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Finite groups with some CAP-subgroups’
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ABSTRACT - A subgroup A of a group G is said to be a CAP-subgroup of G if for any
chief factor H/K of G, there holds H N A = K N A or HA = KA. We investigate
the influence of CAP-subgroups on the structure of finite groups. Some recent
results are generalized.
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1. Introduction

All groups considered in this paper are finite. We use conventional
notions and notation, as in Huppert [7]. G always denotes a finite group, |G|
is the order of G, n(G) denotes the set of all primes dividing |G|, G, is a
Sylow p-subgroup of G for some p € n(G).

For a subgroup A of G, if H/K is a chief factor of G, then we will say
that:

(1) A covers H/K if HA = KA;
(2) Aavoids H/IKit HNA =KNA,
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(3) A has the cover and avoidance properties in G, in brevity, A is a
CAP-subgroup of G ([4]), if A either covers or avoids every chief
factor of G.

Clearly normal subgroups are CAP-subgroups. Examples of CAP-
subgroups in the universe of solvable groups are well-known. The most
remarkable CAP-subgroups of a solvable group are perhaps the Hall
subgroups. By an obvious consequence of the definition of supersolvable
group every subgroup of supersolvable group is a CAP-subgroup. In the
literature, a lot of people have investigated the influence of the CAP-
subgroups of G on the structure of G, please see [3], [4], [5], [6], [9], [11],
[12], [13], [14], etec. For example, in [3] the first author has gotten the
following results: 1. ([3, Theorem A]) Let p be a prime, G be a p-solvable
group. Suppose that all maximal subgroups of the Sylow p-subgroups of
G are CAP-subgroups of G, then G is p-supersolvable; 2. ([3, Theorem
C]) Suppose that G is a group and for every prime p in n(G) and for
every Sylow p-subgroup P of G, every maximal subgroup of P is a CAP-
subgroup of G. Then G is supersolvable.

In this paper, we extend Ezquerro’s the results at least in three
aspects: first, removing the hypotheses that G is p-solvable in [3, The-
orem A]; secondly, reducing the number of restricted maximal sub-
groups of Sylow subgroups; in third, giving the unified forms of Ez-
querro’s results.

Suppose that P is a p-group for some prime p. Let M(P) be the set of all
maximal subgroups of P.

DEFINITION ([10]). Let d,, be the smallest generator number of a p-group
P, ie, p% = |P/®(P)|. We consider the set Mg (P)={P1,...,Pyq } of all
elements of M(P) such that

dﬁ
ﬂ P; = ®(P).

i=1

We know that

ph -1
e A

and
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S0
|IM(P)| >> | Mg, (P)].

Our main result is as follows.

MaIN RESULT. Suppose that G is a group and p is a fixed prime
number i n(G) and P is a Sylow p-subgroup of G. Suppose that every
member in Mg, (P) is a CAP-subgroup of G. Then either P is of order p or
G 1is p-supersolvable.

2. Preliminaries

LEmMma 2.1.  Let N be a normal subgroup of G and A a CAP-subgroup
of G. Then:

(1) AN 1is a CAP-subgroup of G;

(2) AN/N is a CAP-subgroup of G/N;

(3) For any chief series (*) of G, A covers or avoids every chief factor of
the series (*) and furthermore, the order of A is the product of the
orders of the covered chief factors in the series (*).

Proor. (1) is given in [14, §1, Lemma 1.4]; (2) follows from (1); (3) is
clear by the definition of CAP-subgroup. |

LeEmma 2.2 ([7, I, Hauptsatz 17.4]). Suppose that N is an abelian nor-
mal subgroup of G and N < M < G such that (|N|,[G : M]) =1. If N 1is
complemented in M, then N is complemented in G.

LEmmA 2.3.  Let P be a non-cyclic Sylow p-subgroup of G and p € n(G).
Suppose that ©(P)g = 1 and O,(G) > 1 and suppose that every member in
Mg, (P) is a CAP-subgroup of G. Then:

(1) N, is at most of order p for every minimal normal subgroup N of G;

(2) every minimal normal subgroup of G contained in P is of order p;

() G = 0,(G) xM, the semi-direct product of O,(G) with a subgroup
M of G and O,(G) is a direct product of normal subgroups of G of
order p.

Proor. (1) Suppose that N is minimal normal in G. For any
P; € Mgy, (P), we know that either N < P;or NN P; = 1. If N < P; for all
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P; € Mgy, (P), then
d

N <[P = o(P)

=1

which is contrary to the hypotheses that @(P); = 1. Hence there exists a
P;, € Mgy, (P)suchthat N N P;, = 1. Since P;, is maximal in P, we have N, is
at most of order p.

