
REND. SEM. MAT. UNIV. PADOVA, Vol. 131 (2014)
DOI 10.4171/RSMUP/131-8

On the Lie transformation algebra of monoids in

symmetric monoidal categories

ABHISHEK BANERJEE

ABSTRACT - We define the Lie transformation algebra of a (not necessarily asso-
ciative) monoid object A in a K-linear symmetric monoidal category (C;
; 1),
where K is a field. When A is associative and satisfies certain conditions, we
describe explicity the Lie transformation algebra and inner derivations of A.
Additionally, we also show that derivations preserve the nucleus of the monoid A
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1. Introduction

Given an associative Z-algebra A and an element a 2 A, the morphism

Da : Aÿ!A defined by Da(x) :� axÿ xa defines an inner derivation on A.

However, if A is not associative, the morphism Da is not necessarily a

derivation. For nonassociative algebras, a theory of inner derivations has

been developed by Schafer [4]. The purpose of this paper is to extend this

theory to monoids over a K-linear symmetric monoidal category (C;
; 1),

where K is a field.

More precisely, let A be a (not necessarily associative) unital monoid ob-

ject in a K-linear symmetric monoidal category (C;
; 1). A morphism

f : 1ÿ!A induces a morphism LA( f ) : Aÿ!A (resp. RA( f ) : Aÿ!A) by

left multiplication (resp. right multiplication) on the monoid A (in the sense of

(2.9)). We consider the subspace L(A) (resp.R(A)) of Hom(A;A) generated

by morphisms of the form LA( f ) (resp. RA( f )). Then, we start by defining the

Lie transformation algebra L (A) of A to be the smallest Lie algebra con-
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taining the subspaceL(A)�R(A) of Hom(A;A). If D is a derivation on A (see

Definition 2.10), we will say that D is an inner derivation if D 2 L (A).

When A is an associative monoid object, we show that the Lie trans-

formation algebra L (A) of A is actually equal to L(A)�R(A). In partic-

ular, if A is associative and has no left (or right) `̀ absolute divisors of zero'',

we show that a derivation D on A is inner if and only if D is of the form

D � LA( f )ÿ RA( f ) for some morphism f : 1ÿ!A. Moreover, we verify

that for any (not necessarily associative) monoid A, the collection of inner

derivations is always an ideal in the Lie algebra Der(A) of derivations on A.

Finally, we also show that if f : 1ÿ!A is a morphism in the nucleus of A

(see (2.13)), for any derivation D 2 Der(A), D � f is also in the nucleus of A.

We mention here that the notion of derivations on monoid objects ap-

pears elsewhere in the literature (see, for instance, Baues, Jibladze and

Tonks [1]). For more on derivations and nonassociative algebras, we refer

the reader to Jacobson [2] and Schafer [4], [5].

2. Derivations on monoids

Let (C;
; 1) be a K-linear symmetric monoidal category. Since C is

symmetric, for every pair X, Y of objects in C, we have an isomorphism:

tX;Y : X 
 Y ÿ!� Y 
 X such that tX;Y � tY ;X � 1Y
X and tY ;X � tX;Y � 1X
Y .

When there is no danger of confusion, we shall omit the subscripts and

simply write t : X 
 Y ÿ!� Y 
 X. Further, for any object X in C, we have

two isomorphisms lX : X ÿ!� 1
 X and rX : X ÿ!� X 
 1 satisfying

rX � tlX .

Given (C;
; 1), we shall let Mon(C) denote the category of unital, not

necessarily associative, monoids object in C. For any monoid A in C, we will

denote by mA : A
 Aÿ!A and eA : 1ÿ!A resp. the `̀ multiplication map''

and the `̀ unit map'' on the monoid A. We start by defining the notion of a

derivation on A.

DEFINITION 2.1. Let A be an object of Mon(C). A morphism D : Aÿ!A

is referred to as a derivation on A if it satisfies the following condition:

mA � (D
 1� 1
D) � D �mA : A
 Aÿ!A(2:1)

Given derivations D, D0 of a monoid A, it may be easily verified that the

commutator [D;D0] :� D �D0 ÿD0 �D is also a derivation on A. Then,

since the category C is K-linear, the space Der(A) of derivations on A is a

Lie algebra.
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Further, for any monoid A, given a morphism f : 1ÿ!A, we define:

LA( f ) :� ÿAÿ!lA

� 1
 A ÿ!f 
1
A
 Aÿ!mA

A
�

RA( f ) :� ÿAÿ!rA

� A
 1ÿ!1
 f
A
 Aÿ!mA

A
�

:� ÿAÿ!lA

� 1
 A ÿ!f 
 1
A
 Aÿ!mAt

A
�(2:2)

We denote by L(A) (resp. R(A)) the subspace of Hom(A;A) generated

by morphisms of the form LA( f ) (resp. RA( f )) where f 2 Hom(1;A). We

will say that f : 1ÿ!A is a left (resp. right) absolute divisor of zero if

LA( f ) � 0 (resp. RA( f ) � 0).

