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ABSTRACT - Inspired by the recent work of Chen-StieÂnon-Xu on Atiyah classes
associated to inclusions of Lie algebroids, we give a very simple criterium (in
terms of those classes) for relative PoincareÂ-Birkhoff-Witt type results to
hold. The tools we use (e.g. the first infinitesimal neighbourhood Lie alge-
broid) are straightforward generalizations of the ones previously developped
by CaÆldaÆraru, Tu and the author for Lie algebra inclusions.
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1. Introduction

1.1 ± General context

This paper is part of a more general project which aims at building a

dictionnary between Lie theory and algebraic geometry.

In [1] Arinkin and CaÆldaÆraru provide a necessary and sufficient con-

dition for the Ext-algebra of a closed subvariety X (a `̀ brane'') of an al-

gebraic variety Y to be isomorphic, as an object of the derived category of

X, to S(N[ÿ 1]), where N is the normal bundle of X into Y ; the condition is

that N can be lifted to the first infinitesimal neighbourhood X (1). This

condition is equivalent to the vanishing of a certain class in Ext2
OX

(N
2;N).

This result has been translated into Lie theory in [4] by CaÆldaÆraru, Tu

and the author as follows. For an inclusion of Lie algebras h � g, we gave a

necessary and sufficient condition for U(g)=U(g)h to be isomorphic, as an

h-module, to S(g=h); the condition is that the quotient module n � g=h
extends to a Lie algebra h(1) `̀ sitting in between'' h and g. Similarly, this

condition is equivalent to the vanishing of a certain class in Ext1
h(n
2;n).

It is Kapranov who observed in [9] that the shifted tangent bundle

TX[ÿ 1] of an algebraic variety X is a Lie algebra object in the derived

category of X, with Lie bracket being given by the Atiyah class of

TX[ÿ 1]. Moreover, any object of the derived category becomes a re-

presentation of this Lie algebra via its own Atiyah class. In the case of a

closed embedding i : X ,!Y we then get an inclusion of Lie algebras

objects TX[ÿ 1] � i�TY [ÿ 1], so that the main result of [1] can be de-

duced, in principle, from a version of the main result of [4] that would hold

in a triangulated category. We refer to the introduction of [4] and to [3]

for more details on this striking analogy.
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In [5] we have exhibited a Lie algebroid structure on the shifted normal

bundle N[ÿ 1] of a closed embedding X ,!Y . Extending the results of [4]

to the Lie algebroid setting then seems quite natural, especially if one

wants to understand the geometry of a sequence of closed embeddings

X ,!Y ,!Z.

1.2 ± Description of the main results

For simplicity of exposition we assume in this introduction that k is a

field of characteristic zero. We let X be a topological space equipped with a

sheaf of k-algebras R, and A � L be an inclusion of sheaves of Lie al-

gebroids overR (we refer to Section 2 for standard Definitions), which are

locally free as R-modules. The locally free R-module L=A turns out to be

naturally equipped with an action of A (see § 3.1), also-known-as a flat A-

connection.

In [7] Chen, StieÂnon and Xu introduce a very interesting class

aE 2 Ext1
A
ÿ
(L=A)
R E; E

�
, for any A-module E, which is the obstruction to

the existence of a lift of the flat A-connection on E to a possibly non-flat L-

connection. They define this class in geometric terms, while we provide in

this paper a purely algebraic description of aE (see § 3.2) which makes

sense in a wider context.

Inspired by a previous work [4] of the author with CaÆldaÆraru and Tu we

also introduce a new Lie algebroid A(1), called the first infinitesimal

neighbourhood Lie algebroid, which fits in between A and L in the sense

that we have a sequence of Lie algebroid morphisms Aÿ!A(1)ÿ! L.

We then prove the following result, which generalizes [4, Theorem 1.3]:

THEOREM 1.1. The following statements are equivalent:

(1) The class aL=A vanishes.

(2) The A-module structure on L=A lifts to an A(1)-module structure.

(3) U(L)=U(L)A is isomorphic, as a filtered A-module, to SR(L=A).

Here S and U denote the symmetric and the universal enveloping al-

gebra, respectively.

We can also prove a more general version of the above result for A-

modules other than 1A (compare with [4, Theorem 5.1]):

THEOREM 1.2. Let E be an A-module which is locally free as an R-

module. Then the following statements are equivalent:
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(1) The classes aL=A and aE vanish.

(2) TheA-module structures onL=A andE lift to A(1)-module structures.

(3) U(L)
U(A) E is isomorphic, asa filteredA-module, toSR(L=A)
R E.

1.3 ± Plan of the paper

We start with some recollection about Lie algebroids in Section 2:

e.g. we recall definitions and basic properties of the universal enveloping

algebra, the de Rham (or Chevalley-Eilenberg) complex and jets of a

given Lie algebroid, as well as the construction of free Lie algebroids. In

Section 3 we introduce natural objects associated to an inclusion of Lie

algebroids: the associated quotient module, the Chen-StieÂnon-Xu class

[7], and the first infinitesimal neighbourhood Lie algebroid. We also in-

terprete the Chen-StieÂnon-Xu class as the obstruction to extend modules

to the first infinitesimal neighbourhood. Section 4 and 5 are the heart of

the paper: the fourth Section is devoted to the statement and the proof of

a PBW type theorem for inclusions into first infinitesimal neighbour-

hoods, from which we deduce the general case in the fifth Section. We

then extend the previous results to general modules in Section 6 (this

Section is to Sections 4 and 5 what Theorem 1.2 is to Theorem 1.1). We

finally sheafify everything and prove the two Theorems of the In-

troduction in the last Section. We end the paper with an appendix where

we prove that two classes coincide.

1.4 ± Notation and conventions

Unless otherwise specified k is a commutative ring, all algebraic

structures we consider are defined over k, and all filtrations are ascending,

indexed by non-negative integers. By an n-filtered morphism we mean a

morphism that raises the filtration degree by n. A filtered morphism (a-k-

a morphism of filtered objects) is a 0-filtered morphism.

We now describe our conventions regarding tensor products. For a

commutative ring R, we write
R for the tensor product of left R-modules.

As there is no ambiguity we define 
 :� 
k. For a (possibly non-

commutative) ring B, we denote by

B

the tensor product between right and

left B-modules.

