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A local smoothness criterion for

solutions of the 3D Navier-Stokes equations

JAMES C. ROBINSON (*) - WITOLD SADOWSKI (**)

ABSTRACT - We consider the three-dimensional Navier-Stokes equations on the
whole space R3 and on the three-dimensional torus T3. We give a simple proof of
the local existence of (finite energy) solutions in L3 for initial data u0 2 L2 \ L3,
based on energy estimates and regularisation of the initial data with the heat
semigroup.

We also provide a lower bound on the existence time of a strong solution
in terms of the solution v(t) of the heat equation with such initial data: there
is an absolute constant e > 0 such that solutions remain regular on [0;T] if

ku0k3
L3

RT
0

R
R3

jrv(s)j2jv(s)j dx dt � e. This implies the u 2 C0([0;T ]; L3) regularity

criterion due to von Wahl. We also derive simple a priori estimates in Lp for
p > 3 that recover the well known lower bound ku(T ÿ t)kLp � ctÿ(pÿ3)=2p on
any solution that blows up in Lp at time T .

The key ingredients are a calculus inequality kukp
L3p � c

R jujpÿ2jruj2 (valid
on R3 and for functions on bounded domains with zero average) and the bound
on the pressure kpkLr � crkuk2

L2r , valid both on the whole space and for periodic
boundary conditions.
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Introduction

In this paper we give an elementary proof, via simple energy-type

estimates, that the three-dimensional incompressible Navier-Stokes
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equations

ut ÿ�u� (u � r)u�rp � 0 div u � 0�1�
are locally well-posed for divergence-free initial conditions u0 that satisfy

u0 2 L2(V)\ L3(V), where V � R3 or V � [0;L]3 with periodic boundary

conditions. The result goes back to Leray [15], with a more `modern' proof

presented by Fujita & Kato [9] using the theory of semigroups (see also

[3], [10], and [13]). In our paper, in which we are able to treat the case of

periodic boundary conditions and the whole space in a unified way, we not

only prove local existence but also estimate the local existence time from

below in terms of the norm of the initial u0 in L3 and the properties of the

solution v(t) of the heat equation with the initial condition u0: there is an

absolute constant e > 0 such that if

ku0k3
L3

ZT

0

Z
R3

jrv(s)j2jv(s)j dx dt < e�2�

then u is smooth on (0;T).

It should be noticed that for a fixed initial condition u0 2 L3 we can

always choose a sufficiently small time T > 0 so that the left-hand side of

(2) can be as small as we wish. Indeed, from the heat equation (4) we can

easily deduce that

kv(t)k3
L3 �

Z t

0

Z
jrvj2jvj � ku0k3

L3�3�

for any t > 0. Therefore the integral on the left-hand side of (3) is finite for

any t > 0 and the assertion easily follows. We note that similar estimates

where the local existence time of a strong solution for the Navier-Stokes

equations depends on properties of the solution of the Stokes equations

were recently proved by Farwig et al. in [8].

We will make use of the (three-dimensional) calculus inequality

kuk3
L9 � c

Z
jukruj2 for all u 2 W1;3=2:

While this follows easily on the whole space (or in a bounded domain with

zero boundary conditions) by applying the embedding _H1(R3) � L6(R3) to

juj3=2 (cf. Lemma 1.3 in BeiraÄo da Veiga [1]), the proof for periodic func-

tions with zero average requires some work (see Lemma 2). We note that

this is a particular case of a family of inequalities: for p < n and W1;r(Rn),

160 James C. Robinson - Witold Sadowski



r � n(p� q)=(n� q),

kukp�q
L(p�q)n=(nÿp) � c

Z
jujqjrujp;

again, the same result holds for periodic functions with zero average.

Our analysis, which uses the method of splitting the solution into one

part that satisfies the heat equation and another that deals with the non-

linear terms, is inspired by a similar approach for local existence in H1=2

which can be found in the book by Chemin et al. [4], and with some sim-

plifications in the recent paper by MarõÂn-Rubio et al. [16]. More explicitly,

we consider

vt ÿ�v � 0 v(0) � u0�4�
and

wt ÿ�w� (u � r)u�rp � 0 w(0) � 0;�5�

so that v is the solution of the heat equation and u � w� v. (One difference

with the analysis in [4] is that we include all the initial data in the v equation

and start with zero in the equation for w.)