(2) It is a corollary of (1).

(3) Let N1 be a minimal normal subgroup of G contained in O,(G). Then
N is of order p by (2) and N1 N @(P) = 1 by the hypotheses that &(P)g; = 1.
Hence there exists a maximal subgroup S; of P such that Ny N S; = 1. By
Lemma 2.2, N1 has a complement K in G, i.e.,, G = N;K and NN K = 1.
Then 0,(G) = N1(0,(G) N K). It is easy to see that O,(G) N K is normal in
G and PN K is a Sylow p-subgroup of K. If 0,(G) N K = 1, then our the-
orem holds. So assume that O0,(G) N K # 1. Then we can pick a minimal
subgroup N3 contained in O,(G) N K. By (1), N3 is of order p and there
exists a maximal subgroup Sa of P such that N» NSz = 1 by the hypothesis
that @(P)g =1. Then P = N;S; =S82(0,(G)NK)=S:(PNK). Since
(PNEK):(SenNK)| =[S2(PNK):Se|=1|P: S| =p, SenNK is a comple-
ment of Ny in P N K. Therefore N has a complement L in K by Lemma 2.2.
Then G = N1 K = (N; x N3) x L. Continuing this process, we have finally
G =0,(G) xM and 0,(G) = Ny x N2 x --- x N,, where N; is a normal
subgroup of G of order p. O

Let p be a prime and % > 1 a natural number. If p* divides % but p**!
does not divide n, we write (), = p°. Let t be a prime and b > 1 and let k be
a natural number. If ¢, b and k satisfy that ¢ divides b* — 1 but ¢ does not
divide b — 1 for all i with 1 < i < k, then k is called the order of b module ¢
and is denoted by exp;(b) .

Lemma 2.4.  Suppose that H is a nonabelian simple group. If the Sylow
r-subgroups H, of H are of order v, where r is a prime, then the out auto-
morphism group Out(H) of H is a v'-group.

PrOOF. Suppose that, in the contrary, the order of Out(H) is divided
by 7. Obviously > 2 by [7, IV Satz 2.8]. We will conduct a contradiction
by applying the classification of finite simple groups.

If H is a sporadic simple group, then by [2], |Out(H)||2. If H is a
alternating group, then when H = Ag, |Out(H)| = 22; when H # Ag,
|Out(H)| = 2. Hence by r > 2 and r | |Out(H)|, we may assume that H is a
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Lie type simple group over GF(q) with ¢ = p/. By [2], |Out(H)| = dfy and
so r | dfg, where the numbers d, f, g are tabulated in [2, Table 5].
Suppose that » = p. By the order of Lie type simple groups and
|H,| =7, we have H =A;(p). But when H =A;(p), |Out(H)| =2,
r1|Out(H)|, a contradiction. Hence r # p.
Let exp,(q) =t, then t | » — 1. By [7, P.190] and [8, P.502] we have

t n . .. )
*) (g" —1),— { (¢ —1), (ﬂr, if ¢ divides #;

1, if t does not divide n.

It is well known that if (b, —1) =1, then r | ¢*¢ — 1 if and only if
r|q? — 1. Hence

(* *) (qm's _

0 (¢" —1),7%, if » divides ¢" — 1;
" 1, if 7 does not divide ¢" — 1.

Assume that H=2A45(q). If r | dg, then » =3 and r | ¢ + 1. We have
q = —1(mod r) and so 3 | ¢* — q + 1. Thus

1 1
|Hs| = §(q2 —1)3(¢® + 1)z = 3@+ D3(@* — g+ 13 > 32,

a contradiction. Assume that r{dg. Then » | f. Let f =k with (k,r) = 1.
Assume that r | ¢ + 1. By previous argument, we may assume that » > 3.
Thus

H,| = (@ - D" +1), =@+ DXF —q+ 1), >0,

a contradiction. Hence we may assume that r{¢+ 1 and sot € {1,6}.
Whent =1,

H)| = (¢ = DA + D, > ¢ =D, = (F = D® > 51,

a contradiction.

When t = 6, (¢® — 1), = 1. By (**),

|HV| = (QS + ]-)7' - (p6f - 1)7 = Ts(p(ik - 1)7" > TS+17

again a contradiction.

Assume that H = D4(q). Suppose that r | gd. Since r > 2, we have » = 3.

