Finite groups with some CAP-subgroups¹

LUIS M. EZQUERRO (*) - XIANHUA LI (**) - YANGMING LI (***)

ABSTRACT - A subgroup *A* of a group *G* is said to be a CAP-subgroup of *G* if for any chief factor H/K of *G*, there holds $H \cap A = K \cap A$ or HA = KA. We investigate the influence of CAP-subgroups on the structure of finite groups. Some recent results are generalized.

MATHEMATICS SUBJECT CLASSIFICATION (2010). 20D10, 20D15.

KEYWORDS. CAP-subgroup, the smallest generator number of a *p*-group, *p*-supersolvable group.

1. Introduction

All groups considered in this paper are finite. We use conventional notions and notation, as in Huppert [7]. *G* always denotes a finite group, |G| is the order of *G*, $\pi(G)$ denotes the set of all primes dividing |G|, G_p is a Sylow *p*-subgroup of *G* for some $p \in \pi(G)$.

For a subgroup A of G, if H/K is a chief factor of G, then we will say that:

(1) A covers H/K if HA = KA;

(2) A avoids H/K if $H \cap A = K \cap A$;

¹ Project supported in part by NSFC(11271085) and NSF of Guangdong (S2011010004447).

(*) Indirizzo dell'A.: Departamento de Matemáticas, Universidad Pública de Navarra, Pamplona, E-31006, Spain.

E-mail: ezquerro@unavarra.es

(**) Indirizzo dell'A.: Dept. of Math., Suzhou University, Suzhou, 215006, China. E-mail: xhli@suda.edu.cn

(***) Indirizzo dell'A.: Dept. of Math., Guangdong University of Education, Guangzhou, 510310, China.

E-mail: liyangming@gdei.edu.cn

(3) A has the cover and avoidance properties in G, in brevity, A is a CAP-subgroup of G ([4]), if A either covers or avoids every chief factor of G.

Clearly normal subgroups are CAP-subgroups. Examples of CAPsubgroups in the universe of solvable groups are well-known. The most remarkable CAP-subgroups of a solvable group are perhaps the Hall subgroups. By an obvious consequence of the definition of supersolvable group every subgroup of supersolvable group is a CAP-subgroup. In the literature, a lot of people have investigated the influence of the CAPsubgroups of G on the structure of G, please see [3], [4], [5], [6], [9], [11], [12], [13], [14], etc. For example, in [3] the first author has gotten the following results: 1. ([3, Theorem A]) Let p be a prime, G be a p-solvable group. Suppose that all maximal subgroups of the Sylow p-subgroups of G are CAP-subgroups of G, then G is p-supersolvable; 2. ([3, Theorem C]) Suppose that G is a group and for every prime p in $\pi(G)$ and for every Sylow p-subgroup P of G, every maximal subgroup of P is a CAPsubgroup of G. Then G is supersolvable.

In this paper, we extend Ezquerro's the results at least in three aspects: first, removing the hypotheses that G is p-solvable in [3, Theorem A]; secondly, reducing the number of restricted maximal subgroups of Sylow subgroups; in third, giving the unified forms of Ezquerro's results.

Suppose that *P* is a *p*-group for some prime *p*. Let $\mathcal{M}(P)$ be the set of all maximal subgroups of *P*.

DEFINITION ([10]). Let d_p be the smallest generator number of a p-group P, i.e., $p^{d_p} = |P/\Phi(P)|$. We consider the set $\mathcal{M}_{d_p}(P) = \{P_1, ..., P_{d_p}\}$ of all elements of $\mathcal{M}(P)$ such that

$$\bigcap_{i=1}^{d_p} P_i = \Phi(P).$$

We know that

$$|\mathcal{M}(P)| = rac{p^{d_p} - 1}{p - 1}, \qquad |\mathcal{M}_{d_p}(P)| = d_p$$

and

$$\lim_{d_p\to\infty}\frac{\frac{p^{d_p}-1}{p-1}}{d_p}=\infty,$$

 $\mathbf{S0}$

$$|\mathcal{M}(P)| >> |\mathcal{M}_{d_p}(P)|.$$

Our main result is as follows.

