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On the micro-macro limit in traffic flow

R.M. COLOMBO (*) - E. ROSSI (**)

ABSTRACT - We investigate the relations between a macroscopic Lighthill-Whitham
and Richards model and a microscopic follow-the-leader model for traffic flow.
Solutions to the microscopic model are proved to tend to those to the macro-
scopic one in a sort of kinetic limit, i.e. as the number of individuals tends to�1
while their total mass is constant. Based on this convergence result, we ap-
proximately compute the solutions to a conservation law by means of the in-
tegration of an ordinary differential system.
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1. Introduction

Aim of this paper is to investigate the relations between a microscopic

and a macroscopic model for traffic flow. More precisely, we consider the

Lighthill-Whitham [7] and Richards [10] continuum model

@tr� @x r v(r)� � � 0

r(0; x) � ~r(x)

(
(1:1)

where t 2 R� is time, x 2 R is the space coordinate, r � r(t; x) is the

(average) vehicular density, with r 2 [0; 1], and v 2 C0;1([0; 1]; [0;V ]) is the

macroscopic speed law. At the discrete level, we choose the first-order
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Follow the Leader [1] model

_pi � w(pi�1 ÿ pi) i � 1; . . . ;n

_pn�1 � V

pi(0) � ~pi i � 1; . . . ;n� 1

8><>:(1:2)

where p1; . . . ; pn�1 are the positions of the n� 1 drivers, with pi�1 ÿ pi � `, `
being the average vehicle's length, and w 2 C0;1( `;�1� [; [0;V ]) is the mi-

croscopic speed law. Remark that it is required to assign the speed of the

foremost vehicle, but it is not necessary that this speed be the maximal one.

The macroscopic description (1.1) and the microscopic one (1.2) are

related through particle paths, which are the trajectories of single in-

dividuals according to (1.1), namely the solutions to the ordinary differ-

ential equation
_p � v r(t; p(t))� �
p(0) � ~p ;

(
(1:3)

as ~p varies in R, see [4] for the well posedness of (1.3). The connection

between the macroscopic model (1.2) and the microscopic one (1.1) consists

in imposing that each equation in (1.2) is the particle path (1.3) for (1.1).

The only exception is the foremost vehicle, whose speed is assigned.

Below, through ad hoc operators, we establish a relation between the

macroscopic variable r and the microscopic one (p1; . . . ; pn�1), showing that

the two descriptions are to some extent specular. Then, we show that so-

lutions to (1.1) tend to solutions to (1.2) in a sort of kinetic limit, i.e. as the

number of individuals tends to �1 while n` remains constant.

From the modelling point of view, this result justifies the Lighthill-

Whitham and Richards model (1.1) as the limit of a first order follow the

leader model, as the number of individuals tends to �1. For a related

approach with emphasis on the Hamilton-Jacobi equation we refer to [5].

Besides, the limiting procedure outlined above suggests the use of the

ordinary differential equations (1.2) also as a tool for the numerical in-

tegration of the partial differential equation (1.1), see Section 3. This

possibility is thoroughly investigated below. Several integrations illustrate

the rigorous results. However, a numerical algorithm to compute the so-

lutions to (1.1) based on the numerical solution to the ordinary differential

system (1.2) hardly competes with an ad hoc method, such as the classical

Lax-Friedrichs method.

The next section presents the main analytical results. Section 3 is de-

voted to several numerical integrations of both (1.1) and (1.2). All technical

details are deferred to the final Section 4.
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2. Analytical Result

We denote below R� � 0;�1� [.

In the sequel, we consider n� 1 vehicles of total mass m, and let

`n � m=n. To formalize the connection between the macro- and micro-

scopic descriptions, we introduce the natural spaces for the macroscopic

density r and for the individual drivers' positions p � (p1; . . . ; pn�1)

Rm �
(
r 2 L1(R; [0; 1]):

Z
R

r(x)dx � m and spt r is compact

)
(2:1)

Pn � p 2 Rn�1: pi�1 ÿ pi � `n ; 8i � 1; . . . ;n
n o

and the operators that implement it, namely

En: Rm ! Pn

r!
pn�1 � max (spt r)

pi � max p 2 R:

Zpi�1

p

r (x) dx � `n

8<:
9=; i � 1; . . . ;n :

8>><>>:
(2:2)

Cn : Pn ! Rm

p !
Xn

i�1

`n

pi�1 ÿ pi
x[pi;pi�1[

(2:3)

Given a macroscopic density r, the operator En provides a corresponding

microscopic description through the vector p � En r of the vehicles' posi-

tions. On the contrary, given the discrete positions p, the operator Cn

provides a corresponding piecewise constant density r � Cn p.

The next Proposition formalizes the strict correlation between these

two maps.