Note that one might more naturally consider instead of (4) the Stokes

equation

vt ÿ�v�rq � 0; r � v � 0; v(0) � u0:�6�
However, on the whole space or in the case of periodic boundary condi-

tions, which are the situations we consider here, the divergence-free

property of u0 is preserved by the heat semigroup, so the solution of (6)

coincides with that of (4). In a bounded domain one would have to retain the

pressure term from (6). (Another way of putting this would be to say that

the Laplacian commutes with the Leray projector onto divergence-free

vector fields in these cases; see Chapter Four in Constantin & Foias [5], for

example. Applying this projector to (6) one obtains (4).)

First (Theorem 1) we assume that (2) holds and that u0 2 H2, so u is a

strong solution at least locally in time. Serrin's condition guarantees that u

is smooth on (0;T) provided that u 2 Lr(0;T; Ls(V)) with

2

r
� 3

s
� 1

(see the nice survey paper by Galdi [10] for a modern treatment); so to prove

that u remains strong on the whole interval [0;T], where T is given by (2),

we show that u 2 L3(0;T; L9(V)).
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According to Lemma 2

kuk3
L9 � I(u) :�

Z
jruj2juj;

and so the double integral on the left-hand side of (3) dominates the norm

of v in L3(0;T; L9):

ckvk3
L3(0;T;L9) �

ZT

0

Z
jrvj2jvj:

It follows from (3) that v 2 L3(0;T; L9). Since u � v� w it remains to prove

that w 2 L3(0;T; L9).

Since

kwk3
L3(0;t;L9) � c

Z t

0

I(w(s)) ds

we only need to show that
RT
0

I(w(s)) ds is finite. Since u0 is regular this in-

tegral must be finite on some interval [0;T1). Using relatively elementary

energy estimates we derive the differential inequality

d

dt
kwk3

L3 � I�w� � ckwk3
L3 I�w� � ckvk3

L3 I�v�;�7�

and use a simple result for differential inequalities of the form

_a(t)� b(t) � ca(t)b(t)� f (t) (Lemma 4) to show that if
RT
0

kvk3
L3 I(v) is suf-

ficiently small (which is precisely (2)) then
Rt
0

I(w) is uniformly bounded

above by an absolute constant 1=2c for all t 2 [0;T1) if T1 � T. Thus

there is no blow up for any T1 < T and
RT
0

I(w) � 1=2c.

Hence we have proved that w, and in consequence u, belongs to

L3(0;T; L9).

In the second step of the proof (see Theorem 2) we relax our assumption

about the initial condition and prove that for each divergence-free initial

condition u0 2 L3 \ L2 satisfying (2) we can find a sequence of smooth initial

conditions tending to u0 in L3 and giving rise to smooth solutions un defined

on (0;T) and uniformly bounded in L3(0;T; L9). Then the standard procedure

allows us to conclude that the limit of a subsequence of these smooth solu-

tions is the solution of our original problem that stays bounded in L3 and is
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smooth on (0;T)� V. As the sequence of initial conditions tending to u0 we

take ea�u0, which seems natural in light of the splitting (4)-(5).

The last part of the paper is devoted to the rate of possible blow-up in

Lp spaces with p > 3. We obtain these by deriving a lower bound on the

existence time of a regular solution with u0 2 Lp; in contrast to condition

(2) these bounds involve only absolute constants and the norm of u0 in Lp.

The calculations here are very similar to those in [1], which treats the case

of the whole space; but we note that due to the generality of our Lemma 2

the proof is now valid in the periodic case also.

1. Preliminaries

Throughout the paper we consider the Navier-Stokes equations on a

three-dimensional domain V, where V � R3 or V is the three-dimensional

torus T3� [0;L]3. When V is the whole space by the solution of the heat

equation (4) we mean the solution given by the heat kernel:

v(x; t) � 1

(4pt)3=2

Z
R3

exp ÿ jxÿ yj2
4t

 !
u0(y) dy:

We use the standard notation for the Sobolev space Hk. When V � T3

then by _Hk we denote the homogeneous Sobolev space of divergence-free

functions with zero mean over V:

u �
X
k2 _Z3

ûkeikx; ûk � ûÿk; k � ûk � 0;

_Z3 � Z3 n f0g, with the norm

kuk2
_Hs(T3) �

X
k2 _Z3

jkj2sjûkj2:

On the whole space the norm in _Hk is given by

kuk2
_Hs(R3) �

Z
R3

jkj2sjû(k)j2 dk;

where

û(k) �
Z
R3

eÿik�xu(x) dx:
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We begin with some straightforward preliminary calculations. We will

use throughout the identity

@(jujg) � guk(@uk)jujgÿ2;�8�
where @ denotes any partial derivative.

