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On global well-posedness for the

Einstein-Maxwell-Euler system in Bondi coordinates
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ABSTRACT - We analyze the Einstein-Maxwell equations for an irrotational stiff fluid.
Under the spherical symmetry assumption on the space-time, in Bondi co-
ordinates, the considered model is reduced to a nonlinear evolution system of
partial integrodifferential equations. Assuming regularity at the center of
symmetry and that the matter content of the initial light cone is the so-called null
dust, the characteristic initial value problem associated to the obtained system is
solved globally by a contraction mapping argument. In future work we will
address the issue of global well-posedness for the considered model in other
physically interesting cases where the matter content of the initial light cone is
not the null dust.
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1. Introduction

Since their formulation, the relativistic theories of gravitation, electro-

magnetism and hydrodynamics have experienced an intensive and rapidly

developing research activity over the years. The system that unifies these

three theories consists of the Einstein-Maxwell-Euler (EME) equations.

These equations are of central importance in several areas of high-energy
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astrophysics, plasma physics and nuclear physics. We refer the reader to

three excellent books by Lichnerowicz [1], Choquet-Bruhat [2] and Anile [3]

for a thorough review on these equations and their interests, both on

mathematical and physical view points. Here we briefly mention some areas

and problems which constitute physical motivations for studying EME

equations: collapse of massive rotating stars towards neutron stars or black

holes, merging of binary systems, models of supernova explosions, structure

and stability of neutron stars, galactic microquasars, active galactic nuclei,

gamma-ray bursts, free electron laser, high-energy collisions among heavy

nuclei. Apart from the fundamental in-depth mathematical analysis [1, 2, 3]

of the EME equations, a couple of recent contributions can be found in

[4, 5, 6, 7] and some references therein. It should be noted that few

works have been devoted to the problem of global well-posedness for

the EME equations. This is understandable since these equations are

highly nonlinear and investigating their global well-posedness is a very

difficult task. To make some progress in this direction, it is reasonable

to work under some simplifying and physically interesting assumptions.

Noutchegueme and Nangne [8] proved global existence of a unique

solution to the EME system for a perfect fluid of pure radiation type in

a Robertson-Walker space-time, by reducing the considered model to a

nonlinear evolution system of ordinary differential equations (ODE). In

the present investigation we address the issue of global existence and

uniqueness for the EME equations, for an irrotational stiff fluid evolv-

ing in a spherically symmetric curved space-time. The investigation is

conducted in the so-called Bondi coordinates so that the problem at

hand is a characteristic initial value problem with initial data assigned

on a light cone with tip at the center of symmetry. The importance of

characteristic initial value problems (with initial data prescribed on one

or more null hypersurfaces of the space-time) was amply demonstrated

by Christodoulou [9] in his famous book on black holes formation. In

Bondi coordinates, we reduce the problem to a nonlinear evolution

system of partial integrodifferential equations (PIDE). The mathemat-

ical analysis of the obtained system faces two major difficulties: (1) the

appearance of non-converging integrals of the form
R1
r

ds

s 1� u� s� �m in

some essential estimates, and (2) the treatment of initial data whose

smallness does not necessarily ensure the existence and uniqueness of a

solution for the considered problem. To overcome these difficulties we

have defined an appropriate functional framework and assume that the

matter content of the initial light cone is the so-called null dust. This
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latter assumption amounts to assigning zero initial data for the initial

value problem associated to the obtained nonlinear evolution system

(see (31)), which we solve globally by a fixed point method. The present

work is the generalization, to the considered EME model, of previous

ones achieved by Christodoulou [10] for the Einstein-scalar field sys-

tem, Chae [11] for the Einstein-Maxwell-Higgs system, Tadmon and

Tchapnda [12, 13] for the Einstein-Yang-Mills-Higgs system. Some

work on characteristic initial value problems without symmetry as-

sumption can be found in [14, 15, 16].

The rest of the paper is outlined as follows. Section 2 is devoted to the

derivation of the considered EME equations in Bondi coordinates. We

show that the equations reduce to a nonlinear evolution system of PIDE.