MAIN RESULT. Suppose that G is a group and p is a fixed prime number in $\pi(G)$ and P is a Sylow p-subgroup of G. Suppose that every member in $\mathcal{M}_{d_p}(P)$ is a CAP-subgroup of G. Then either P is of order p or G is p-supersolvable.

2. Preliminaries

LEMMA 2.1. Let N be a normal subgroup of G and A a CAP-subgroup of G. Then:

- (1) AN is a CAP-subgroup of G;
- (2) AN/N is a CAP-subgroup of G/N;
- (3) For any chief series (*) of G, A covers or avoids every chief factor of the series (*) and furthermore, the order of A is the product of the orders of the covered chief factors in the series (*).

PROOF. (1) is given in [14, \$1, Lemma 1.4]; (2) follows from (1); (3) is clear by the definition of CAP-subgroup.

LEMMA 2.2 ([7, I, Hauptsatz 17.4]). Suppose that N is an abelian normal subgroup of G and $N \leq M \leq G$ such that (|N|, [G : M]) = 1. If N is complemented in M, then N is complemented in G.

LEMMA 2.3. Let P be a non-cyclic Sylow p-subgroup of G and $p \in \pi(G)$. Suppose that $\Phi(P)_G = 1$ and $O_p(G) > 1$ and suppose that every member in $\mathcal{M}_{d_p}(P)$ is a CAP-subgroup of G. Then:

- (1) N_p is at most of order p for every minimal normal subgroup N of G;
- (2) every minimal normal subgroup of G contained in P is of order p;
- (3) G = O_p(G) × M, the semi-direct product of O_p(G) with a subgroup M of G and O_p(G) is a direct product of normal subgroups of G of order p.

PROOF. (1) Suppose that N is minimal normal in G. For any $P_i \in \mathcal{M}_{d_n}(P)$, we know that either $N \leq P_i$ or $N \cap P_i = 1$. If $N \leq P_i$ for all

 $P_i \in \mathcal{M}_{d_n}(P)$, then

$$N \leq \bigcap_{i=i}^{d_p} P_i = \Phi(P),$$

which is contrary to the hypotheses that $\Phi(P)_G = 1$. Hence there exists a $P_{i_0} \in \mathcal{M}_{d_p}(P)$ such that $N \cap P_{i_0} = 1$. Since P_{i_0} is maximal in P, we have N_p is at most of order p.

(2) It is a corollary of (1).

(3) Let N_1 be a minimal normal subgroup of G contained in $O_p(G)$. Then N_1 is of order p by (2) and $N_1 \cap \Phi(P) = 1$ by the hypotheses that $\Phi(P)_G = 1$. Hence there exists a maximal subgroup S_1 of P such that $N_1 \cap S_1 = 1$. By Lemma 2.2, N_1 has a complement K in G, i.e., $G = N_1 K$ and $N_1 \cap K = 1$. Then $O_p(G) = N_1(O_p(G) \cap K)$. It is easy to see that $O_p(G) \cap K$ is normal in G and $P \cap K$ is a Sylow p-subgroup of K. If $O_p(G) \cap K = 1$, then our theorem holds. So assume that $O_p(G) \cap K \neq 1$. Then we can pick a minimal subgroup N_2 contained in $O_p(G) \cap K$. By (1), N_2 is of order p and there exists a maximal subgroup S_2 of P such that $N_2 \cap S_2 = 1$ by the hypothesis that $\Phi(P)_G = 1$. Then $P = N_2 S_2 = S_2(O_p(G) \cap K) = S_2(P \cap K)$. Since $|(P \cap K) : (S_2 \cap K)| = |S_2(P \cap K) : S_2| = |P : S_2| = p, S_2 \cap K$ is a complement of N_2 in $P \cap K$. Therefore N_2 has a complement L in K by Lemma 2.2. Then $G = N_1 K = (N_1 \times N_2) \rtimes L$. Continuing this process, we have finally $G = O_p(G) \rtimes M$ and $O_p(G) = N_1 \times N_2 \times \cdots \times N_r$, where N_i is a normal subgroup of G of order p.

Let p be a prime and n > 1 a natural number. If p^s divides n but p^{s+1} does not divide n, we write $(n)_p = p^s$. Let t be a prime and b > 1 and let k be a natural number. If t, b and k satisfy that t divides $b^k - 1$ but t does not divide $b^i - 1$ for all i with $1 \le i < k$, then k is called the order of b module t and is denoted by $exp_t(b)$.

