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On the micro-macro limit in traffic flow

R.M. COLOMBO (*) - E. ROSSI (**)

ABSTRACT - We investigate the relations between a macroscopic Lighthill-Whitham
and Richards model and a microscopic follow-the-leader model for traffic flow.
Solutions to the microscopic model are proved to tend to those to the macro-
scopic one in a sort of kinetic limit, i.e. as the number of individuals tends to�1
while their total mass is constant. Based on this convergence result, we ap-
proximately compute the solutions to a conservation law by means of the in-
tegration of an ordinary differential system.

MATHEMATICS SUBJECT CLASSIFICATION (2010). 35L65, 90B20.

KEYWORDS. Macroscopic traffic models; microscopic traffic models; conservation
laws.

1. Introduction

Aim of this paper is to investigate the relations between a microscopic

and a macroscopic model for traffic flow. More precisely, we consider the

Lighthill-Whitham [7] and Richards [10] continuum model

@tr� @x r v(r)� � � 0

r(0; x) � ~r(x)

(
(1:1)

where t 2 R� is time, x 2 R is the space coordinate, r � r(t; x) is the

(average) vehicular density, with r 2 [0; 1], and v 2 C0;1([0; 1]; [0;V ]) is the

macroscopic speed law. At the discrete level, we choose the first-order
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Follow the Leader [1] model

_pi � w(pi�1 ÿ pi) i � 1; . . . ;n

_pn�1 � V

pi(0) � ~pi i � 1; . . . ;n� 1

8><>:(1:2)

where p1; . . . ; pn�1 are the positions of the n� 1 drivers, with pi�1 ÿ pi � `, `
being the average vehicle's length, and w 2 C0;1( `;�1� [; [0;V ]) is the mi-

croscopic speed law. Remark that it is required to assign the speed of the

foremost vehicle, but it is not necessary that this speed be the maximal one.

The macroscopic description (1.1) and the microscopic one (1.2) are

related through particle paths, which are the trajectories of single in-

dividuals according to (1.1), namely the solutions to the ordinary differ-

ential equation
_p � v r(t; p(t))� �
p(0) � ~p ;

(
(1:3)

as ~p varies in R, see [4] for the well posedness of (1.3). The connection

between the macroscopic model (1.2) and the microscopic one (1.1) consists

in imposing that each equation in (1.2) is the particle path (1.3) for (1.1).

The only exception is the foremost vehicle, whose speed is assigned.

Below, through ad hoc operators, we establish a relation between the

macroscopic variable r and the microscopic one (p1; . . . ; pn�1), showing that

the two descriptions are to some extent specular. Then, we show that so-

lutions to (1.1) tend to solutions to (1.2) in a sort of kinetic limit, i.e. as the

number of individuals tends to �1 while n` remains constant.

From the modelling point of view, this result justifies the Lighthill-

Whitham and Richards model (1.1) as the limit of a first order follow the

leader model, as the number of individuals tends to �1. For a related

approach with emphasis on the Hamilton-Jacobi equation we refer to [5].

Besides, the limiting procedure outlined above suggests the use of the

ordinary differential equations (1.2) also as a tool for the numerical in-

tegration of the partial differential equation (1.1), see Section 3. This

possibility is thoroughly investigated below. Several integrations illustrate

the rigorous results. However, a numerical algorithm to compute the so-

lutions to (1.1) based on the numerical solution to the ordinary differential

system (1.2) hardly competes with an ad hoc method, such as the classical

Lax-Friedrichs method.

The next section presents the main analytical results. Section 3 is de-

voted to several numerical integrations of both (1.1) and (1.2). All technical

details are deferred to the final Section 4.
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2. Analytical Result

We denote below R� � 0;�1� [.