We will make frequent use of the quantities
R jujaÿ2jruj2 andR jrjuja=2j2 studied also by BeiraÄo da Veiga in [1] (see also Galdi and

Rionero [11] where a similar technique was used). The assertion of

the following lemma on the whole space was already proved in [1], but

for completeness we will give below the proof covering the periodic

case too.

LEMMA 1. For a � 2 , if u 2 H2 thenZ
ÿ�u � ujujaÿ2 �

Z
jruj2jujaÿ2:�9�

PROOF. Integrating by parts using (8) we obtain

ÿ
Z

(@2
i uj)ujjujaÿ2 �

Z
(@iuj)(@iuj)jujaÿ2�

Z
(@iuj)uj(aÿ2)uk(@iuk)jujaÿ4

�
Z
jruj2jujaÿ2 � (aÿ 2)

Z
[uj(@iuj)juj(a=2)ÿ2][uk(@iuk)juj(a=2)ÿ2]

�
Z
jruj2jujaÿ2 � 4(aÿ 2)

a2

Z
jrjuja=2j2

�10�

While not required for (9), note that from (8) it follows that

jrjuja=2j2 � cjujaÿ2jruj2;
so retaining the second term of (10) in our estimates would give us no sig-

nificant extra control. p

LEMMA 2. Take 2 � p < 3. Then there exists a constant cp such for

every u 2W1;p(R3) we have u 2 L3a(R3) and

kukaL3a � cp

Z
V

jruj2jujaÿ2;�11�

where a � p=(3ÿ p). The same result is true if V is a bounded (perhaps

periodic) domain and u 2 W1;p(V) with
R
V

u � 0 or uj@V � 0.
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Note that the embedding W1;p � L3a is standard. However, the norm on

the right-hand side of (11) is not the W1;p norm. Nevertheless, it is finite for

u 2 W1;p, sinceZ
jujaÿ2jruj2 �

Z
juj3a

� �(aÿ2)=3a Z
jruj3a=(1�a)

� �2(1�a)=3a

;

the first factor is finite since u 2 L3a by the embedding W1;p � L3a, and the

second factor is finite since u 2W1;p and 3a=(1� a) � p.

We note here that in fact a more general result holds, namely

kukp�q
L(p�q)n=(nÿp) � c

Z
jujqjrujp

for every u 2W1;r(Rn) with r � n(p� q)=(n� q), p < n. Again, one can

take Q � Tn provided that u has zero average.

PROOF. To prove (11) on R3 assume first that u 2 C10 (R3). Then juja=2 2
H1(R3), and from the Sobolev embedding _H1(R3) � L6(R3) we have

kukaL3a �
Z
juj3a

� �1=3

� juja=2
2

L6 � c

Z
R3

��rjuja=2
��2:

On the other hand, from (8) it follows that

j@kjuja=2j2 � a
2

uijuj(aÿ4)=2@kui

��� ���2� a2

4
jujaÿ2jruj2;

so

jrjuja=2j2 � cajujaÿ2jruj2

and (11) follows. For u 2W1;p(R3) we use the density of C10 (R3) in

W1;p(R3).

When V is bounded and uj@V � 0 then using the PoincareÂ inequality

the embedding _H1 � L6 remains valid, and since juja=2 is also zero on the

boundary we can repeat the above argument.

However, when V is bounded and we only impose the zero average

condition, the function juja=2 does not have zero average, so we cannot

apply the embedding _H1(V) � L6(V) and we have to argue more carefully.