For a left R-module M we denote by SR(M), resp. TR(M), the

symmetric, resp. tensor, algebra generated by M over R. Both are con-
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sidered as graded R-algebras; however, we don't require R to be central

in R-algebras. We write Sk
R(M), resp. Tk

R(M), for the k-the homogeneous

component.

2. Lie algebroids and associated structures

Let R be a commutative k-algebra and L a Lie algebroid over R, which

means that the pair (R;L) is a Lie-Rinehart algebra (see [12]). Namely, L

is a Lie k-algebra equipped with an R-module structure and an R-linear

Lie algebra map r : L! Derk(R) such that [l; rl0] � r[l; l0]� r(l)(r)l0 for

l; l0 2 L and r 2 R. The map r is called the anchor map and we usually

omit its symbol from the notation: for l 2 L and r 2 R, we write

l(r) :� r(l)(r). In particular R� L inherits the structure of a Lie k-algebra

with bracket given by [(r; l); (r0; l0)] � (l(r0)ÿ l0(r); [l; l0]), for r; r0 2 R and

l; l0 2 L.

What we discuss in this Section is relatively standard and can be found

e.g. in [12, 13, 10] and references therein (perhaps phrased in a different

way).

2.1 ± The universal enveloping algebra of a Lie algebroid

We define the enveloping algebra U(R;L) of the pair (R;L) to be the

quotient of the positive part of the universal enveloping algebra1 of the Lie

k-algebra R� L by the following relations: r 
 l � rl (r 2 R, l 2 R� L).

As there is no risk of confusion we simply write U(L) for U(R;L), which is

obviously an R-algebra via the natural map Rÿ!U(L). It therefore in-

herits an R-bimodule structure.

It turns out that U(L) is also a cocommutative coring in left R-mod-

ules2. Namely, the coproduct D : U(L)ÿ!U(L)
R U(L) is the multi-

plicative map defined on generators by D(r) � r 
 1 � 1
 r (r 2 R) and

D(l) � l
 1� 1
 l (l 2 L). The anchor map can be extended to an R-al-

(1) By this we mean the subalgebra generated by R� L (i.e. the kernel of the
natural k-augmentation).

(2) We would like to warn the reader that the multiplication is defined on
U(L)


R
U(L) while the comultiplication takes values in U(L)
R U(L), where only

the left R-module structure is used.
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gebra morphism U(L)ÿ!End(R) (actually taking values in the ring

Diff(R) of differential operators) sending r 2 R to the multiplication by r

and l 2 L to r(l). The counit e : U(L)ÿ!R is defined by e(P) :� P(1).

REMARK 2.1. The above definition of D needs some explanation. Being

the quotient of U(L)
U(L) by the right ideal generated by r 
 1ÿ 1
 r

(r 2 R), U(L)
R U(L) is not an algebra. Nevertheless, one easily sees that

r 
 1 (r 2 R) and l
 1� 1
 l (l 2 L) sit in the normalizer of that ideal, so

that multiplying them together makes perfect sense.

In what follows, left U(L)-modules are called L-modules. We say that

a given (left) R-module E is acted on by L if it is equipped with an L-

module structure of which the restriction to R gives back the original R-

action we started with. The abelian category L-mod of L-modules is

monoidal, with product being 
R (and U(L) acting on a tensor product via

the coproduct) and unit 1L being R equipped with the action given by the

anchor r.

Any morphism f : Lÿ!L0 of Lie algebroids over R automatically

induces a morphism of algebras U(L)ÿ!U(L0) which preserves all the

above algebraic structures. We denote the restriction (or pull-back)

functor L0-modÿ!L-mod by f �, and by f! :� U(L0) 

U�L�
ÿ its left adjoint.

Notice that f � is monoidal, while f! is not ( f! is only colax-monoidal).

There is a canonical filtration on U(L) obtained by assigning degree

0, resp. 1, to elements of R, resp. L. All structures we have defined so

far on U(L) respect this filtration. If, additionally, L is itself equipped

with a filtration, then this filtration extends to U(L). The canonical fil-

tration on U(L) can be seen as coming from the obvious ``constant'' fil-

tration on L (the only degree 0 element is 0 and all elements in L are of

degree � 1).

REMARK 2.2. One can alternatively describe the functor U as a left

adjoint. Namely, we consider the category of anchored algebras: they

are defined as R-algebras B equipped with an R-algebra morphism

r : Bÿ!End(R), where the R-algebra structure on End(R) is the given by

r 7ÿ! (lr : b 7! rb). There is a functor Prim from anchored algebras to Lie

algebroids that sends an anchored algebra B to the sub-R-module con-

sisting of those elements b 2 B such that r(b) 2 Der(R). We then have an

adjuntion

U : fLie algebroidsg ! fanchored algebrasg : Prim :

28 Damien Calaque



2.2 ± The de Rham complex of a Lie algebroid

To any L-module E we associate the complex of graded R-modules

C�(L;E ), consisting of HomR( ^�R L;E ) equipped with the differential d

defined as follows: for v 2 Cn(L;E ) and l0; . . . ; ln 2 L,

d(v)(l0; . . . ; ln) :�
Xn

i�0

(ÿ 1)iliv
ÿ
l0; . . . ; bli; . . . ; ln

��X
i<j

(ÿ 1)i�jv
ÿ
[li; lj]; l0; . . . ; bli; . . . ; blj; . . . ; ln

�
:

The map that associates to l 2 L the element rl 2 Endk(E ) defined by

rl(e) :� d(e)(l) is sometimes called a flat connection. It completely de-

termines both the differential d and the L-action on E.

We have the following functoriality property: for f : L! L0 a morphism

of Lie algebroids over R and W : E! F a morphism of L0-modules, we

have an obvious R-linear map f �W : C�(L0;E )ÿ!C�(L; f �F) defined by

(f �W)(v) :� W � v � f . We also have that for any two L-modules E and F,

there is a product C�(L;E )
 C�(L;F)ÿ!C�(L;E
R F). In particular,

this turns C�(L) :� C�(L; 1L) into a differential graded commutative R-

algebra.

2.3 ± Lie algebroid jets

For any L-module E we define the L-module JL(E ) of L-jets, or simply

jets, as the internal Hom HomR

ÿ
U(L);E

�
from the universal enveloping

algebra U(L) to E.

This requires some explanation. First of all observe that the

monoidal category L-mod is closed. The internal Hom of two L-modules

E and F is given by the R-module HomR(E;F) equipped with the

following L-action: for l 2 L, c : E! F and e 2 E, (l � c)(e) :� l � ÿc(e)
�ÿ

c(l � e). Then U(L) is naturally an L-module (being a left U(L)-module

over itself).