LEMMA 2.4. Suppose that H is a nonabelian simple group. If the Sylow r-subgroups H_r of H are of order r, where r is a prime, then the out automorphism group Out(H) of H is a r'-group.

PROOF. Suppose that, in the contrary, the order of Out(H) is divided by *r*. Obviously r > 2 by [7, IV Satz 2.8]. We will conduct a contradiction by applying the classification of finite simple groups.

If *H* is a sporadic simple group, then by [2], |Out(H)| | 2. If *H* is a alternating group, then when $H = A_6$, $|Out(H)| = 2^2$; when $H \neq A_6$, |Out(H)| = 2. Hence by r > 2 and r | |Out(H)|, we may assume that *H* is a

Lie type simple group over GF(q) with $q = p^f$. By [2], |Out(H)| = dfg and so $r \mid dfg$, where the numbers d, f, g are tabulated in [2, Table 5].

Suppose that r = p. By the order of Lie type simple groups and $|H_r| = r$, we have $H = A_1(p)$. But when $H = A_1(p)$, |Out(H)| = 2, $r \nmid |Out(H)|$, a contradiction. Hence $r \neq p$.

Let $exp_r(q) = t$, then t | r - 1. By [7, P.190] and [8, P.502] we have

$$(*) \quad (q^n - 1)_r = \begin{cases} \left(q^t - 1\right)_r \left(\frac{n}{t}\right)_r, & \text{if } t \text{ divides } n; \\ 1, & \text{if } t \text{ does not divide } n. \end{cases}$$

It is well known that if (b, r-1) = 1, then $r \mid q^{bd} - 1$ if and only if $r \mid q^d - 1$. Hence

$$(**) (q^{nr^s} - 1)_r = \begin{cases} (q^n - 1)_r r^s, & \text{if } r \text{ divides } q^n - 1; \\ 1, & \text{if } r \text{ does not divide } q^n - 1 \end{cases}$$

Assume that $H=^{2}A_{2}(q)$. If $r \mid dg$, then r=3 and $r \mid q+1$. We have $q \equiv -1 \pmod{r}$ and so $3 \mid q^{2}-q+1$. Thus

$$|H_3| = \frac{1}{3}(q^2 - 1)_3(q^3 + 1)_3 = \frac{1}{3}(q + 1)_3^2(q^2 - q + 1)_3 \ge 3^2,$$

a contradiction. Assume that $r \nmid dg$. Then $r \mid f$. Let $f = r^s k$ with (k, r) = 1. Assume that $r \mid q + 1$. By previous argument, we may assume that r > 3. Thus

$$|H_r| = (q^2 - 1)_r (q^3 + 1)_r = (q + 1)_r^2 (q^2 - q + 1)_r \ge r^2,$$

a contradiction. Hence we may assume that $r \nmid q + 1$ and so $t \in \{1, 6\}$.

When t = 1,

$$|H_r| = (q^2 - 1)_r (q^3 + 1)_r \ge (p^f - 1)_r = (p^k - 1)_r r^s \ge r^{s+1},$$

a contradiction.

When t = 6, $(q^3 - 1)_r = 1$. By (**),

$$|H_r| = (q^3 + 1)_r = (p^{6f} - 1)_r = r^s (p^{6k} - 1)_r \ge r^{s+1},$$

again a contradiction.

Assume that $H = D_4(q)$. Suppose that $r \mid gd$. Since r > 2, we have r = 3. Since $3 \mid q^2 - 1$, by $|D_4(q)| = \frac{1}{(2, q - 1)^2} q^6 (q^4 - 1)^2 (q^2 - 1)$, we have $r^3 \mid |H|$, a contradiction. Hence we may assume that $r \nmid gd$ and $r \mid f$. By (*), it is easy to obtain that $|H_r| > r$, a contradiction.