From the embedding H1(V) � L6(V) applied to the function juja=2 we know

that there is a constant C such that

kukaL3a � C

Z
V

jujaÿ2jruj2 � CkukaLa ;�12�
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where we used the fact that jrjuja=2j2 is bounded by cjujaÿ2jruj2. Now, if

(11) does not hold then there exists a sequence of (non-zero) un 2W1;p such

that

kunkaL3a � n

Z
V

junjaÿ2jrunj2

and
R
V

un � 0.

Now we normalise the sequence un in La, setting fn � un=kunkLa . Then

k fnkLa � 1

and we still have

k fnkaL3a � n

Z
V

j fnjaÿ2jrfnj2�13�

and
R
Q

fn � 0. Using (12) it follows that

k fnkaL3a � C

Z
V

j fnjaÿ2jrfnj2 � Ck fnkaLa

� C

n
k fnkaL3a � C;

from which it follows that for all n > C

k fnkaL3a � Cn=(nÿ C)

i.e. fn is uniformly bounded in L3a, k fnkL3a �M for all n. It now follows from

(13) thatZ
V

jr(fnj fnj(aÿ2)=2)j2 � c

Z
V

j fnjaÿ2jrfnj2 � 1

n
k fnkaL3a �M

n
! 0 as n!1:

In particular kr(fnj fnj(aÿ2)=2)kL2 ! 0 as n!1.

Notice also that fnj fnj(aÿ2)=2 2 L2 with k fnj fnj(aÿ2)=2kL2 � k fnka=2
La � 1 for

every n. It follows that fnj fnj(aÿ2)=2 forms a bounded sequence in H1. One

can now follows Evans (Theorem 1 in Section 5.8 in [7]) to conclude that

there is a subsequence such that fnj
j fnj
j(aÿ2)=2 ! F strongly in L2, where

F � c, a constant. It follows that kckL2 � lim
j!1
k fnj
j fnj
j(aÿ2)=2kL2 � 1.

Now, find a further subsequence such that fnj
j fnj
j(aÿ2)=2 ! c a.e., so

j fnj
ja=2 ! jcj almost everywhere. It follows that j fnj

j(aÿ2)=2 ! jcj(aÿ2)=a al-

most everywhere, and so fnj
! f :� cjcj(2ÿa)=a almost everywhere. We also

know that k fnj
kLa � 1, and k f kLa � 1. It follows that fnj

! f strongly in La.
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The zero average condition is preserved by the convergence, whence f � 0.

But this contradicts the fact that k f kLa � 1, and the result follows. p

The following simple result estimates the Lq norm of the pressure in

terms of the L2q norm of the velocity. The result is well known in R3; we

have not been able to find a standard reference in the literature for T3, but

the required periodic version of the Calderon-Zygmund Theorem can be

found in the recent monograph by Shapiro [19]. It is the lack of a similar

estimate in the case of a bounded domain that prevents us from proving

local existence in L3 using energy estimates for this case (cf. comments in

Berselli & Galdi [2]).

LEMMA 3. Let V � R3 or V � T3. If u 2 L2q(V) is a solution of the

Navier-Stokes equations then the associated pressure p belongs to Lq(V):

kpkLq(V) � ckuk2
L2q(V)

PROOF. If we rewrite the equations in Fourier space then the ith

component is

d

dt
ûi(k)� jkj2ûi(k)� ikj duiuj(k)� iki p̂(k) � 0:

Taking the dot product with k and using k � û(k) � 0 (r � u � 0) we obtain

kikj duiuj(k) � ÿ ijkj2p̂(k)

so

p̂(k) � kikj

jkj2
duiuj(k):

The result in R3 now follows from the Calderon-Zygmund theorem, while

the result on T3 is a consequence of Lemma B in Chapter 6 of [19]. p

Finally we prove a simple ODE lemma that allows us to complete our

analysis. This gives a formal version of the the `self-consistent smallness'

approach used in [4].

LEMMA 4. Suppose that x; y; e are real valued, non-negative functions

that are continuous on [0;T) such that x(0) � 0 and

dx

dt
� y � cxy� e(t) for all t 2 [0;T) and c > 0:
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If E :� RT
0

e(s) ds < 1=4c then

sup
0�s<T

x(s) � 2E and

ZT

0

y(s) ds � 2E:�14�

PROOF. If E � 0 then the assertion follows easily from Gronwall's

lemma. So let us assume that E > 0 and let

Y(t) �
Z t

0

y(s) ds:

The function Y is continuous and Y(0) � 0. Therefore to prove that

Y(t) � 2E for all t 2 [0;T] it suffices to show that for all t 2 [0;T) we have

Y(t) � 2E ) Y(t) < 2E:

Indeed, this implication rules out the possibility that Y(t) � 2E for some

t 2 [0;T). Hence due to continuity of Y no value greater than 2E can be

achieved.