But U(L) is actually an U(L)-bimodule. Therefore, JL(E ) inherits a

second left U(L)-module structure, denoted �, which commutes with the

above one and is defined in the following way: for f 2 JL(E ) and

P;Q 2 U(L), (P � f)(Q) � f(QP). When E � 1L the two commuting L-

module structures one gets on JL :� JL(1E ) are precisely the ones

described in [6, § 4.2.5].
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REMARK 2.3. This is actually true for any U(L)-U(L0)-bimodule M: the

space HomR(M;E ) has an L-module and an L0-module structures that

commute3. In particular, the space HomL-mod(M;E ) itself is naturally an

L0-module.

2.4 ± Free Lie algebroids (after M. Kapranov)

Let us first recall from [10] that an R-module M is anchored if it is

equipped with an R-linear map r : Mÿ!Der(R), called the anchor map.

Like for Lie algebroids we usually omit the symbol r from our notation: for

m 2M and r 2 R, we write m(r) :� r(m)(r). There is an obvious forgetful

functor which goes from the category of Lie algebroids to that of anchored

modules, that forgets everything except the underlying R-module struc-

ture of the Lie algebroid and the anchor map. This functor has a left ad-

joint, denoted FR.

For any anchored R-module M we call FR(M) the free Lie alge-

broid generated by M. It can be described in the following way, as a

filtered quotient of the free Lie k-algebra FL(M) generated by M.

First of all, by adjunction r naturally extends to a Lie k-algebra

morphism FL(M)ÿ!Der(R). Then we define FR(M) as the quotient

of FL(M) by the following relations: for r 2 R, m 2 FL(M), and

m0 2 FL(M), [m; rm0]ÿ [rm;m0] � m(r)m0 �m0(r)m. These relations

being satisfied in Der(R) then r factors through FR(M). Finally, we

define an R-module structure on FR(M) in the following way:

r[m;m0] :� [m; rm0]ÿm(r)m0 � [rm;m0]�m0(r)m.

According to Remark 2.2 we then have a sequence of adjunctions

fanchored modulesg ! 
FR fLie algebroidsg ! 

U

Prim

fanchored algebrasg :

REMARK 2.4. The above sequence of adjunctions extends to filtered

versions. Unless otherwise specified, the canonical filtration we put on an

anchored module M is the `̀ constant'' one we already mentioned in § 2.1.

Then the associated graded of the induced filtration on FR(M) is the free

Lie R-algebra FLR(M) generated by M, and the associated graded of the

induced filtration on U
ÿ
FR(M)

�
is U

ÿ
FLR(M)

� � TR(M).

(3) Notice that even the two underlying R-module structures are different.
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3. Structures associated to inclusions of Lie algebroids

Let R be a commutative k-algebra and i : A ,!L an inclusion of Lie

algebroids over R.

3.1 ± The A-module L=A

It is well-known that A does not necessarily act on itself (meaning that

A is not an A-module in any natural way). In this paragraph we consider

the quotient R-module L=A and define an A-action on it in the following

way: for any a 2 A and any l 2 L, we define a � (l� A) :� [a; l]� A (when

there is no ambiguity we omit the inclusion symbol i from the notation).

The only nontrivial identity to check is that (ra)� � r(a � ):
(ra) � (l� A)� [ra; l]� A� r[a; l]ÿ l(r)a|�{z�}

2A

�A � r[a; l]� A� r
ÿ
a � (l� A)

�
:

From now and in the rest of the paper we make the following as-

sumption:

The map Lÿ!U(L) is injective. (�)

3.2 ± The extension class a (inspired by Chen-StieÂnon-Xu)

Let E be an A-module. We define a class aE 2 Ext1
A

ÿ
(L=A)
R E;E

�
,

which generalizes the one introduced in [4] for Lie algebras, via the fol-

lowing short exact sequence of A-modules:

0ÿ!Eÿ!
�

U(L) 

U�A�

E
�� 1
ÿ!L=A
R Eÿ! 0 :�1�

We have to explain why the middle term in (1) is an A-module, which is

a priori not guaranteed. Namely, even though U(L) is an A-module

(via left multiplication) its filtered pieces U(L)�k are not (because

AU(L)�k � U(L)�k�1). Nevertheless, U(L) 

U�A�

E turns out to be a

filtered A-module because of the following: for a 2 A, P 2 U(L)�k and

e 2 E,

�2� a(P
 e) � aP
 e � ÿ[a;P]� Pa
�
 e �

[a;P]
 e� P
 ae 2 (U(L) 

U�A�

E)�k :

We set a :� aL=A.
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Relation to Atiyah classes as they are defined by Chen-StieÂnon-Xu in [7]

We consider the filtered subspace JL=A(E ) of JL(E ) consisting of those

maps f : U(L)! E which are A-linear: for Q 2 U(A) and P 2 U(L),

f(QP) � Q � f(P) :�3�
According to Remark 2.3 there is a residual L-module structure on JL=A(E ):

for Q 2 U(L), we have (Q � f)(P) � f(PQ). Even though the successive

quotients Jn
L(E ) :� HomR

ÿ
U(L)�n;E

�
of JL(E ) are not U(L)-bimodules, it

turns out that their subspaces Jn
L=A(E ) inherits an A-action from the above

residual L-action. Namely, for Q 2 U(A), f 2 JL=A(E ) and P 2 U(L) we

have

(Q � f)(P) � f(PQ) � f([P;Q]� QP) � f([P;Q])� Q � ÿf(P)
�
:�4�

Therefore Q� descends to Jn
L=A(E ). We then have the following exact se-

quence of A-modules:

0ÿ!HomR(L=A;E )ÿ! J1
L=A(E )ÿ!Eÿ! 0 :�5�

This determines a class eaE 2 Ext1
A

ÿ
E;HomR(A;E )

�
, which has been

first defined in a differential geometric context by Chen-StieÂnon-Xu in

[7, § 2.5.1].

PROPOSITION 3.1. The images of the classes aE and eaE coincide in

HomD(A)

ÿ
(L=A) 
L R E;E[1]

� � HomD(A)

ÿ
E;RHomR(L=A;E)[1]

�
;

where D(A) denotes the bounded derived category of A-modules.

PROOF. See Appendix.