From now, we assume that $H \notin \{{}^{2}A_{2}(q), D_{4}(q)\}.$

Suppose that $r \mid dg$. Since r > 2 and $g \in \{1,2\}$, we have $r \mid d$ and H is one of simple groups $A_n(q)(n > 1)$, ${}^2A_n(q)$, $E_6(q)$ with r = 3, ${}^2E_6(q)$ with r = 3. If $H = E_6(q)$, then $r \mid q - 1$; if $H = {}^2E_6(q)$, then $r \mid q + 1$; if $H = A_n(q)$, then $r \mid q - 1$ and $n \ge 2$; if $H = {}^2A_n(q)$, then $r \mid q + 1$ and $n \ge 4$, it is easy to obtain that $r^2 \mid |H|$ from (*), a contradiction.

Suppose that $r \nmid dg$, then $f = r^s k$ with $s \ge 1$ and (k, r) = 1. Let $exp_r(q) = c$. From the orders of Lie type simple groups, we have $q^c - 1 \mid |H|$ if c is odd or $q^{\frac{1}{2}c} + 1 \mid |H|$ if c is even.

When *c* is odd, by (**)

$$|H_r| \ge (q^c - 1)_r = (p^{kr^sc} - 1)_r = (p^{kc} - 1)_r r^s \ge r^{s+1}$$

a contradiction.

When c is even, by $r \nmid q^{\frac{1}{2}c} - 1$ and (**), we have

$$|H_r| \ge (q^{\frac{1}{2}c} + 1)_r = (q^c - 1)_r = (p^{kr^sc} - 1)_r = (p^{kc} - 1)_r r^s \ge r^{s+1},$$

a final contradiction.

This completes the proof of the lemma.

3. The proof of main result

Suppose that the theorem is false and G is a counter-example with minimal order. We will derive a contradiction in several steps.

STEP 1. $O_{p'}(G) = 1$.

Denote $N = O_{p'}(G)$. If N > 1, we consider the factor group G/N. Obviously, PN/N is a Sylow *p*-subgroup of G/N, which is isomorphic to P, so PN/N has the same smallest generator number as P, i.e., d_p and so

$$\mathcal{M}_{d_p}(P/N) = \{P_1/N, ..., P_{d_p}/N\}.$$

We know that every P_i/N is also a CAP-subgroup of G/N by Lemma 2.1. Thus G/N satisfies the hypotheses of the theorem. We have that either PN/N is of order p or $G/O_{p'}(G)$ is p-supersolvable by the choice of G, it follows that either P is of order p or G is p-supersolvable, a contradiction. Thus, we have $N = O_{p'}(G) = 1$, as desired. STEP 2. P is non-cyclic.

If *P* is cyclic, then the unique maximal subgroup $\Phi(P)$ of *P* is CAPsubgroup in *G* by the hypotheses. Hence either *P* is of order *p* or *G* is *p*supersolvable by [1, Theorem 3.2], a contradiction.

STEP 3. $\Phi(P)_G = 1$, therefore, $O_p(G)$ is an elementary abelian group.

If not, take any $T \leq \Phi(P)_G$ such that $T \leq G$. We consider the factor group G/T. Since every maximal subgroup of P contains $\Phi(P)$ and P/T has the same smallest generator number as P, so

$$\mathcal{M}_{d_p}(P/T) = \{P_1/T, ..., P_{d_p}/T\}.$$

We know that every P_i/T is also a CAP-subgroup of G/N by Lemma 2.1. Thus, G/T satisfies the hypotheses of the theorem. Hence, either P/T is of order p or G/T is p-supersolvable by the choice of G. If P/T is of order p, then P is cyclic, contrary to Step 2. Hence G/T is p-supersolvable, then G is p-supersolvable, a contradiction.

STEP 4. If N is minimal normal in G contained in P, then |N| = p. By Lemma 2.3(2).

STEP 5. All minimal normal subgroups of G are contained in $O_p(G)$.

Assume that *H* is a minimal normal subgroup of *G* which is not a *p*-subgroup. As $O_{p'}(G) = 1$ by Step 1, we have that p||H| and *H* is non-abelian characteristic simple group. Then

(5.1) All $P_i \in \mathcal{M}_{d_p}(P)$ avoid the chief factor H/1, H is a non-abelian simple group with $|H_p| = p$.

By Lemma 2.3(1) we know that $|H_p| = p$. So H is a non-abelian simple group. Obviously H is avoided by every $P_i \in \mathcal{M}_{d_p}(P)$.

