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Finite groups with some CAP-subgroups1
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ABSTRACT - A subgroup A of a group G is said to be a CAP-subgroup of G if for any
chief factor H=K of G, there holds H \ A � K \ A or HA � KA. We investigate
the influence of CAP-subgroups on the structure of finite groups. Some recent
results are generalized.
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1. Introduction

All groups considered in this paper are finite. We use conventional

notions and notation, as in Huppert [7]. G always denotes a finite group, jGj
is the order of G, p(G) denotes the set of all primes dividing jGj, Gp is a

Sylow p-subgroup of G for some p 2 p(G).

For a subgroup A of G, if H=K is a chief factor of G, then we will say

that:

(1) A covers H=K if HA � KA;

(2) A avoids H=K if H \ A � K \ A;
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(3) A has the cover and avoidance properties in G, in brevity, A is a

CAP-subgroup of G ([4]), if A either covers or avoids every chief

factor of G.

Clearly normal subgroups are CAP-subgroups. Examples of CAP-

subgroups in the universe of solvable groups are well-known. The most

remarkable CAP-subgroups of a solvable group are perhaps the Hall

subgroups. By an obvious consequence of the definition of supersolvable

group every subgroup of supersolvable group is a CAP-subgroup. In the

literature, a lot of people have investigated the influence of the CAP-

subgroups of G on the structure of G, please see [3], [4], [5], [6], [9], [11],

[12], [13], [14], etc. For example, in [3] the first author has gotten the

following results: 1. ([3, Theorem A]) Let p be a prime, G be a p-solvable

group. Suppose that all maximal subgroups of the Sylow p-subgroups of

G are CAP-subgroups of G, then G is p-supersolvable; 2. ([3, Theorem

C]) Suppose that G is a group and for every prime p in p(G) and for

every Sylow p-subgroup P of G, every maximal subgroup of P is a CAP-

subgroup of G. Then G is supersolvable.

In this paper, we extend Ezquerro's the results at least in three

aspects: first, removing the hypotheses that G is p-solvable in [3, The-

orem A]; secondly, reducing the number of restricted maximal sub-

groups of Sylow subgroups; in third, giving the unified forms of Ez-

querro's results.

Suppose that P is a p-group for some prime p. LetM(P) be the set of all

maximal subgroups of P.

DEFINITION ([10]). Let dp be the smallest generator number of a p-group

P, i.e., pdp � jP=F(P)j. We consider the set Mdp
(P) � fP1; :::;Pdp

g of all

elements ofM(P) such that

\dp

i�1

Pi � F(P):

We know that

jM(P)j � pdp ÿ 1

pÿ 1
; jMdp

(P)j � dp

and

lim
dp!1

pdpÿ1
pÿ1

dp
� 1;
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so

jM(P)j >> jMdp
(P)j:

Our main result is as follows.

MAIN RESULT. Suppose that G is a group and p is a fixed prime

number in p(G) and P is a Sylow p-subgroup of G. Suppose that every

member inMdp
(P) is a CAP-subgroup of G. Then either P is of order p or

G is p-supersolvable.

2. Preliminaries

LEMMA 2.1. Let N be a normal subgroup of G and A a CAP-subgroup

of G. Then:

(1) AN is a CAP-subgroup of G;

(2) AN=N is a CAP-subgroup of G=N;

(3) For any chief series (*) of G, A covers or avoids every chief factor of

the series (*) and furthermore, the order of A is the product of the

orders of the covered chief factors in the series (*).

PROOF. (1) is given in [14, §1, Lemma 1.4]; (2) follows from (1); (3) is

clear by the definition of CAP-subgroup. p

LEMMA 2.2 ([7, I, Hauptsatz 17.4]). Suppose that N is an abelian nor-

mal subgroup of G and N �M � G such that (jNj; [G : M]) � 1. If N is

complemented in M, then N is complemented in G.

LEMMA 2.3. Let P be a non-cyclic Sylow p-subgroup of G and p 2 p(G).

Suppose that F(P)G � 1 and Op(G) > 1 and suppose that every member in

Mdp
(P) is a CAP-subgroup of G. Then:

(1) Np is at most of order p for every minimal normal subgroup N of G;

(2) every minimal normal subgroup of G contained in P is of order p;

(3) G � Op(G)�jM, the semi-direct product of Op(G) with a subgroup

M of G and Op(G) is a direct product of normal subgroups of G of

order p.

PROOF. (1) Suppose that N is minimal normal in G. For any

Pi 2Mdp
(P), we know that either N � Pi or N \ Pi � 1. If N � Pi for all
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Pi 2Mdp
(P), then

N �
\dp

i�i

Pi � F(P);

which is contrary to the hypotheses that F(P)G � 1. Hence there exists a

Pi0
2Mdp

(P) such that N \ Pi0
� 1. Since Pi0

is maximal in P, we have Np is

at most of order p.

