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Explicit calculation of Frobenius isomorphisms and

PoincareÂ duality in the theory of arithmetic D -modules
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ABSTRACT - The aim of this paper is to compute the Frobenius structures of some
cohomological operators of arithmetic D -modules. To do this, we calculate ex-
plicitly an isomorphism between canonical sheaves defined abstractly. Using
this calculation, we establish the relative PoincareÂ duality in the style of SGA4.
As another application, we compare the push-forward as arithmetic D -modules
and the rigid cohomologies taking Frobenius into account. These theorems will
be used to prove `̀ p-adic Weil II'' and a product formula for p-adic epsilon factors.

MATHEMATICS SUBJECT CLASSIFICATION (2010). 14F30.

KEYWORDS. p-adic cohomology, arithmetic D -module, rigid cohomology.

Introduction

In this paper, we prove several results concerning Frobenius structures

in the theory of arithmetic D -modules. There are mainly three goals in this

paper.

(G1) Compute and describe Frobenius structures of some cohomological

operators, appearing in [Be2], concretely in terms of differential op-

erators.

(G2) Establish a relative PoincareÂ duality in the style of SGA4 in the theory

of arithmetic D -modules.

(G3) Compare the push-forwards in the theory of D -modules and the rigid

cohomologies with Frobenius structure.
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First, (G1) is the starting point of the other two goals. We describe

some isomorphisms appearing in [Be2] explicitly by taking local co-

ordinates. Apart from (G2) and (G3), this calculation is used in [AM] to

compute the geometric Fourier transform defined by C. Noot-Huyghe

explicitly. With this description, we are able to re-prove Gross-Koblitz

formula [GK] using arithmetic D -modules. This calculation will be dis-

cussed in other places. We expect that these ideas can be generalized to a

calculation of p-adic e-factors.

For (G2), a duality theory was established by A. Virrion in [Vi2] to some

extent. However, we need two more ingredients to call it the PoincareÂ

duality: 1) comparison of the extraordinary pull-back and the normal pull-

back for a smooth morphism, and 2) taking Frobenius structures into ac-

count. Using our result 1) on the comparison of two types of pull-backs, we

are also able to compare duality functors of the theory of rigid cohomology

and that of arithmetic D -modules, which completes a work in [Ca5]. For 2),

even without Frobenius structures, her duality is very powerful tool, but in

practical uses of arithmetic D -module theory, Frobenius structure is an-

other important ingredient that contain arithmetic information. For ex-

ample, L-functions for holonomic D y
-modules cannot be defined without

Frobenius structures, and thus to show the functional equation for L-

functions, it is necessary to consider Frobenius structures in the duality.

(G3) is another application of (G1). If we do not consider Frobenius

structures, this is a well-known result of Berthelot [BeI, 4.3.6.3]. This type

of comparison theorem is necessary when we want to exploit results of the

theory of D -modules in the theory of rigid cohomologies and vice versa.

For example, in [Ca2, 3.3], the author discussed the relations of L-functions

defined using the theory of rigid cohomologies and that of arithmetic D -

modules. This result can be reinforced and re-stated much clearer using

our result (cf. Remark 3.12). For the situation of this result, see also Re-

mark 3.15.

Now, let us go into more details of the results. Let R be a complete

discrete valuation ring of mixed characteristic (0; p), and we denote by k its

residue field which is assumed to be perfect, K its field of fractions. Let X
be a smooth formal scheme over Spf(R), and X0 be the reduction of X over

k. Let s be a positive integer, and we put X
0
0 :� X0 
k;F

s
k

k where

F
s
k: Spec(k)! Spec(k) denotes the s-th absolute Frobenius isomorphism.

In this introduction, we also assume that there exist liftings s: Spf(R)!�
Spf(R) of F

s
k and F: X ! X 0

:� X 
R;s R of the relative Frobenius

morphism F
s
X0=k: X0 ! X

0
0 for simplicity. A coherent F-D y

X ;Q-module is a
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couple of a coherent D y
X ;Q-module M and an isomorphism F

�Ms !� M

where Ms
denotes the D

y
X 0;Q-module induced by M by the base change s.

Frobenius structures are known to be stable under reasonable cohomolog-

ical operations of arithmetic D -modules such as push-forwards, extra-

ordinary pull-backs, tensor products, etc (cf. [Be2]).

When we try to calculate Frobenius structures of some cohomological

operations (e.g. push-forward functor), an obstacle lies in the isomorphism

vX !� F
[
vX 0 of [Be2, 2.4.2]. The construction of this isomorphism is for-

mal using general facts of [Ha]. However, we need to trace many iso-

morphisms of [Ha] to compute it explicitly, which is monotonous but messy.

The advantage of this computation is that it makes us possible to calculate

Frobenius structures in `̀ brutal'' but very direct ways, at least locally. As

an example of the explicit computation, we calculate the Frobenius struc-

ture of push-forwards (cf. paragraph 2.5). We can also prove a proper base

change type lemma (cf. Lemma 2.6). With an aid of a result of Caro, we get

the proper base change theorem in paragraph 5.7. Another application will

be to prove the following theorem.

THEOREM 3.10. Let f : X ! Y be a smooth morphism of relative di-

mension d between smooth formal schemes. For a coherent F-D y
Y ;Q-

module M,

f !(DY (M)) � DX ( f !M)(d)[2d]( )

where (d) denotes the d-th Tate twist (cf. paragraph 2.7).

The construction of the isomorphism without Frobenius structures re-

quires only standard methods of the theory of arithmetic D -modules, but to

see the compatibility with Frobenius structures, we need the explicit cal-

culation of the isomorphism of canonical sheaves. Using a result we get on

the way we prove this theorem, we compare the rigid cohomologies and the

push-forwards in the arithmetic D -module theory, which is (G3). This

theorem can be seen as a part of PoincareÂ duality. See the last section for an

account of this interpretation. Moreover this theorem leads us to complete a

work of Caro in [Ca3] (cf. Corollary 3.12) comparing the duality functors in

the theory of rigid cohomology and that of arithmetic D -modules.

In this paper, we also include some small but useful results concerning

Frobenius pull-backs. Namely, we prove: 1. commutation of the dual

functor and the tensor product in some cases, 2. the KuÈnneth formula, 3.

compatibility of the relative duality homomorphism with Frobenius. The

result 1 uses ( ) in the proof, but results 2 and 3 are independent of the
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explicit computations. The results 1 and 2 are included in this paper with

the intention of use in [AM]. The result 3 is aimed to establish the PoincareÂ

duality as we have already mentioned.

Finally, let us point out some notable applications of our results. Cur-

rently, we have the following two important applications:

� establishing the `̀ yoga of weights'' in p-adic cohomologies, especially

an analog of `̀ Weil II'' in the theory of arithmetic D -modules. This

will be treated in a paper of the author jointly with D. Caro (see

[AC]).

� a product formula for p-adic epsilon factors. See [AM] for more details.

In the proofs of those two results, (G2) and (G3) are used extensively.

Let us see the structure of this paper. In §1, we describe isomorphisms

which are key isomorphisms to construct the commutativity. In §2, we cal-

culate the Frobenius structure of push-forwards explicitly. We should men-

tion that this calculation is a key to calculate the Frobenius structure of

Fourier transforms explicitly, which is carried out in [AM]. With these two

sections, (G1) is attained. As an application, we show a proper base change

type lemma also in this section. In §3, we show that the dual functor and the

extraordinary pull-back functor commute up to some degree shift and Tate

twist in the smooth case. Using a lemma we prove to show this commutativity,

we will compare the rigid cohomology and the push-forward of arithmetic D -

modules, and we get (G3). In §4, we will show some complementary results,

which are used in [AM]. The idea of the proof of the KuÈnneth formula is due to

P. Berthelot. In this section, we also prove that the relative duality iso-

morphism of Virrion is compatible with Frobenius. Together with §3, (G2) is

completed. In §5, we interpret the results in terms of the philosophy of `̀ six

functors'' by Grothendieck, which clarifies the meaning of the results in this

paper. We refer to the recent paper [Ab2] for more complete treatment.

Notation

0.1. In this paper we fix a complete discrete valuation ring R with mixed

characteristic (0; p). We denote the residue field by k, the field of fractions

by K. For a non-negative integer i, we put Ri to be R=p
i�1

R where p is a

uniformizer. We denote by e the absolute ramification index of K.

In general, we use Roman fonts (e.g. X) for schemes and script fonts

(e.g. X ) for formal schemes. For a formal scheme X over Spf(R), we

usually denote by Xi the reduction X 
R Ri over Spec(Ri).
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0.2. For a scheme X over Spec(k), we denote by FX : X ! X the absolute

Frobenius homomorphism: it sends a section f of OX to f
p
. We fix a

positive integer s, and put q :� p
s
. We put X

(s)
:� X 
k;F

s�
k

k, and call it

the relative s-th Frobenius of X.

0.3. Let D be a sheaf of rings on a topological space X. When we

simply say D -module, it means left D -module. We denote by D
�
coh(D )

(� 2 f�;ÿ; bg) the full subcategory of D
�
(D ) such that the objects

consist of complexes whose cohomology sheaves are coherent. We

denote by Dperf (D ) the full subcategory whose objects consist of per-

fect complexes (i.e. complexes locally quasi-isomorphic to bounded

complexes of locally projective D -modules). We denote by Dftd(D ) the

full subcategory consisting of finite Tor-dimensional complexes

(i.e. complexes possessing bounded flat resolutions). We put D
b
perf (D ) :�

Dperf (D ) \Dftd(D ). When X is quasi-compact and D is coherent,

D
b
perf (D ) coincides with Dperf (D ) \D

b
coh(D ). See SGA6 Exp. I for de-

tails. When we denote by D(D )
g

(resp. D(D )
d
) we consider complexes

of left (resp. right) D -modules (g and d stand for French words

``gauche'' and ``droit''). When we put Q as an index, this means tensor

with Q.

0.4. In this paper, we freely use the language of arithmetic D -modules.

For details see [Be1], [Be2], [BeI]. In particular, we use the rings D �m�
X ,bD �m�

X , D y
X for a smooth scheme X and a smooth formal scheme X . We

use the category LDÿ!
b
Q;qc� bD ���

X � whose definition is written in [BeI, 4.2].

Let Z be a divisor of the special fiber of X . We denote bB(m)

X (Z) b
bD �m�
X :� lim ÿi

BXi
(Z)
D �m�

Xi
by bD �m�

X (Z), and bD �m�
X (Z)
Q by bD �m�

X ;Q(Z). By

the same construction as LDÿ!
b
Q;qc� bD ���

X �, we can consider the category

LDÿ!
b
Q;qc� bD ���

X (Z)�. For this category, see also [Ca2, 1.1.3].

0.5. Let X be a smooth formal scheme, and Z be a divisor of its special

fiber. Let U :� X n Z, X and U be the special fibers of X and U respec-

tively. Let M be a coherent (F-)D y
X ;Q(

y
Z)-module such that it is coherent as

an OX ;Q(
y
Z)-module. Let C be the full subcategory of the category of co-

herent (F-)D y
X ;Q(

y
Z)-modules consisting of such M. Then we know that the

specialization functor induces an equivalence between C and the category

(F-)Isoc
y
(U;X=K) by [Be1, 4.4.12] and [Be2, 4.6.3, 4.6.7]. We say that M is a

convergent (F-)isocrystal on U overconvergent along Z by abuse of lan-

guage.
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1. Explicit calculation of isomorphisms of canonical sheaves

In this section, we will explicitly calculate the isomorphisms of [Be2,

2.4.3, 2.4.4] (cf. Theorem 1.7), from which some commutation results of

Berthelot [Be2] are derived. The existence of these isomorphisms are di-

rect consequences of fundamental properties of the functors of Hartshorne

[Ha], and for the explicit calculations, we need to go back to the proofs of

these fundamental properties, and trace these isomorphisms step by step.

We follow the notation of [Ha, III].

1.1. First we review the notation and functors of Hartshorne [Ha, III] in

short. Let f : X ! Y be a morphism of schemes. When f is smooth, we de-

note by vX=Y the canonical sheaf
Vd

VX=Y where d denotes the relative

dimension of f . When f is regular closed immersion, let J be the sheaf of

ideals of OY defining X. Then we put vX=Y :� (
Vd J =J 2

)
_

where d is the

codimension of X in Y , and
_

is the dual as an OX-module. In both cases,

vX=Y is a locally free OX-module of rank 1.

Suppose f is smooth. We define a functor f
]
: D(OY )! D(OX) as

follows. See [Ha, III § 2] for more details. For C 2 D(OY ), we put

f
]
(C) :� f

�
(C)
OX

vX=Y [d] where d is the relative dimension of f . We see

that this functor takes D
b
qc(OY ) into D

b
qc(OX) (here D

�
qc denotes the full

subcategory of the derived category consisting of objects whose co-

homologies are quasi-coherent sheaves).

In turn, suppose f is a finite morphism. We denote by f the morphism of

ringed spaces (X;OX)! (Y ; f�OX). Then we define a functor f
[
: D
�

(OY )!
D
�

(OX) as follows. See [Ha, III § 6] for more details. For C 2 D
�

(OY ), we

put f
[
(C) :� f

�
RHomOY

( f�OX ;C). We know that this functor takes D
�
qc(OY )

into D
�
qc(OX), and if f has finite Tor-dimension (cf. [Ha, II § 4], e.g. flat

morphism), then it takes bounded complexes into bounded complexes.

1.2. Now, consider the following diagram of schemes

where f and h are regular closed immersions of codimension d > 0, and g is

a finite flat morphism. Since g is finite flat, we get that

g[(OZ) � g�HomOZ
(g�OY ;OZ):
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There exists the natural equivalence f
[
g
[ � h

[
by [Ha, III Proposition 6.2].

By taking the d-th cohomology, we get an isomorphism

i: f
�Extd

OY
( f�OX ; g

�HomOZ
(g�OY ;OZ))!� h

�Extd
OZ

(h�OX ;OZ):

Now, suppose Z is an affine scheme. Then the other two schemes are also

affine schemes. We denote the global sections of X (resp. Y , Z) by RX

(resp. RY , RZ). By [Ha, III, Proposition 6.1], the source and target of i are

quasi-coherent OX-modules. Thus, i is associated to the following iso-

morphism of RX-modules

Extd
RY

(RX ;HomRZ
(RY ;RZ))!� Extd

RZ
(RX ;RZ);

and we also denote this isomorphism by i. We calculate this isomorphism in

terms of the fundamental local isomorphism [Ha, III, Proposition 7.2].

Suppose moreover that there exists a system of local parameters de-

fining X in Y (resp. in Z) denoted by fyigi�i�d (resp. fzig1�i�d). Let

I :� Ker(RY ! RX). The sheaf vX=Y is the quasi-coherent sheaf associated

to HomRX
(
Vd

I=I
2
;RX). Since y1 ^ � � � ^ yd defines a basis of

Vd
I=I

2
, we

denote by (y1 ^ � � � ^ yd)
_

its dual basis. In the same way, we define a basis

(z1 ^ � � � ^ zd)
_

of vX=Z.

1.3 LEMMA. We preserve the notation. We define a homomorphism a in

the following diagram so that it is commutative.

Here the horizontal isomorphisms are the isomorphisms of [Ha, III, 7.2].

Let g
�
(zi) �

P
1� j�d

fij yj where fij 2 RY . Here the expression may not be

unique, but take one. We put G :� ( fij)i�i; j�d 2 Matd�d(RY ). Then

a((y1 ^ � � � ^ yd)_ 
 W) � W(det(G)) � (z1 ^ � � � ^ zd)_

where the over-line denotes to take the image of the homomorphism

RZ ! RX inducing h.

PROOF. On the way we prove the lemma, we will review the definition of

the homomorphism b. Let RZzi be a free RZ-module of rank 1 whose gen-
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erator is zi. Let K� :� V� �Ld
i�1

RZzi

�
be the Koszul complex. By definition,

the differential homomorphism Kr ! Krÿ1 is defined by sending

zi1
^ � � � ^ zir

to
P

(ÿ 1)
j
zij

zi1
^ � � � ^ bzij

^ � � � ^ zir where bzij
means omit zij

.

The canonical homomorphism RZ ! RX defines a complex

�̂
�Md

i�1

RZzi

�
! RX ! 0;

which is known to be a free resolution of RX . Now, let RYni be a free RY -

module of rank 1 with basis ni, and let us define a homomorphism

^
r

�Md

i�1

RZzi

�
!
^

r

�Md

i�1

RYni

�
by mapping zi1

^ � � � ^ zir
to� X

1� j�d

fi1; jnj

�
^ � � � ^

� X
1� j�d

fir ; jnj

�
�

X
(j1;...; jr)2[1;d]r

fi1; j1
. . . fir ; jr

� nj1
^ � � � ^ njr

where [1; d] is the set fi 2 Z j 1 � i � dg. Then it is a standard calculation

to check that these homomorphisms define a homomorphism of Koszul

complexes:

g:
�̂
�Md

i�1

RZzi

�
! �̂

�Md

i�1

RYni

�
:

This induces the following commutative diagram.