(5.2) $O_p(G) = 1.$

If $O_p(G) \neq 1$, we can pick a minimal normal subgroup N of G contained in $O_p(G)$. By Step 4 we know that N is of order p. Consider the chief series of G:

$$1 \triangleleft N \triangleleft NH \triangleleft \cdots \triangleleft G.$$

For an arbitrary $P_i \in \mathcal{M}_{d_p}(P)$, since P_i avoids HN/N, P_i must cover N by

Lemma 2.1(3). Hence $N \leq P_i$. Then

$$N \le \bigcap_{i=i}^{d_p} P_i = \Phi(P)$$

which is contrary to Step 3.

(5.3) $C_G(H) = 1$.

Suppose that $C_G(H) \neq 1$. Now we pick a minimal normal subgroup H^* of G contained in $C_G(H)$. Then $H \cap H^* = 1$. For any $P_i \in \mathcal{M}_{d_p}(P)$, we know that P_i avoids H, P_i must cover H^* by Lemma 2.1(3). Therefore, H^* is a group of order p, which is contrary to (5.2).

(5.4) G = PH.

By (5.3), we know that the non-abelian simple group H is the unique minimal normal subgroup of PH. So all chief factors of PH are H/1 or a cyclic group of order p. By (5.1), we know that all $P_i \in \mathcal{M}_{d_p}(P)$ cover or avoid all chief factors of PH. So PH satisfies the hypothesis of the theorem. If PH < G, then either P is of order p or PH is p-supersolvable by the minimal choice of G. If PH is p-supersolvable, then H is p-supersolvable. But this is contrary to (5.1). Hence G = PH.

(5.5) Finishing the proof of (5).

By (5.3) we have $C_G(H) = 1$. Then *G* and *G*/*H* are isomorphic to a subgroup of Aut(H) and a subgroup of Aut(H)/Inn(H), respectively. This means that H_p is of order *p* and *p* divides the order of Out(H). By Lemma 2.4, this is impossible.

STEP 6. $G = O_p(G) \rtimes M$, the semi-direct product of $O_p(G)$ with a subgroup M of G and $O_p(G)$ is a direct product of normal subgroups of G of order p.

By Lemma 2.3(3).

STEP 7. The final contradiction.

Since $N \leq Z(P)$ for any minimal normal subgroup N of $G, P \leq C_G(O_p(G))$. Since $C_G(O_p(G)) \cap M \triangleleft \langle O_p(G), M \rangle = G, C_G(O_p(G)) \cap M = 1$ by Step 4 and 5. Then $P \cap M = 1$. This implies that $P = P \cap O_p(G)M = O_p(G)(P \cap M) = O_p(G)$. Therefore by Step 6 we have that G is p-supersolvable, the final contradiction. REMARK. The authors do not know the proof without using the classification of finite simple groups.

4. Applications

We give some applications of our main result.

Suppose that p is the smallest prime dividing the order of G. We know that G is p-nilpotent if G_p is cyclic by [7, IV Satz 2.8] and p-supersolubility implies the p-nilpotency. By our main result we immediately have the following corollary.

COROLLARY 4.1. Let p be the smallest prime dividing |G| and P a Sylow p-subgroup of G. Then G is p-nilpotent if and only if every member in $\mathcal{M}_{d_p}(P)$ is a CAP-subgroup of G.

COROLLARY 4.2. Suppose that P is a Sylow p-subgroup of G and $N_G(P)$ is p-nilpotent for some prime $p \in \pi(G)$. Then G is p-nilpotent if and only if every member in $\mathcal{M}_{d_p}(P)$ is a CAP-subgroup of G.

PROOF. We only need to prove the "if" part.

By our main result we know that either P is cyclic or G is p-supersolvable. If P is cyclic, then we have $N_G(P) = C_G(P)$. Applying Burnside's p-nilpotence criterion ([7, Hauptsatz IV.2.6]), we get that G is pnilpotent. Now suppose that G is p-supersolvable. Since the p-length of p-supersolvable groups is at most 1, we have $PO_{p'}(G)$ is normal in G. Set $\overline{G} = G/O_{p'}(G)$. Then $\overline{G} = N_{\overline{G}}(\overline{P}) = N_G(P)O_{p'}(G)/O_{p'}(G)$ is p-nilpotent by hypothesis. Hence G is p-nilpotent, as desired.