(2) It is a corollary of (1).

(3) Let N1 be a minimal normal subgroup of G contained in Op(G). Then

N1 is of order p by (2) and N1 \ F(P) � 1 by the hypotheses that F(P)G � 1.

Hence there exists a maximal subgroup S1 of P such that N1 \ S1 � 1. By

Lemma 2.2, N1 has a complement K in G, i.e., G � N1K and N1 \K � 1.

Then Op(G) � N1(Op(G) \ K). It is easy to see that Op(G) \ K is normal in

G and P \K is a Sylow p-subgroup of K. If Op(G) \K � 1, then our the-

orem holds. So assume that Op(G) \ K 6� 1. Then we can pick a minimal

subgroup N2 contained in Op(G) \ K. By (1), N2 is of order p and there

exists a maximal subgroup S2 of P such that N2 \ S2 � 1 by the hypothesis

that F(P)G � 1. Then P � N2S2 � S2(Op(G) \ K) � S2(P \ K). Since

j(P \K) : (S2 \K)j � jS2(P \ K) : S2j � jP : S2j � p, S2 \ K is a comple-

ment of N2 in P \K. Therefore N2 has a complement L in K by Lemma 2.2.

Then G � N1K � (N1 �N2)�jL. Continuing this process, we have finally

G � Op(G)�jM and Op(G) � N1 �N2 � � � � �Nr, where Ni is a normal

subgroup of G of order p. p

Let p be a prime and n > 1 a natural number. If ps divides n but ps�1

does not divide n, we write (n)p � ps. Let t be a prime and b > 1 and let k be

a natural number. If t, b and k satisfy that t divides bk ÿ 1 but t does not

divide bi ÿ 1 for all i with 1 � i < k, then k is called the order of b module t

and is denoted by expt(b) .

LEMMA 2.4. Suppose that H is a nonabelian simple group. If the Sylow

r-subgroups Hr of H are of order r, where r is a prime, then the out auto-

morphism group Out(H) of H is a r0-group.

PROOF. Suppose that, in the contrary, the order of Out(H) is divided

by r. Obviously r > 2 by [7, IV Satz 2.8]. We will conduct a contradiction

by applying the classification of finite simple groups.

If H is a sporadic simple group, then by [2], jOut(H)j j 2. If H is a

alternating group, then when H � A6, jOut(H)j � 22; when H 6� A6,

jOut(H)j � 2. Hence by r > 2 and r j jOut(H)j, we may assume that H is a
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Lie type simple group over GF(q) with q � pf . By [2], jOut(H)j � dfg and

so r j dfg, where the numbers d, f , g are tabulated in [2, Table 5].

Suppose that r � p. By the order of Lie type simple groups and

jHrj � r, we have H � A1(p). But when H � A1(p), jOut(H)j � 2,

r jÿjOut(H)j, a contradiction. Hence r 6� p.

Let expr(q) � t, then t j r ÿ 1. By [7, P.190] and [8, P.502] we have

(*) qn ÿ 1� �r�
qt ÿ 1
ÿ �

r

n

t

� �
r
; if t divides n;

1; if t does not divide n:

8<:
It is well known that if (b; r ÿ 1) � 1, then r j qbd ÿ 1 if and only if

r j qd ÿ 1. Hence

(**) qnrs ÿ 1
ÿ �

r
� qn ÿ 1� �rrs; if r divides qn ÿ 1;

1; if r does not divide qn ÿ 1:

(

Assume that H=2A2(q). If r j dg, then r � 3 and r j q� 1. We have

q � ÿ1(mod r) and so 3 j q2 ÿ q� 1. Thus

jH3j � 1

3
(q2 ÿ 1)3(q3 � 1)3 � 1

3
(q� 1)2

3(q2 ÿ q� 1)3 � 32;

a contradiction. Assume that r jÿdg. Then r j f . Let f � rsk with (k; r) � 1.

Assume that r j q� 1. By previous argument, we may assume that r > 3.

Thus

jHrj � (q2 ÿ 1)r(q3 � 1)r � (q� 1)2
r (q2 ÿ q� 1)r � r 2;

a contradiction. Hence we may assume that r jÿq� 1 and so t 2 f1; 6g.
When t � 1,

jHrj � (q2 ÿ 1)r(q3 � 1)r � (pf ÿ 1)r � (pk ÿ 1)rrs � rs�1;

a contradiction.

When t � 6, (q3 ÿ 1)r � 1. By (**),

jHrj � (q3 � 1)r � (p6f ÿ 1)r � rs(p6k ÿ 1)r � rs�1;

again a contradiction.