The main result of the work is stated and proved in section 3.

2. Electrovacuum Einstein-Maxwell-Euler equations in Bondi coor-
dinates

2.1 ± General form of the Einstein-Maxwell-Euler equations

The evolution of a charged perfect fluid is governed by the Einstein-

Maxwell-Euler equations which, in local chart xa� �a�0;:::;3 on a four di-

mensional space-time manifold, read

Rab ÿ 1

2
gabR � Tab;(1)

ra �F� �ab� 0; raFab � Jb;(2)

raT
ab � 0:(3)

1� � are the Einstein equations where gab are the components of the un-

known space-time metric g which, throughout the work, is assumed to have

signature (ÿ;�;�;�). Rab and R represent, respectively, the Ricci tensor

and the scalar curvature relative to the space-time metric. Tab are the

components of the energy-momentum tensor, given by

Tab � p� r� �UaUb � pgab � glmFalFbm ÿ 1

4
gabFgdFgd;(4)

where p is the pressure of the fluid, r its mass-energy density, and U its four

velocity normalized to unity so that UaUa � ÿ1. 2� � consists, respectively,

of the first and second groups of Maxwell equations, where r denotes
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covariant derivative w.r.t. the space-time metric. Fab are the contravariant

components of the unknown antisymmetric electromagnetic field (also

called Faraday tensor) F; �F is the Hodge dual of F. Jb are the components

of the charge-current four-vector J, which classically splits into convection

part and conduction part as Jb � dUb � seb, where d is the density of

electric charge in the fluid, s the electrical conductivity of the fluid, and e is

the four-vector electric field defined by ea � UbFba. 3� � are the relativistic

Euler equations.

2.2 ± Electrovacuum Einstein-Maxwell-Euler system

It will be assumed from now on that the density of electric charge and

the electrical conductivity of the fluid vanish identically:

d � 0; s � 0:(5)

The charge-current four-vector J then vanishes identically, i.e,

J � 0:(6)

The EME system for a fluid with zero density of electric charge and zero

electrical conductivity is often referred to as electrovac EME system. It

consists of twenty three equations, including equation UaUa � ÿ1, with

twenty two unknowns (10 gab, 4 Ua, 6 Fab, p, r). An equation of state is

needed to close it. Moreover it is a highly nonlinear system and, in order to

obtain global solution for it, it makes sense to impose some more simplifying

assumptions. As in [10, 11, 12, 13] we will work in a Bondi coordinates

system xa� � � u; r; u; W� �, where the spherically symmetric space-time

metric takes the form

gabdxadxb � ÿe2ndu2 ÿ 2en�ldudr � r2
ÿ
du2 � sin2udW2

�
:(7)

Here n and l are real functions of the retarded time coordinate u and the

radial coordinate r only. We assume the flow to be stiff and irrotational.

Then the equation of state reads

p � r;(8)

and the four velocity of the fluid can be written as

Ua �
ÿÿ c;mc

;m�ÿ1
2c;a ;(9)

where c is a time function, i.e c;mc
;m < 0; the subscript `̀ ,'' denotes usual
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partial derivative. Supposing that r > 0, after some algebra, it follows that

r � ÿc;mc ;m;(10)

c;a� �;a� 0;(11)

where the subscript `̀ ,'' denotes covariant derivative. It is worth mentioning

that 10� � is the relativistic counterpart of the famous Bernoulli's law for

irrotational flows in classical Fluids Mechanics, and it determines r (and

hence p) once the potential c and the space-time metric g are known.