Here, the left vertical arrow is induced by g. The bottom horizontal

arrow is the surjective homomorphism defined by sending f to

f(z1 ^ � � � ^ zd) � (z1 ^ � � � ^ zd)
_

. This factors through Ext
d
RZ

(RX ;RZ), and

this is b by definition. The top horizontal arrow is defined in the same

manner. The homomorphism g sends z1^ � � � ^ zd to det(G) � (n1^ � � � ^nd).

Thus, we get the lemma. p

1.4. Now we will calculate the isomorphism mX in [Be2, Lemme 2.4.2],

which is one of the two ingredients to calculate the Frobenius isomorphisms
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explicitly. The other ingredient is the explicit calculation of Frobenius by

Garnier, which we will review in paragraph 2.2.

Let us fix the situation and notation. We fix a positive integer s > 0,

and put q :� p
s

as in Notation. Let S be a scheme endowed with quasi-

coherent m-PD ideal (a; b; a) such that p 2 a and p is nilpotent, and X be

a smooth scheme over S of relative dimension d. Let S0 be the sub-

scheme of S defined by a, and X0 :� X �S S0. Suppose S and X are

affine schemes, and X possesses a system of local coordinates fxig1�i�d

over S (i.e. the homomorphism X ! A
d
S induced by fxig is eÂtale). Recall

X
(s)
0 :� X0 �S0;F

s
S0

S0 is the s-th relative Frobenius of X0 over S0. Let X
0

be a smooth lifting of X
(s)
0 over S. There exists a system of local co-

ordinates fyig1�i�d of X
0
. Since S and X are affine, we may lift the

relative Frobenius homomorphism denoted by F: X ! X
0

over S un-

iquely such that F
�
(yi) � x

q
i .

We will use multi-index notation. For an integer i, we put i :� (i; . . . ; i)

in Z
d
. For k � (k1; . . . ; kd) and k

0 � (k
0
1; . . . ; k

0
d) in Z

d
, we denote by k < k

0

(resp. k � k
0
) if ki < k

0
i (resp. ki � k

0
i) for any 1 � i � d. We define

kÿ k
0
:� (k1 ÿ k

0
1; . . . ; kd ÿ k

0
d).

We know that

F�OX �
M

0�k<q

OX 0x
k:

Consider the dual O_X :� HomOX0 (F�OX ;OX 0 ). We denote the dual basis of

fxkg by fHx
ÿkg. The notation may seem a little strange, but this notation is

used to be consistent with Garnier's calculation (cf. paragraph 2.2). For a

quasi-coherent OX 0 -module M, we get

F�(M) � OX 
OX0 M�1:4:1�
F[(M) � HomOX0 (F�OX ;M) �M 
OX0 O_X

as OX-modules. We identify them, and a section m
 W of M 
OX0 O_X is

considered to be a section of F
[
(M).

1.5 PROPOSITION. We preserve the notation, in particular S, X, X
0

are

affine. Recall the isomorphism of Berthelot [Be2, 2.4.2]

mX :vX !� F[vX 0 :

Using (1.4.1), we can described this isomorphism by

mX(dx1 ^ � � � ^ dxd) � (dy1 ^ � � � ^ dyd)
Hx
ÿ(qÿ1)

:
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PROOF. Before starting the proof, we remind that Conrad pointed out in

[Co] that with sign convention of [Ha], many compatibilities stated in [Ha]

do not hold, and we need to use the modified convention as in [Co, 2.2]. In

this proof, since the outcome does not change, we follow the conventions of

[Ha]. For skeptical readers, we put signs
1 through
4 below arrows of the

homomorphisms whose sign change if we use the conventions of [Co], and

see how they differ at the very end of this proof.

To avoid confusions, we put Y :� X
0

in this proof. Consider the fol-

lowing diagram.

Here p2 is the second projection, D is the diagonal morphism, qX is the

first projection, s is the graph morphism of F, qY is the second projec-

tion, and f and g are structural morphisms. For an affine scheme Z, we

denote the global sections of Z by RZ. Note that all the schemes ap-

pearing in the diagram are affine. Let us consider X �S X (resp. X �S Y)

as a scheme over X by the projection p2 (resp. qX) unless otherwise

stated. We put

x1;i :� xi 
 1 in RX�SX and RX�SY

xD;i :� xi 
 1ÿ 1
 xi in RX�SX

xs;i :� F
�
(yi)
 1ÿ 1
 yi in RX�SY :

The set fxD;1; . . . ; xD;d; x1;1; . . . ; x1;dg (resp. fxs;1; . . . ; xs;d; x1;1; . . . ; x1;dg)
forms a system of local coordinates of X �S X (resp. X �S Y), and

fxD;1; . . . ; xD;dg (resp. fxs;1; . . . ; xs;dg) defines a local system of parameters

defining D(X) (resp. s(X)). We also note that dxD;� :� dxD;1 ^ � � � ^ dxD;d

defines a basis of vX�SX=X . For W 2 HomRY (RX ;RY ), we denote by

W
0 2 HomRX�SY

(RX�SX ;RX�SY ) the homomorphism defined by 1
 W. Now,

let d
0
: RX ! RX�SX � RX 
RS

RX be a homomorphism of RS-algebras

defined by d
0
(b) :� b
 1ÿ 1
 b. We consider RX�SX as an RX-algebra

by the first component for a while. Then for a; b 2 RX , we get

d0(ab) � a d0(b)� b d0(a)ÿ d0(a) � d0(b):

98 Tomoyuki Abe



Thus,

(1� F)�(xs;i) � d0(F�(yi)) � d0(x
q
i ) �

�
ÿd0x

qÿ1
i �

X
qÿ1>j�0

fi; j d0x
j
i

�
� d0xi

�: Fi � xD;i

with fi; j 2 RX . By definition, we have

(Hx
ÿ(qÿ1)
i )

0
(d
0
x

k
j ) � 0 for any i 6� j or i � j and k 6� qÿ 1

(Hx
ÿ(qÿ1)
i )

0
(d
0
x

qÿ1
i ) � ÿ1
 1:

(

Let

G :� diag(F1; . . . ;Fd) 2 Matd�d(RX�SX)�1:5:1�
where diag denotes the diagonal matrix. Then, we obtain

�1:5:2� (Hx
ÿ(qÿ1)

)0(det(G)) � (Hx
ÿ(qÿ1)

)0((ÿ 1)dd0x
qÿ1
1 . . . d0x

qÿ1
d ) �

(ÿ 1
 1)2d � 1
 1:

We set back the convention, and consider X �S X as a scheme over X by

p2. The homomorphism mX is defined in the following way:

vX � f ]OS[ÿ d] � F[g]OS[ÿ d] � F[vY=S

where the first and third isomorphisms are by definition [Ha, III § 2] and

the second isomorphism is induced by [Ha, III, Proposition 8.4]. In the rest

of this proof, we will drop the section number III when we cite [Ha]. Since

the sheaves we are considering are quasi-coherent and schemes are affine,

we do not make any difference between sheaves and its global sections.

We will start to calculate from F
[
vY=S. In the rest of this proof, we will

use the identification F
[M � O_X 
OX0 M to describe the elements con-

trary to the standard convention (1.4.1) of this paper. Thus the sheaf

F
[
vY=S is identified with HomRY

(RX ;RY )
RY
vY=S. Take an element

W
 dy� 2 HomRY
(RX ;RY )
RY

vY=S:

First, we need to calculate the isomorphism a: F
[
vY=S !� s

[
q
]
YvY=S , which is

the third isomorphism in the proof of [Ha, 8.4]. This isomorphism is the

isomorphism of [Ha, 8.2]. To calculate this, first, we get an isomorphism

HomRY
(RX ;RY )
RY

vY=S � F[vY=S

!�

1

D[p
]
2F[vY=S � vX=X�SX 
RX�X

vX�SX=X 
RX
HomRY

(RX ;RY )
RY
vY=S:
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This isomorphism is defined in [Ha, 8.1]. Let x
_
D;� denotes the dual basis of

xD;1 ^ � � � ^ xD;d in vX=X�SX , dy� denotes dy1 ^ � � � ^ dyd, and dx1;� denotes

dx1;1 ^ � � � ^ dx1;d. We define x
_
s;� and dxs;� in the same way. Then the iso-

morphism sends W
 dy� to x
_
D;� 
 dx1;� 
 W
 dy� . Secondly, we get an

isomorphism

vX=X�SX 
RX�X
vX�SX=X 
RX

HomRY
(RX ;RY )
RY

vY=S

� D[p
]
2F[vY=S !� D[(1� F)[q

]
YvY=S

� vX=X�SX 
RX�X
HomRX�SY

(RX�SX ;RX�SY )
RX�Y
vX�SY=Y 
RY

vY=S:

This isomorphism is defined in [Ha, 6.3], and sends x
_
D;� 
 dx1;� 
 W
 dy� to

x
_
D;� 
 W

0 
 dx1;� 
 dy� . Thirdly, we get an isomorphism

vX=X�SX
HomRX�SY
(RX�SX ;RX�SY )
 vX�SY=Y 
 vY=S � D[(1� F)[q

]
YvY=S

!� s[q
]
YvY=S � vX=X�SY 
RX�SY

vX�SY=Y 
RY
vY=S:

This isomorphism is defined in [Ha, 6.2], and this is the homomorphism

we calculated in Lemma 1.3. Thus, using this lemma, we get that it sends

x
_
D;� 
 W

0 
 dx1;� 
 dy� to W
0
(det(G)) � x_s;� 
 dx1;� 
 dy� where G is the ma-

trix defined in (1.5.1). Combining these three isomorphisms we got, we

obtain

a: HomRY (RX ;RY )
RY vY=S !� vX=X�SY 
RX�SY vX�SY=Y 
RY vY=S

W
 dy� 7! W0(det(G)) � x_s;� 
 dx1;� 
 dy�

where the over-line denotes taking the image of the canonical homo-

morphism RX�SY ! RX inducing the morphism s.

Now, we come back to the definition of the isomorphism of [Ha, 8.4]. We

need to calculate the isomorphism b: s
[
q
]
YvY=S !� s

[
q
]
X f

]OS[ÿ d] , which is

the second isomorphism in the proof of [Ha, 8.4]. We have an isomorphism

s[q
]
YvY=S � vX=X�SY 
RX�SY

vX�SY=Y 
RY
vY=S

!�

2

s[( f � qX)]OS[ÿ d] � vX=X�SY 
RX�SY vX�SY=S:

This isomorphism is defined in [Ha, 2.2], and sends x
_
s;� 
 dx1;� 
 dy� to

x
_
s;� 
 ((ÿ 1)

d
dxs;� ^ dx1;�). Then we get an isomorphism

vX=X�SY 
RX�SY vX�SY=S �
s[( f � qX)]OS[ÿ d]!�


3
s[q

]
X f ]OS[ÿ d] � vX=X�SY 
 vX�SY=X 
 vX=S:
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This is also an isomorphism of [Ha, 2.2], and sends x
_
s;� 
 (dxs;� ^ dx1;�) to

(ÿ 1)
d

2

x
_
s;� 
 dxs;� 
 dx� . Since d

2 � d is even, we get

b:vX=X�SY 
RX�SY
vX�SY=Y 
RY

vY=S !� vX=X�SY 
 vX�SY=X 
 vX=S

x_s;� 
 dx1;� 
 dy� 7!x_s;� 
 dxs;� 
 dx�:

At last, we get an isomorphism

c:vX=X�SY 
 vX�SY=X 
 vX=S � s[q
]
XvX=S !�
4 vX=S:

This isomorphism is defined in [Ha, 8.1], and sends x
_
s;� 
 dxs;� 
 dx�

to dx� .
Now, by definition, m

ÿ1
X � c � b � a. The above calculation shows that

mÿ1
X (W
 dy�) � W0(det(G)) � dx�:

Taking W � Hx
ÿ(qÿ1)

and considering (1.5.2), we get the lemma.

As we noted at the beginning of this proof, we need some modification

for the calculation of the homomorphisms 
1 through 
4 if we use the

convention of [Co, 2.2]. Precisely for the homomorphisms 
1 and 
4 , we

need to multiply by (ÿ 1)
d(dÿ1)=2

, and for the homomorphisms
2 and
3 , we

need to multiply by (ÿ 1)
d

2

. Thus, m
ÿ1
X is multiplied by (ÿ 1)

d(dÿ1)�2d
2

� 1,

and the result remains to be the same as we stated. p

1.6 REMARK. When F
�
(yi) is not equal to x

q
i , we can also calculate in

the same way. We can write d
0
(F
�
(yj)) �

P
i

fi; j � d0xi where fi; j 2 RX�SX

using the notation of the proof of the proposition. We put gi; j :�
((1
Hx

qÿ1
)( fi; j))

ÿ
where the over-line denotes to take the image of the

canonical homomorphism RX�SY ! RX . Using this, we get

i(dx1 ^ � � � ^ dxd) � (det eG)ÿ1(Hxqÿ1) dy1 ^ � � � ^ dyd

where

eG � g1;1 . . . g1;d

..

. ..
.

gd;1 . . . gd;d

0B@
1CA:

Note that this matrix is invertible since eG � I mod p �Mat(RX).

Now the following theorem follows from the construction and Propo-

sition 1.5.

Explicit calculation of Frobenius isomorphisms and PoincareÂ duality etc. 101



1.7 THEOREM. We preserve the notation of paragraph 1.4, and let us de-

note by (dx�)
_

the dual basis of dx� :� dx1 ^ � � � ^ dxd in v
ÿ1
X , and the same

for dx
0
� and (dx

0
�)
_

. Let M be a left D �m�
X 0 -module, and N be a right D �m�

X0 -

module. Recall two isomorphisms of Berthelot [Be2, 2.4.3, 2.4.4]:

mM :vX 
OX
F�M !� F[(vX 0 
OX0 M);

nN :vÿ1
X 
OX

F[N !� F�(vÿ1
X 0 
OX0 N ):

Let m 2M, m
0 2 N , and f 2 OX. Then we get that

mM (dx� 
 ( f 
m)) � (dx0� 
m)
 (Hx
ÿ(qÿ1) � f );

nN
ÿ
(dx�)

_ 
 (m0 
 (Hx
ÿ(qÿ1) � f ))

� � f 
 (dx0�)
_ 
m0

by using the notation of (1.4.1).

2. Explicit calculation of Frobenius isomorphisms

In this section, we will give first applications of the theorem in the

previous section. The main result of this section is the calculation of the

Frobenius structure of push-forwards.

2.1. We will fix two situations for the basis R often used in this paper.

1. The ring R is complete discrete valuation ring as in Notation.

2. We moreover assume that the s-th absolute Frobenius isomorphism

F
s
k lifts to an automorphism Spf(R)!� Spf(R) which is denoted by s.

In this case k is automatically perfect.

For a scheme X over k, we recall X
(s)

:� X 
k;F
s�
k

k. Let X be a smooth

formal scheme over Spf(R), and let X0 the special fiber. Suppose that X
(s)
0

can be lifted to a smooth formal scheme X 0
over Spf(R). In the situation 1,

we are able to consider Frobenius pull-backs even if there are no lifting of

the relative Frobenius morphism X0 ! X
(s)
0 (cf. [Be2, 2.2.3]). Thus we are

able to discuss the commutativity of Frobenius pull-backs with several

cohomological operations such as push-forwards or duals etc. In the situa-

tion 2, moreover, we are able to define F-D y
X ;Q-modules (cf. [Be2, 4.5.1]).

2.2. We will review the second ingredient to calculate Frobenius iso-

morphisms, which are results of Garnier [Ga]. See [Ab] for another aspect of

Garnier's result.
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We will consider the situation 2.1.1. Let X be a smooth affine formal

scheme over R whose special fiber is denote by X0 , and suppose given a

system of local coordinates fx1; . . . ; xdg. We denote by f@1; . . . ; @dg the

corresponding differential operators. For a positive integer s, we let

F
s�
k : k! k be the s-th absolute Frobenius homomorphism. Let X 0

be a

smooth affine formal scheme over R which is a lifting of X0 �ss
k. The

relative Frobenius morphism X0 ! X0 
F
s�
k

k can be lifted to a morphism

FX : X ! X 0
by the universal property of smoothness since X is assumed

to be affine. We sometimes denote FX by F. We also fix a system of local

coordinates fx01; . . . ; x
0
dg of X 0

such that F
�
(x
0
) � x

q
using the universal

property once again. We denote the corresponding differential operators

by f@01; . . . ; @
0
dg.