In the sequel, we consider n� 1 vehicles of total mass m, and let

`n � m=n. To formalize the connection between the macro- and micro-

scopic descriptions, we introduce the natural spaces for the macroscopic

density r and for the individual drivers' positions p � (p1; . . . ; pn�1)

Rm �
(
r 2 L1(R; [0; 1]):

Z
R

r(x)dx � m and spt r is compact

)
(2:1)

Pn � p 2 Rn�1: pi�1 ÿ pi � `n ; 8i � 1; . . . ;n
n o

and the operators that implement it, namely

En: Rm ! Pn

r!
pn�1 � max (spt r)

pi � max p 2 R:

Zpi�1

p

r (x) dx � `n

8<:
9=; i � 1; . . . ;n :

8>><>>:
(2:2)

Cn : Pn ! Rm

p !
Xn

i�1

`n

pi�1 ÿ pi
x[pi;pi�1[

(2:3)

Given a macroscopic density r, the operator En provides a corresponding

microscopic description through the vector p � En r of the vehicles' posi-

tions. On the contrary, given the discrete positions p, the operator Cn

provides a corresponding piecewise constant density r � Cn p.

The next Proposition formalizes the strict correlation between these

two maps.

PROPOSITION 2.1. For every n 2 N with n � 2 and for every m > 0,

En �Cn � IdPn
. Viceversa, Cn �En ! IdRm

pointwise in Rm\BV(R; [0; 1])

with respect to the L1-norm, so that

lim
n!�1

(Cn � En)(r)ÿ r


L1 � 0 for all r 2 Rm \BV(R; [0; 1]) and

lim
n!�1 (Cn �En)(r)� �(x)� r(x) for all r2Rm\BV(R; [0; 1]) ; for a:e: x2R :
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The proof is deferred to Section 4. Note that Cn � En 6� IdRm
. In

fact, the image of Cn is a subset of Rm that contains only piecewise

constant functions. Hence, for any r 2 Rm which is not piecewise

constant, obviously we have r 6� Cn � En� �(r). Moreover, Cn is Lipschitz

continuous with respect to the L1 norm while En is not continuous.

Below, these two properties are not necessary and for their proof we

refer to [11, Chapter 1].

While En and Cn provide the link between the macro- and microscopic

descriptions, the link between the two models (1.1) and (1.2) is ensured

setting

w(d) � v `n=d� � or, equivalently, v(r) � w(`n=r) :(2:4)

We assume throughout the following condition on v:

(V) v 2 C0;1([0; 1]; [0;V ]) is such that v0(r) � 0 for a.e. r 2 [0; 1], v(0) � V

for a suitable positive V and v(1) � 0.

The following propositions show that both (1.1) and (1.2) are well posed,

in the sense that these Cauchy problems have solutions for all t 2 R� in the

due set Rm or Pn.

PROPOSITION 2.2. Let (V) hold. For any m > 0, for any initial datum
~r 2 Rm \BV(R; [0; 1]), the Cauchy problem (1.1) admits a unique solu-

tion r 2 C0;1(R�; Rm).

PROPOSITION 2.3. Let (V) and (2.4) hold. For any n 2 N, with n � 2,

for any initial datum ~p 2 Pn , the Cauchy problem (1.2) admits a unique

solution p 2 C0;1(R�; Pn).

The proof of Proposition 2.2 follows from [2, Theorem 6.3], for the

Lipschitz dependence in time we refer to [2, Formula (6.14)]. The proof of

Proposition 2.3 is deferred to Section 4.

Now we are able to show that, as the number of vehicles increases to

infinity, the solutions to the microscopic model (1.2)-(2.4) converge to

those of the macroscopic one (1.1).

THEOREM 2.4. Let (V) hold, fix T > 0 and choose ~r 2 Rm \
BV(R; [0; 1]). Then, the diagram in Figure 1 commutes.

In other words, define the initial data for the microscopic model setting
~p � En~r, as defined in (2.2). Let p(t) � p1(t); . . . ; pn�1(t)� � be the corre-
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sponding solution to (1.2). Define rn(t) � Cn p(t), as in (2.3). If there exists

r 2 L1([0;T];Rm) such that

lim
n!�1 rn(t; x) � r(t; x) a:e:;

then r is a weak solution to (1.1) with initial datum ~r.

3. Numerical Integrations

In the numerical integrations below we use the Greenshield speed

law [12, p. 6]

v(r) � V 1ÿ r� � with V > 0(3:1)

and w as in (2.4). The system of ordinary differential equations (1.2) is

integrated by means of the Livermore solver [8].