Note that equations 10� � and 11� � above have been obtained under the

condition c;mc
;m < 0; in that case, using 8� �, 9� � and 10� �, the energy-mo-

mentum tensor in 4� � becomes

Tab � 2c;ac;b ÿ c;mc
;mgab � glmFalFbm ÿ 1

4
gabFgdFgd;(12)

which is regular and well defined irrespective of the sign of c;mc
;m. The

cases c;mc
;m > 0 and c;mc

;m � 0, can be interpreted by arguments similar

to those used in [17, 18]. When c;mc
;m � 0, the energy-momentum tensor

defined by 12� � reduces to

Tab � 2c;ac;b � glmFalFbm ÿ 1

4
gabFgdFgd:(13)

If
@c

@r
and F vanish identically, 13� � coincides with the energy-momentum

tensor of the so-called null dust matter. This will serve as the matter con-

tent of the light cone where initial data will be specified. From now on c is

regarded as the main fluid variable, whose evolution is governed by equa-

tion 11� �, and 12� � as the expression of the energy-momentum tensor.

We will use the following ansatz for the electromagnetic field F, com-

patible with the ansatz 7� � for the space-time metric (this facilitates cal-

culation of the components of the energy-momentum tensor 13� �):

Fab
ÿ � � 0 0 a b sin u

0 0 k l sin u
ÿa ÿk 0 0

ÿb sin u ÿl sin u 0 0

0BB@
1CCA;(14)

where a, b, k, and l are functions of u and r only. Using 14� �, direct cal-

culation shows that the first group of Maxwell equations in 2� � are

equivalent to

_k � a0; _l � b0:(15)
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Here and in the remainder of the work, � denotes differentiation with

respect to u and 0 differentiation with respect to r. Similarly, using 5� �, 6� �,
7� � and 14� �, one deduces from straightforward though lengthy computa-

tion that the second group of Maxwell equations in 2� � are satisfied if and

only if

a � k � 0;(16) ÿ
_l� b0

�
eÿnÿl ÿ l0eÿ2l � l

ÿ
n0 ÿ l0

�
eÿ2l:(17)

Observe that the first equation in 15� � is satisfied if it is the case for 16� �; if

the second equation in 15� � is satisfied then equation 17� � becomes

_lÿ 1

2
enÿll0 � 1

2
enÿl
ÿ �0

l:(18)

We now handle the Einstein equations 1� �. As in [10, 11, 12, 13] we in-

troduce an adapted null tetrad ea� �a�0;:::;3 defined by e0 � eÿn
@

@u
ÿ 1

2
eÿl

@

@r
,

e1 � eÿl
@

@r
, e2; e3� � is an orthonormal frame on the unit 2ÿsphere. After

lengthy calculation the relevant Einstein fields equations are found to be

equivalent to the following:

(19)
1

2
l0 �n0
ÿ �ÿ2elÿn _l� 2re2l eÿn _cÿ 1

2
eÿlc0

� �2

� rÿ1e2l eÿnbÿ 1

2
eÿll

� �2

;

enÿl
ÿ �0�rÿ1 enÿl ÿ en�l

ÿ � � 0;(20)

l0 � n0 � r c0� �2� 1

2
rÿ2l2

� �
;(21)

n00 � n0 ÿ l0
ÿ �

n0 � rÿ1
ÿ �ÿ elÿn _l

� �0
� _n� �0

h i
� 2elÿn _cc0 ÿ c0� �2;(22)

eÿnÿlblÿ 1

2
eÿ2ll2 � 0:(23)

Equation 11� � reads

2 _c� �0�2rÿ1 _c ÿ enÿl c00 � c0 2rÿ1 � n0 ÿ l0
ÿ �� � � 0:(24)

REMARK 1. i� � If n, l, and l are known, then setting

b � 1

2
lenÿl;(25)

it is easy to see that equation 23� � is satisfied. Moreover the second

equation _l � b0 in 15� � is equivalent to 18� � for b given by 25� �.
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ii� � If regularity is assumed at the center, an argument similar to the

one used in [10, 13] leads to the conclusion that the Einstein equations 20� �
and 21� �, together with equation 24� � and 18� �, are equivalent to the full set

of the considered electrovac EME equations.