Garnier constructed in [Ga] a special differential operator H 2 bD �s�
X

called the Dwork operator with the following properties:

1) Suppose a primitive q-th root of unity is contained in R. Then

Hi � qÿ1
X
zq�1

X
k�0

(z ÿ 1)kxk
i @

[k]
i ; H :�

Y
1�i�d

Hi:

These are global sections of bD �s�
X . The operator Hi is called the Dwork

operator corresponding to xi. (cf. [Ga, Proposition 4.5.2])

2) The operator H is a projector from OX to OX 0 . Precisely, we

have H
2 � H in bD �s�

X , and its action on OX is OX 0 -linear.

(cf. [Ga, Proposition 2.5.1])

3) For 0 � k < q, we get that Hx
ÿk

in an element of bD �s�
X . We haveP

0�k<q

x
k
Hx
ÿk � 1.

(cf. [Ga, Proposition 2.5.1, 2.5.3])

4) For 0 � k < q, the operator Hx
ÿk

defines an OX 0 -linear homo-

morphism OX ! OX 0 , and defines an element of O_X . The set

fHx
ÿkg defines the dual basis of fxkg.

(cf. [Ga, Proposition 2.5.1, 2.5.3])

The property 4 justifies the notation Hx
ÿk

as the dual basis used in

paragraph 1.4. Now, we define

(@0i)
� :� (qxqÿ1)ÿ1@iH;

and P :�P
k

fk@
0k

in bD �m�
X 0 with fk 2 OX 0;Q, we put

P� :�
X

k

F�( fk) � (@0)�k:
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Note that P
�

is denoted by P
0

in [Ga, 4.6.1]. This defines a ring homo-

morphism bD �m�
X 0 ! bD �m�s�

X ; P 7!P
�

(cf. [Ga, 4.3]).

The most important property of this operator is that with which we are

able to describe the isomorphism [Be2, 4.1.2 (ii)]. Precisely, there exists the

following canonical isomorphism

F�F[ bD �m�
X 0 � OX 
OX 0

bD �m�
X 0 
OX 0 O_X !

� bD �m�s�
X :

Then according to [Ga, 4.7.2], this isomorphism can be described as

f 
 P
Hxÿk 7! f � P� �Hxÿk:�2:2:1�

REMARK. Throughout [Ga], the residue field k is assumed to be perfect

(cf. [loc. cit. 1.1]). However, this assumption is not used in the paper, and

this assumption is redundant. In fact, Berthelot is stating theorem of

Frobenius descent [Be2, 4.2.4] without posing any perfectness assumption.

2.3. Let X be as in the previous paragraph. Let Y be another smooth

affine formal scheme over R possessing a system of local coordinates

fy1; . . . ; yd0 g. We also assume that we have a smooth lifting Y 0
of the re-

lative Frobenius with a system of local coordinates fy01; . . . ; y
0
d0 g and

morphism FY : Y ! Y 0
such that F

�
Y (y

0
i) � y

q
i for any i. We fix one non-

negative integer j and denote X 
 Rj, Y 
Rj, X 0 
 Rj, Y 0 
 Rj by X, Y ,

X
0
, Y
0
respectively. Suppose given a morphism of special fibers f0: X0 ! Y0.

Consider the following diagram.

Here FX and FY are reductions of FX and FY , and f and f
0
are liftings of f0

and f
0
0. In general, we are not able to take f and f

0
so that the diagram is

commutative. However, we can take FX and FY locally with respect to X. To

see this, it suffices to treat the case where f is a closed immersion and

smooth morphism individually, and in both cases, the verification is

straightforward.

Let M be a quasi-coherent OX 0 -module. Since X and Y are affine

schemes, we will identify quasi-coherent sheaves and its global sections.

We list up conventions of identifications used to describe sections of certain

sheaves as follows.
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�2:3:1� F
[
X�M� �M 
OX0 O_X D �m�

Y!X � OX 
OY D �m�
Y

F
�
X�M� � OX 
OX0 M D �m�

Y X � �OX
OY
�D �m�

Y 
OY
v
ÿ1
Y ��
OX

vX

For example we have an identification

F
[
XF
�
Y D �m�

Y 0 X 0 � OY 
OY 0 ((OX 0 
OY 0 D �m�
Y 0 
OY 0 v

ÿ1
Y 0 )
O0X vX 0 )
OX0 O_X ;

and for f 2 OY , g 2 OY 0 , P 2 D �m�
Y 0 and 0 � k < q, the section f 


((g
 P
 (dy
0
�)
_

)
 dx
0
�)
Hx

ÿk
on the right side of the equality equally

means a section on the left side by the identification.

2.4 PROPOSITION. We preserve the notation of the previous paragraph.

The inverse of the isomorphism of Berthelot [Be2, 3.4.2 (i)]

x: F
[
XF
�
Y D �m�

Y 0 X 0 !
�

D �m�s�
Y X

can be described in the following way using the identification of (2.3.1).

Let f 2 OX , and P 2 D �m�
Y 0 , then we get

x( f 
 (1
 P
 (dy0�)
_ 
 dx0�)
Hxÿk) �

x
qÿkÿ1 
 (P� �Hy

ÿ(qÿ1) � f )
 (dy�)
_ 
 dx� :

PROOF. Recall that we are identifying quasi-coherent sheaves and its

global sections. By using n
ÿ1

in Theorem 1.7, we get an isomorphism

OY 
OY 0 (D �m�
Y 0 
 v

ÿ1
Y 0 )! (D �m�

Y 0 
OY 0 O_Y )
 v
ÿ1
Y :

The theorem is saying that this sends f 
P
 (dy
0
�)
_

to (P
 (Hy
ÿ(qÿ1) � f ))


(dy�)
_

. By using m
ÿ1

, we get

(D 
OX0 vX 0 )
OX0 O_X ! (OX 
OX0 D )
 vX ;

where D :� f
0�

((D �m�
Y 0 
 O_Y )
 v

ÿ1
Y ). For a section D of D , this homo-

morphism sends (D
 dx
0
�)
Hx

ÿk
to (x

qÿkÿ1 
D)
 dx�. At last, there

exists the following isomorphism

OX 
OX0 f
0�

((D �m�
Y 0 
 O_Y )
 v

ÿ1
Y )!�

���
f
�
(OY 
 (D �m�

Y 0 
 O_Y )
 v
ÿ1
Y )!�

f
�D �m�s�

Y 
 v
ÿ1
Y :

Here the first isomorphism follows from the commutativity of the diagram.

According to Garnier's calculation, this sends f 
1
 ((Q
Hy
ÿk

)
 (dy�)
_

)

to f 
 (Q
�
Hy
ÿk

)
 (dy�)
_

. Combining these, we get the proposition. p
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REMARK. We will describe shortly the way to calculate x when the

diagram in paragraph 2.3 is not commutative. In this case, suppose the

integer m satisfies the inequality p
m
> e=(pÿ 1) where e was the absolute

ramification index of R. Under this condition, we may use the Taylor iso-

morphism of [Be2, 2.1.5] to compare FY � f and f
0 � FX . This isomorphism

can be described in the following way. Let f ; f
0
: X ! Y be two morphisms

of smooth schemes whose reductions over k are the same morphisms, and

suppose that Y possesses a system of local coordinates fy1; . . . ; ydg. Let

T :�
X
k�0

( f 0�(y)ÿ f �(y))fkg(m) 
 @hki�m�

in f
�D �m�

Y . This is defined since we have the assumption on m. Let M be a

D �m�
Y -module. Then we can check that the isomorphism tf ; f 0 : f

0�M !� f
�M

sends 1
m to T 
m for a section m of M.

Now, when the diagram is not commutative, the calculation of x goes

well exactly in the same way except for (� ) in the proof of the proposition.

We use this calculation of Taylor isomorphism to compute (� ).

2.5. We use the same notation as paragraph 2.3. As the first application of

Proposition 2.4, we will calculate the isomorphism

F�Y f 0�M !� f�F�XM�2:5:1�
concretely. This result is used in [AM] to calculate the Frobenius structure

of geometric Fourier transform defined by Noot-Huyghe explicitly.

Let M be a D �m�
X 0 -module. In the proof of [Be2, 3.4.4], the isomorphism

j: F
�
Y (D �m�

Y 0 X 0 
L

D
�m�
X0

M) :�

f
ÿ1OY 
f 0ÿ1OY 0 (D �m�

Y 0 X 0 
L

D
�m�
X0

M)!� (D �m�s�
Y X 
L

D
�m�s�
X

F
�
XM)

is defined. Using the projection formula, the isomorphism (2.5.1) is nothing

but Rf�(j).

PROPOSITION. Let j0 :�H 0(j). For P 2 D
�m�
Y 0 and m 2M, we have

j0

ÿ
yl 
 (1
 P
 (dy0�)

_ 
 dx0�)
m
� �ÿ

1
 (P� �Hy
ÿ(qÿ1) � yl)
 (dy�)

_ 
 dx�
�
 (x

qÿ1 
m):

PROOF. Let us review the definition of j0 . Tensoring both sides of j0

with f
ÿ1

F
[
Y D �m�

Y 0 , it is equivalent to defining an isomorphism

�2:5:2� D �m�
Y 0 X 0 
D

�m�
X0

M !� f
ÿ1

F
[
Y D �m�

Y 0 
f ÿ1D
�m�s�
Y

(D �m�s�
Y X 
D

�m�s�
X

F
�
XM)
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by [Be2, 2.5.6]. We get an isomorphism

D �m�
Y 0 X 0 
D

�m�
X0

M !� F
[
XD �m�

Y 0 X 0 
D
�m�s�
X

F
�
XM !� f

ÿ1
F
[
Y D �m�

Y 0 

F
�
Y F

[
XD �m�

Y 0 X 0 
 F
�
XM

where the first isomorphism is by [Be2, 2.5.7] and the second by [Be2, 2.5.6].

Combining this isomorphism with x, we get the isomorphism (2.5.2). By

Proposition 2.4, we see that (2.5.2) sends (1
 P
 (dy
0
�)
_ 
 dx

0
�)
m to

(1
Hyÿl)
 ÿxqÿkÿ1 
 (P� �Hy
ÿ(qÿ1) � yl)
 (dy�)

_ 
 dx�
�
 (xk 
m)

where k and l denote any element in N
d

such that � qÿ 1, and the propo-

sition follows. p

2.6. We consider the situation 2.1.1. As another application of the explicit

description, we will show a proper base change type result. For the most

familiar statement, see paragraph 5.7. Let m be an integer such that

p
m
> e=(pÿ 1) and i be a non-negative integer. Consider the following

cartesian diagram of smooth schemes over Ri

�2:6:1�

where h � g � f
0
. Let Z be one of X, X

0
, Y , Y

0
. We denote by Z0 the

reduction of Z over k. We assume that Z
(s)
0 possesses a smooth liftingeZ over Ri .

Under such situation, let us construct the following base change

homomorphism:

f
0ÿ1D �m�

Y 0!Y 
hÿ1D
�m�
Y

g
0ÿ1D �m�

Y X ! D �m�
Y 0 X 0 
D

�m�
X0

D �m�
X 0!X :�2:6:2�

For short, we denote D �m�
by D . There exists a canonical homo-

morphism of rings g
ÿ1D Y ! D Y 0 . Thus, we get a homomorphism

h
ÿ1D Y 
hÿ1OY

vX0=Y 0 !a f
0ÿ1D Y 0 
OY 0 vX0=Y 0 of ( f

0ÿ1D Y 0 ; g
0ÿ1D X)-bimod-

ules where vX0=Y 0 :� vX 0 
 f
0ÿ1

vY 0 . We have the canonical section 1
 1

in D X 0!X � OX 0 
f ÿ1OX
f
ÿ1D X . This section induces a homomorphism

f
0ÿ1D Y 0 
OY 0 vX 0=Y 0 !b ( f

0ÿ1D Y 0 
OY 0 vX 0=Y 0 )
D X0 D X 0!X . Combining these,

we get the homomorphism

b � a: hÿ1D Y 
hÿ1OY
vX 0=Y 0 ! ( f 0ÿ1D Y 0 
OY 0 vX 0=Y 0 )
D X0 D X 0!X :
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This induces the homomorphism (2.6.2) as required. Now consider the

following diagram of cartesian squares:

�2:6:3�

By definition, the following diagram of sheaves on X
00
, in which we omit pull-

backs f
ÿ1

etc., is commutative:

(2.6.4)

where horizontal homomorphisms are base change homomorphisms.

LEMMA. Consider the diagram (2.6.1). We assume that g is smooth.

Then there is a canonical equivalence of functors

g
! � f� � f

0
� � g

0!
: D

b
qc(D

�m�
X )! D

b
qc(D

�m�
Y 0 ):�2:6:5�

This equivalence is compatible with raising levels and Frobenius pull-

backs. Consider the diagram (2.6.3) and assume that g1 and g2 are smooth.

Then the equivalence is compatible with composition.

PROOF. First, let us show that (2.6.2) induces a quasi-isomorphism

f
0ÿ1D �m�

Y 0!Y 
L

hÿ1D
�m�
Y

g
0ÿ1D �m�

Y X !
�

D �m�
Y 0 X 0 
L

D
�m�
X0

D �m�
X 0!X :

By taking local coordinates, we can check that (2.6.2) is an isomorphism.

Since f
0ÿ1D Y 0!Y is a flat right h

ÿ1D Y -module, we get a quasi-isomorphism

f 0ÿ1D Y 0!Y 
L
hÿ1D Y

g0ÿ1D Y X !� f 0ÿ1D Y 0!Y 
hÿ1D Y g0ÿ1D Y X :�2:6:6�
From now on, we omit f

0ÿ1
and so on, but we consider sheaves to be on X

0
.

Let us show that

D �m�
Y 0 X 0 
L

D
�m�
X0

D �m�
X 0!X !

�
D �m�

Y 0 X0 
D
�m�
X0

D �m�
X 0!X ;�2:6:7�

or in other words H i
(D �m�

Y 0 X 0 
L

D
�m�
X0

D �m�
X0!X) � 0 for i 6� 0. When m � 0, the

argument is standard using the Spencer resolution D �0�
X 0 
 U

�
X 0=X of D �0�

X0!X
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where UX 0=X denotes the relative tangent bundle of X
0 ! X (cf. [Be2,

4.3.1]). Let us see the general case. Since the verification is local, we may

assume that the schemes are affine and s � m. We get

D �m�
Y 0 X 0 
L

D
�m�
X0

D �m�
X 0!X � F

�
Y 0F

[
X

ÿ
D
�0�eY 0 eX 0 
L

D
�0�
�
X0

D
�0�eX 0!eX�

by [Be2, 2.5.6, 3.4.2]. This reduces the verification to the m � 0 case, and the

claim follows. Combining (2.6.2), (2.6.6), (2.6.7), we get the desired quasi-

isomorphism.

By construction, (2.6.2) is compatible with raising levels. Let us show

the compatibility of Frobenius. We denote by relative Frobenius mor-

phisms of the special fiber X0 etc. by FX etc. Let us show that the following

diagram is commutative where homomorphisms are quasi-isomorphisms.

(2.6.8)

Let M be a left D
�m�eX -complex. By taking 
L

D
�m�s�
X

F
�
XM, (2.6.8) induces the

following commutative diagram:

which implies the compatibility of Frobenius.