So let us fix t 2 [0;T), assume that Y(t) � 2E and let s 2 [0; t]. In-

tegrating the differential inequality from 0 to s yields

x(s)�
Zs

0

y(r) dr � c sup
0�r�s

x(r)

( )Zs

0

y(r) dr �
Zs

0

e(r) dr:

So for all s 2 [0; t] we have

x(s)� Y(s) � c sup
0�r�s

x(r)

( )
Y(s)� E:�15�

Since x is continuous on [0; t] there is an s0 2 [0; t] such that

sup
0�r�t

x(r) � x(s0):

If Y(s0) � 0 then it follows from (15) with s � s0 that

x(s0) � E < 2E:

If Y(s0) > 0 then we can use our assumption Y(s0) � Y(t) � 2E <
1

2c
to

deduce from (15) that

x(s0) � 2Eÿ 2Y(s0) < 2E:
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Using the assumption Y(t) � 2E < 1=2c in (15) with s � t yields

x(t)� Y(t) � 1

2
sup

0�r�t
x(r)� E;

so from the inequality x(s0) < E follows that Y(t) < 2E: Therefore

Y(t) < 2E for all t 2 [0;T) and the bound on x(t) follows from (15). p

2. Local existence in L3

We will now prove smoothness of solutions of the Navier-Stokes

equations on the time interval (0;T), where T depends only on the norm of

u0 in L3 and on the properties of the solution of heat equation evolving from

u0 2 L2 \ L3. In Theorem 1 we will make some additional assumptions on

the regularity of u0. These assumptions will be relaxed in Theorem 2. We

assume that V � R3 or V � T3.

We note that one can find the use of similar energy-type estimates to

investigate behaviour in Lp space in the paper by BeiraÄo da Veiga [1], and

also in Berselli & Galdi [2].

THEOREM 5. There exists an absolute constant e > 0 such that if

u0 2 H2(R3) with r � u0 � 0, and for some T > 0

ku0k3
L3

ZT

0

Z
jrv�t�j2jv�t�j dx dt < e;�16�

where v(t) is the solution of the heat equation with initial data u0 , then u is

smooth on (0;T)� V.

PROOF. Since u is evolving from a regular initial condition there exists a

time T0> 0 such that u is smooth on (0;T0) and u 2 L1(0;T0; H2). We want to

prove that if e in (2) is sufficiently small we can choose T0 � T. Let u � v� w

where v and w are given by (4)-(5). We want to prove that u 2 L3(0;T; L9(V)).

From the v equation, multiplying by vjvj, integrating, and using Lemma 2 we

obtain
1

3

d

dt
kvk3

L3 �
Z
jrvj2jvj � 0;

whence

kv(t)k3
L3 � 3

Z t

0

Z
jrvj2jvj � ku0k3

L3 :�17�

Therefore according to Lemma 2 we have v 2 L3(0;T; L9(V)).
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Now we want to prove that w 2 L3(0;T; L9(V)). To this end we will show

that inequality (7) is satisfied on [0;T0) for all T0 � T, where T is given in

the statement of Theorem 1.

For the w equation, multiply by wjwj and integrate. Using (9)

1

3

d

dt
kwk3

L3 �
Z
jrwj2jwj � ÿ

Z
[(u � r)u] � wjwj ÿ

Z
rp � wjwj:

For the RHS, integrate by parts to move the derivatives off the u term:

RHS � ÿ
Z

uiuj@i(wjjwj)ÿ
Z

pwl@l(jwj)

� ÿ
Z

uiuj(@iwj)jwj ÿ
Z

uiujwjwk(@iwk)jwjÿ1 ÿ
Z

pwlwk(@lwk)jwjÿ1

�
Z
juj2jrwkwj �

Z
juj2jwkrwj �

Z
jpkwkrwj

�
Z
jrwkwj3 �

Z
jrwkwkvj2 �

Z
jpkwkrwj

�: R1 �R2 �R3:

We estimate each of the Rj in turn, using the notation I(u) :� R
V

jruj2juj.
For R1 we use the interpolation kwkL5 � kwk2=5

L3 kwk3=5
L9 :

R1 �
Z
jwj3jrwj �

Z
jwkrwj2

� �1=2 Z
jwj5

� �1=2

� I(w)1=2kwkL3kwk3=2
L9

� c1I(w)kwkL3 :

For R2 we use HoÈlder's inequality with exponents (2; 18; 9=4), and the

interpolation kvkL9=2 � kvk1=2
L3 kvk1=2

L9 :

R2 �
Z
jrwkwkvj2

�
Z
jwkrwj2

� �1=2 Z
jwj9

� �1=18 Z
jvj9=2

� �4=9

� c2I(w)2=3kvk2
L9=2

� 1

4
I(w)� c3kvk3

L3kvk3
L9

� 1

4
I(w)� c3kvk3

L3 I(v):
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Finally for R3 we use the fact that kpkL9=4 � Ckuk2
L9=2 (Lemma 3):

R3 �
Z
jpkwkrwj

�
Z
jwkrwj2

� �1=2 Z
jwj9

� �1=18 Z
jpj9=4

� �4=9

� c3I(w)2=3kuk2
L9=2

� 1

4
I(w)� c4kvk3

L3kvk3
L9 � c4kwk3

L3kwk3
L9

� 1

4
I(w)� c4kvk3

L3 I(v)� c4kwk3
L3 I(w):

The resulting inequality for kwk3
L3 is

1

3

d

dt
kwk3

L3 � 1

2
I(w) � c1I(w)kwkL3 � c5kvk3

L3 I(v)� c6kwk3
L3 I(w)

Since

c1I(w)kwkL3 � c1I(w)2=3I(w)1=3kwkL3 � 1

6
I(w)� c7I(w)kwk3

L3 ;

we obtain

d

dt
kwk3

L3 � I(w) � c8kwk3
L3 I(w)� c8kvk3

L3 I(v):

We can now apply Lemma 4 to deduce that if

c8

ZT

0

kv(s)k3
L3 I(v(s)) ds < 1=4c8

then for any T0 � T the quantity

sup
0�s�t

kw(s)k3
L3 �

Z t

0

Z
R3

jrw(x; t)j2jw(x; t)j dx

is bounded on [0;T0) by 1=2c8. Therefore we have proved that

w 2 L3(0;T; L9(V)), and hence u is smooth on (0;T) where T is given

by (16). p

We will now relax our assumption on u0, to obtain Leray-Hopf (finite

energy) type solutions for u0 2 L2 \ L3. For a discussion of the various
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different notions of solution if one does not assume that the energy is finite

see Berselli & Galdi [2].

Of course, on the periodic domain the requirement that u0 2 L2 follows

immediately from u0 2 L3.

THEOREM 6. There exists an absolute constant e > 0 such that if

u0 2 L3 \ L2 with r � u0 � 0, and for some T > 0

ku0k3
L3

ZT

0

Z
jrv(t)j2jv(t)j dx dt < e;

where v(t) is the solution of the heat equation with initial data u0, then the

3D NSE has a solution u 2 L1(0;T; L3). In particular:

(i) If u0 2 L3 \ L2 there exists a time T > 0 such that the equations

have a unique local solution u 2 L1(0;T; L3); and

(ii) if u0 2 L3 \ L2 and ku0kL3 is sufficiently small then the equa-

tions have a unique global solution u 2 L1(0;1; L3).

PROOF. Given u0 2 L3 \ L2, let v be the solution of

vt ÿ�v � 0 v(0) � u0

and let va be the solution of

(va)t ÿ�va � 0; va(0) � u0;a :� ea�u0

Note that va(t) � v(t� a).