2.3 ± Reduction of the electrovac EME equations to a nonlinear evolution

system

As in [10, 11, 12, 13] we define a new function h � rc� �0 to gain

c u; r� � � h u; r� � :� 1

r

Zr

0

h u; s� �ds; c0 u; r� � � h u; r� � ÿ h u; r� �
r

:(26)

In view of 26� � the Einstein equation 21� � reads l0 � n0 � 1

r
hÿ h
ÿ �2� 1

2
l2

� �
,

and the solution which satisfies the asymptotic condition l� nÿ! 0, as

rÿ!1, is

l� n � ÿ
Z�1
r

1

s
hÿ h
ÿ �2� 1

2
l2

� �
ds:(27)

The Einstein equation 20� � is integrated to give

enÿl � 1

r

Zr

0

el�nds:(28)

We use 26� � to rewrite equation 24� � as

_hÿ 1

2
enÿlh0 � 1

2r
el�n ÿ enÿl
ÿ �

hÿ h
ÿ �

:(29)

Using the definition of l as in 26� � , we recast equation 18� � as

_lÿ 1

2
enÿll0 � 1

2r
el�n ÿ enÿl
ÿ �

lÿ l
ÿ �� 1

2r
el�n ÿ enÿl
ÿ �

l:(30)

In view of 26� �, 27� � and 28� �, equations 29� � and 30� � form a nonlinear

evolution system of PIDE. It should be noted that, in the spaces of functions

used in previous work [10, 11, 12, 13], the mathematical analysis of the

model considered in the present investigation comes up against several

challenges. One of these difficulties is to estimate
R1
r

l2

s
ds, which involves
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non-converging integrals of the form
R1
r

ds

s 1� u� s� �m . A way around this

toughness is to define a new functional framework where all the relevant

quantities can be estimated appropriately. Another delicate problem is the

prescription of initial data for the considered EME system. In the present

work we assume that the matter content on the light cone u � 0 is the so-

called null dust. This amounts to considering, as observed earlier in para-

graph 2.2, the Cauchy problem for the aforementioned nonlinear evolution

system of PIDE with zero initial data prescribed on the light cone u � 0.

Set W � h
l

� �
and denote by I the 2� 2 identity matrix. Then, in view of

29� � and 30� �, the problem under investigation reads

DW u; r� � � 1

2r
g u; r� � ÿ eg u; r� �� � W u; r� � � s ÿ I� �W u; r� �� �

;

W 0; r� � � 0;

(31)

where D � @

@u
ÿ eg

2

@

@r
; g � el�n; eg � enÿl; s � 0 0

0 1

� �
.

3. Existence and uniqueness of classical solutions

We begin by introducing the spaces of functions used and some

preliminary notations. For a vector function W � h
l

� �
we will use the

notation Wj j :� hj j � lj j, and simply write W 2 C1 [0;1)� (0;1)� � if h and

l are both in C1 [0;1)� (0;1)� �. Define the Banach functions spaces

X ; :k kX
ÿ �

and Y; :k kY
ÿ �

by

X � W � W u; r� � 2 C1 [0;1)� (0;1)� � : Wk kX<1
� 	

;

Y � W �W u; r� � 2 C1 [0;1)� (0;1)� � : Wk kY<1
� 	

;
(32)

where Wk kX :� sup
u�0;r>0

�
rÿ2
�

1�r�u� �4 W u; r� �j j� 1�r�u� �5 W 0 u; r� �j j�	,

Wk kY :� sup
u�0; r>0

�
rÿ2 1� r � u� �4 W u; r� �j j�. It is now time to state and prove

the main result of the work.

THEOREM 1. There exists a unique global classical solution

W 2 C1 [0;1)� (0;1)� � of �31�. In addition this solution fulfills the

186 Mamadou Sango - Calvin Tadmon



decay property

jW(u; r)j � c(1� u� r)ÿ2; jW 0(u; r)j � c(1� u� r)ÿ3;(33)

where c is a positive real constant. Moreover, the corresponding space-time

is timelike and null geodesically complete toward the future.

PROOF. Throughout the proof ci� �i�1;2;::: denote positive real constants.