PROPOSITION 2.1. For every n 2 N with n � 2 and for every m > 0,

En �Cn � IdPn
. Viceversa, Cn �En ! IdRm

pointwise in Rm\BV(R; [0; 1])

with respect to the L1-norm, so that

lim
n!�1

(Cn � En)(r)ÿ r


L1 � 0 for all r 2 Rm \BV(R; [0; 1]) and

lim
n!�1 (Cn �En)(r)� �(x)� r(x) for all r2Rm\BV(R; [0; 1]) ; for a:e: x2R :
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The proof is deferred to Section 4. Note that Cn � En 6� IdRm
. In

fact, the image of Cn is a subset of Rm that contains only piecewise

constant functions. Hence, for any r 2 Rm which is not piecewise

constant, obviously we have r 6� Cn � En� �(r). Moreover, Cn is Lipschitz

continuous with respect to the L1 norm while En is not continuous.

Below, these two properties are not necessary and for their proof we

refer to [11, Chapter 1].

While En and Cn provide the link between the macro- and microscopic

descriptions, the link between the two models (1.1) and (1.2) is ensured

setting

w(d) � v `n=d� � or, equivalently, v(r) � w(`n=r) :(2:4)

We assume throughout the following condition on v:

(V) v 2 C0;1([0; 1]; [0;V ]) is such that v0(r) � 0 for a.e. r 2 [0; 1], v(0) � V

for a suitable positive V and v(1) � 0.

The following propositions show that both (1.1) and (1.2) are well posed,

in the sense that these Cauchy problems have solutions for all t 2 R� in the

due set Rm or Pn.

PROPOSITION 2.2. Let (V) hold. For any m > 0, for any initial datum
~r 2 Rm \BV(R; [0; 1]), the Cauchy problem (1.1) admits a unique solu-

tion r 2 C0;1(R�; Rm).

PROPOSITION 2.3. Let (V) and (2.4) hold. For any n 2 N, with n � 2,

for any initial datum ~p 2 Pn , the Cauchy problem (1.2) admits a unique

solution p 2 C0;1(R�; Pn).

The proof of Proposition 2.2 follows from [2, Theorem 6.3], for the

Lipschitz dependence in time we refer to [2, Formula (6.14)]. The proof of

Proposition 2.3 is deferred to Section 4.

Now we are able to show that, as the number of vehicles increases to

infinity, the solutions to the microscopic model (1.2)-(2.4) converge to

those of the macroscopic one (1.1).

THEOREM 2.4. Let (V) hold, fix T > 0 and choose ~r 2 Rm \
BV(R; [0; 1]). Then, the diagram in Figure 1 commutes.

In other words, define the initial data for the microscopic model setting
~p � En~r, as defined in (2.2). Let p(t) � p1(t); . . . ; pn�1(t)� � be the corre-
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sponding solution to (1.2). Define rn(t) � Cn p(t), as in (2.3). If there exists

r 2 L1([0;T];Rm) such that

lim
n!�1 rn(t; x) � r(t; x) a:e:;

then r is a weak solution to (1.1) with initial datum ~r.

3. Numerical Integrations

In the numerical integrations below we use the Greenshield speed

law [12, p. 6]

v(r) � V 1ÿ r� � with V > 0(3:1)

and w as in (2.4). The system of ordinary differential equations (1.2) is

integrated by means of the Livermore solver [8].

Throughout, to compare the conservation law (1.1) with the microscopic

model (1.2)-(2.4) we closely follow the diagram in Figure 1. Given the

number n of individuals and an initial datum ~r for the partial differential

equation (1.1), we select the corresponding initial datum ~p � En ~r� �
for (1.2). In all the figures, to compare the solutions p(t) to (1.2) and r(t)

to (1.1), we display Cn p(t)� � and r(t) on the same axis.

Times of integrations and computational domains are selected so that

for the chosen initial data and speed laws no wave in the solution to (1.1)

hits any numerical boundary.

3.1 ± The Kinetic Limit

Following the analytical study above, we use initial data for (1.1)

supported in a compact interval [ÿK;K], for a suitable large K, as re-

Fig. 1. - Theorem 2.4 proves that the diagram above commutes.
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quired in (2.1). To focus on a shock and a rarefaction wave, we choose the

initial data and a visualization domain such that spurious waves are not

seen all during the integration time. Below, the analytical expression of

the exact solution r � r(t) is easily available and is used to evaluate the

L1-distance r(T)ÿ Cn p(T)� �
L1 :(3:2)

Consider first the shock wave originated by the initial datum below:

~rS(x) � 1=4 if x 2 [ÿ K; 0[

1=2 if x 2 [0;K] :

(
(3:3)

The numerical integration displayed in Figure 2 qualitatively illustrates

the convergence proved in Theorem 2.4: as n! �1, the distance in (3.2)

vanishes.

A quantitative information is provided in Figure 3, left, where the

quantity (3.2) is plotted as a function of the number n of individuals in a

logarithmic scale. Clearly, the convergence rate is exponential with the

number of vehicles. We observe that the integration time of the micro-

scopic model (1.2)-(2.4)-(3.1) also grows exponentially with the number of

individuals, see Figure 3, right.

Fig. 2. - The solid line is the exact solution to the partial differential
equation (1.1)-(3.1)-(3.3) at time T. The dashed line is Cn p(T)� �, for different
values of the vehicles' number n. Here, T � 2 and V � 20.
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