Assume that H � D4(q). Suppose that r j gd. Since r > 2, we have r � 3.

Since 3 j q2 ÿ 1, by jD4(q)j � 1

(2; qÿ 1)2
q6(q4 ÿ 1)2(q2 ÿ 1), we have r 3 j jHj,

a contradiction. Hence we may assume that r jÿgd and r j f . By (*), it is easy

to obtain that jHrj > r, a contradiction.

From now, we assume that H 62 f2A2(q);D4(q)g.
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Suppose that r j dg. Since r > 2 and g 2 f1; 2g, we have r j d and H

is one of simple groups An(q)(n > 1), 2An(q), E6(q) with r � 3, 2E6(q)

with r � 3. If H � E6(q), then r j qÿ 1; if H=2E6(q), then r j q� 1; if

H � An(q), then r j qÿ 1 and n � 2; if H= 2An(q), then r j q� 1 and

n � 4, it is easy to obtain that r 2 j jHj from (*), a contradiction.

Suppose that r jÿdg, then f � rsk with s � 1 and (k; r) � 1. Let

expr(q) � c. From the orders of Lie type simple groups, we have

qc ÿ 1 j jHj if c is odd or q
1
2 c � 1 j jHj if c is even.

When c is odd, by (**)

jHrj � (qc ÿ 1)r � (pkrsc ÿ 1)r � (pkc ÿ 1)rrs � rs�1;

a contradiction.

When c is even, by r jÿq1
2 c ÿ 1 and (**), we have

jHrj � (q
1
2 c � 1)r � (qc ÿ 1)r � (pkrsc ÿ 1)r � (pkc ÿ 1)rrs � rs�1;

a final contradiction.

This completes the proof of the lemma. p

3. The proof of main result

Suppose that the theorem is false and G is a counter-example with

minimal order. We will derive a contradiction in several steps.

STEP 1. Op0 (G) � 1.

Denote N � Op0 (G). If N > 1, we consider the factor group G=N.

Obviously, PN=N is a Sylow p-subgroup of G=N, which is isomorphic to

P, so PN=N has the same smallest generator number as P, i.e., dp and

so

Mdp
(P=N) � fP1=N; :::;Pdp

=Ng:

We know that every Pi=N is also a CAP-subgroup of G=N by

Lemma 2.1. Thus G=N satisfies the hypotheses of the theorem. We

have that either PN=N is of order p or G=Op0 (G) is p-supersolvable

by the choice of G, it follows that either P is of order p or G is

p-supersolvable, a contradiction. Thus, we have N � Op0 (G) � 1, as

desired.
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STEP 2. P is non-cyclic.

If P is cyclic, then the unique maximal subgroup F(P) of P is CAP-

subgroup in G by the hypotheses. Hence either P is of order p or G is p-

supersolvable by [1, Theorem 3.2], a contradiction.

STEP 3. F(P)G � 1, therefore, Op(G) is an elementary abelian group.

If not, take any T � F(P)G such that T ÿ/G. We consider the factor

group G=T. Since every maximal subgroup of P contains F(P) and P=T

has the same smallest generator number as P, so

Mdp
(P=T) � fP1=T; :::;Pdp

=Tg:

We know that every Pi=T is also a CAP-subgroup of G=N by

Lemma 2.1. Thus, G=T satisfies the hypotheses of the theorem.

Hence, either P=T is of order p or G=T is p-supersolvable by the

choice of G. If P=T is of order p, then P is cyclic, contrary to Step

2. Hence G=T is p-supersolvable, then G is p-supersolvable, a con-

tradiction.

STEP 4. If N is minimal normal in G contained in P, then jNj � p.

By Lemma 2.3(2).

STEP 5. All minimal normal subgroups of G are contained in Op(G).

Assume that H is a minimal normal subgroup of G which is not a p-

subgroup. As Op0 (G) � 1 by Step 1, we have that pkHj and H is non-abelian

characteristic simple group. Then

(5.1) All Pi 2 Mdp
(P) avoid the chief factor H=1, H is a non-abelian

simple group with jHpj � p.

By Lemma 2.3(1) we know that jHpj � p. So H is a non-abelian simple

group. Obviously H is avoided by every Pi 2 Mdp
(P).

(5.2) Op(G) � 1.

If Op(G) 6� 1, we can pick a minimal normal subgroup N of G contained

in Op(G). By Step 4 we know that N is of order p. Consider the chief series

of G:

1 /N /NH / � � � /G:

For an arbitrary Pi 2Mdp
(P), since Pi avoids HN=N, Pi must cover N by
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Lemma 2.1(3). Hence N � Pi. Then

N �
\dp

i�i

Pi � F(P);

which is contrary to Step 3.

