with

all the geometric datas needed to define a longitudinal generalized Dirac

operator DF acting on a leafwise Clifford bundle S. In [11] it is shown how

to setup a leafwise generalized APS boundary value problem by imposing a

Borel field of selfadjoint APS conditions. The realization of the corre-

sponding operator is then Breuer-Fredholm in the von Neumann algebra

of the foliation and an index formula is given. The trace map (7.3) can be

defined leafwise for every leaf of the foliation with values on the spaces of

section of the bundle on the foliation induced on the boundary. The von

Neumann algebra of the foliation on the boundary embeds as a corner in

the von Neumann algebra of the whole foliation hence the trace can be
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computed by a boundary computation measuring the n-dimensions of the

spaces of the cauchy datas again.
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