1
Since 3 | ¢2 — 1, by |Dy(q)| = WQG(q4 — 1D*g? - 1), we have »? | |H]|,
,q —

a contradiction. Hence we may assume that r{gd and » | f. By (*), it is easy
to obtain that |H,| > , a contradiction.
From now, we assume that H ¢ {zAz(q),D4(q)}.
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Suppose that = | dg. Since r > 2 and ¢ € {1,2}, we have r | d and H
is one of simple groups A,(q)(n > 1), 24,(q), Es(q) with r =3, 2E4(q)
with » = 3. If H = E¢(q), then r | ¢ — 1; if H=2E4(q), then r | ¢ +1; if
H=A,(@), then »|¢g—1 and n >2; if H= 2A,(q), then » |g+1 and
n >4, it is easy to obtain that 72 | |[H| from (¥), a contradiction.

Suppose that r{dg, then f =7k with s>1 and (k,r)=1. Let
expy(q) = c. From the orders of Lie type simple groups, we have
q° — 1| |H|if ¢ is odd or ¢z + 1 | |H| if ¢ is even.

When c is odd, by (**)

|HT| > (qc - 1)7' = (pkrsc - 1)1‘ = (pkc - 1)7'708 > ,',,S+1’

a contradiction.
When ¢ is even, by {¢2¢ — 1 and (**), we have

H,| > (@ + 1), = (¢ = 1), = @ — 1), = @' — Dr* >,

a final contradiction.

This completes the proof of the lemma. O

3. The proof of main result

Suppose that the theorem is false and G is a counter-example with
minimal order. We will derive a contradiction in several steps.

SteP 1. 0,(G) = 1.

Denote N =0,(G). If N >1, we consider the factor group G/N.
Obviously, PN/N is a Sylow p-subgroup of G/N, which is isomorphic to
P, so PN/N has the same smallest generator number as P, i.e., d, and
SO

Mg, (P/N) = {P1/N, ... P4 /N}.

We know that every P;/N is also a CAP-subgroup of G/N by
Lemma 2.1. Thus G/N satisfies the hypotheses of the theorem. We
have that either PN/N is of order p or G/Oy(G) is p-supersolvable
by the choice of G, it follows that either P is of order p or G is
p-supersolvable, a contradiction. Thus, we have N =0,(G)=1, as
desired.
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STEP 2. P is non-cyclic.

If P is cyclic, then the unique maximal subgroup @(P) of P is CAP-
subgroup in G by the hypotheses. Hence either P is of order p or G is p-
supersolvable by [1, Theorem 3.2], a contradiction.

STEP 3. &(P)q = 1, therefore, O,(G) is an elementary abelian group.

If not, take any T < &(P)q such that 7<G. We consider the factor
group G/T. Since every maximal subgroup of P contains @(P) and P/T
has the same smallest generator number as P, so

Mg, (P/T) = {P/T,....Pq |T}.

We know that every P;/T is also a CAP-subgroup of G/N by
Lemma 2.1. Thus, G/T satisfies the hypotheses of the theorem.
Hence, either P/T is of order p or G/T is p-supersolvable by the
choice of G. If P/T is of order p, then P is cyclic, contrary to Step
2. Hence G/T is p-supersolvable, then G is p-supersolvable, a con-
tradiction.

STEP 4. If N is minimal normal in G contained in P, then |[N| = p.
By Lemma 2.3(2).

STEP 5. All minimal normal subgroups of G are contained in 0,(G).

Assume that H is a minimal normal subgroup of G which is not a p-
subgroup. As O,(G) = 1 by Step 1, we have that p||H| and H is non-abelian
characteristic simple group. Then

(5.1) All P; € Mg, (P) avoid the chief factor H/1, H is a non-abelian
simple group with |H,| = p.

By Lemma 2.3(1) we know that |H,| = p. So H is a non-abelian simple
group. Obviously H is avoided by every P; € Mg (P).

(6.2) 0,(G) =1.

If 0,(G) # 1, we can pick a minimal normal subgroup N of G contained
in O,(@). By Step 4 we know that N is of order p. Consider the chief series
of G:

1<NaNH« --- «G.

For an arbitrary P; € Mgy (P), since P; avoids HN /N, P; must cover N by
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Lemma 2.1(3). Hence N < P;. Then

dp
N <[(\Pi=aP),

=1

which is contrary to Step 3.

(5.3) Cq(H) = 1.