Suppose that M :� L(A)�R(A) � Hom(A;A). If we define the se-

quence of spaces fM igi2N as follows:

M1 �M M i :� [M1;M iÿ1]; i � 2; 3; ::::(2:3)

then, as in [4, § 2], the space L (A) :�M1 �M2 � . . . is the smallest Lie

algebra containing M1 �M. Then L (A) is referred to as the Lie

transformation algebra of A. Following [4], we will say that a derivation

D : Aÿ!A is inner if D 2 L (A).

In particular, suppose that A is an associative monoid. Then, for any

morphism f : 1ÿ!A, it is known (see [1, § 4]) that LA( f )ÿ RA( f ) 2
Hom(A;A) is a derivation on A. Further, for any f ; g : 1ÿ!A, it follows

from associativity of A that either of the compositions LA( f ) �RA(g) and

RA(g) � LA( f ) is equal to the composition

(2:4) LA( f )RA(g) �
RA(g)LA( f ) : A ÿ!� 1
 (A
 1) �����!f
 (1
 g)

A
 (A
 A) �������!mA� (1
mA)

A

i.e., we have [LA( f );RA(g)] � 0. We will denote by m( f ; g) the morphism

m( f ; g) : 1 ÿ!� 1
 1 ÿ!f
g
A
 A ÿ!mA

A. We now have the following result.

PROPOSITION 2.2. Let A be an associative monoid object in (C;
; 1).

Then, the Lie transformation algebra L (A) of A is given by

L (A) � L(A)�R(A)(2:5)

Further, if A has no left (resp. right) absolute divisor of zero, then

D 2 Hom(A;A) is an inner derivation if and only if D � LA( f )ÿ RA( f )

for some f : 1ÿ!A.

PROOF. Let us choose elements LA( f )�RA(g), LA( f 0)�RA(g0)2L(A)�
R(A) for morphisms f ; f 0; g; g0 : 1ÿ!A. Then, since [LA( f );RA(g0)] �
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[LA( f 0);RA(g)] � 0, it follows that

[LA( f )�RA(g);LA( f 0)� RA(g0)]� [LA( f );LA( f 0)]� [RA(g);RA(g0)](2:6)

We now notice that:

(2:7)

LA( f )LA( f 0)

�
�

A ÿ!� 1
 Aÿ!f
0
1

A
 Aÿ!mA
A ÿ!� 1
 A ÿ!f
1

A
 Aÿ!mA
A
�

�
�

A ÿ!� 1
 �1
 A� �����!f
� f 0
1�
A
 �A
 A� �������!mA��1
ma�

A
�

�
�

A ÿ!� �1
1�
 A �����!� f
 f 0�
1

�A
 A�
 A �������!mA��ma
 1�
A
�
�LA�m� f ; f 0��

Hence, it follows that [LA( f );LA( f 0)] � LA(m( f ; f 0)ÿm( f 0; f )). Similarly,

we may show that RA(g)RA(g0) � RA(m(g0; g)) and hence [RA(g);RA(g0)] �
RA(m(g0; g)ÿm(g; g0)). From (2.6), it follows that

(2:8) [LA( f )� RA(g);LA( f 0)� RA(g0)] �
LA(m( f ; f 0)ÿm( f 0; f ))ÿRA(m(g0; g)ÿm(g; g0))

and hence L(A)�R(A) is a Lie algebra. Since L (A) is the smallest Lie

algebra containing L(A)�R(A), we have L (A) � L(A)�R(A).

We now suppose that LA( f )� RA(g) 2 L (A) is a derivation. Since

LA(g)ÿRA(g) is a derivation as mentioned before, so is LA( f � g) �
(LA( f )� RA(g))� (LA(g)ÿ RA(g)). Since A is associative, the following

commutative diagram

A
 A ����!lA
 1

� �1
 A�
 A �������!�� f�g�
 1�
1

�A
 A� 
 A ����!� �A
 A�
 A

�
��
# �

��
# �

��
# mA
 1

��
#

A
 A ����!lA
A

� 1
 �A
 A��������!� f� g�
�1
1�
A
 �A
 A� A
 A

mA

��
# 1
mA

��
# 1
mA

��
# mA

��
#

A ����!lA

� 1
 A �����!� f �g�
1

A
 A ����!mA

A

(2:9)

shows that mA � (LA( f � g)
 1) � LA( f � g) �mA : A
 Aÿ!A. Since

LA( f � g) is a derivation, it follows from (2.1) that mA � (1
 LA( f � g)) � 0.

On the other hand, we note that

(2:10) 0 � mA � (1
 LA( f � g)) � (eA 
 1) � lA � LA(m(eA; f � g)) �
LA(eA)LA( f � g) � LA( f � g)
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and hence LA( f � g) � 0. Now, if A has no left absolute divisors of zero, it

follows that LA( f � g) � 0 and the inner derivation LA( f )�RA(g) 2 L (A)

is actually of the form LA( f )�RA(g) � RA(g)ÿ LA(g) � LA(ÿ g)ÿ
RA(ÿ g). The result follows similarly for the case of no right absolute di-

visors of zero. p

PROPOSITION 2.3. Let A be an object of Mon(C). Then, the space

L (A) \Der(A) of inner derivations on A is an ideal in the Lie algebra

Der(A).