Let us prove the commutativity of (2.6.8). Since these complexes are

concentrated in degree 0, the problem is local on X
0
. Thus, we may assume

that any scheme possesses a system of local coordinates, and the following

diagram is commutative.
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Let fetig1�i�dX
(resp. ftig1�i�dX

, fesjg1� j�dY
, fsjg1� j�dY

) be a system of local

coordinates of eX (resp. X, eY , Y) such that F
�
X(etig) � t

q
i , F

�
Y (esj) � s

q
j . As

usual, we use the notation dt� :� dt1 ^ � � � ^ dtdX and so on. Let Hsj be the

Dwork operator (cf. subsection 2.2) in D �m�s�
Y 0 corresponding to sj, and we

put Hs :� QdY

j�1

Hsj . Let x1; . . . ; xd be a local coordinate of Y
0

over Y . This

can be seen also as a local coordinate of X
0

over X. We denote by Hi the

Dwork operator in D �m�s�
X 0 (resp. D �m�s�

Y 0 ) corresponding to xi. We put

Hx :� Qd
i�1

Hi. Using the convention of (2.3.1), let

J :� 1
 ÿ(1
 P)
 (1
 1
 (det�)_ 
 des�)
 (Q
 f)
�

be a section of F
�
Y 0
ÿ

D
�m�eY 0!eY 
D

�m�
�
Y

D
�m�eY eX 
D

�m�
�
X

F
[
XD

�m�eX �
. To see the

commutativity of (2.6.8), it suffices to show a(J) � b(J). Let

S :� Q
1�i�d

x
qÿ1
i Hix

ÿ(qÿ1)
i . By using Proposition 2.5,

a(J) � ÿ1
P� �Hss
ÿ(qÿ1) �Hxx

ÿ(qÿ1) � f 
 (dt�)
_
ds�

�
 (s
qÿ1

x
qÿ1
1)
 (Q
f)

� ÿ1
P� �Hss
ÿ(qÿ1) � f 
 (dt�)

_
ds�
�
 tS � (sqÿ1
1)
 (Q
f)

b(J) � ÿ1
P� �Hss
ÿ(qÿ1) � f 
 (dt�)

_
ds�
�
 (s

qÿ1
1)
 (Q
f)

To show that these two quantities are equal, it suffices to see that the image

of
t
S by the homomorphism D �m�s�

X0 ! D �m�s�
X 0!X is 1
 1. To show this, it

suffices to see that
t
S(1) � 1 in OX 0 . Since the claim is stable under base

change, we may assume that z 2 Ri. By definition of H, it suffices to show

that

x
ÿ(qÿ1)
i qÿ1

X
zq�1

X
k�0

(z ÿ 1)k @
[k]
i (x

k�qÿ1
i ) � 1

for any 1 � i � d. The sum is equal to

qÿ1
X
zq�1

X
k

(zÿ1)k k� qÿ1

k

� �
� qÿ1

X
zq�1

X
k

(1ÿ z)k ÿq

k

� �
� qÿ1

X
zq�1

zÿq� 1;

and the commutativity of (2.6.8) follows.

Let us complete the proof of the equivalence (2.6.5). We have

g! � f�(M) :� D Y 0!Y 
L
gÿ1D Y

gÿ1Rf�D Y X 
L
D X

M

� Rf 0�
ÿ

f 0ÿ1D Y 0!Y 
L
hÿ1D Y

g0ÿ1(D Y X 
L
D X

M)
�

!� Rf 0�
ÿ

D Y 0 X0 
L
D X0 D X 0!X 
L

g0ÿ1D X
g0ÿ1M

� � f 0� � g0!(M);
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where we used the flat base change in the first isomorphism, and the

equivalence follows. The last statement follows by the commutativity

of (2.6.4). p

REMARK. When g is a closed immersion, we can check that

H i
( f
0ÿ1D �m�

Y 0!Y 
L

hÿ1D
�m�
Y

g
0ÿ1D �m�

Y X) � 0; H i
(D �m�

Y 0 X 0 
L

D
�m�
X0

D �m�
X0!X) � 0

for i 6� 0. Thus, the base change homomorphism induces a quasi-iso-

morphism

f
0ÿ1D �m�

Y 0!Y 
L

hÿ1D
�m�
Y

g
0ÿ1D �m�

Y X !
�

D �m�
Y 0 X 0 
L

D
�m�
X0

D �m�
X 0!X :

As in the proof of the previous lemma, this quasi-isomorphism defines a

homomorphism of functors

g
! � f� ! f

0
� � g

0!
: D

b
qc(D �m�

X )! D
b
qc(D �m�

Y 0 ):

Moreover, by construction, we can see that this homomorphism coincides

with that of Caro [Ca1, 2.2.18] when we take the limit and g� . Thus, passing

to the formal scheme, the homomorphism of functors becomes an equiva-

lence and compatible with Frobenius if the resulting complexes on Y
0

is

coherent by Berthelot-Kashiwara theorem [BeI, 5.3.3]. See Remark 5.7 (i)

for more general situation.

2.7. Consider the situation in 2.1.1. Let us define the Tate twist (cf. [BeP,

2.3.8 (i)]). Let X and Y are two smooth formal schemes, and suppose there

exist smooth liftings X 0
and Y 0

of X
(s)
0 and Y

(s)
0 where X0 and Y0 are special

fibers of X and Y as usual. Let � be one of X , X 0
, Y , Y 0

, and A( � ) be

either D
b
coh(D y

�;Q) or LDÿ!
b
Q;qc� bD ���

� �. Let

G:A(X )! A(Y ); G0:A(X 0)! A(Y 0)

be Q-linear functors. Now, suppose given a equivalence of functors

C: F�Y � G0 !� G � F�X :

The triple (G;G
0
;C) (we often abbreviate this as (G;C) or even G if no

confusion can arise) is called a cohomological functor with Frobenius iso-

morphism. The natural transform C is called the Frobenius isomorphism

of the triple. Given (G;G
0
;C) and an integer d, we define its Tate twist C(d)

of the Frobenius isomorphism by C(d) :� qÿd � C. We often denote by G(d)

the triple (G;G
0
;C(d)) for simplicity.
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Now, we consider the situation 2.1.2. For a D y
X ;Q-module M, we denote

a D y
X ;Q-module by Ms

the base change of M by using s. Let M be an F-

D y
X ;Q-module (resp. complex). By definition, this is a D y

X ;Q-module (re-

sp. complex) equipped with an isomorphism1 F: F
�Ms !� M. For any

integer d, we define an F-D y
X ;Q-module (resp. complex) M(d) called the

Tate twist of M in the following way. The underlying D y
X ;Q-module (re-

sp. complex) is the same as that of M. We denote by F
0

the isomorphism

F
�M(d)

s !M(d) induced by the Frobenius structure of M. The Fro-

benius structure F(d): F
�M(d)

s !M(d) of M(d) is by definition q
ÿd
F
0
.

Now, let (G;C) be a cohomological functor with Frobenius isomorphism.

Then we get that G(M) is naturally equipped with Frobenius structure,

and we get for any integer d that G(d)(M) � G(M)(d) � G(M(d)).

Let (M;F) and (N ;C) be two F-D y
X ;Q-modules, and W: M ! N be a

homomorphism of D y
X ;Q-modules (where we do not consider the Frobenius

structures). Consider the following diagrams where the left diagram is that

of modules (or sheaves of modules):

First, pay attention to the left diagram. Let n be a rational number. We say

that the diagram is commutative up to multiplication by n if n � (b � a) �
d � g holds. Now, changing the attention to the right diagram, suppose that

the diagram is commutative up to multiplication by q
d
. Then we get that W

defines a homomorphism M(d)! N as F-D y
X ;Q-modules.

3. Extraordinary pull-back and duality

In this section, we prove a commutation result of the extraordinary pull-

back functor and the duality functor. The result can be seen as a part of a

(1) The definition of Frobenius structure here is slightly different from that
of [Be2, 4.5.1] in the sense that in loc. cit., F is an isomorphism M !� F�Ms.
Since F is an isomorphism, it causes no difference. We adopted our definition to
make it easier to see the compatibility with the definition of Frobenius structure
of F-isocrystals. See also [loc. cit., Remarque 4.5.1].
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`̀ PoincareÂ duality'' in the theory of arithmetic D -modules. For the ex-

planation of this interpretation, see § 5. By applying the commutation

result, we get

DX ;Z(OX ;Q(yZ)) � OX ;Q(yZ)(ÿ d)

where X is a smooth formal scheme, Z is a divisor of its special fiber, and d

is the dimension of X . Combining this result with a result of Caro, we are

able to compare duality functors of arithmetic D -modules and that of

overconvergent isocrystals with Frobenius structures in a precise way. At

the last part of this section, we compare the rigid cohomologies and the

push-forwards in the theory of arithmetic D -modules.

3.1. We consider the situation 2.1.1. Let X be a smooth formal scheme,

and Z be a divisor of its special fiber X0. In this situation, we say that

(X ;Z) is a d-couple2. Let (Y ;W) be another d-couple. A morphism of

d-couples f : (X ;Z)! (Y ;W) is a morphism of special fibers f0: X0 ! Y0

such that f (X0 n Z) � Y0 nW , and f
ÿ1

(W) is a divisor. A strict morphism

of d-couples f is a morphism ef : X ! Y whose reduction on the special

fiber is a morphism of d-couples. We say that the morphism f0 (resp. ef )

is the realization of the (resp. strict) morphism of d-couples f .

For a d-couple (X ;Z), let us review the definition of the dual functor

DX ;Z: D
b
perf (D

y
X ;Q(

y
Z))! D

b
perf (D

y
X ;Q(

y
Z)):

We note that there exists the canonical equivalence of categories

D
b
perf (D

y
X ;Q(

y
Z))!� D

b
coh(D y

X ;Q(
y
Z))

by [NH2, 3.2.3]. Let d be the dimension of X . For a perfect D y
X ;Q(

y
Z)-

complex C , we define the functor DX ;Z by

DX ;Z(C ) :� RHomD
y

X ;Q(yZ)(C ;D y
X ;Q(

y
Z))
OX v

ÿ1
X [d]:

For fundamental properties of this functor, see [Vi]. Here, we only note that

this functor commutes with Frobenius pull-backs, and induces an equiva-

lence between the derived categories of perfect complexes (with or without

Frobenius structure).

Let (X ;Z) and (Y ;W) be d-couples, and let f0: X0 ! Y0 be a morphism

such that f0(X0 n Z) � Y0 nW. Assume that f0 is smooth. Then f
ÿ1
0 (W) is a

(2) This `̀ d'' stands for divisor.
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divisor, and in particular, f0 induces a morphism of d-couples f : (X ;Z)!
(Y ;W). The functor f

!
0: D

b
coh( bD �m�

Y ;Q(W))! D
b
coh( bD �m�

X ;Q( f
ÿ1

(W))) is defined

in [Be2, 3.2.3 (ii)] and [BeI, 3.4.6]. By taking the inductive limit as [BeI,

4.3.3], we have the functor f
!
0: D

b
coh(D y

Y ;Q(
y
W))! D

b
coh(D y

X ;Q(
y
f
ÿ1

(W))). We

define the functor

f !: Db
coh( bD �m�

Y ;Q(W))! Db
coh( bD �m�

X ;Q(Z))

by (Z) � f
!
0, where (Z) denotes the functor tensoring with bD �m�

X ;Q(Z). By

taking the inductive limit, we also get a functor f
!
: D

b
coh(D y

Y ;Q(
y
W))!

D
b
coh(D y

X ;Q(
y
Z)).

3.2. Let m be an integer such that p
m
> e=(pÿ 1) (cf. [Be2, A.4]). We

denote B�m�X (Z) and bB�m�X (Z) (cf. [Be1, 4.2.4]) by B�m�X and bB�m�X , bB�m�X
b
 bD �m�

X

by eD �m�
X , and limÿ!m

eD �m�
X (� D y

X (
y
Z)) by eD y

X . We put evX :� bB�m�X
b
OX

vX . We

denote by D
�
qc( eD �m�

X ) (� 2 fÿ; bg) the full subcategory of D
�
( bD �m�

X ) con-

sisting of quasi-coherent complexes (cf. [BeI, 3.2.1]), and D
�
Q;qc( eD �m�

X ) by

the category obtained by localizing D
�
qc( eD �m�

X ) with respect to isogenies

(cf. [BeI, 3.3.2]). Finally, we denote by D
�
(X ) (� 2 f�;ÿ; bg) the derived

category of R-modules on X .

LEMMA. Let X be a smooth formal scheme. Let M be a complex in

D
b
perf ( eD �m�

X ;Q)
g
, and N be a complex in D

b
Q;qc( eD �m�

X )
g
. Then the complex

M b
 LbB �m�X ;Q
N is bounded.

PROOF. We will use the notation of SGA6 Exp. I. Since D
b
perf �

Dftd by 0.3, we may assume that parf-amp(M) � [0; a]. Let n be an

integer such that H i
(N ) � 0 for i < n. It suffices to show that

H i
(M b
 LbB �m�X ;Q

N ) � 0 for i < nÿ 1. Since this is local, and we may as-

sume that X is affine. We will assume X to be affine in the following.

For a positive integer r, we say that a finitely generated eD �m�
X -module

P is r-nearly projective if there exists a eD �m�
X -module Q , an integer b,

and a short exact sequence 0! P � Q ! ( eD �m�
X )

�b !R! 0 such that

p
rR � 0. For any finitely generated projective eD �m�

X ;Q-module P 0, there

exists an integer r and an r-nearly projective eD �m�
X -module P such that

P 
Q � P 0. This shows that there exists a complex P � of r-nearly

projective eD �m�
X -modules concentrated in [0; a] such that P � 
Q is

quasi-isomorphic to M. Thus, it suffices to show that for any r-nearly
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projective eD �m�
X -module P and N 2 D

b
qc( eD �m�

X ) such that H i
(N ) � 0 for

i < n, we get

$rH i(P b
 LbB �m�X
N ) � 0

for i < nÿ 1. Since P is r-nearly projective, $
rH i

(P 
LbB �m�X
N ) � 0 for

any i < n. This shows that

$rH i(P j 
L

B�m�Xj

N ) � 0

for any j and i < nÿ 1, where P j :� P 
R Rj. Now, it remains to take

R l X�, but since this functor is a right derived functor, we get the claim.

p

3.3. Now, let us state a key proposition in this section. Let X be a smooth

formal scheme, and X 0
be a smooth lifting of X

(s)
0 .

PROPOSITION. Let M be a complex in D
b
perf ( eD �m�

X ;Q)
g
, and N be a

complex in D
b
Q;qc( eD �m�

X )
g
. We denote DX ;Z by D. Then there exists the

following quasi-isomorphism in D
�

(X )

C: RHom eD �m�
X ;Q

(bB�m�X ;Q;D(M) b
 LbB �m�X ;Q
N )!� RHom eD �m�

X ;Q
(M;N ):

Let F be a complex in D
b
perf ( eD �m�

X 0;Q)
g
, and G be a complex in D

b
Q;qc( eD �m�

X 0 )
g.

Consider the following diagram:

where the vertical homomorphisms are canonical isomorphisms of com-

plexes which are defined by the theorem of Frobenius descent [Be2, 4.1.3].

This diagram is commutative up to multiplication by q
d

where d denotes the

dimension of X .

REMARK. We note that the complex RHom eD �m�
X ;Q

(bB�m�X ;Q;D(M) b
 LbB �m�X ;Q
N )

makes sense thanks to Lemma 3.2.

The proof of the proposition will be given in paragraph 3.8, and we will

start preparations of the proof from the next paragraph. Unless otherwise

stated, M, N , F , G are not the sheaves in the proposition.
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3.4. First, we will prove the following small lemma.

LEMMA. Let M be a complex in D
b

Q;coh( eD �m�
X ) and N be one in

D
b

Q;qc( eD �m�
X ). Then, there is a canonical isomorphism

HomD
b
Q;qc(eD �m�

X )(M;N )!� Hom eD �m�
X ;Q

(M;N ):

PROOF. For F and G in D
b
Q;qc( eD �m�

X ), we define

RHomD
b
Q;qc(eD �m�

X )(F ;G ) :� RHomeD �m�
X

(F ;G )
Q:

There exists the canonical homomorphism

RHomD
b
Q;qc(eD �m�

X )(M;N )! RHom eD �m�
X ;Q

(M 
Q;N 
Q);

and it suffices to show that this is an isomorphism. Since the problem is

local, we may assume that X is affine. It suffices to show the claim in the

case where M is projective. Since M is a direct factor of ( eD �m�
X )

�n
for some

n, we are reduced to showing the case M � eD �m�
X . In this case, the lemma is

straightforward. p

3.5. To compare Frobenius pull-backs, we need to construct a certain

isomorphism in D
ÿ

(X ). Let N be a complex in D
b
perf ( eD �m�

X 0;Q)
d

(e.g. evX 0;Q by

(3.6.1)), and M be a complex in D
ÿ

( eD �m�
X ;Q)

g
. The isomorphism we will

construct is the following:

N 
LeD �m�
X 0 ;Q

M !� F[N 
LeD �m�s�
X ;Q

F�M:�3:5:1�

Let Y be a smooth formal scheme, and let F be a complex in D
b
perf ( eD �m�

Y ;Q)
d
,

and E be a complex in D
ÿ

( eD �m�
Y ;Q)

g
. First, there exists an isomorphism

D
d �D

d
(F ) � F where

Dd(F ) :� RHomeD �m�
Y ;Q

(F ; eD �m�
Y ;Q)
 vY

by [Vi, II, 3.6]. Using this, we get

F 
LeD �m�
Y ;Q

E � RHomeD �m�
Y ;Q

(Dd(F ); eD �m�
Y ;Q 
 vY )
LeD �m�

Y ;Q
E

� RHomeD �m�
Y ;Q

(Dd(F );vY 
 E )

where the second isomorphism is by [Ca3, 2.1.17 (i)]. Now, we define (3.5.1)
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in the following way:

N 
LeD �m�
X 0 ;Q

M � RHomeD �m�
X 0 ;Q

(Dd(N );vX 0 
M)

!� RHomeD �m�s�
X ;Q

(F[Dd(N );F[(vX 0 
M))

� RHomeD �m�s�
X ;Q

(Dd(F[N );vX 0 
F�M) � F[N 
LeD �m�s�
X ;Q

F�M:

Here the second isomorphism follows by the theorem of Frobenius descent.