(5.3) CG(H) � 1.

Suppose that CG(H) 6� 1. Now we pick a minimal normal subgroup H� of

G contained in CG(H). Then H \H� � 1. For any Pi 2Mdp
(P), we know

that Pi avoids H, Pi must cover H� by Lemma 2.1(3). Therefore, H� is a

group of order p, which is contrary to (5.2).

(5.4) G � PH.

By (5.3), we know that the non-abelian simple group H is the

unique minimal normal subgroup of PH. So all chief factors of PH

are H=1 or a cyclic group of order p. By (5.1), we know that all

Pi 2Mdp
(P) cover or avoid all chief factors of PH. So PH satisfies

the hypothesis of the theorem. If PH < G, then either P is of order p

or PH is p-supersolvable by the minimal choice of G. If PH is p-

supersolvable, then H is p-supersolvable. But this is contrary to (5.1).

Hence G � PH.

(5.5) Finishing the proof of (5).

By (5.3) we have CG(H) � 1. Then G and G=H are isomorphic to a

subgroup of Aut(H) and a subgroup of Aut(H)=Inn(H), respectively. This

means that Hp is of order p and p divides the order of Out(H). By Lemma

2.4, this is impossible.

STEP 6. G � Op(G)�jM, the semi-direct product of Op(G) with a sub-

group M of G and Op(G) is a direct product of normal subgroups of G of

order p.

By Lemma 2.3(3).

STEP 7. The final contradiction.

Since N�Z(P) for any minimal normal subgroup N of G, P�CG(Op(G)).

Since CG(Op(G)) \M / hOp(G);Mi � G, CG(Op(G)) \M � 1 by Step 4 and 5.

Then P \M � 1. This implies that P � P \ Op(G)M � Op(G)(P \M) �
Op(G). Therefore by Step 6 we have that G is p-supersolvable, the final

contradiction. p
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REMARK. The authors do not know the proof without using the clas-

sification of finite simple groups.

4. Applications

We give some applications of our main result.

Suppose that p is the smallest prime dividing the order of G. We know

that G is p-nilpotent if Gp is cyclic by [7, IV Satz 2.8] and p-supersolubility

implies the p-nilpotency. By our main result we immediately have the

following corollary.

COROLLARY 4.1. Let p be the smallest prime dividing jGj and P a

Sylow p-subgroup of G. Then G is p-nilpotent if and only if every member

inMdp
(P) is a CAP-subgroup of G.

COROLLARY 4.2. Suppose that P is a Sylow p-subgroup of G and

NG(P) is p-nilpotent for some prime p 2 p(G). Then G is p-nilpotent if and

only if every member inMdp
(P) is a CAP-subgroup of G.

PROOF. We only need to prove the `̀ if'' part.

By our main result we know that either P is cyclic or G is p-super-

solvable. If P is cyclic, then we have NG(P) � CG(P). Applying Burnsi-

de's p-nilpotence criterion ([7, Hauptsatz IV.2.6]), we get that G is p-

nilpotent. Now suppose that G is p-supersolvable. Since the p-length of

p-supersolvable groups is at most 1, we have POp0 (G) is normal in G. Set

G � G=Op0 (G). Then G � N
G

(P) � NG(P)Op0 (G)=Op0 (G) is p-nilpotent by

hypothesis. Hence G is p-nilpotent, as desired. p

Suppose that G is p-solvable. If Sylow p-subgroups of G are cyclic,

then G is p-supersolvable. Therefore, immediately from our main re-

sult, we have the following corollary which is a generalization of [3,

Theorem A].

COROLLARY 4.3. Suppose that G is a p-solvable group, where p is

a fixed prime number in p(G), and P is a Sylow p-subgroup of G.

Then G is p-supersolvable if every member in Mdp
(P) is a CAP-

subgroup of G.

The following is a generalization of [3, Theorem C].
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THEOREM 4.4. Suppose that G is a group. Then G is supersolvable if

and only if every member in Mdp
(P) is a CAP-subgroup of G for every

prime p in p(G) and for every Sylow p-subgroup P of G

PROOF. We only need to prove the `̀ if'' part.

By Corollary 4.3 it is sufficient to prove that G is solvable. Hence we

want to prove that every chief factor of G is solvable. Suppose that L=K

is an arbitrary chief factor of G. For any prime p 2 p(L=K), we know

that there exists a maximal subgroup H of a Sylow p-subgroup of G such

that H either covers or avoids L=K. If H covers L=K, obviously L=K

is solvable. Hence assume that H avoids L=K. This implies that

jL=Kjp � p. Therefore, every Sylow subgroup of L=K is of prime order.

Hence L=K is solvable.

This completes the proof of Theorem 4.4. p
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