PROOF. We choose a morphism f : 1ÿ!A and some D 2 Der(A).

Our first objective is to show that [D;LA( f )] � D � LA( f )ÿ LA( f ) �D �
LA(D � f ). For this, we note that:

D � LA( f ) � D �mA � ( f 
 1) � lA

� mA � (D
 1� 1
D) � ( f 
 1) � lA

� mA � ((D � f )
 1) � lA �mA � (1
D) � ( f 
 1) � lA

� LA(D � f )�mA � ( f 
 1) � (1
D) � lA

� LA(D � f )�mA � ( f 
 1) � lA �D

� LA(D � f )� LA( f ) �D

(2:11)

It follows from (2.11) that [D;L(A)] � L(A). Similarly, we may show that

[D;R(A)] � R(A). It follows, therefore, that for M1 �M � L(A)�R(A),

[D;M1] �M1.

We now suppose that [D;M j] �M j for all j � i for some given i. Then,

given any element D0 2M i�1, by definition of M i�1 in (2.3), D0 may be

written as a sum D0 �Pk
l�1

D0l with each D0l 2 [M1;M i]. We now note that

for each 1 � l � k, we have

(2:12) [D;D0l] 2 [D; [M1;M i]] � [M1; [D;M i]]� [M i; [D;M1]] �
[M1;Mi]� [M i;M1] �M i�1

From (2.12), it follows that [D;M i�1] �M i�1 and hence [D;M i] �M i

for all i � 1 by induction. It follows that [D;L (A)] � L (A). Since

[D;Der(A)] � Der(A), it follows that [D;L (A) \Der(A)] � L (A) \Der(A).

p

REMARK 2.4. It follows from Proposition 2.3 that if A is a monoid such

that the derivation algebra Der(A) is simple (as a Lie algebra) and there

exist non zero inner derivations of A, then every derivation of A is inner.
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Given a monoid object A, we will say that a morphism f : 1ÿ!A is in

the nucleus of A if each of the following three morphisms is identically 0:

(2:13)

A0( f ) :�
�

A
 A����!lA
 1

� (1
 A)
 A �����!� f 
1�
1

(A
 A)
 A ������������!mA(mA
1ÿ(1
mA)a)

A
�

A1( f ) :�
�

A
 A ����!1
lA

� A
 (1
 A) �����!1
( f
1)

A
 (A
 A) �������������!mA((mA
1)aÿ1ÿ1
mA)

A
�

A2( f ) :�
�

A
 A����!1
rA

� A
 (A
 1) �����!1
(1
f )

A
 (A
 A) �������������!mA((mA
1)aÿ1ÿ1
mA)

A
�

where a is the natural isomorphism a : (A
 A)
 A ÿ!� A
 (A
 A). The

set of all morphisms in the nucleus of A will be denoted by Nuc(A) (compare

[3, § 1.13]). Clearly, if A is associative, Nuc(A) � Hom(1;A).

PROPOSITION 2.5. Let A be an object of Mon(C). Let D be a derivation

on A and let f : 1ÿ!A be an element of the nucleus of A. Then,

D � f 2 Nuc(A).

PROOF. Since f 2Nuc(A), we know that A0( f ) � A1( f ) � A2( f ) � 0

as defined in (2.13). We proceed as follows:

A0(D � f )

� mA(mA 
 1ÿ (1
mA)a)((D � f 
 1)
 1)(lA 
 1)

� mA(mA 
 1ÿ (1
mA)a)((D
 1)
 1)(( f 
 1)
 1)(lA 
 1)

� mA((DmA ÿmA(1
D))
 1)(( f 
 1)
 1)(lA 
 1)

ÿmA(D
 1)(1
mA)a(( f 
 1)
 1)(lA 
 1)

� (mA(D
 1)(mA 
 1)ÿmA(mA 
 1)((1
D)
 1)

ÿDmA(1
mA)a�mA(1
DmA)a) � (( f 
 1)
 1)(lA 
 1)

� (DmA(mA 
 1)ÿmA(1
D)(mA 
 1)ÿmA(mA 
 1)((1
D)
 1)

ÿDmA(1
mA)a�mA(1
DmA)a)(( f 
 1)
 1)(lA 
 1)

� D � A0( f )ÿmA((mA 
 1)((1
 1)
D)� (mA 
 1)((1
D)
 1)

ÿ (1
DmA)a)(( f 
 1)
 1)(lA 
 1)

� ÿmA(mA 
 1)((1
D)
 1� (1
 1)
D)(( f 
 1)
 1)(lA 
 1)

�mA(1
mA)(1
 (D
 1)� 1
 (1
D))a(( f 
 1)
 1)(lA 
 1)

� mA((1
mA)aÿmA 
 1)(( f 
 1)
 1)((1
D)
 1)(lA 
 1)

�mA((1
mA)aÿmA 
 1)(( f 
 1)
 1)((1
 1)
D)(lA 
 1)

� ÿA0( f ) � (D
 1)ÿ A0( f ) � (1
D) � 0
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Similarly, one may check that both A1(D � f ) and A2(D � f ) are 0. Hence,

D � f 2 Nuc(A). p
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