Suppose that G is p-solvable. If Sylow p-subgroups of G are cyclic, then G is p-supersolvable. Therefore, immediately from our main result, we have the following corollary which is a generalization of [3, Theorem A].

COROLLARY 4.3. Suppose that G is a p-solvable group, where p is a fixed prime number in $\pi(G)$, and P is a Sylow p-subgroup of G. Then G is p-supersolvable if every member in $\mathcal{M}_{d_p}(P)$ is a CAPsubgroup of G.

The following is a generalization of [3, Theorem C].

THEOREM 4.4. Suppose that G is a group. Then G is supersolvable if and only if every member in $\mathcal{M}_{d_p}(P)$ is a CAP-subgroup of G for every prime p in $\pi(G)$ and for every Sylow p-subgroup P of G

PROOF. We only need to prove the "if" part.

By Corollary 4.3 it is sufficient to prove that G is solvable. Hence we want to prove that every chief factor of G is solvable. Suppose that L/K is an arbitrary chief factor of G. For any prime $p \in \pi(L/K)$, we know that there exists a maximal subgroup H of a Sylow p-subgroup of G such that H either covers or avoids L/K. If H covers L/K, obviously L/K is solvable. Hence assume that H avoids L/K. This implies that $|L/K|_p \leq p$. Therefore, every Sylow subgroup of L/K is of prime order. Hence L/K is solvable.

This completes the proof of Theorem 4.4.

Acknowledgments. Part of this research was carried out during a visit of the third author to Departamento of Matemáticas, Universidad Pública de Navarra, Pamplona, Spain, in March, 2010. He is grateful to the Department for its warm hospitality.

REFERENCES

- A. BALLESTER-BOLINCHES L. M. EZQUERRO A. N. SKIBA, Local embeddings of some families of subgroups of finite group, Acta Math. Sinica, Eng. Ser., 25: pp. 869–882, 2009.
- [2] J. H. CONWAY R. T. CURTIS S.P. NORTON R. A. PARKER R. A. WILSON, ATLAS of Finite Groups, Clarendon Press, Oxford, 1985.
- [3] L. M. EZQUERRO, A contribution to the theory of finite supersolvable group, Rend. Sem. Mat. Univ. Padova, 89: pp. 161–170, 1993.
- [4] W. GASCHÜTZ, Praefrattini Gruppen, Arch. Math. 13: pp. 418–426, 1962.
- [5] J. K. GILLAM, Cover-avoid subgroups in finite groups, J. Algebra, 29: pp. 324– 329, 1974.
- [6] GUO XIUYUN K. P. SHUM, Cover-avoidance properties and the structure of finite groups, J. Pure Applied Algebra, 181: pp. 297–308, 2003.
- [7] B. HUPPERT, Endliche Gruppen I. Berlin: Springer-Verlag, 1968.
- [8] B. HUPPERT N. BLACKBURN, Endiche Gruppen II, Spring-Verlag, Berlin, 1979.
- [9] Y. LI, On cover-avoiding subgroups of Sylow subgroups of finite groups, Rend. Sem. Mat. Univ. Padova, 123: pp. 249–258, 2010.
- [10] S. LI X. HE, On Normally Embedded Subgroups of Prime Power Order in Finite Groups, Comm. Algebra, 36: pp. 2333–2349, 2008.

 \square

- [11] Y. LI G. WANG, A note on maximal CAP-subgroups of finite groups, Algebras, Groups and Geometries, 23: pp. 285–290, 2006.
- [12] J. PETRILLO, *The cover-avoidance property in finite groups*, Ph.D. thesis, State University of New York at Binghamton, 2003.
- [13] J. PETRILLO, CAP-subgroups in a direct product of finite groups, J Algebra, 306: pp. 432–438, 2006.
- [14] K.U. SCHALLER, Über Deck-Meide-Untergruppen in endlichen auflösbaren Gruppen, Ph.D. thesis, University of Kiel, 1971.

Manoscritto pervenuto in redazione il 3 Agosto 2012.