3.6. We will construct the homomorphism C in the proposition step by

step. Let UX be the tangent sheaf on X , and we put U
i
X :� Vi

UX . First,

note that there exists the Spencer resolution

eD �m�
X ;Q 
 U�X ! bB�m�X ;Q:�3:6:1�

This can be seen in exactly the same way as the proof of [Be2, 4.3.3]. Indeed,

B�m�X ;Q 
D �m�
X ;Q is flat over D �m�

X ;Q. Since B�m�X 
D �m�
X is noetherian, the p-adic

completion eD �m�
X is flat over B�m�X 
D �m�

X . Thus, eD �m�
X ;Q is flat over D �0�

X ;Q . It

remains to show that eD �m�
X ;Q 
D

�0�
X ;Q
OX ;Q � bB�m�X ;Q , whose proof is straight-

forward. This shows that bB�m�X ;Q is perfect as a complex.

Let M be a bounded eD �m�
X ;Q-complex. We have the following quasi-iso-

morphisms

RHom eD �m�
X ;Q

(bB�m�X ;Q;M)

� RHom eD �m�
X ;Q

(bB�m�X ;Q; eD �m�
X ;Q)
LeD �m�

X ;Q
M � evX ;Q 
LeD �m�

X ;Q
M [ÿ d]

where the first isomorphism holds by [Ca3, 2.1.17], and the second by (3.6.1)

and [BeI, (3.5.5.1)]. Now the point where we need to use the explicit compu-

tation of Frobenius isomorphism of § 1 is in the proof of the following lemma.

LEMMA. Let M be a complex in D
b
( eD �m�

X 0;Q). Consider the following

diagram in D
b
(X ).

�3:6:2�
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Here the right vertical homomorphism is (3.5.1) composed with the canon-

ical isomorphism F
[
vX 0 � vX , and the left vertical homomorphism is

induced by the functor F
�
. Then this diagram is commutative up to mul-

tiplication by q
d
.

PROOF. Let G be the functor HomeD �m�s�
X ;Q

(F
� bB�m�X 0;Q; �), and G

0
be the

functor HomeD �m�s�
X ;Q

(bB�m�s�
X ;Q ; �). By (3.6.1), R

i
G and R

i
G
0

vanishes for i > d.

We define a functor H to be R
d
G, and H

0
to be R

d
G
0
. The canonical

isomorphism F
� bB�m�X 0;Q !� bB�m�s�

X ;Q induces an isomorphism of functors

H!� H
0
. By [Ha, I, 7.4], we get the following commutative diagram of

functors.

We note that flat eD �m�s�
X ;Q -modules belong to the set P of loc. cit. For

a flat eD �m�s�
X ;Q L-module P , we get a canonical isomorphism H(P ) �

F
�evX 0 
eD �m�s�

X ;Q
P and H

0
(P ) � evX 
eD �m�s�

X ;Q
P , which induces canonical

isomorphisms of functors LG � F
[evX 0
LeD �m�s�

X ;Q
, and LG

0 � evX 
LeD �m�s�
X ;Q

.

Consider the following diagram:

where all the arrows are isomorphisms, and ' denotes that the marked

square is commutative. Thus, to show that the big diagram is commu-

tative up to some multiplication is equivalent to showing that the dia-

gram 
a is commutative up to the same multiplication. Since the

homomorphisms of the diagram
a are induced by a diagram of functors

between H, H
0
, F
�evX 0
, evX 
, it suffices to show the commutativity up

to the same multiplication for this diagram of functors. Thus the prob-

lem is local.
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We may assume that X 0
is affine, and possesses a system of local co-

ordinates fy1; . . . ; ydg. Moreover, we can take a system of local coordinates

fx1; . . . ; xdg of X and a lifting F: X ! X 0
of relative Frobenius morphism

such that F
�
(yi) � x

q
i . Under this situation, let us show that the diagram is

commutative up to multiplication by q
d
. From now on, we do not make any

difference between quasi-coherent modules and its global sections. It

suffices to show the commutativity in the case where M is flat over bD �m�
X 0;Q.

Let F�:UX ! F
�
UX 0 be the canonical homomorphism. We have

the following homomorphism eD �m�s�
X ;Q 
 U

k
X ! F

�
( eD �m�

X 0;Q 
 U
k
X 0 ) sending

P
 (dyi1
^ � � � ^ dyik

) to P � (1
 qx
qÿ1
i1

. . . qx
qÿ1
ik

(dxi1
^ � � � ^ dxik

)). This

defines, in fact, a homomorphism of complexes

eD �m�s�
X ;Q 
 U�X ! F�( eD �m�

X 0;Q 
 U
�
X 0 )�3:6:3�

by the proof of [Be2, 4.3.5]. It suffices to show that the diagram of modules

is commutative up to multiplication by q
d
, where the left vertical homo-

morphism is induced by (3.6.3). Since the right vertical homomorphism

sends (dy1 ^ � � � ^ dyd)
m to x
qÿ1
1 . . . x

qÿ1
d � (dx1 ^ � � � ^ dxd)
 (1
m) by

using Proposition 1.5 and Theorem 1.7, we get the claim, and conclude the

proof of the lemma. p

3.7. We have the following lemma whose proof is similar to that of

[Ca3, 2.1.27], and we leave it to the reader.

LEMMA. Let N be a complex in D
ÿ
qc(
eD �m�

X )
d
, and M and M 0

be two

complexes in D
ÿ
qc( eD �m�

X )
g
. Then there is a canonical isomorphism

N b
 LeD �m�
X

(M b
 LbB �m�X
M 0) � (N b
 LbB �m�X

M) b
 LeD �m�
X

M 0:

3.8. PROOF OF PROPOSITION 3.3. Here, we use the notation in the

proposition. We apply Lemma 3.6 to D(M) b
LbB �m�X ;Q
N . When we omit

bases of tensor products, they are taken over bB�m�X ;Q. Then we get iso-

morphisms
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RHom eD �m�
X ;Q

(bB�m�X ;Q;D(M) b
LN ) � evX ;Q 
LeD �m�
X ;Q

(D(M) b
LN )[ÿ d]

� (evX ;Q 
L D(M))
LeD �m�
X ;Q

N [ÿ d] � RHom eD �m�
X ;Q

(M; eD �m�
X ;Q)
LeD �m�

X ;Q
N

� RHom eD �m�
X ;Q

(M;N )

where the first isomorphism is the one in paragraph 3.6, the second iso-

morphism is defined by Lemma 3.7, and we used the fact that M is a perfect

complex in the last isomorphism (cf. [Ca3, 2.1.12, or 2.1.17]). This is nothing

but C that we are looking for. The second, third, and the last isomorphisms

are compatible with Frobenius. Thus the statement of Frobenius follows by

Lemma 3.6. p

3.9. Let X be a smooth formal scheme. We denote by eDb
perf ( eD y

X ;Q) the full

subcategory of D
b
perf ( eD y

X ;Q) consisting of a complex M such that there

exists a complex M 0
in D

b
perf ( eD �m�

X ;Q) for some m and an isomorphismeD y
X ;Q 
 eD �m�

X ;Q
M 0 �M.

LEMMA. Assume that X is quasi-compact. For any complex M in

D
b

coh( eD �m�
X ;Q), there exists an integer m

0 � m such that eD �m0�
X ;Q 
 eD �m�

X ;Q
M is in

D
b

perf (
eD �m0�

X ;Q
). In particular, we have the canonical equivalence of categories

eDb
perf ( eD y

X ;Q)!� Db
perf ( eD y

X ;Q)!� Db
coh( eD y

X ;Q):

PROOF. Let us see the first claim. Since X is quasi-compact, the problem

is local, and we may assume that X is affine. Since X is affine, we can take

M to be a bounded complex such that each term is a coherent eD �m�
X ;Q-module.

For m
0 � m, we denote M (m

0
)

:� eD �m0�
X ;Q 
M and My

:� eD y
X ;Q 
M. Now,

there exists a bounded finite locally projective eD y
X ;Q-complex L and a quasi-

isomorphism of complexes W: L !My
since eD y

X ;Q has finite Tor-dimension

by the result of Noot-Huyghe in [NH2]. For a sufficiently large m
0
, this

complex can be descended to level m
0
. Namely there exists a bounded locally

finite projective eD �m�
X ;Q-complex L (m

0
)

and a homomorphism of complexes

W
0
: L (m

0
) !M (m

0
)
such that eD y

X ;Q 
 W
0 � W. The homomorphism W

0
may not

be a quasi-isomorphism, but since the complexes are bounded and each term

is coherent, there exists m
00 � m

0
such that the homomorphism eD �m00�

X ;Q 
 W
0

becomes a quasi-isomorphism, which concludes the proof. The latter state-

ment follows from [BeI, 4.2.4]. p

REMARK. We do not know if eDb
perf ( eD y

X ;Q) and D
b
perf ( eD y

X ;Q) coincide or

not in general.
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3.10 THEOREM. Let f : (X ;Z)! (Y ;W) be a morphism of d-couples whose

realization is smooth. We assume that X
(s)
0 and Y

(s)
0 can be lifted to smooth

formal schemes X 0
and Y 0

. Let us denote by d � 0 the relative dimension of

X0 over Y0. Then there is a canonical equivalence of cohomological functors

from eDb
perf(D

y
Y ;Q(

y
W)) to eDb

perf (D
y

X ;Q(
y
Z)) with Frobenius isomorphisms

(DX ;Z � f !)(d)[2d]!� f ! �DY ;W :�3:10:1�

PROOF. Let My
be a complex in eDb

perf( eD y
Y ;Q). Then by definition, there

exists M in D
b
perf( eD �m�

Y ;Q) for some m and eD y
Y ;Q 
eD �m�

Y ;Q
M �My

. First, let

us define the homomorphism. By Proposition 3.3, we get a homomorphism

HomeD �m�
Y ;Q

(M;M) � HomeD �m�
Y ;Q

(bB�m�X ;Q;D(M) b
M). By Lemma 3.4 and the

functoriality of the extraordinary pull-back functor f
!
, we get

HomeD �m�
Y ;Q

(bB�m�X ;Q;D(M) b
M)! Hom eD �m�
X ;Q

( f !bB�m�X ;Q; f !(D(M) b
M)):

This homomorphism is compatible with Frobenius pull-backs by the func-

toriality of the isomorphism [Be2, 3.2.4]. We get f
!bB�m�X ;Q � bB�m�X ;Q[df ].

Moreover, f
!
(D(M) b
M) � f

! �D(M) b
 f
!M[ÿ df ]. This isomorphism is

also compatible with Frobenius pull-backs. Thus we get

Hom eD �m�
X ;Q

( f !bB�m�X ;Q; f !(D(M) b
M))�Hom eD �m�
X ;Q

(bB�m�X ;Q[df ]; f !D(M) b
 f !M[ÿ df ]):

Now, using the proposition once again, we get an isomorphism

Hom eD �m�
X ;Q

(bB�m�X ;Q[df ]; f !D(M) b
 f !M[ÿ df ])!� Hom eD �m�
X ;Q

(Df !M; f !D(M)[ÿ 2df ]):

Composing all of them, we obtain a homomorphism

HomeD �m�
Y ;Q

(M;M)! Hom eD �m�
X ;Q

(Df !M; f !D(M)[ÿ 2df ]):

The image of the identity is the homomorphism we wanted. By using [BeI,

4.3.3, 4.3.11], we get the following diagram.

This diagram is commutative up to multiplication by q
ÿdY � qdX � q

df by the

commutativity of Proposition 3.3. Thus we obtain the homomorphism
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D � f
!
(M)(df )[2df ]! f

! �D(M). By tensoring with eD y
X ;Q, we get

D � f !(My)(df )[2df ]! f ! �D(My)

by using [BeI, 3.4.6 (iii)] and [Vi, I.5.4]. By construction, this does not de-

pend on the choice of M. It remains to show that this homomorphism is an

isomorphism when f is smooth.

It suffices to show the equality for M � eD y
Y ;Q , and we can forget about

Frobenius pull-backs. We get RHomeD y
X ;Q

( eD y
X!Y ;Q; eD y

X ;Q)[df ] � eD y
Y X ;Q .

Indeed,

RHomeD y
X ;Q

( eD y
X!Y ;Q; eD y

X ;Q)[df ] � RHomD
y

X ;Q
(D
y
X ;Q 
 U�X =Y ;D

y
X ;Q)[df ]

� V�X =Y 
 eD y
X ;Q � eD y

Y X ;Q :

Thus, we get

D � f !( eD y
Y ;Q)[2df ] � D( eD y

X!Y ;Q)[df ]

� eD y
Y X ;Q 
 vÿ1

X [df ] � f ! eD y
Y ;Q 
 vÿ1

Y � f ! �D( eD y
Y ;Q):

We can see that this isomorphism coincides with the homomorphism we

have constructed, and the theorem follows. p

REMARK. We may be able to weaken the assumption of the theorem.

The theorem should hold only by assuming that X0 n Z! Y0 nW is

smooth. Moreover, we may be able to see the theorem as a solution of a

part of `̀ Cauchy-Kovalevskaya type problem''. Classically, this observation

first appeared in Kashiwara's thesis [Ka], and the problem was interpreted

in terms of the language of D -modules. We expect that the analogous

theorem also holds in our setting: if the morphism f is `̀ non-characteristic''

to a coherent F-D y
X ;Q-module, then we get the isomorphism (3.10.1).

3.11 COROLLARY. Let X be a smooth formal scheme. Let d be the di-

mension of X , and Z be a divisor of the special fiber of X . Then we get a

canonical isomorphism

DX ;Z(OX ;Q(yZ))!� OX ;Q(yZ)(ÿ d)

where d denotes the dimension of X .

PROOF. Apply Theorem 3.10 in the case where Y � Spf(R). p
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REMARK. The question to calculate D(OX ;Q) was posed by Caro in

[Ca5, 4.3.3], saying that `̀ En effet, lorsque X � P, on retrouve l'isomor-

phisme canonique: DP;T (OP(
y
T)Q)! OP(

y
T)Q . Je n'ai pas de contre-ex-

emple mais la compatibiliteÂ aÁ Frobenius de ce dernier isomorphisme me

paraõÃt inexacte.''

3.12. Let X be a smooth formal scheme of dimension d, Z be a divisor of

the special fiber X0 of X . For an overconvergent F-isocrystal M on X0 , we

denote by M
_

the dual overconvergent F-isocrystal of M.

COROLLARY. Let sp: X K ! X be the specialization map, and let M be

an overconvergent F-isocrystal on X0 n Z. Then,

(DX ;Z(sp�(M)) � sp�(M
_)(ÿ d):

PROOF. Apply Corollary 3.11 to [Ca3, 2.3.37].

REMARK. This corollary completes the comparison of L-functions of

isocrystals and arithmetic D -modules [Ca2, 3.3.1]. Namely, we get

L(Y ;E; t) � L(Y ; sp�E; qdX � t)
using the notation of loc. cit. However, in loc. cit. the definition of the

Frobenius structure of the push-forward is modified in order to make the

relative duality compatible with Frobenius (cf. [Ca2, 1.2.11]), and, a priori,

the definition may not be the same as that of Berthelot. Still, we will show

that this duality is compatible with Frobenius in the next section (cf. Cor-

ollary 4.17), and the Frobenius structure of the push-forward is in fact the

same as that of Berthelot.

3.13. Now, we will compare the rigid cohomologies and the push-forwards

of arithmetic D -modules with Frobenius structure when varieties can be

lifted to smooth formal schemes. If we do not consider Frobenius structure,

they coincide up to shifts of degree, which is a result of Berthelot (cf. [BeI,

4.3.6.3]). If we consider Frobenius structure, we need a Tate twist. This

twist naturally appears in the philosophy of six functors (cf. paragraph 5.9).

Let us fix the notation. We consider the situation 2.1.2. Let X be a

smooth formal scheme and let p: X ! S :� Spf(R) be the structural

morphism. Let X0 be the special fiber of X as usual, X 0
be a lifting of X

(s)
0 ,

and X K be the Raynaud generic fiber. We denote by sp: X K ! X the

specialization map of topoi. Let M be an F-D y
X ;Q-module. We define the
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`̀ rigid cohomology'' of M in the following way. Let pK : X K ! Spm(K) be

the structural morphism. We define

Hi
rig(X0;M) :� RipK�(V�X K


OX K
sp�M):

We define the Frobenius structure in the following way. There exists an

isomorphism

W:V
�
X 0

K

OX 0 Ms !� V�X K


OX F�Ms !� V�X K

OX M

in D
�

(X ) where the first isomorphism follows from [Be2, 4.3.5] and we used

the Frobenius structure of M in the second isomorphism. Thus, we get an

isomorphism

Hi
rig(X0;M)!� Hi

rig(X
(s)
0 ;Ms)!�

W
Hi

rig(X0;M);

where the first isomorphism is the base change homomorphism. This is the

induced Frobenius structure on the cohomology.