In particular this implies that aE � 0 if and only if eaE � 0

(which we also prove in Proposition 3.3). This is because the nat-

ural maps from Ext1
A

ÿ
(L=A) 
R E;E ) and Ext1

A

ÿ
E;HomR (L=A;E )

�
to

HomD(A)

ÿ
(L=A) 
L RE;E[1]

�
and HomD(A)

ÿ
E;RHomR(L=A;E )[1]

�
, respec-

tively, are both injective.

REMARK 3.2. It is very likely that ~aE fits into the framework of Atiyah

classes associated to dDg algebras [6, Section 8], but proving it would

require to understand deeply the Koszul-type duality between C�(L) and

U(L) (see e.g. [11] in which the two extreme cases L � Der(R) and R � k
are covered).
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3.3 ± The first infinitesimal neighbourhood Lie algebroid A(1)

Being a Lie algebroid over R, L is in particular an anchored R-module.

We can therefore consider the free Lie algebroid FR(L) over R generated

by L. Let us then consider the quotient A(1) of FR(L) by the ideal gener-

ated by4

[a; l]FR(L) ÿ [a; l]L; a 2 A; l 2 L :

Observe that it is a well-defined (Lie algebroid) ideal in FR(L) as the anchor

map of FR(L) coincides by definition with the one of L on generators. We

call A(1) the first infinitesimal neighbourhood of A (see [4], where the

geometric motivation behind such a denomination is given). We denote by j

the Lie algebroid inclusion of A into A(1). We now prove that, for an A-

module E, the classes aE and eaE both give the obstruction to lift E to an A(1)-

module:

PROPOSITION 3.3. Let E be an A-module. Then the following state-

ments are equivalent:

(1) There exists an A(1)-module E(1) such that j�
ÿ
E(1)

� � E.

(2) aE � 0.

(3) eaE � 0.

From now we omit the symbol � in formulñ. We also omit parentheses

when they are not strictly necessary (e.g. when one can use associativity).

PROOF. (1)�) (2): assume that such an A(1)-module E(1) exists. Ob-

serve that any P 2 U� 1(L) � R� L lies in U(FR(L)), and thus acts on E

through the quotient map U(FR(L))! U(A(1)). We therefore set, for any

e 2 E, s(P
 e) :� Pe. Since E � j�
ÿ
E(1)

�
then there is no ambiguity in the

way Q 2 U(A) acts on E, so that s(PQ
 e) � PQe � s(P
 Qe). Moreover,

for the same reason s is A-linear:

Qs(P
 e) � QPe � [Q;P]A(1) e� PQe � [Q;P]Le� PQe � s
ÿ
Q(P
 e)

�
:

Therefore s is a splitting of (1).

(2) �) (3): assume aE � 0. Then there exists a splitting s :�
U(L) 


U�A�
E
�� 1
ÿ!E of (1). We define a splitting es : Eÿ! J1

L=AE of (5)

(4) Observe that, contrary to what is suggested by the notation, A(1) does not
only depend on A but also on L.
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as follows: for P 2 U(L)�1 and e 2 E, es(e)(P) :� s(P
 e). We must check

two things:

� es(e) belongs to JL=A(E ), i.e. satisfies (3): if Q 2 U(A) thenes(e)(QP) � s(QP
 e) � Q
ÿ
s(P
 e)

� � Q
ÿes(e)(P)

�
:

� es is A-linear: if Q2U(A) then
ÿ
Q � es(e)

�
(P) � es(e)(PQ) � s(PQ
 e) �

s(P
 Qe) � es(Qe)(P).

(3)�) (1): finally assume we have a section s : E! JL=A(E ) of (5). Then

for any l 2 L and any e 2 E we define le :� s(e)(l). We first observe that

this defines an action of FR(L) on E:

� on the one hand if r 2 R, l 2 L, e 2 E then (rl)e � s(e)(rl) �
r
ÿ
s(e)(l)

� � r(le).

� on the other hand if r 2 R, l 2 L, e 2 E then

l(re)ÿ r(le) � s(re)(l)ÿ s(e)(rl) �ÿ
r � s(e)

�
(l)ÿ s(e)(rl) � s(e)(lr ÿ rl) � s(e)

ÿ
l(r)
� � l(r)e :

This action restricts to the one of A� FR(L): for a 2 A and e 2 E,

s(e)(a) � as(e)(1) � ae. Finally we see that it descends to an action of A(1):

for a 2 A, l 2 L and e 2 E,ÿ
[l; a]L

�
e � s(e)

ÿ
[l; a]L

� �ÿ
a � s(e)

�
(l)ÿ a

ÿ
s(e)(l)

� � ÿs(ae)
�
(l)ÿ ale � laeÿ ale � ÿ[l; a]FR(L)

�
e :

In the second equality we have used formula (4) for the A-action on JL=A(E )

and in the third one we have used A-linearity of s. p

4. PBW for the inclusion into the first infinitesimal neighbourhood

In this Section we prove a version of the main Theorem for the in-

clusion j : A ,!A(1). The proof we give follows very much and hopefully

simplifies the one of Darij Grinberg for Lie algebras (see [8]). It is very

likely that a proof using some Koszulness property in the spirit of [4]

might also exist5.

(5) But it would have required to adapt some standard but quite technical
constructions to the context of non-central R-algebras (see Remark 3.2).
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The goal of the present Section is to understand the A-module

j�j!(1A) :� U
ÿ
A(1)

� 

U�A�

1A � U
ÿ
A(1)

�
=U
ÿ
A(1)

�
A :

According to § 2.4 the free Lie algebroid FR(L) and its quotient A(1)

admit a filtration. Their universal enveloping algebras are therefore

filtered too in an obvious way. We denote these filtrations by

FkU
ÿ
FR(L)

�
and FkU

ÿ
A(1)

�
in order to distinguish them from the

standard filtrations on universal enveloping algebras. It is worth notic-

ing that the A-module structure on j�j!(1A) is compatible with the induced

filtration Fk :� Fk
ÿ

j�j!(1A)
�
: for any a 2 A and any P2 FkU

ÿ
A(1)

�
, we

have

a
�

P�U
ÿ
A(1)

�
A
�
�

aP�U
ÿ
A(1)

�
A � [a;P]�U

ÿ
A(1)

�
A � FkU

ÿ
A(1)

��U
ÿ
A(1)

�
A :

According to § 2.4 the associated graded algebra of the filtered R-al-

gebra U
ÿ
FR(L)

�
is the tensor R-algebra TR(L). The filtered R-linear

surjection j : U
ÿ
FR(L)

�! j�j!(1A) therefore induces a graded R-linear

map gr(j) : TR(L)! gr
ÿ

j�j!(1A)
�
. We shall also use the graded R-algebra

surjection p : TR(L)! TR(L=A).