Since u0;a 2 H2 for all a > 0 we deduce from Theorem 1 that for each a
there exists a smooth solution ua of the Navier-Stokes equations on some

time interval [0;Ta) such that

ua(0) � u0;a

and Ta is such that

kuak3
L3

ZTa

0

I(va(t)) dt < e:

Choose any 0 < T0 < T. Let a be so small that T0 � a < T. Since

va(t) � v(t� a) we haveZT0

0

I(va(t)) dt �
ZT0�a
a

I(v(t)) dt �
ZT

0

I(v(t)) dt:
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Since
u0;a ! u0

as a! 0 in L3 we can choose a0 such that for all a < a0 we have

kuak3
L3

ZT0

0

I(va(t)) dt < e:

It follows that for every 0 < T0 < T we can find a sequence of smooth so-

lutions of the Navier-Stokes equations defined on time interval [0;T0) such

that ua(0) � u0;a and ua are uniformly bounded in L3(0;T0; L9). From well-

known results on the uniqueness of solutions satisfying Serrin's condition in

the class of all weak solutions satisfying the energy inequality it follows that

ua can be obtained by standard Galerkin approximations and that for suf-

ficiently small a we have

sup
0�t�T0

kua(t)k2
L2 �

ZT0

0

kru(t)k2
L2 dt � 2kua;0k2

L2 � 2ku0k2
L2 � 1:

Hence ua are uniformly bounded in L1(0;T0; L2) and rua are uniformly

bounded in L2(0;T0; L2) Therefore we can choose a sequence of solutions

bounded in L2(0;T0; H1) and strongly convergent in L2(0;T0; L2(V)) (or, in

case of V � R3 in L2(0;T0; L2(V0)) for any bounded V0 � R3). The limit

function u is the smooth solution of the Navier-Stokes equations defined on

time interval (0;T0) and satisfying initial condition u0. Since T0 < T was

arbitrary the result follows.

Global existence for small data follows similarly; from (17) we know that

for any t > 0 Z t

0

I(v(s)) ds � ku0k3
L3 ;

whence (2) gives existence for all t � 0 provided the condition

ku0k6
L3 < e:

is satisfied p

Using our regularity criterion (2) we can give a simple proof of the

C0([0;T]; L3) regularity condition of von Wahl [20] (also derived by Giga

[12]). However, note that our solutions have finite energy; regularity under

the assumption u 2 C0([0;T]; L3) is shown for very weak solutions (also on

bounded domains) by Berselli & Galdi [2].
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COROLLARY 7. Suppose that u is a weak (Leray-Hopf) solution of the

Navier-Stokes equations with u 2 C0([0;T]; L3). Then u is regular on (0;T] .

PROOF. Let M � max
t2[0;T]

ku(t)kL3 .

Note that if vt( � ) is the solution of the heat equation with initial con-

dition u(t) 2 L3 then

kS(t)u(t)k3
L3 �

Zt
0

jvt(s)krvt(s)j2 ds � ku(t)k3
L3 ;

thus

ku(t)k3
L3

Zt
0

jvt(s)krvt(s)j2 ds �M3(ku(t)k3
L3 ÿ kS(t)u(t)k3

L3 )

�M3(kuk3 ÿ kS(t)uk3)[kuk2
3 � kuk3kS(t)uk3 � kS(t)uk2

3]

� 3M5(kuk3 ÿ kS(t)uk3);

since kS(t)ukL3 � kukL3 .

We now show that there exists a t > 0 such that

ku(t)ÿ S(t)u(t)kL3 < e :� e0=3M5 for every t 2 [0;T]:

If not then there exist tn 2 [0;T] and tn ! 0 such that

ku�tn� ÿ S�tn�u�tn�k3
L � e:(18)

Extracting a subsequence and relabelling we can guarantee that tn !
t� 2 [0;T]. But, noting that

kS(tn)u(tn)ÿ u(t�)k3 � kS(tn)[u(tn)ÿ u(t�)]� [S(tn)u(t�)ÿ u(t�)]k3

� ku(tn)ÿ u(t�)k3 � kS(tn)u(t�)ÿ u(t�)k3;

it follows from the assumed continuity of u( � ) and the strong continuity

of S( � ) (see the notes by Rodriguez-Bernal [17], for example) that

S(tn)u(tn)! u(t�). So we can take the limit as n!1 in (18) to deduce

that 0 � ku(t�)ÿ u(t�)k3 � e, which is clearly absurd.