Note that the functions spaces used here are fundamentally different from

those of [10, 11, 12, 13]. The cornerstone of the proof is the standard fixed

point theorem. Define the mapping K : W 7!w � K(W), where w is the

solution of the first order linear initial value problem

Dw � 1

2r
gÿ eg� � w� s ÿ I� �W� �

; w 0; r� � � 0:(34)

i� � K is a mapping from a ball of X into itself. Let x > 0, W 2 Bx,

where Bx denotes the closed ball, in X , of radius x centered at 0. From the

definition of the differential operator D in (31), the characteristic system of

ODE associated to the initial value problem (34) is

dr

du
� ÿ 1

2
eg; dw

du
� 1

2r
gÿ eg� � w� s ÿ I� �W� �

;(35)

with initial data r 0� � � r0; w 0� � � 0. Denote by r u� � � g u; r0� � the solu-

tion of the Cauchy problem

dr

du
� ÿ 1

2
eg u; r� �; r 0� � � r0:(36)

Then r1 � r0 ÿ 1

2

Ru1

0

eg u; g u; r0� �� �du, where r1 � g u1; r0� �. Integrating the

second ODE of (35) along g we obtain

w u1; r1� � �
Zu1

0

exp

Zu1

u

N u; r� �� �gdv

0@ 1A8<:
9=; f� �gdu;(37)

where

N u; r� � � 1

2r
gÿ eg� �; f u; r� � � 1

2r
gÿ eg� � s ÿ I� �W:(38)

We have to estimate N and f . Since W 2 Bx, the following estimates (39),

(40) and (41) are straightforward from the definition of W in 26� � and that of
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the Banach space X ; :k kX
ÿ �

in (32):

W u; r� �j j � xr2

1� u� r� �4 ;(39)

s ÿ I� �W u; r� ��� �� � W u; r� ��� �� � xr2

3 1� u� � 1� u� r� �3 ;(40)

W u; r� � ÿW u; r� ��� �� � xr3

4 1� u� � 1� u� r� �4 :(41)

(39) and (41) imply

1

r
hÿ h
ÿ �2� 1

2
l2

� ����� ���� � c1x2r3

1� u� �2 1� u� r� �6 :

This gives Z1
0

1

r
hÿ h
ÿ �2� 1

2
l2

� ����� ����dr � c2x2

1� u� �4
:(42)

(42) yields

exp ÿ
Z1
0

1

r
hÿ h
ÿ �2� 1

2
l2

� ����� ����dr

0@ 1A � exp ÿc2x2
ÿ �

:(43)

From 27� �, 28� �, the definition of g and eg in �31� and the estimate (41), we

get

g u; r� � ÿ eg u; r� �j j � c3x2r4

1� u� �3 1� u� r� �5 :(44)

In view of (43) and (44) we gain

eg u; r� � � exp ÿc2x2
ÿ �ÿ c3x2:(45)

It is easy to see that the function L � L x� � � exp ÿc2x2
ÿ �ÿ c3x2 has a un-

ique positive root x0 and L x� � 2 (0; 1] for all x 2 �0; x0). We estimate the

function f defined in (38), by using (40) and (44), to get

f u; r� �j j � 17x3r2

480 1� u� �4 1� u� r� �5 :(46)
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For r u� � � g u; r0� � it holds, in view of (36) and (45), that

r � r1 � 1

2

Zu1

u

eg s; r s� �� �ds � r1 � L x� �
2

u1 ÿ u� �:(47)

Since L x� � 2 (0; 1] for all x 2 �0; x0), (47) implies

1� u� r � 1� u� r1 � L x� �
2

u1 ÿ u� � � L x� �
2

1� u1 � r1� �:(48)

From (46) and (48) we gain the estimateZu1

0

f� �g
��� ���du � c4x3r2

1

1� u1 � r1� �5L5 x� � :(49)

In view of (44) we estimate the function N defined in (38) to get

N u; r� �j j � 17x2

160
:(50)