Suppose that Cz(H) # 1. Now we pick a minimal normal subgroup H* of
G contained in Cg(H). Then HNH* = 1. For any P; € Mg, (P), we know
that P; avoids H, P; must cover H* by Lemma 2.1(3). Therefore, H* is a
group of order p, which is contrary to (5.2).

(b.4) G = PH.

By (5.3), we know that the non-abelian simple group H is the
unique minimal normal subgroup of PH. So all chief factors of PH
are H/1 or a cyclic group of order p. By (5.1), we know that all
P; € Mg,(P) cover or avoid all chief factors of PH. So PH satisfies
the hypothesis of the theorem. If PH < G, then either P is of order p
or PH is p-supersolvable by the minimal choice of G. If PH is p-
supersolvable, then H is p-supersolvable. But this is contrary to (5.1).
Hence G = PH.

(5.5) Finishing the proof of (5).

By (5.3) we have Cs(H) =1. Then G and G/H are isomorphic to a
subgroup of Aut(H) and a subgroup of Aut(H)/Inn(H), respectively. This
means that H,, is of order p and p divides the order of Out(f). By Lemma
2.4, this is impossible.

STEP 6. G = 0,(G) xM, the semi-direct product of O,(G) with a sub-
group M of G and O,(G) is a direct product of normal subgroups of G of
order p.

By Lemma 2.3(3).

STEP 7. The final contradiction.

Since N < Z(P) for any minimal normal subgroup N of G, P < C(0,(G)).
Since Ce(0p(G)) N M <(0y(G), M) = G,Cs(0,(G)) N M = 1by Step 4 and 5.
Then PN M = 1. This implies that P = PN O,(G)M = O,(G)PNM) =
O0,(G). Therefore by Step 6 we have that G is p-supersolvable, the final
contradiction. O
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REMARK. The authors do not know the proof without using the clas-
sification of finite simple groups.

4. Applications

We give some applications of our main result.

Suppose that p is the smallest prime dividing the order of G. We know
that G is p-nilpotent if G, is cyclic by [7, IV Satz 2.8] and p-supersolubility
implies the p-nilpotency. By our main result we immediately have the
following corollary.

COROLLARY 4.1.  Let p be the smallest prime dividing |G| and P o
Sylow p-subgroup of G. Then G is p-nilpotent if and only if every member
in Mg, (P) is a CAP-subgroup of G.

COROLLARY 4.2. Suppose that P is a Sylow p-subgroup of G and
N¢(P) is p-nilpotent for some prime p € n(G). Then G is p-nilpotent if and
only if every member in Mg, (P) is a CAP-subgroup of G.

Proor. We only need to prove the “if” part.

By our main result we know that either P is cyclic or G is p-super-
solvable. If P is cyclic, then we have Ng(P) = Cg(P). Applying Burnsi-
de’s p-nilpotence criterion ([7, Hauptsatz 1V.2.6]), we get that G is p-
nilpotent. Now suppose that G is p-supersolvable. Since the p-length of
p-supersolvable groups is at most 1, we have PO,(G) is normal in G. Set
G= G/0,(G). Then G= NE(P) = Ng(P)Oy(G)/0,(G) is p-nilpotent by
hypothesis. Hence G is p-nilpotent, as desired. O

Suppose that G is p-solvable. If Sylow p-subgroups of G are cyclic,
then G is p-supersolvable. Therefore, immediately from our main re-
sult, we have the following corollary which is a generalization of [3,
Theorem Al.

COROLLARY 4.3. Suppose that G is a p-solvable group, where p is
a fixed prime number in n(G), and P is a Sylow p-subgroup of G.
Then G is p-supersolvable if every member in Mg,(P) is a CAP-
subgroup of G.

The following is a generalization of [3, Theorem C].
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THEOREM 4.4. Suppose that G is a group. Then G is supersolvable if
and only if every member in Mg, (P) is a CAP-subgroup of G for every
prime p in ©(G) and for every Sylow p-subgroup P of G

Proor. We only need to prove the “if” part.

By Corollary 4.3 it is sufficient to prove that G is solvable. Hence we
want to prove that every chief factor of G is solvable. Suppose that L/K
is an arbitrary chief factor of G. For any prime p € n(L/K), we know
that there exists a maximal subgroup H of a Sylow p-subgroup of G such
that H either covers or avoids L/K. If H covers L/K, obviously L/K
is solvable. Hence assume that H avoids L/K. This implies that
|L/K|, < p. Therefore, every Sylow subgroup of L/K is of prime order.
Hence L/K is solvable.

This completes the proof of Theorem 4.4. O
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