Throughout, to compare the conservation law (1.1) with the microscopic

model (1.2)-(2.4) we closely follow the diagram in Figure 1. Given the

number n of individuals and an initial datum ~r for the partial differential

equation (1.1), we select the corresponding initial datum ~p � En ~r� �
for (1.2). In all the figures, to compare the solutions p(t) to (1.2) and r(t)

to (1.1), we display Cn p(t)� � and r(t) on the same axis.

Times of integrations and computational domains are selected so that

for the chosen initial data and speed laws no wave in the solution to (1.1)

hits any numerical boundary.

3.1 ± The Kinetic Limit

Following the analytical study above, we use initial data for (1.1)

supported in a compact interval [ÿK;K], for a suitable large K, as re-

Fig. 1. - Theorem 2.4 proves that the diagram above commutes.
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quired in (2.1). To focus on a shock and a rarefaction wave, we choose the

initial data and a visualization domain such that spurious waves are not

seen all during the integration time. Below, the analytical expression of

the exact solution r � r(t) is easily available and is used to evaluate the

L1-distance r(T)ÿ Cn p(T)� �
L1 :(3:2)

Consider first the shock wave originated by the initial datum below:

~rS(x) � 1=4 if x 2 [ÿ K; 0[

1=2 if x 2 [0;K] :

(
(3:3)

The numerical integration displayed in Figure 2 qualitatively illustrates

the convergence proved in Theorem 2.4: as n! �1, the distance in (3.2)

vanishes.

A quantitative information is provided in Figure 3, left, where the

quantity (3.2) is plotted as a function of the number n of individuals in a

logarithmic scale. Clearly, the convergence rate is exponential with the

number of vehicles. We observe that the integration time of the micro-

scopic model (1.2)-(2.4)-(3.1) also grows exponentially with the number of

individuals, see Figure 3, right.

Fig. 2. - The solid line is the exact solution to the partial differential
equation (1.1)-(3.1)-(3.3) at time T. The dashed line is Cn p(T)� �, for different
values of the vehicles' number n. Here, T � 2 and V � 20.
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Now, consider the rarefaction wave originated by the initial datum:

~rR(x) � 1 if x 2 [ÿK; 0[

0 if x 2 [0;K] ;

(
(3:4)

which corresponds to the standard situation of a traffic light turning green

at time t � 0. A qualitative illustration of the limit in Theorem 2.4 is in

Figure 4, for n � 50; 100; 1000. The quantitative evaluation of the dis-

tance (3.2) in the case of the rarefaction (3.4) is in Figure 5. Again, the

convergence is clearly exponential.

Fig. 3. - Left, the L1-distance (3.2) as a function of n and, right, the integration
time as a function of n. Both diagrams are in logarithmic scale.

Fig. 4. - The solid line is the exact solution to the partial differential
equation (1.1)-(3.1)-(3.4) at time T. The dashed line is Cn p(T)� �, for different
values of the vehicles' number n. Here, T � 1 and V � 10.
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3.2 ± ODEs as an Algorithm to Integrate PDEs

This paragraph is devoted to evaluate the use of the ordinary differ-

ential system (1.2) as an algorithm to obtain approximate solutions to the

partial differential equation (1.1), relying on Theorem 2.4. To this aim, we

consider the following initial datum with compact support, for which the

analytical solution is not easily available:

~r(x) �

x2

4
if 0 � x < 2

1 if 2 � x < 3

ÿx2 � 6xÿ 5

4
if 3 � x < 5

0 if 5 � x � 20 :

8>>>>>>>>>><>>>>>>>>>>:
(3:5)

Then, we compute the approximate solution rDx � rDx(t) to (1.1)-(3.5) by

means of the standard Lax-Friedrichs algorithm [6, Chapter 4], for dif-

ferent choices of the space mesh size Dx. Similarly, the initial datum (3.5) is

transformed into an initial datum En~r for (1.2), for different numbers n of

individuals. This latter equation is numerically integrated and its solution

pn � pn(t), following the scheme in Figure 1, is transformed back into the

density Cn pn(t)� �.
To evaluate the errors in the two approximate solutions, we take as a

reference `̀ exact'' solution to (1.1)-(3.5) an approximate solution r � r(t)

computed by means of the Lax-Friedrichs scheme with a very fine mesh,

namely Dx � 1Eÿ 4. More precisely, the errors considered below are the

Fig. 5. - Left, the L1-distance (3.2) as a function of n and, right, the integration
time as a function of n. Both diagrams are in logarithmic scale.
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supremum on [0;T] of the relative error in the L1-norm, namely

max
t2[0;T]

rDx(t)ÿ r(t)