Suppose moreover that X is smooth proper and let Z be a divisor of X0.

When M is an overconvergent F-isocrystal on X0 n Z along Z, the rigid

cohomology of sp�(M) is isomorphic to the usual rigid cohomology of M.

3.14. THEOREM. We preserve the notation. We suppose that X is purely

of dimension d. Let M be a coherent F-D y
X ;Q-module. Then we get

Hip�M � H
i�d
rig (X0;M)(d):

PROOF. Let M 0
be a coherent D

y
X 0;Q-module, and consider the follow-

ing diagram of complexes in D
b
(X ).

where the horizontal arrows are induced by [BeI, 4.2.1.1]. We need to

see that this diagram is commutative up to multiplication by q
d
. Indeed,

this diagram is nothing but Lemma 3.6 by taking into account the proof

of [Be2, 4.3.5].

Now to know the Frobenius actions on the cohomologies, apply M 0
to

be Ms
. We only need to take Rp� to the four sheaves in the diagram with

this M 0
, and we get the theorem. p
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3.15 REMARK. (i) We can also compare in the relative situations. Namely,

when we are given a smooth morphism of smooth formal schemes X ! Y ,

we are able to compare the relative rigid cohomology and the push-forward

as arithmetic D -module. Required methods are exactly the same, so we

leave the precise formulation and calculation to the readers.

(ii) In [NH1, 6.2], Noot-Huyghe cited a calculation of Baldassarri-

Berthelot [BB]. However, the definition of Frobenius structures in [NH1]

and [BB] are not the same, and we need a Tate twist here. Precisely, Noot-

Huyghe used cohomological functors of the arithmetic D -module theory to

define the Frobenius structure. On the other hand Baldassarri-Berthelot

used the relative rigid cohomologies to define the Frobenius structure on

the Fourier transform. Thus we need to add the Tate twist (N) on the right

hand side of the isomorphism in [NH1, 6.2], namely

F p(OyY ;Q)[2ÿN] � HyNX0 (OyY_;Q)(N)

using the notation of loc. cit.

(iii) D. Caro pointed out to the author in personal communications that

we need a suitable Tate twist in [Ca4, Proposition 2.3.12]. He also pointed

out that some modifications might be needed in loc. cit. Theorem 3.3.4, in

whose proof he used the proposition.

4. Complementary results

In this section, we will prove three complementary results; 1) commu-

tation of the dual functor and the tensor product, 2) the KuÈnneth formula,

and 3) the compatibility of the relative duality isomorphism by Virrion with

Frobenius. The first commutation result is another application of Theorem

3.14, and the proofs of 2) and 3) are independent from the other part of this

paper. Although the KuÈnneth formula for arithmetic D -modules seems to

be well-known to experts, we could not find any appropriate reference. We

think that this would be a good occasion to include the proof. The com-

patibility of relative duality is needed to establish the PoincareÂ duality.

Commutation of the dual functor and tensor product

4.1. We consider the situation 2.1.1. Let X be a smooth scheme over

Spec(Ri) for some i, and let Z be a divisor. We put bB�m�X ;Q :� bB�m�X ;Q(Z), andeD �m�
X ;Q :� bB�m�X ;Q

b
OX
bD �m�

X . We denote the dual functor with respect to eD �m�
X ;Q

by D. First, we get the following lemma.
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LEMMA. Let M be a complex in D
b

perf (
eD �m�

X ;Q), and N be a coherenteD �m�
X ;Q-module which is also coherent as a bB�m�X ;Q

-module. We denote the

dimension of X by d. Then, we have the following isomorphism

k: D(M)
LbB �m�X ;Q
N � RHom eD �m�

X ;Q
(M; eD �m�

X ;Q

LbB �m�X ;Q

N )
 vÿ1
X [d]

of complexes in D
b
( eD �m�

X ;Q). Here, the right module structure of eD �m�
X ;Q


LbB �m�X ;Q
N

is defined by that of eD �m�
X ;Q , and the left structure by [Be2, 1.1.7]. Moreover,

this isomorphism is compatible with Frobenius.

PROOF. By [Be1, 4.4.2], N is a locally projective bB�m�X ;Q-module, and we

do not need to take the derived tensor products. Let M 0
be a right eD �m�

X ;Q-

module. Then M 0 
bB �m�X ;Q
N possesses a right eD �m�

X ;Q-module structure. In-

deed let U be an affine open formal subscheme of X . Let M
0
:� G(U ;M 0

),

N :� G(U;N ), B :� G(U ; bB�m�X ;Q), and D :� G(U; eD �m�
X ;Q). Then it suffices

to define a right D-module structure on M
0 
B N. For a
 b 2M

0 
B N and

P 2 D, it suffices to define (a
 b) � P. Take S �M
0

to be the finite

G(U; eD �m�
X ;Q)-submodule generated by a. Then S
N is naturally a D-

module considering [Be1, 4.4.7] and [Be2, 1.1.7]. This defines (a
 b) � P.

Now back to the proof, by using [Vi, I, 1.2.2], we get an isomorphism k of

complexes in D
b
(bB�m�X ;Q). It suffices to show that this isomorphism is an

isomorphism of eD �m�
X ;Q-complexes. For a bi- eD �m�

X ;Q-module I , we have a

canonical homomorphism

Hom eD �m�
X ;Q

(M; I )
bB �m�X ;Q
N ! Hom eD �m�

X ;Q
(M; I 
bB �m�X ;Q

N ):

A priori, this is a homomorphism of bB�m�X ;Q-modules. By the argument above,

both sides of the homomorphism possess the right eD �m�
X ;Q-module struc-

tures. To finish the proof, is suffices to see that the homomorphism is eD �m�
X ;Q-

linear. The verification is straightforward. p

4.2. Now, consider the situation 2.1.2. Let X be a smooth formal scheme over

Spf(R), and Z be a divisor of the special fiber. Let N 0
be a coherent F-

D y
X ;Q(

y
Z)-module which is also coherent as anOX ;Q(

y
Z)-module. By abuse of

language, we say that N 0
is a convergent F-isocrystal overconvergent along

Z (cf. Notation 0.5). We put N
0
:� sp

�
(N 0

), which is an overconvergent F-

isocrystal in the usual sense. We denote by 
L yOX ;Q(yZ): LDÿ!
b
Q;qc� bD ���

X (Z)��
LDÿ!

b
Q;qc� bD ���

X (Z)� ! LDÿ!
b
Q;qc� bD ���

X (Z)� the functor D � pL�y where D: X !
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X �X (cf. [BeI, 3.4.7]). Thanks to Corollary 3.12, we get the following iso-

morphisms of bimodules. We omit subscripts Q and denote by (Z) instead of

(
y
Z) in the next equality to save the space.

�4:2:1� RHomOX (Z)(DX ;Z(N 0);D
y

X (Z))

�D
y

X (Z)
OX (Z) RHomOX (Z)(sp�(N0_)(ÿ d);OX (Z))�D
y

X (Z)
L yOX (Z) N 0(d)

Here the right module structure of the first module is defined by [Be2,

1.1.7] using the right module structure of D y
X ;Q(

y
Z), and the left structure

by using that of D y
X ;Q(

y
Z). This is compatible with Frobenius, which means

that the following diagram of canonical isomorphisms is commutative. We

again omit Q and denote by (Z) in the following.

Here the homomorphisms are the canonical ones except for the right ver-

tical homomorphism, which is q
ÿd

times the canonical homomorphism.

Let M be an object in F-D
b
perf (D

y
X ;Q(

y
Z)). We get the following iso-

morphisms compatible with Frobenius structures:

�4:2:2� DX ;Z(M)
L yOX ;Q(yZ)N
0 �RHomD

y
X ;Q(yZ)(M;D

y
X ;Q(yZ)
L yOX ;Q(yZ)N

0)
vÿ1
X [d]

� RHomD
y

X ;Q(yZ)

ÿ
M;RHomOX ;Q(yZ)(DX ;Z(N 0);D

y
X ;Q(yZ))

�
 vÿ1
X (ÿ d)[d]

� RHomD
y

X ;Q(yZ)

ÿ
M 
L yOX ;Q(yZ)DX ;Z(N 0);D

y
X ;Q(yZ)

�
 vÿ1
X (ÿ d)[d]

� DX ;Z(M 
L yOX ;Q(yZ)DX ;Z(N 0))(ÿ d)

where the first isomorphism by Lemma 4.1, the second by (4.2.1), and the

third by using [Ca3, 2.1.34]. Now, we get the following proposition.

4.3 PROPOSITION. Let X be a smooth formal scheme over Spf(R), and Z

be a divisor of its special fiber. Let M be a coherent F-D y
X ;Q(

y
Z)-module,

and N be an overconvergent F-isocrystal along Z. Then we get

(DX ;Z(M)
L yOX ;Q(yZ)DX ;Z(N ))(d) � DX ;Z(M 
L yOX ;Q(yZ)N )�4:3:1�

which is compatible with Frobenius structures.
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PROOF. Take N 0
:� DX ;Z(N ), and the isomorphism (4.2.2) induces the

isomorphism we are looking for. p

REMARK. We are not able to expect the isomorphism (4.3.1) in general.

For example, consider the closed immersion i: f0g ,! bAR . Then taking

M � N � i�K, we do not have such an isomorphism.

The KuÈnneth formula

4.4. Now, we will show the KuÈnneth formula. The ideas used to show the

formula is due to P. Berthelot. Let S be a Z( p)-scheme, and X, Y , T be

smooth formal schemes over S. Consider the following commutative dia-

gram:

(4:4:1)

where Z � X �T Y . Suppose that pX and pY are smooth.

4.5. Let BT, (resp. BX , BY ) be a commutative OT-algebra (resp. q
�
XBT-al-

gebra, q
�
YBY -algebra) endowed with an action of D �m�

T (resp. D �m�
X , D �m�

Y )

compatible with that of OT (resp. OX , OY ). For a BX-module F and a BY -

module G , we put F p�BT
G :� q

�
XF 
p�BT

q
�
Y G . Let BZ :� BX p�BT

BY . We

put eD �m�
� :� B� 
D �m�

� where � 2 fX;Y ;Zg. We note that p
� eD �m�

T is a sub-

OZ-algebra of eD �m�
Z . We get the following lemma.

LEMMA. We preserve the notation.

(i) There exists the canonical isomorphism

eD �m�
Z � q�X eD �m�

X 
p�eD �m�
T

q�Y eD �m�
Y :

(ii) There exists the canonical isomorphism

eD �m�
T Z � q�X eD �m�

T X 
p�eD �m�
T

q�Y eD �m�
T Y :

PROOF. The natural homomorphisms q
�
X
eD �m�

X ! eD �m�
Z and q

�
Y
eD �m�

Y
!eD �m�

Z induces the homomorphism q
�
X
eD �m�

X 
p�eD �m�
T

q
�
Y
eD �m�

Y ! eD �m�
Z . To see

that this is an isomorphism, we may assume that T possesses a system of local

128 Tomoyuki Abe



coordinate and X and Y possesses a system of local coordinate over T. Then

proof is straightforward, and we leave the reader for the detail. Let us see (ii).

We know the following isomorphisms

vZ=T � q�XvX=T 
OZ
q�YvY=T:

We get

eD �m�
T Z � p� eD �m�

T 
OZ
vZ=T

�
�

q�Xp�X eD �m�
T 
p�eD �m�

T
q�Y p�Y eD �m�

T

�

OZ

(q�XvX=T 
 q�YvY=T)

� q�X eD �m�
T X 
p�eD �m�

T
q�Y eD �m�

T Y : p

4.6 LEMMA. Let M be a left flat eD �m�
X -module, and N be a left flat eD �m�

Y -

module. Then we get that M p�BT
N is a flat left eD �m�

Z -module.

PROOF. In the case where T � Spf(R), the verification is left to the

readers. To see the lemma, since the verification is local, we may assume

that T is affine. Let i: Z � X �T Y ,!W :� X � Y be the canonical inclu-

sion. Since T is separated, this is a closed immersion. By the T � Spf(R)

case, we get that M p�S N is a flat eD �m�
W -module. We put eD �m�

Z!W :� i
� eD �m�

W ,

which is a ( eD �m�
Z ; i

ÿ1 eD �m�
W

)-module as usual. Let F be a right eD �m�
Z -module.

Then we get

F 
eD �m�
Z

(M p�BT
N ) � (F 
eD �m�

Z

eD �m�
Z!W )
iÿ1eD �m�

W
iÿ1(M p�S N ):

Since eD �m�
Z!W is flat over eD �m�

Z and M p�S N is flat over eD �m�
W , we get the

lemma. p

Using this preparation, we get the following KuÈnneth formula.

4.7 PROPOSITION. We preserve the notation. Let M (resp. N ) be a com-

plex in D
ÿ
qc( eD �m�

X ) (resp. D
ÿ
qc( eD �m�

Y )). Then we get a canonical isomorphism

in D
ÿ
qc( eD �m�

T )

p�(M p�L
BT

N ) � pX�(M)
L
BT

pY�(N ):�4:7:1�

PROOF. Let F (resp. G ) be a quasi-coherent eD �m�
X -module (resp. eD �m�

Y -

module). Then by Lemma 4.5, we get a canonical isomorphism of p
ÿ1 eD �m�

T -

moduleseD �m�
T Z 
eD �m�

Z
(F p�BT

G ) � ( eD �m�
T X 
eD �m�

X
F )p�BT

( eD �m�
T Y 
eD �m�

Y
G ):�4:7:2�
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Let L � be a flat resolution of F as a eD �m�
X -module, and M� be a flat re-

solution of G as a eD �m�
Y -module. Then we get that L i p�BT M j is a flat eD �m�

Z -

module for any i and j by Lemma 4.6. Thus we get

eD �m�
T Z 
LeD �m�

Z
(F p�L

BT
G ) � eD �m�

T Z 
eD �m�
Z

(L �p�L
BT

M�)

� ( eD �m�
T X 
eD �m�

X
L �)p�BT

( eD �m�
T Y 
eD �m�

Y
M�)

� ( eD �m�
T X 
LeD �m�

X
F )p�L

BT
( eD �m�

T Y 
LeD �m�
Y

G ):

By using the KuÈnneth formula for quasi-coherent sheaves, we get the

proposition. p

4.8. Now, let us consider Frobenius. Suppose T is endowed with a quasi-

coherent m-PD-ideal (a; b; a), and p 2 a. With this hypothesis, we are able

to consider Frobenius pull-back even if there are no liftings of relative

Frobenius morphisms.

LEMMA. Suppose that X0 and Y0 be the reductions of X and Y respec-

tively, and X
0
, Y
0

be liftings of X
(s)

0 , Y
(s)

0 . We take Z
0
:� X

0 �T Y
0
. Then the

isomorphism (4.7.1) is compatible with Frobenius isomorphisms. More-

over, if a is m-PD-nilpotent, it is compatible with Frobenius isomorphism

even if there are no liftings.

PROOF. The verification uses only standard arguments, so we leave the

details to the readers. p

4.9. Finally, by taking inverse limit and inductive limit, we get the fol-

lowing KuÈnneth formula for D y
-modules.

PROPOSITION. Consider the following diagram

where T is a smooth formal scheme, pX and pY are smooth, and Z :�
X �T Y . Let D be a divisor of the special fiber of T , DX (resp. DY ) be a

divisor of the special fiber of X (resp. Y ) such that DX � p
ÿ1
X (D) (resp.
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DY � p
ÿ1
Y (D)). Let M (resp. N ) be a complex in LDÿ!

b
Q;qc� bD ���

X (DX)� (resp.

LDÿ!
b
Q;qc� bD ���

Y (DY )�). Then we get the canonical isomorphism

p�(M p
L�yOT (yD) N ) � pX�(M)
L yOT (yD)pY�(N )

in LDÿ!
b
Q;qc� bD ���

T (D)�. This isomorphism is compatible with the Frobenius

isomorphisms.

4.10 REMARK. To get the proposition directly, we can also proceed as

follows. Consider the following cartesian diagram.

We see easily that q�(M p�LN )� q�(M)p�L
OT �T

q�(N ). Let S :�Spf(R).

By using this and [Ca1, 2.1.9], we get

iT�p�i!(M p
L�yS N )� iT�i!

T(qX�M p
L�yS qY�N )� iT�(qX�M 
L yOT (yD)qY�N ):

Taking H
0
i
!
T, we get what we want.