THEOREM 4.1. The class a � aL=A vanishes if and only if there exists

an isomorphism of filtered A-modules W : j�j!(1A)ÿ!TR(L=A) such that

gr(W � j) � p. Moreover, when this happens one can choose W so that it is

A(1)-linear.

We devote the rest of this Section to the proof of Theorem 4.1.

4.1 ± Yet another look at the extension class a

The sequence of filtered Lie algebroids morphism6 Aÿ!A(1)ÿ!L pro-

vides us with a morphism of filtered U(A)-algebras U
ÿ
A(1)

�ÿ!U(L). It

turns out to restrict to an isomorphism (of R-modules) F1U
ÿ
A(1)

�
~ÿ!U(L)� 1

between the first filtered pieces.

(6) Here the filtration put on A, resp. L, is the constant one, so that the induced
filtration on its universal enveloping algebra is the standard one.
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Therefore we get the following isomorphism of extensions (meaning

that the diagram commutes and the lines are exact sequences), for any A-

module E:

(6)

Let us now restrict our attention to the case when E�L=A. We have a 1-

filtered A-module morphism c :U
ÿ
A(1)

� 

U�A�

(L=A)ÿ!U�
ÿ
A(1)

�
=U�

ÿ
A(1)

�
A,

where U�
ÿ
A(1)

� � ker (e) � U
ÿ
A(1)

�
=R is equipped with the induced filtra-

tion. Notice that U�
ÿ
A(1)

�
=U�

ÿ
A(1)

�
A � j�j!(1A)=F0.

We also have an identification F1=F0 � L=A so that the following dia-

gram of A-modules commutes (again, here lines are exact):

(7)

We can now prove the `̀ if'' part of Theorem 4.1.

PROPOSITION 4.2. If the filtration of j�j!(1A) splits, then a � 0.

PROOF. If the filtration of j�j!(1A) splits, then the bottom exact se-

quence in the diagram (7) splits and therefore so does the top exact se-

quence in the same diagram. It follows from the commutativity of (6) that

the class of this exact sequence is a � aL=A.

4.2 ± A filtered morphism j�j!(1A)ÿ!TR(L=A)

We now assume that a � 0, which means that the A-action on L=A can

be lifted to an A(1)-action. We therefore obtain a graded A(1)-module

structure on TR(L=A). We use the notation � for this action. For any l 2 L

and any P 2 TR(L=A) we now define l � P :� l � P��l
 P, �l being the class

of l in L=A.
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LEMMA 4.3. The operation � defines a filtered FR(L)-module structure

on TR(L=A) such that:

(i) It actually is an A(1)-module structure.

(ii) Its restriction to A is the original A-module structure on

TR(L=A).

PROOF. First of all let us prove that � determines an FR(L)-action on

TR(L=A): for r 2 R and l 2 L we obviously have (rl) � ÿ � r(l � ÿ), and for

any P 2 TR(L=A),

r(l �P)ÿ l � (rP)� rl � P� r�l
 Pÿ l � (rP)ÿ�l
 rP� rl � Pÿ l � (rP)� l(r)P:

We now prove that it turns out to be an A(1)-action: for a 2 A, l 2 L and

P 2 TR(L=A),

[a; l]FR(L) �P� a � (l � P)ÿ l� (a � P) � [a; l]A(1) � P� a � (�l
 P)ÿ�l
 (a � P)

� [a; l]L � P� (a ��l)
 P � [a; l]L � P� [a; l]L 
 P � [a; l]L � P :

Finally, the second property is obvious. p

We obtain from the above lemma a filtered morphism of A(1)-modules

W : U
ÿ
A(1)

�
=U
ÿ
A(1)

�
Aÿ!TR(L=A) ; P 7ÿ!P � 1 :

It is clear from the construction of W that gr(W � j) � p, which is surjective.

Therefore gr(W) is surjective, and thus W is surjective (because filtrations

under consideration are exhaustive).

We will now prove that W is an isomorphism. To do so we will prove that

gr(W) is an isomorphism. We start with the following:

LEMMA 4.4. The two-sided ideal hAi generated by A in TR(L) sits inside

the kernel of gr(j).

PROOF. Recall that the kernel of j : U
ÿ
FR(L)

�ÿ!U
ÿ
A(1)

�
=U
ÿ
A(1)

�
A�

j�j!(1A) is the sum of the two-sided ideal generated by [a; l]FR(L) ÿ [a; l]L

(a 2 A, l 2 L) and of the left ideal generated by A. In particular, for a 2 A,

l 2 L, P 2 FkU
ÿ
FR(L)

�
and Q 2 FlU

ÿ
FR(L)

�
, we have:

P(alÿ la)Q 2 ker (j)� Fk�l�1U
ÿ
FR(L)

�
and Pa 2 ker (j) :

Therefore the two-sided ideal generated by a
 lÿ l
 a (a 2 A, l 2 L)
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in TR(L) sits inside ker
ÿ
gr(j)

�
, as well as does the left ideal generated

by A. Together they generate the two-sided ideal generated by A

inside TR(L). p

It follows from the above lemma that gr(j) induces a surjective map

TR(L)=hAiÿ! gr
ÿ

j�j!(1A)
�

such that, when composed with the surjective

map gr(W) : gr
ÿ

j�j!(1A)
�ÿ!TR(L=A), it leads to the isomorphism

TR(L)=hAiÿ!TR(L=A). In particular, gr(W) is an isomorphism.

5. PBW for an inclusion of Lie algebroids

The goal of the present Section is to understand the A-module

i�i!(1A) :� U(L) 

U�A�

1A � U(L)=U(L)A :

According to § 3.2 i�i!(1A) turns out to be a filtered A-module. We write

Gk :� (i�i!(1A)
��k

, and borrow the notation from the previous Section.

5.1 ± What if the filtration of i�i!(1A) splits?

PROPOSITION 5.1. If the filtration of i�i!(1A) splits, then a � 0.