L1r(t)


L1

and max
t2[0;T]

Cn pn(t)� � ÿ r(t)


L1r(t)


L1

:(3:6)

Since r is the solution to a conservation law, remark that the quantityr(t)


L1 in the denominator above is constant in time and only acts as a scale

factor.

Table 1 takes solutions rDx and Cn pn which have similar times of

execution and compares the corresponding errors, measured as in (3.6),

for different values of the space mesh size Dx and of the vehicles'

number n.

Solutions obtained with similar execution times have an error, mea-

sured as in (3.6), that differs up to about one order of magnitude, the

solution rDx being more precise. However, Figure 6 shows that the

qualitative properties of the solutions are well captured by both algo-

rithms.

Moreover, in Figure 7, we display the absolute error as a function of x,

estimated as the absolute value of the distance between the solution to the

ordinary differential equation (1.2) and the `̀ exact'' solution. The different

TABLE 1. - Comparison between the Lax-Friedrichs solution rDx to (1.1)-(3.5)
and the solution Cn pn coming from the system (1.2), obtained with comparable
computing times. The corresponding key parameters Dx and n and the errors,
measured as in (3.6), are also displayed.

Space mesh
size Dx

Error Execution Time Error Number of
vehicles nLax-Friedrichs ODE system

0,02 1,32E-2 0,06864 0,06262 1,51E-1 20

0,01 6,73E-3 0,1585 0,1910 4,23E-2 100

0,0064 4,22E-3 0,2737 0,2930 2,87E-2 150

0,005 3,23E-3 0,3963 0,4242 2,17E-2 200

0,0045 2,76E-3 0,4558 0,4877 1,66E-2 225

0,004 2,51E-3 0,5365 0,5423 1,61E-2 250

0,0025 1,57E-3 1,080 1,216 8,95E-3 500

0,002 1,20E-3 1,527 1,545 7,30E-3 600

0,0016 9,93E-4 2,190 2,085 5,76E-3 800

0,001 5,56E-4 4,867 4,551 3,41E-3 1500
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behaviour of this algorithm from the usual Lax-Friedrichs one is under-

stood comparing the two diagrams on the left of Figure 7 with the right-

most one. The latter graph displays the usual absolute error caused by the

Lax-Friedrichs scheme.

Below, for these two algorithms, we also compare the execution times

necessary to obtain comparable errors, computed as in (3.6), for differ-

ent values of the mesh size Dx and of the vehicles' number n, see Table 2.

In order to obtain comparable errors between the numerical solution to

Fig. 6. - Approximate solutions to the Cauchy Problem (1.1)-(3.5) and to the
corresponding ordinary differential system (1.2) with datum En~r, compared for
different values of the space mesh Dx and of the number of individuals n. Each
graph displays solutions obtained with the two algorithms in comparable computing
times, at t � 0:5 and t � 1.

Fig. 7. - The first two diagrams from the left show the absolute error between
the solution to (1.2) and the `̀ exact'' solution to (1.1)-(3.5), for n � 20 and n � 1500.
For a comparison, the rightmost diagram is the usual one of the absolute error
between the approximate solution to (1.1)-(3.5) and the `̀ exact'' solution, with mesh
size Dx � 0:001. All graphs refer to time t � 1.
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the ODE system and the numerical solution to the PDE system, the

computing time needed by the algorithm that exploits (1.2) to solve (1.1)

can be also about ten times longer than that necessary for usual Lax-

Friedrichs solutions.

4. Technical Details

Throughout this section, n 2 N and n � 2. We refer to [11] for fully

detailed proofs.

LEMMA 4.1. For every m > 0, if r 2 Rm, then TV (Cn � En)(r)� � � TV(r).