Compatibility of Frobenius pull-backs with relative duality

4.11. We will show that the relative duality homomorphism by Virrion is

compatible with Frobenius pull-back.

First, let us fix the situation. We consider the situation 2.1.1. Let

f : X ! Y be a proper morphism of smooth formal schemes, and W be a

divisor of the special fiber of Y such that Z :� f
ÿ1

(W) is a divisor. Under

this situation, Virrion [Vi2] defined the trace homomorphism

Tr�; f : f�vX ;Q[dX]! vY ;Q[dY ]�4:11:1�

where dX and dY denotes the dimension of X and Y . Using the trace map,

for an object E in D
b
perf (D

y
X ;Q(

y
Z)), she also constructed the relative duality

isomorphism

x: DY ;Wf�(E )!� f�DX ;Z(E )�4:11:2�
in D

b
perf (D

y
Y ;Q(

y
W)) (see also [Ca2, 1.2.7]). Now, we assume that there

exist liftings X 0
and Y 0

of X
(s)
0 and Y

(s)
0 where X0 and Y0 are special fibers

Explicit calculation of Frobenius isomorphisms and PoincareÂ duality etc. 131



as usual. We also assume that there exists a lifting f
0
: X 0 ! Y 0

of the

morphism X
(s)
0 ! Y

(s)
0 induced by f . These assumptions automatically hold

when we consider the situation 2.1.2.

4.12. Before stating the theorem, we will prepare a commutative diagram,

which is needed in the proof of the compatibility. We freely use the notation

of [Ha]. Let X, X
0
, Y , Y

0
be locally noetherian schemes. Suppose we are

given the following commutative diagram.

We assume that all the morphisms are proper, u is finite flat, and all the

schemes admit dualizing complexes (cf. [Ha, V, § 2]). By the transitivity

of trace map [Ha, VI, 4.2(a) TRA1], we get the following commutative

diagram.

Here, Tru0 denotes the composition u� f
0
� f
04

u4 � f�u0�u04f
4 �������!f� �Tru0 � f

4

f� f
4

. We remind that this diagram consists of homomorphisms in the

category of complexes by [Ha, VII, 2.1]. Let u
�

denotes the functor u0 in [Ha,

VI, 4.1] to avoid confusions with the morphism u0. We note that u
� � u[ � u!

in the derived category since u is finite and flat. We have the canonical

homomorphism id! u
�
u�. Let c: f

0
� f
04

u4 ! u
�
u� f

0
� f
04

u4 !u
�
f� f
4

where

the second morphism is that induced by the left vertical morphism Tru0 in

the diagram above. Let c
0
: u4 ! u

�
u�u4 ! u

�
where the second homo-

morphism is the trace map. Taking u
�

to the above diagram, we get the

following commutative diagram of complexes.

(4:12:1)
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The morphism id! u
�
u� � u

[
u� is nothing but the adjunction homo-

morphism, and c
0

is the identity in the derived category.

4.13 PROPOSITION. We preserve the assumptions and notation of para-

graph 4.11. We moreover assume that f can be factorized into morphisms

X !g X 0 !f
0

Y where g is a closed immersion and f
0
is proper smooth. Then

the relative duality isomorphism (4.11.2) is compatible with Frobenius

pull-back.

PROOF. Recall that dX (resp. dY ) was the dimension of X (resp.

Y ). We let d to be the relative dimension, namely d :� dX ÿ dY . We

denote by f
(m)
� the push-forward of level m. We will use the push-

forward for right modules as in [Vi2, III]: recall that f
(m)
� (M) :�

Rf�(M 
LbD �m�
X ;Q

bD �m�
X!Y ;Q) for a coherent right bD �m�

X ;Q-module M. It suf-

fices to show that the trace homomorphism (4.11.1) is compatible with

Frobenius pull-backs by [Ca7, 1.5]. By the result of Caro [Ca7, 2.2.7],

we know the compatibility in the case where f is a closed immersion.

Thus, we are reduced to showing the case where f is smooth using the

transitivity of the trace map [Vi2, III, 5.5]. In the following, we assume

f to be smooth.

Let i be a non-negative integer, and X and Y be the reductions of X
and Y over Ri. It suffices to show the compatibility for these X and Y ,

namely we need to prove the commutativity of the following diagram.

Since f is smooth and the relative dimension is d, we get that for any point y

in Y , the dimension of f
ÿ1

(y) is equal to d. Since f is proper, R
i
f�(F ) � 0

for any quasi-coherent sheaf F and i> d (cf. for example [Kl, I Lemma (3)]).

Thus, by the definition of f� , the canonical homomorphism

Rdf�vX!!Hdf (m)
� vX

is surjective, and H
i
f

(m)
� vX�0 for i > d, in other words H

i
( f

(m)
� vX ;Q[dX])�0
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for i>ÿdY . Thus, we get

Hom( f (m)
� vX[dX];vY [dY ]) � Hom(Hdf (m)

� vX ;vY ):

This implies that to give the trace map f
(m)
� vX[dX]! vY [dY ] is equivalent

to giving the homomorphism H
d
f

(m)
� vX ! vY . We can retrieve the trace

map by the composition

f (m)
� vX[dX]! Hdf (m)

� vX[dY ]! vY [dY ]:

Note that we have the following commutative diagram by [Vi2, III, 5.4].

It suffices to see that the following diagram is commutative.

This shows that the problem is local with respect to Y . Assume that there exist

liftings FX : X ! X
0

and FY : Y ! Y
0

of relative Frobenius morphisms such

that the two morphisms f
0 � FX ;FY � f : X ! Y

0
coincide. Under this part-

icular situation, the theorem is reduced to showing the following diagram

is commutative, where the left vertical homomorphism is the base change

homomorphism. This is nothing but (4.12.1). In particular, the theorem

holds in the case where f is finite eÂtale.

Let x be a point of X (which may not be closed). For a right D �m�
X -

module F and an integer i, we put

H (m);i
x (F ) :� limÿ!

x2U

jU�RiG
(m)

U\fxg(F )
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where U runs over open neighborhoods of x, jU : U ,!X is the inclusion, and

G
(m)

denotes the level m local cohomology functor defined in [BeI, 4.4.4].

We note that

limÿ!
m0

H (m
0
);i

x (F ) �H i
x(F )�4:13:1�

by [Be1, 1.5.4], and H i
x(vX) can be seen as a quasi-coherent right

D �m�
X -module. The Frobenius isomorphism H (m�s);i

x (vX)!� F
[
XH (m);i

x (vX 0 )

induces the isomorphism

fi
x: H i

x(vX)!� F[
XH i

x(vX 0 ):

This induces thefollowing isomorphismofCousincomplexes (cf. [Ha,IV, §3]).

We denote by C �
X the Cousin complex of vX .

Let y be a point of codimension i in Y , and let x be a closed point of the

fiber f
ÿ1

(y) in X. For closed subsets of schemes, let us endow with the

reduced induced scheme structure. Then since f is smooth, there exists an

open subscheme U of X, such that f
0
: Z :� fxg \U !W :� fyg \ V is

finite eÂtale where V :� f (U), and W is smooth. Consider the following

commutative diagram.

The trace map Tr�; f 0 : f
0(m)
� vZ ! vW can be identified with the usual

trace map Trf 0 by the isomorphism f
0
� � f

0
� since f

0
is finite eÂtale. Since

H (m);i
Z (vX) � i

(m)
� (vZ) and H (m);i

W (vY ) � i
0(m)
� (vW ), the functor i

0(m)
� � Tr�; f 0

induces the homomorphism

H0f (m)
� H (m);d�i

x (vX)!H (m);i
y (vY )�4:13:2�

by taking inductive limit over V . Note that since f
0
is finite eÂtale, this trace

map is compatible with Frobenius by the result of the first part of this proof.

By taking the inductive to (4.13.2) over m and using the identification
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(4.13.1), we get a homomorphism

�4:13:3� Tri
x: H0f (m)

� H d�i
x (vX) � limÿ!

m0
H0f (m)

� H (m
0
);d�i

x (vX)

! limÿ!
m0

H0f (m
0
)

� H (m
0
);d�i

x (vX) ����!�4:13:2�
limÿ!
m0

H (m
0
);i

y (vY ) �H i
y(vY ):

This homomorphism is compatible with Frobenius as well since (4.13.2) is.

The composition

f�H d�i
x (vX)! H0f (m)

� H d�i
x (vX) ��!Tr

i
x H i

y(vY )�4:13:4�

is the usual trace map by construction.

There exists the surjection D �m�
X ! D �m�

X!Y sending 1 to 1
 1. This

gives us a flat resolution L � ! D �m�
X!Y such that L 0

:� D �m�
X and L i � 0

for i > 0. The double complex f�(C
�
X 
D

�m�
X

L �
) induces the spectral se-

quence

E
a;b
1 � f�Hÿb(H a

Za=Za�1
(vX)
L D

�m�
X!Y )) Ha�bf (m)

� vX :

Note that E
a;b
1 � Hÿb f

(m)
� H a

Za=Za�1
(vX). The trace map (4.13.4) E

d�i;0
1 !

H i
Zi=Zi�1

(vY ) induces the homomorphism of complexes f�(C
d�i
X 
L �)!

H i
Zi=Zi�1

(vY ) � C i
Y , and this induces the homomorphism of double com-

plexes

f�(C d��
X 
L �)! C �

Y :�4:13:5�

This homomorphism defines the homomorphism g: f�vX[dX]! vY [dY ]. Let

us show that g�Tr�; f . The canonical homomorphism C �
X!C �

X
L 0
in-

duces the homomorphism of double complexes

f�C �
X ! f�(C d��

X 
L �):�4:13:6�
Let

IE
a;b
1 :� f�C

a
X if b � 0

0 if b 6� 0
IIE

a�d;b
1 :� C a

Y if b � 0

0 if b 6� 0:

((

Then we get the trivial spectral sequences IE
a;b
1 ) R

a�b
f�vX and

IIE
a;b
1 ) IIE

n
where IIE

d
:� vY and 0 otherwise. The homomorphisms

(4.13.5) and (4.13.6) induce the homomorphisms IE
a;b
1 ! E

a;b
1 ! IIE

a;b
1 of

spectral sequences. We get the following homomorphisms of complexes

of E1-terms of these spectral sequences.
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(4.13.7)

Here the right homomorphisms are the homomorphisms of complexes of

corresponding spectral sequences. To show that g is the trace map, it suf-

fices to show that H
ÿdY (g) is the trace map. Consider the homomorphisms

Rdf�vX ! Hdf (m)
� vX ��!Hd

g
vY

induced by the E
d
-terms of the homomorphism of the spectral sequences.

The composition is the usual trace map Trf since (4.13.4) is (cf. [Ha, VI, 4.2]

for the construction of the classical trace map). Moreover the first homo-

morphism is the natural map which is surjective. Thus the second homo-

morphism is nothing but the trace map of Virrion.

Since it suffices to see the Frobenius compatibility for H
d
g, this shows

that it suffices to show the Frobenius compatibility for the lower homo-

morphism of complexes of the diagram (4.13.7). Thus it is reduced to

showing the Frobenius compatibility for the homomorphismX
Tri

x: E
d�i;0
1 !H i

Zi=Zi�1
(vY )

for any i. It is enough to show the compatibility for Tr
i
x for each x 2 X and i,

which we have already verified at (4.13.3). p

4.14. For most of the applications, the assumption of Proposition 4.13 is not

too strong, but for the sake of completeness, we will eliminate the as-

sumption on the factorization.

Let Y be a smooth formal scheme. We say that a smooth Y -scheme

X (or the morphism X ! Y ) where X is a scheme over k is Y -embed-

dable if there exists a smooth formal scheme P proper and smooth over

Y , and a closed immersion X ,!P over Y . Given a Y -embeddable

morphism, we can also consider the trace homomorphism. The category

F-D
b
overcoh(D y

X;Q) of overcoherent F-D y
X;Q-complexes (cf. [Ca1, 3.1.1]) is

the subcategory of the overcoherent F-D y
P ;Q-complexes consisting of
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complexes with support in X. This does not depend on the choice of P
(cf. [Ca6, 3.12]). Given a Y -embeddable homomorphism f : X ! Y , we

have a push-forward functor

f�: F-Db
overcoh(D y

X;Q
)! F-Db

overcoh(D y
Y ;Q

);

which is nothing but the push-forward by the proper morphism P ! Y .

Let g: X ,!P be a closed immersion, and we putvX :�RG
y
X(vP )[ÿdX=P ]

where dX=P :� dim(X)ÿ dim(P ). This does not depend on the choice of

the embedding by [Ca6, 3.16]. We define the trace homomorphism

Tr�;g: g�vX[dX]! vP [dP] to be the homomorphism induced by the ca-

nonical homomorphism RG
y
X(vP )! vP . Of course, this homomorphism is

compatible with Frobenius structure. When X can be lifted to a smooth

formal scheme X , vX is canonically isomorphic to vX , and this trace

homomorphism coincides with the usual one by [Ca7, 2.2.7].

Now, let f : X ! Y be a Y -embeddable morphism. Take a factorization

(g; f
0
): X !g P !f

0
Y of f where g is a closed immersion and f

0
is proper (not

necessarily smooth). Then we define the trace homomorphism by

Tr�;(g; f 0) :� Tr�; f 0 � f 0�(Tr�;g): f�vX[dX]! vY [dY ]:

LEMMA. (i) The homomorphism Tr�;(g; f 0) does not depend on the choice

of factorizations. We denote this trace homomorphism by Tr�; f .

(ii) Let f : X ! Y be a proper morphism over R where X is smooth over

k and Y is a smooth formal scheme, and g: Y !Z be a proper morphism

between smooth formal schemes. Assume that g � f is Z-embeddable.

Then f is Y -embeddable as well, and Tr�;g � g�(Tr�; f ) � Tr�;g � f .

PROOF. Let us prove (i). Let (gP; f
0
P): X ! P ! Y be a factorization

such that f
0
P is proper smooth, and (gQ; f

0
Q): X ! Q ! Y be a factorization

such that f
0
Q is proper. Consider the following commutative diagram:

We note that the product P �Y Q is a smooth formal scheme since f
0
P is

smooth, and this is proper over Y . By the transitivity of the trace homo-

morphism of Virrion [Vi2, III, 5.5], it suffices to show the following: given a
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commutative diagram

where X is smooth over k, P and Q are smooth formal schemes, iP and iQ

are closed immersions, and f is proper, the following diagram is commu-

tative:

where the horizontal homomorphisms are canonical ones and the left ver-

tical homomorphism is the isomorphism of Caro [Ca6, 3.12]. Let us prove

the claim. Let F and G be coherent D y
Q ;Q-complexes, and assume that F

is supported on X. Then we see that

HomD
b
coh(D

y
Q ;Q)(F ;G ) ,!HomD

b
coh(D

y
Q ;Q)(F ;RG

y
XG );

in the same way as the proof of [Ca7, 2.2.8]. Thus, it suffices to see the

commutativity after taking RG
y
X . Then since all the complexes are con-

centrated in degree ÿdim(X), the verification is local, and we may assume

that X is liftable. In this case, the claim holds by the transitivity of trace

homomorphism by Virrion.

Let us prove (ii). Let (a; b): X!Q !Z be a factorization of g � f such

that b is proper and smooth. Consider the following commutative diagram:

where p and q are the projections. The morphism p is proper smooth since b

is. Considering (i) and the transitivity of the trace homomorphism by Vir-

rion, we get (ii). p

By definition and Proposition 4.13, Tr�;(g; f 0) is compatible with Frobe-

nius structure when f
0

is smooth, and thus the lemma above shows that

Tr�; f is compatible with Frobenius structure.
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4.15. Let f : X ! Y be a Y -embeddable morphism, and assume that the

induced homomorphism of the special fibers X ! Y is an alteration. Then

we are able to define a homomorphism a:vY ! f�vX in the following way.

We claim that

DY f�vX � f�vX(ÿ dX):�4:15:1�

Indeed, take a factorization (g; f
0
): X ! P ! Y where f

0
is proper smooth.

By definition and Proposition 4.13, we get DY f�vX � f
0
�DP RG

y
X(vP ), and

it suffices to show that

DP RG
y
X(vP ) � RG

y
X(vP )(ÿ dX)�4:15:2�

If we forget about the Frobenius structure, we have DP RG
y
X(vP ) �

RG
y
X(vP ), which is concentrated at degree ÿdX=P . When X is liftable, we

get (4.15.2) by 3.11, so we get the same isomorphism even when X is not

liftable since it is concentrated at one degree, and we get the isomorphism

(4.15.1). We see easily that this isomorphism does not depend on the choice

of the factorization.