PROOF. We have a 1-filtered A-module morphism c : U(L) 

U�A�

(L=A)ÿ!
U�(L)=U�(L)A, where U�(L) � ker (e) � U(L)=R is equipped with the in-

duced filtration.

We then have the following commuting diagram, in which lines are

exact:

Finally, if the filtration of i�i!(1A) splits then the bottom line in the above

diagram splits too, and therefore so does the top one (of which the extension

class is precisely a � aL=A). p
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5.2 ± Description of gr
ÿ
i�i!(1A)

�
We have the following coCartesian square of filtered (res. graded)

R-modules:

We have already seen (Lemma 4.4) that the associated graded of

j : U
ÿ
FR(L)

�ÿ! j�j!(1A) descends to a surjective map TR(L)=hAiÿ!
gr
ÿ

j�j!(1A)
�
. In a completely similar way one can prove that associated

graded of the maps U
ÿ
FR(L)

�ÿ!U(L) and U
ÿ
FR(L)

�ÿ! i�i!(1A) descend

to surjective maps SR(L)ÿ! gr
ÿ
U(L))

�
and SR(L)=hAiÿ! gr

ÿ
i�i!(1A)

�
.

Let us assume that the following two properties hold:

( ? ) The surjective R-linear map SR(L)ÿ! gr
ÿ
U(L)

�
is an iso-

morphism.

( ? 0 ) The surjective R-linear map TR(L)=hAiÿ! gr
ÿ

j�j!(1A)
�

is an

isomorphism.

REMARK 5.2. Property ( ? ) is known to hold if L is a projective R-

module (see [12]). Property ( ? ) also implies Assumption (�) that we've

made from § 3.1. Thanks to the results of the previous Section, Property

( ? 0 ) follows from the assumption that a � 0.

Then coCartesianity of the diagram

(8)

ensures us that the surjective R-linear map SR(L)=hAiÿ! gr
ÿ
i�i!(1A)

�
is an

isomorphism.

5.3 ± What if a � 0?

In this paragraph we consider the following property:

(? ? ) The map TR(L=A)ÿ!SR(L=A) splits as a surjective morphism of

graded A-modules.
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Notice that the symmetrization map SR(L=A)ÿ!TR(L=A) provides a

splitting whenever Q � R. If we assume that (? ? ) and a � 0 hold, then we

have a sequence

SR(L=A) ,!TR(L=A) � j�j!(1A)!! i�i!(1A)(9)

of filtered A-module morphisms.

LEMMA 5.3. Passing to associated graded in (9) we get exactly the

surjective map SR(L)=hAiÿ! gr
ÿ
i�i!(1A)

�
that appears in § 5.2.

PROOF. It follows from the commutativity of the diagram

where the leftmost (upward) arrow is the same as the leftmost arrow in (9)

(i.e. a given splitting of TR(L=A)!!SR(L=A)). p

If we further assume that Property ( ? ) holds, then we have proved in

§ 5.2 that this map is an isomorphism (remember that a � 0 implies ( ? 0 )).
Therefore, we have:

THEOREM 5.4. Assume Properties ( ? ) and (? ? ) hold. Then a � 0

if and only if there exists an isomorphism of filtered A-modules

SR(L=A)ÿ! i�i!(1A).

6. The case of an arbitrary A-module E

Let now E be an A-module, and consider the following two A-modules:

j�j!(E ) :� U
ÿ
A(1)

� 

U�A�

E and i�i!(E ) :� U(L) 

U�A�

E :

We denote by Fn
E and Gn

E the filtration pieces on those two filtered A-

modules7. One sees that

(7) Even though the filtered pieces of U
ÿ
A(1)

�
and U(L) are not A-modules, Fn

E
and Gn

E are. Namely, for any a 2 A and any P
 e in Fn
E (resp. Gn

E),
a(P
 e) � aP
 e � ([a;P]ÿ Pa)
 e � [a;P]
 eÿ P
 ae 2 Fn

E (resp: Gn
E).
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F0
E � G0

E � E ; F1
E � G1

E �
�

U(L) 

U�A�

E
��1

;

and F1
E=F0

E � G1
E=G0

E � (L=A)
R E :

Therefore, if the filtration on either j�j!(E ) or i�i!(E ) splits then aE � 0. We

start with the following generalization of Theorem 4.1:

THEOREM 6.1. Assume that E is faithful8. Then both classes a and aE

vanish if and only if there exists an isomorphism filtered A-modules

WE : j�j!(E )ÿ!TR(L=A)
R E such that gr
ÿ
WE � jE )

�� pE .

Here jE : U
ÿ
FR(L)

�

R

E ÿ!j
idE
U
ÿ
A(1)

� 

U�A�

E and pE : TR(L)
R E ÿ!p
idE

TR(L=A)
R E.

SKETCH OF PROOF. From the above we can assume that aE � 0, which

means that the A-module E lifts to an A(1)-module E(1). This allows one to

construct a surjective filtered morphism of A(1)-modules

hE : j!(E )ÿ! j!(1A)
R E(1); P
 e 7ÿ!P � (1
 e) ;
ÿ
P2U

ÿ
A(1)

�
and e2E

�
:

It is well-defined: for any a 2 A, (Pa) � (1
 e) � P � (a
 e� 1
 ae) �
P � (1
 ae).

We now prove an analog of Proposition 4.2 in § 4.1. We have the fol-

lowing commutative diagram of A-modules in which lines are exact:

(10)

If the filtration (Fn
E)n�0 splits (in A-mod) then so does the top line in the

above diagram, and thus the bottom line splits too (this is because the

rightmost vertical arrow in (10) is surjective). Faithfulness of E ensures

that 0! F1=F0 ! F2=F0 ! F2=F1 ! 0 splits, which implies that a � 0

(see § 4.1).

(8) Here we mean that E is faithful as an R-module, which ensures that
ÿ
R E : A-mod! A-mod is faithful (because the forgetful functor A-mod!
R-mod is) and thus reflects exact sequences.
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Conversely, if we assume that a � 0 then by Theorem 4.1 we get a sur-

jective morphism of filtered A-modules WE :� (W
 idE ) � j�hE : j�j!(E )ÿ!
TR(L=A)
R E. We show it is an isomorphism by proving it on the level of

associated graded. One can see that hAi 
R E lies in the kernel of gr(jE ). To

conclude, one just observes that on associated graded the composed sur-

jection �
TR(L)=hAi

�

R E ÿ!gr(jE)

j�j!(E ) ÿ!gr(WE)
TR(L=A)
R E

coincide with the standard surjection
ÿ
TR(L)=hAi�
R E!!TR(L=A)
R E,

which is an isomorphism. p

We now generalize Theorem 5.4:

THEOREM 6.2. Assume that E is faithful and that Properties ( ? ) and

(? ? ) hold. Then a and aE both vanish if and only if there exists an iso-

morphism of filtered A-module SR(L=A)
R Eÿ! i�i!(E ).