From (50) we get Zu1

0

N� �gdv

������
������ � c2x2:(51)

Considering (37), (49) and (51) we finally arrive at the following estimate for

the solution w � K W� � of the initial value problem (34):

sup
u�0; r>0

rÿ2 1� u� r� �4 w u; r� �j j
h i

� c4x3

L5 x� � exp c2x2
ÿ �

:(52)

We now estimate sup
u�0; r>0

rÿ2 1� u� r� �5 w0 u; r� �j j
h i

. Set z u; r� � � w0 u; r� �,
with z 0; r0� � � 0. Differentiating (34) w.r.t. r yields

Dz � N1z� B1 w� s ÿ I� �W� ��N s ÿ I� �W 0
;(53)

where N1 �
eg0
2
� gÿ eg

2r
, B1 � gÿ eg� �0

2r
ÿ gÿ eg

2r2
, N � gÿ eg

2r
. By employing the

same calculations and arguments as earlier we gain the following estimate

for the solution z of the initial value problem (53):

sup
u�0; r>0

rÿ2 1� r � u� �5 z u; r� �j j
h i

� c5 � c6x2
ÿ �

x3

L10 x� � exp c7x2
ÿ �

:(54)
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It follows from (32), (52) and (54) that wk kX�
c8� c6x2
ÿ �

x3

L10 x� � exp c7x2
ÿ �

. To have

wk kX� x, it suffices that V x� � � 1, where V x� � � c8�c6x2
ÿ �

x2

L10 x� � exp c7x2
ÿ �

.

One sees that lim
xÿ! 0

V x� � � 0. Hence there exists x1 2 (0; x0) such that, for

x 2 (0; x1], V x� � � 1. This shows that K is a mapping from Bx into itself for

x 2 (0; x1].

(ii) The mapping K is a contraction. Let w1 and w2 be two

solutions of (34) with wj 0; r� � � 0, wj � K Wj

ÿ �
; Wj 2 X ; j � 1; 2. We

use the following shorthand notations gj � g Wj

ÿ �
, zj � z Wj

ÿ �
, assume

max W1k kX ; W2k kX
� 	 � x � x1, and set for convenience w1 ÿ w2 � w,

W1 ÿW2 � U, Uk kY� y, D1 � @

@u
ÿ eg1

2

@

@r
. Then we have the following

nonlinear initial value problem with unknown w

(55) D1w�M w� sÿI� �U� �� B2 w2 � s ÿ I� �W2

ÿ �� B3w02; w 0; r� � � 0;

where M � g1 ÿ eg1

2r
, B2 � g1 ÿ eg1� � ÿ g2 ÿ eg2� �

2r
, B3 �

eg1 ÿ eg2

2
. Using re-

peatedly the mean value theorem and similar tools as in the previous step

we get wk kY� J x� �y, where J x� � � c9 x2 � x4
ÿ �
L4 x� � exp c2x2

ÿ �
. It is easy to see

that the function J is strictly monotonically increasing on (0; x1] and

lim
xÿ! 0

J x� � � 0. One deduces that there exists x2 2 (0; x1] such that J x� � < 1

2
for all x 2 (0; x2]. Thus the mapping W 7!K W� � contracts in Y for

Wk kX� x2. This concludes the proof of the global existence and uniqueness

of classical solution for (31). The decay property (33) of the solution is a

direct consequence of the definition (32) of the Banach spaces X ; :k kX
ÿ �

and

Y; :k kY
ÿ �

.

In view of 27� � and (42) one deduces easily from the definition of g in

�31� that, for each r > 0, gÿ! 1 if uÿ!1. In view of (44), this implies that,

for each r > 0, egÿ! 1 if uÿ!1. So, as uÿ!1, the metric given in Bondi

coordinates by 7� � becomes the Minkowski metric. This completes the

proof of Theorem 1. p

REMARK 2. The present work can serve as a basis for future in-

vestigation on the issue of global existence of generalized solutions, with

arbitrary initial data, for the considered electrovac EME model.
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