Now, we define

a:vY � DY (vY )(dY ) ������!DY (Tr�; f )
DY f�vX(dX) � f�vX :

By the construction, a does not depend on the choice of factorizations. Since

D(Tr�; f ) is compatible with Frobenius, a is compatible as well.

Finally, if moreover the morphism X ! Y is generically eÂtale, we have

Tr�; f � a � deg ( f ). Indeed, a homomorphism vY ! vY is determined

generically, and since f is generically finite eÂtale, the claim follows.

4.16. THEOREM. We preserve the assumptions and notation of paragraph

4.11. Then the relative duality isomorphism (4.11.2) is compatible with

Frobenius pull-back.

PROOF. Let X be the special fiber of X . There exists a generically eÂtale

alteration g: X
0 !X and an open immersion X

0
,!X 0 such that X 0 is smooth

projective over k. Take a closed immersion X 0 ,!P
n

and let i: X
0
,!X 0 ,!P

n
.

We have the following factorization

X 0 ��!i�g bPn �X ! X ;

where i� g is a closed immersion since g is proper. Thus, X
0

is X -em-

beddable. In the same way, X
0

is Y -embeddable as well. Since X
0

is X -
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embeddable, the trace homomorphism Tr�;g0 : g
0
�vX 0 ! vX is compatible

with Frobenius. Since g
0

is a generically eÂtale alteration, we also get a

homomorphism a:vX ! g
0
�vX compatible with Frobenius by paragraph

4.15, and the composition Tr�;g0 � a is equal to the multiplication by deg (g
0
).

On the other hand, since X
0

is Y -embeddable, Tr�; f �g0 is compatible with

Frobenius. Consider the following homomorphisms

where d :� dX ÿ dY . The composition of these homomorphisms is equal to

deg (g
0
) � Tr�; f . Since f�(a) and Tr�; f �g0 are compatible with Frobenius, the

composition deg (g
0
) � Tr�; f is compatible as well, and thus Tr�; f is compat-

ible with Frobenius, which completes the proof. p

4.17. We preserve the assumptions and notation from paragraph 4.11. Let

M 0
be an object in D

b
coh(D

y
X 0;Q(

y
Z)), and N 0

be an object in D
b
coh(D

y
Y 0;Q(

y
W)).

We put M :� F
�
XM and N :� F

�
XN 0

. Since F
�
Y induces an equivalence

between D
b
coh(D

y
Y 0;Q(

y
W)) and D

b
coh(D y

Y ;Q(
y
W)), we get

RHomD
y

Y ;Q(yW)( f�(M);N )!� RHomD
y

Y ;Q(yW)(F
�
Y f�(M 0);F�Y N 0)

!� RHomD
y

Y 0 ;Q(yW)( f 0�(M 0);N 0)

where the first isomorphism is induced by the isomorphism of

functors F
�
Y � f

0
� � f� � F

�
X . In the same way, we get an isomorphism

RHomD
y

X ;Q(yZ)(M; f
!N )!� RHomD

y
X ;Q(yZ)(M

0
; f

!N 0
).

COROLLARY. We preserve the assumptions and notation. The adjoint

isomorphism is compatible with Frobenius, in other words, the following

diagram is commutative.
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Here the horizontal isomorphism are the adjoint formula isomorphism

[Vi, IV, 4.2] , and the vertical isomorphisms are those we have just defined.

PROOF. We only need to check the compatibility with Frobenius of the

isomorphisms used in the proof of [Vi2, IV, 4.1]. The compatibility of the

isomorphism [Vi2, IV, 1.1 (i)] is nothing but [Ca3, 2.1.19]. The compatibility

of [Vi2, IV, 3.4] is Theorem 4.16. p

5. Cohomological operations in arithmetic D -modules

In this last section, we will collect results on six operations in the theory

of arithmetic D -modules with Frobenius structures in the liftable case.

Before starting, recall the notation and terminologies of paragraph 3.1. We

refer to [Ab2] for thorough treatment in this direction.

In this section, any (formal) scheme is assumed to be of finite type over

its basis.

5.1. In this section, we consider the situation 2.1.1 if we do not con-

sider the Frobenius structure, and 2.1.2 if we use modules with Fro-

benius structure. Let f : (X ;Z)! (Y ;W) be a morphism of d-couples.

We put Z
0
:� f

ÿ1
(Z) � Z, which is a divisor by the definition of mor-

phisms of d-couples. For a coherent (F-)D y
Y ;Q(

y
W)-complex M, recall

that

f !M :� D
y

X ;Q(yZ)
D
y

X ;Q(yZ0) f !
0(M)

in (F-)LDÿ!
b
Q;qc� bD ���

X (Z)� (cf. paragraph 3.1). Also recall that we denote by

DX ;Z the dual functor with respect to (F-)D y
X ;Q(

y
Z)-modules. Let M be a

coherent (F-)D y
Y ;Q(

y
W)-module (or perfect complex), and suppose that

f
! �DY ;W (M) is a perfect complex. Then we put

f �(M) :� (DX ;Z � f ! �DY ;W )(M)

in (F-)D
b
coh(D y

X ;Q(
y
Z)). When the realization of f is smooth, this functor

is defined for any perfect (F-)D y
Y ;Q(

y
W)-complexes by [BeI, 4.3.3]. If

Berthelot's conjecture (cf. [BeI, 5.3.6]) is valid, this functor is defined for

any holonomic F-D y
Y ;Q(

y
W)-complexes.

5.2. Let f : (X ;Z)! (Y ;W) be a morphism of d-couples such that the

realization is proper. Let Z
0
:� f

ÿ1
(W) � Z. We denote by f0;Z0;� the proper

push-forward from (F-)LDÿ!
b
Q;qc� bD ���

X (Z
0
)� to (F-)LDÿ!

b
Q;qc� bD ���

Y (W)�. Let M
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be a coherent D y
X ;Q(

y
Z)-complex. We denote by j�M the underlying

D y
X ;Q(

y
Z
0
)-complex of M. We define

f�(M) :� f0;Z0;�(j�M)

in LDÿ!
b
Q;qc� bD ���

Y (W)�. Let M be a perfect (F-)D y
X ;Q(

y
Z)-complex such that

DX ;Z(M) is a coherent (F-)D y
X ;Q(

y
Z
0
)-complex. In this case, we say that M

is f!-admissible. Then we define

f!(M) :� (DY ;W � f� �DX ;Z)(M)

in (F-)D
b
coh(D y

Y ;Q(
y
W)). When Z

0 � Z, any perfect complex is f!-admissible.

If Berthelot's conjecture is valid, any holonomic module is f!-admissible.

Another example we have in mind is the geometric Fourier transform

[NH1] or that with compact support.

5.3. Let (X ;Z) be a d-couple. For coherent D y
X ;Q(

y
Z)-modules M and

N , we denote M 
L yOX ;Q(yZ) N simply by M 
L yN . This is an object in

LDÿ!
b
Q;qc� bD ���

X (Z)�. Now, let f be a morphism of d-couples. We have de-

fined functors 
L y, DX ;Z, and f�, f!, f
�

, f
!
. These functors are expected to

fit in the framework of six functors if we consider the category of ho-

lonomic complexes. Let us explain this shortly. Consider the category d-

couples such that the morphisms consist of strict morphisms of d-cou-

ples (cf. paragraph 3.1) whose realizations are proper. For a d-couple

(X ;Z), we consider the category of holonomic F-D y
X ;Q(

y
Z)-complexes

denoted by C(X ;Z). If the Berthelot conjecture holds, the category C(X ;Z)

is stable under six operations. Philosophically, considering C(X ;Z) means

to consider a ``good category'' of coefficients on X n Z. See [BeI, 5.3.6]

for some explanations. The following theorems are stating that funda-

mental relations of these functors hold in this framework.

5.4. We use the notation of paragraph 5.2. We get the following theorem.

THEOREM. Assume that M is f!-admissible. Then there exists a ca-

nonical homomorphism

f!(M)! f�(M)�5:4:1�
compatible with Frobenius pull-backs. Moreover, when Z

0 � Z, this

homomorphism is an isomorphism.
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PROOF. By using Theorem 4.16, we get DY ;W � fZ0;� � fZ0;� �DX ;Z0 . The

extension of scalar D y
X ;Q(

y
Z)
D

y
X ;Q(yZ0) induces the functor DX ;Z0 � j� !

j� �DX ;Z. Using the isomorphism DX ;Z �DX ;Z � id compatible with the

Frobenius isomorphisms by [Vi, II, 3.5], and combining these morphisms of

functors we get the homomorphism (5.4.1). The latter assertion is now

clear. p

5.5. Now, we will show the PoincareÂ duality theorem for arithmetic D -

module theory in the style of SGA4 Exp. XVIII TheÂoreÁme 3.2.5.

Let f : (X ;Z)! (Y ;W) be a strict morphism of d-couples such that the

realization is proper. Moreover, we assume that f
ÿ1
0 (W) � Z. There exists

the following isomorphism thanks to [Vi2, IV, 7.4].

RHomD
y

X ;Q(yZ)(M; f !N )!� RHomD
y

Y ;Q(yW)( f�M;N )�5:5:1�

We get that this isomorphism is compatible with Frobenius by Corollary

4.17.

REMARK. The isomorphism (5.5.1) should hold without assuming that

f
ÿ1
0 (W) � Z if we replace f� by f!. For this, we need to assume the Berthelot

conjecture. In the following, we freely use this conjecture. Let us sketch a

proof. It suffices to show the case where f : (X ;Z)! (X ;Z
0
) such that the

realization is the identity and Z
0 � Z. We can see easily that it suffices to

show that for M 2 C(X ;Z0) and N 2 C(X ;Z), the homomorphism induced by

scalar extension

RHomD
y

X ;Q(yZ0)(M; f�N )! RHomD
y

X ;Q(yZ)( f !M;N )

is an isomorphism. We can reduce the verification to the following two

cases; when the support of M is contained in Z, and when M is a D y
X ;Q(

y
Z)-

module. To see the former case, use the theorem of Berthelot-Kashiwara

[BeI, 5.3.3]. To see the latter case, it suffices to show that the homo-

morphism

RHomD
y

X ;Q(yZ0)(OX ;Q(yZ0);DX ;Z0 (M)
L y f�N )!
RHomD

y
X ;Q(yZ)(OX ;Q(yZ);DX ;Z(M)
L yN )

is an isomorphism. Using the Spencer resolution, it suffices to show that the

canonical homomorphism DX ;Z0 (M)
L y f�N ! DX ;Z(M)
L yN is an iso-

morphism. The verification is easy.
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To complete the PoincareÂ duality we need to calculate f
!

in the case

where f is smooth. Namely, we get the following.

THEOREM. Let f : (X ;Z)! (Y ;W) be a morphism of d-couples such

that the realization is smooth. Then there is a canonical isomorphism of

cohomological functors with Frobenius isomorphisms

f ! � f �(d)[2d]: Db
coh(D

y
Y ;Q(yW))! Db

coh(D
y

X ;Q(yZ))

where d denotes the relative dimension of f .

PROOF. Put the functor DX ;Z to the both sides of the isomorphism of

Theorem 3.10. Using the involutivity [Vi, II.3.5] of DX ;Z, we get the claim.

p

5.6. By using the comparison between dual functor of arithmetic D -mod-

ules and that of isocrystals, we can prove a purity type result. Namely we

have

THEOREM (Purity). Let (X ;Z)! (Y ;W) be a morphism of d-couple.

Moreover, suppose that the realization of f is a closed immersion. Let M be

a convergent F-isocrystal on Y overconvergent along W. Then f
�

(M) is

defined, and we get

f !(M) � f �(M)(ÿ d)[ÿ 2d]

where d denotes the codimension of X in Y .

PROOF. We know that f
�
(sp
�
(M)

_
) � ( f

�
sp
�
(M))

_
. Together with the

comparison theorem of duality functors Corollary 3.12 and the compat-

ibility of pull-backs [Ca5, 4.1.8], the theorem follows. p

5.7. Consider the following cartesian diagram of d-couples.

Here, cartesian means it is cartesian as a diagram of underlying formal

schemes and X 0 n Z
0 � (X n Z)�( Y nW) (Y 0 nW

0
). Now, we get the fol-

lowing base change theorem.

Explicit calculation of Frobenius isomorphisms and PoincareÂ duality etc. 145



THEOREM (Base change). We preserve the notation. Assume g is a

smooth morphism. Then we get a canonical equivalence of functors

g! � f� � f 0� � g0!: LDÿ!
b
Q;qc� bD ���

X (Z)� ! LDÿ!
b
Q;qc� bD ���

Y 0 (W 0)�:
This isomorphism is compatible with Frobenius pull-backs.

PROOF. This follows by Lemma 2.6. p

REMARK. (i) Let us assume Berthelot's conjecture. The theorem holds

if we replace LDÿ!
b
Q;qc� bD ���

X (Z)� �resp. LDÿ!
b
Q;qc� bD ���

Y 0 (W
0
)�� by D

b
hol(D

y
X ;Q(

y
Z))

(resp. D
b
hol(D

y
Y 0;Q(

y
W
0
))). When g is a closed immersion, the theorem follows

by Remark 2.6. Using the standard factorization of g into a closed immer-

sion followed by a smooth morphism, we define the isomorphism in the

general case by composition. We need to show that the definition does not

depend on the choice of factorizations. For this, use the commutativity of

(2.6.4). Since the argument is standard, we leave the details to the reader.

(ii) Let M be an object in D
b
coh(D y

X ;Q(
y
Z)). When g

� � f!(M) and

f
0
! � g

0�
(M) are defined, the above equivalence and the isomorphism

D �D � id induces an isomorphism

g� � f!(M) � f 0! � g0�(M):

5.8. We preserve the notation. Let M and N be perfect (F-)D y
Y ;Q(

y
W)-

complexes. We assume that DY ;W (M) 
L yDY ;W (N ) is also perfect

(F-)D y
Y ;Q(

y
W)-complex. Then, we define the twisted tensor product of

M and N denoted by M e
LyN to be

DY ;W (DY ;W (M)
L yDY ;W (N )):

One of the reasons we introduce this twisted tensor product is the following.

For M and N in LDÿ!
b
Q;qc� bD ���

Y �, we get that

f !(M 
L yN )[df ] � f !M 
L y f !N�5:8:1�
where df :� dim(X )ÿ dim(Y ). This is compatible with the Frobenius

structures. However, if we replace f
!
by f

�
, the equality (5.8.1) does not hold

in general. Nevertheless, if we also replace
L y by e
Ly, the equality holds in

turn. Namely, (5.8.1) induces an isomorphism

f �(M e
LyN )[ÿ df ] � f �M e
Ly f �N

if the both sides are defined. A consequence of Lemma 4.3 is the following.
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PROPOSITION. Let (X ;Z) be a d-couple, and M and N be coherent F-

D y
X ;Q(

y
Z)-complexes. Assume further that M is an overconvergent iso-

crystal along the divisor Z. Then we get

M e
L yN � (M 
L yN )(d)

where d denotes the dimension of X .

5.9. Finally, let us compare the rigid cohomology with the push-forward as

arithmetic D -modules.

Let X be a proper smooth formal scheme of dimension d, Z be a divisor

of the special fiber of X , U be the complement, and U0 be its special fiber.

We denote by f : (X ;Z)! (Spf(R); ;) the morphism of d-couples induced

by the structural morphism of X . Let M be a coherent D y
X ;Q(

y
Z)-module

which is an overconvergent isocrystal along Z. Suppose that it is coherent

as a D y
X ;Q-module.

By Corollary 3.14, we get the canonical isomorphism

Hif�M � H
d�i
rig (U0; sp�(M))(d):

To see the relation for cohomologies with compact supports, we use the

PoincareÂ duality of rigid cohomology. In the curve case, PoincareÂ duality is

proven in [Cr]. In the general case, we could not find any literature ex-

plicitly stating the PoincareÂ duality with Frobenius structure. However in

[St, 8.3.14], the coupling is defined, and in [Ke], the perfectness of the

couple is proven. Thus we get the following isomorphism

Hi
rig(U0;M)_ � H2dÿi

rig;c (U0;M
_(d))

for an overconvergent F-isocrystal M on the smooth variety U0 over k.

Using this, we get

Hif!M � (Hÿif�DX ;Z(M))_ �ÿ
Hdÿi

rig (U0; sp�(M)_(ÿ d))(d)
�_ � H

d�i
rig;c(U0; sp�(M))(d):

Here the second isomorphism follows from Corollary 3.12. Summing up, we

get

Hif�M � H
d�i
rig (U0; sp�(M))(d); Hif!M � H

d�i
rig;c(U0; sp�(M))(d):

In particular, we note that there exist canonical isomorphisms

Hif� f �(K) � Hi
rig(U0=K); Hif!f

�(K) � Hi
rig;c(U0=K)

compatible with Frobenius isomorphism.
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