SKETCH OF PROOF. As before we can assume that aE � 0, so that there

exists an A(1)-module E(1) such that j�E(1) � E. In particular, as we have

seen in the proof of Theorem 6.1, there exists a surjective morphism of

filtered A-modules j�hE : j�j!(E )ÿ! j�j!(1A)
R E.

We first go through the analog of Proposition 5.1 in § 5.1. We have the

following commutative diagram of A-modules in which lines are exact:

(11)

If the filtration of i�i!(E ) splits then so does the bottom line in diagram (11),

and thus the top line in the same diagram splits too. Therefore a � 0 (see

the proof of Theorem 6.1).

Let us now assume that a � 0. Then we have seen in the proof of

Theorem 6.1 that j�hE is an isomorphism of filtered A-modules.

LEMMA 6.3. gr(j�hE ) descends to an A-module isomorphism

gr
ÿ
i�i!(E )

�
~ÿ! gr

ÿ
i�i!(1A)
R E

�
.

PROOF OF THE LEMMA. We have two coCartesian diagrams of filtered

R-modules
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Passing to associated graded R-modules we get the following commutative

diagram in which squares are coCartesian:

Therefore we get an R-linear isomorphism gr
ÿ
i�i!(E )

�
~ÿ!

gr
ÿ
i�i!(1A)
R E

�
, which happens to be A-linear (this is because the

square it files is made of surjective A-linear maps). p

In particular, applying ÿ 
R E to the diagram (8) ensures that

the surjective morphism of graded R-modules SR(L=A)
R E �ÿ
SR(L)=hAi�
R E!! gr

ÿ
i�i!(E )

�
is an isomorphism. We finally have a

sequence of filtered morphisms of A-modules

SR(L=A)
R E ,!TR(L=A)
R E ÿ!W
ÿ1
E

j�j!(E )!! i�i!(E ) ;

for which one can check that the associated graded is the above iso-

morphism SR(L=A)
R E ~ÿ! gr
ÿ
i�i!(E )

�
. p

7. Proof of the main Theorems (Theorems 1.1 and 1.2) and perspectives

All what we have done so far can be sheafified. I.e. everything remains

true if we replace k by a sheaf of rings K, R by a sheaf of K-algebras R,
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i : A ,!L by an inclusion of sheaves of Lie algebroids i : A ,!L over R,

and E by an A-module E.

We now deduce Theorem 1.1 from the sheafified version of Theorem 5.4.

PROOF OF THEOREM 1.1. From now K � kX and k is a field of zero

characteristic. The equivalence between (1) and (2) is the sheafified version

of Proposition 3.3.

Assume now that L is locally free as an R-modules so that, after [12],

Property ( ? ) holds. Finally, k being of zero characteristic we can take the

symmetrization map SR(L=A)ÿ!TR(L=A) as a splitting of TR(L=A)ÿ!
SR(L=A) in A-modules. Therefore Property (? ? ) holds.

We apply (the sheafified version of) Theorem 5.4 to get the desired

result. p

Similarly, we deduce Theorem 1.2 from (the sheafified version of)

Theorem 6.2 (one just has to notice that locally free modules are faithful).

Perspectives

Let { : X ,!Y be a closed embeddings of smooth algebraic varieties. It

is shown in [5] (see also [14]) that the shifted normal bundleA�NX=Y [ÿ 1]

is a Lie algebroid object in the derived category D(kX) of sheaves of k-

modules on X. Namely, the anchor map NX=Y [ÿ 1]ÿ!TX is given by the

normal bundle exact sequence

0ÿ!TX ÿ! {�TY ÿ!NX=Y ÿ! 0

and the Lie bracket comes from the fact that NX=Y [ÿ1] is the cohomology

of the relative tangent complex TX=Y . Moreover, it is proved in [5] that the

universal enveloping algebra of this Lie algebroid is {�{!OX . According to

[1] it satisfies the PBW condition ( ? ) if and only if a certain class in

Ext2
OX ^2(NX=Y );NX=Y

ÿ �
vanishes. It can be understood as the class of the

following extention:

0ÿ!NX=Y [ÿ 1]ÿ!U�(A)� 2ÿ!S2 NX=Y [ÿ 1]
ÿ �ÿ! 0 :

Now let | : Y ,!Z be another closed embedding of smooth algebraic

varieties and consider the Lie algebroid object L � NX=Z[ÿ 1] in D(X). We

have a Lie algebroid inclusion A ! L, with L=A � {�NY=Z[ÿ 1]. It would

be interesting to understand the geometric meaning of our main result in

this context, and its relation to the sequence of derived self-intersections

X �h
Y X ! X �h

Z X ! Y �h
Z Y .
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It would also be interesting to search for a geometric interpretation of

our main result in the direction of what Bordemann did for the Lie algebra

case in [2].

Appendix: sketch of proof of Proposition 3.1

We borrow the notation from § 3.2 and start with the following:

LEMMA 7.1. The A-module J1
L=A(E ) is isomorphic to the kernel of the

difference map

E�HomR L=A; U(L) 

U�A�

E

� �� 1
 !

ÿ!HomR(L=A;L=A
R E ) :(12)

SKETCH OF PROOF. We first construct a map ` : J1
L=A(E )ÿ!

HomR

�
L=A;

�
U(L) 


U�A�
E
��1

�
; for any f 2 J1

L=A(E ) and any l 2 L we set

`(f)(l) :� l
 f(1)ÿ 1
 f(l) 2
�

U(L) 

U�A�

E
�� 1

. First of all observe that for

any a 2 A, `(f)(a) � a
 f(1)ÿ 1
 f(a) � a
 f(1)ÿ 1
 af(1) � 0. Hence

`(f) factors through L=A. Then we show that ` is A-linear: for f 2 J1
L=A(E ),

a 2 A, and l 2 L,ÿ
a � `(f)

�
(l) � a � ÿ`(f)(l)

�ÿ `(f)([a; l])

� al
 f(1)ÿ a
 f(l)ÿ [a; l]
 f(1)� 1
 f([a; l])

� la
 f(1)ÿ a
 f(l)� 1
 f([a; l])

� l
 f(a)ÿ 1
 f(la)

� `(a � f)(l) :

Finally, composing `(f) with the epimorphism
�

U(L) 

U�A�

E
��1
ÿ! L=A
R E

we get l 7! l
 f(1), which coincides with the image of f through J1
L=A(E )!