It follows that there exists a t > 0 such that

ku(t)k3
L3

Zt
0

jvt(s)krvt(s)j2 ds < e0

for every t 2 [0;T], and in particular u is regular on (0;T � t). p
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The proof of regularity when u 2 L1(0;T; L3) due to Escauriaza et

al. [6] is significantly more involved. It is perhaps tantalising to note that

under this condition u is right continuous into L3 (see for example Lemma

7.4 in Galdi [10]); but this is not sufficient to obtain the required contra-

diction from (18).

3. Lower bounds on solutions that blow up in Lp

In Theorem 2 the existence time T depends not only on the norm of u0

in L3 but also on the properties of a solution of the heat equation with initial

condition u0. For u0 2 Lp, p > 3, we can use a similar but simpler method

to find a lower bound on existence time that depends only on the norm of u0

in Lp. This leads to estimates of the rate of putative blow-up of kukLp for

p > 3. Such estimates were known to Leray and a proof (based on the

theory of semigroups) was given by Giga in [12] (see also [10]). Here we

derive these classical estimates in an elementary way. These calculations

can also be found in the paper by BeiraÄo da Veiga [1], but we include them

here for completeness since they are now also valid (due to our Lemma 2)

in a periodic domain.

THEOREM 8. There exists an absolute constant c > 0 such that if

r � u0 � 0, u0 2 Lp, p > 3,

T � cku0kÿ
2p

pÿ3

Lp ;

and u is the solution of the Navier-Stokes equations with initial condition

u0, then u is regular on the time interval [0;T) .

PROOF. We multiply the Navier-Stokes equations by ujujaÿ2 and in-

tegrate:Z
ut � ujujaÿ2 ÿ

Z
�u � ujujaÿ2 �

Z
(u � r)u � ujujaÿ2 � ÿ

Z
rp � ujujaÿ2:

The first term yields the time derivative of the La norm, sinceZ
ut � ujujaÿ2 � 1

a
d

dt

Z
juja:

Lemma 1 guarantees that

ÿ
Z

�u � ujujaÿ2 �
Z
jujaÿ2jruj2;
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and the nonlinear term vanishes after an integration by parts,Z
(u � r)u � ujujaÿ2 � 1

2

Z
jujaÿ2rjuj2 � u

� 1

a

Z
rjuja � u

� ÿ 1

a

Z
juja div u � 0:

For the right-hand side

ÿ
Z
rp � ujujaÿ2 �

Z
pu � rjujaÿ2

� aÿ 2

2

Z
pjujaÿ4u � rjuj2

� c

Z
jpj jujaÿ2jruj

� c

Z
jpj2jujaÿ2 � 1

2

Z
jujaÿ2jruj2:

To estimate the pressure term we use Lemma 3,

c

Z
jpj jujaÿ2 � ckpk2

Lakukaÿ2
La

� c1kuk4
L2akukaÿ2

La

� c1kukaÿ1
La kuk3

L3a

� ~ckuka(aÿ1)=(aÿ3)
La � 1

2ca
kukaL3a

� ~ckuka(aÿ1)=(aÿ3)
La � 1

2

Z
jujaÿ2jruj2;

using Lemma 2. Note that we can only use Young's inequality here when

a > 3.

Combining the above estimates we get

1

a
d

dt
kukaLa � ckuka(aÿ1)=(aÿ3)

La :

Thus X � kukaLa satisfies the differential inequality

_X � cX(aÿ1)=(aÿ3):
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With g � aÿ 1

aÿ 3
it follows that

Y gÿ1(t) � Y gÿ1(0)

1ÿ Y gÿ1(0)(gÿ 1)c0t

as long as the denominator stays positive. p

COROLLARY 9. There exists an absolute constant c > 0 such that if

t � 0 is a blow up time for a solution u of the Navier-Stokes equations (1)

then

ku(ÿ t)kLp � ctÿ
pÿ3
2p :

Note that the Sobolev embedding _Hs � L6=(3ÿ2s) immediately implies a

lower bound on blowup solutions in the homogeneous Sobolev space _Hs for

1=2 < s < 3=2.

COROLLARY 10. For 1=2 < s < 3=2 there exists an absolute constant

cs > 0 such that if t � 0 is a blow up time for a solution u of the Navier-

Stokes equations (1) then

ku(ÿ t)k _Hs � ctÿ(2sÿ1)=4:

We consider lower bounds in _Hs for other values of s in [18].
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