E! HomR(L=A;L=A
R E ). This provides a morphism from J1
L=A(E ) to the

kernel of the difference map (12).

We now construct an inverse to that map. For any e� f in the kernel of

(12), where e 2 E and f 2 HomR

�
L=A;

�
U(L) 


U�A�
E
�� 1

�
, we associate an

element fe; f of J1
L=A(E ) in the following way. For any r 2 R we set

fe; f (r) :� re. If l 2 L then one notices that f (l)ÿ l
 e 2 U(L) 

U�A�

E

� �� 1

projects onto zero in L=A
R E and thus has the form 1
 fe; f (l). p
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We now turn to the proof Proposition 3.1. Let us assume that we have

an extension
0ÿ!Eÿ!Bÿ! (L=A)
R Eÿ! 0

representing a class b 2Ext1
A

ÿ
(L=A)
R E;E

��HomD(A)

ÿ
(L=A)
R E;E[1]

�
.

We would like to describe the image of b through the map

(13) HomD(A)

ÿ
(L=A)
R E;E[1]

�ÿ!HomD(A) (L=A)L
RE;E[1]� � �
HomD(A)

ÿ
E;RHom(L=A;E[1])

�
:

One first chooses an injective resolution eE of E and considers the induced

exact sequence of complexes

0ÿ! eEÿ! eBÿ! (L=A)
R
eEÿ! 0 ;

where eB is the cokernel of Eÿ! eE� B; one then applies HomA(L=A;ÿ) and

get an exact sequence

0ÿ!HomA L=A; eE� �
ÿ!HomA L=A; eB� �

ÿ!HomA L=A;(L=A)
R
eE� �
ÿ!0:

One finally gets an exact sequence

0ÿ!HomA L=A; eE� �
ÿ! eCÿ! eEÿ! 0 ;

where eC is the kernel of eE�HomA

�
L=A;eB�ÿ!HomA

�
L=A;(L=A)
R

eE�.

This defines the desired element in HomD(A)

ÿ
E;RHom(L=A; )E[1]

� �
HomD(A)

ÿ eE;Hom(L=A; eE[1])
�
.

PROOF OF PROPOSITION. We apply the above construction to b � aE,

with B �
�

U(L) 

U�A�

E
�� 1

. One first easily sees that eB � �U(L) 

U�A�

eE�� 1
.

Then it follows from Lemma 7.1 that eC � J1
L=A(eE ). Therefore, the image

of aE through the map (13) is determined by the exact sequence

0ÿ!HomA L=A; eE� �
ÿ! J1

L=A(eE )ÿ! eEÿ! 0 ;

which is precisely the image of the class eaE 2 Ext1
A

ÿ
E;Hom(L=A;E )

�
through the map

Ext1
A

ÿ
E;Hom(L=A;E )

� � HomD(A)

ÿ
E;Hom(L=A;E )[1]

�ÿ!
HomD(A)

ÿ
E;RHom(L=A;E )[1]

�
:

The Proposition is proved.

46 Damien Calaque



Acknowledgments. I thank Darij Grinberg for his careful reading of a

preliminary version of this paper. His comments helped me correct some

mistakes and improve the exposition. I also thank the anonymous referee

for her/his extremely valuable suggestions. This project has been partially

supported by a grant from the Swiss National Science Foundation (project

number 200021_137778).

REFERENCES

[1] D. ARINKIN, A. CAÆLDAÆRARU, When is the self-intersection of a subvariety a
fibration?, Advances in Math., 231 (2012), no. 2, 815-842.

[2] M. BORDEMANN, Atiyah classes and equivariant connections on homoge-
neous spaces, Travaux MatheÂmatiques, 20 (2012), Special Issue dedicated to
Nikolai Neumaier, 29-82.

[3] D. CALAQUE, From Lie theory to algebraic geometry and back, in Interactions
between Algebraic Geometry and Noncommutative Algebra, Oberwolfach
Report no. 22/2010, 1331-1334.

[4] D. CALAQUE, A. CAÆLDAÆRARU, J. TU, PBW for an inclusion of Lie algebras,
Journal of Algebra, 378 (2013), p. 64-79.

[5] D. CALAQUE, A. CAÆLDAÆRARU, J. TU, On the Lie algebroid of a derived self-
intersection, preprint arXiv:1306.5260.

[6] D. CALAQUE, M. VAN DEN BERGH, Hochschild cohomology and Atiyah
classes, Advances in Math., 224 (2010), no. 5, 1839-1889.

[7] Z. CHEN, M. STIEÂ NON, P. XU, From Atiyah Classes to Homotopy Leibniz
Algebras, preprint arXiv:1204.1075.

[8] D. GRINBERG, PoincareÂ-Birkhoff-Witt type results for inclusions of Lie
algebras, Diploma Thesis available at http://www.cip.ifi.lmu.de/�grinberg/
algebra/pbw.pdf.

[9] M. KAPRANOV, Rozansky-Witten invariants via Atiyah classes, Compositio
Math., 115 (1999), no. 1, 71-113.

[10] M. KAPRANOV, Free Lie algebroids and the space of paths, Selecta Math. NS,
13 (2007), no. 2, 277-319.

[11] L. POSITSELSKI, Two kinds of derived categories, Koszul duality, and como-
dule-contramodule correspondence, Memoirs of the Amer. Math. Soc., 212
(2011), 133 pp.

[12] G.S. RINEHART, Differential forms on general commutative algebras, Trans.
Amer. Math. Soc., 108 (1963), 195-222.

[13] P. XU, Quantum groupoids, Comm. Math. Phys., 216 (2001), no. 3, 539-581.
[14] S. YU, Dolbeault dga of formal neighborhoods and L1-algebroids, draft

available at http://www.math.psu.edu/yu/papers/DolbeaultDGA.pdf.

Manoscritto pervenuto in redazione l'11 Maggio 2012.

A PBW theorem for inclusions of (sheaves of) Lie algebroids 47