PROOF. Setting p � En(r), for every i 2 f1; . . . ;ng, (Cn � En)(r) is con-

stant in pi; pi�1� [ and, by (2.2) and (2.3),

Zpi�1

pi

r(x) dx �
Zpi�1

pi

(Cn � En)(r)� �(x) dx ;

TABLE 2. - Comparison between the execution times in solutions having com-
parable errors, through the Lax-Friedrichs method applied to (1.1) and through
the integration of (1.2). The errors are computed as in (3.6).

Space mesh
size Dx

Time Error Time Number of
vehicles nLax-Friedrichs ODE system

0,05 0,02611 3,08E-2 2,87E-2 0,2930 150

0,032 0,04097 2,04E-2 2,17E-2 0,4242 200

0,025 0,05409 1,60E-2 1,61E-2 0,5423 250

0,002 0,06864 1,32E-2 1,27E-2 0,9298 400

0,016 0,08786 1,07E-2 1,06E-2 0,8723 375

0,001 0,1585 6,73E-3 6,23E-3 1,919 750

0,008 0,2097 5,25E-3 4,99E-3 2,818 1000

0,005 0,3963 3,23E-3 3,41E-3 4,551 1500

0,0045 0,4558 2,76E-3 2,77E-3 6,5346 2000

0,0025 1,080 1,57E-3 1,39E-3 21,80 5000

0,00125 3,303 7,56E-4 6,94E-4 63,94 10000
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hence

x 2 pi; pi�1� [ ) ess inf
pi;pi�1� [

r � (Cn � En)(r)� �(x) � ess sup
pi;pi�1� [

r ;

x 2 [piÿ1; pi�1[ ) ess inf
piÿ1;pi�1� [

r � (Cn � En)(r)� �(x) � ess sup
piÿ1;pi�1� [

r :

Therefore,

TV (Cn � En)(r)� � �
Xn�1

i�1

�� (Cn � En)(r)� �(pi � )ÿ (Cn � En)(r)� �(pi ÿ )
��

� ess sup
p1;p2� [

r�
Xn

i�2

�
ess sup
piÿ1;pi�1� [

rÿ ess inf
piÿ1;pi�1� [

r

�
� ess sup

pn;pn�1� [

r

� TV(r) ;

completing the proof. p

LEMMA 4.2. For every m > 0, fix r 2 Rm . For every measurable set

E � R of finite measure

lim
n!�1

Z
E

(Cn � En)(r)� �(x) dx �
Z
E

r(x) dx :

PROOF. Let p � En(r) and rn � (Cn � En)(r). The proof consists of

several steps.

(I) E is an interval, with extreme points a and b.

Remark that spt r � [p1; pn�1]. The continuous and non-decreasing

functions

R(x) �
Zx

ÿ1
r(j) dj and Rn(x) �

Zx

ÿ1
rn(j) dj

satisfy R(p1) � Rn(p1) � 0. Hence, since by (2.2) we haveZpi�1

pi

r(x) dx �
Zpi�1

pi

rn(x) dx � `n for all i � 1; . . . ;n ;

we recursively obtain R(pi�1) � Rn(pi�1) � i`n for all i � 1; . . . ;n.

By the monotonicity ofR andRn , we have sup
x2 pi;pi�1� [

��Rn(x)ÿR(x)
�� � `n

for every i � 1; . . . ;n and

sup
x2R

��Rn(x)ÿR(x)
�� � `n � m

n
;
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so that Zb

a

rn(j) dj ÿ
Zb

a

r(j) dj

������
������ �

Zb

a

rn(j)ÿ r(j)� � dj
������

������
� �� Rn(b)ÿR(b)� � ÿ Rn(a)ÿR(a)� ���
� ��Rn(b)ÿR(b)

��� ��Rn(a)ÿR(a)
��

� 2 sup
x2R

��Rn(x)ÿR(x)
��

� 2
m

n
! 0 as n! �1 ;

completing step (I).

(II) E is an open set with finite measure.

Write E as disjoint union of intervals, i.e., E � _S
h2N Jh, see [9, Sec-

tion 2.1, p. 27], and let Ik � _Sk
h�0 Jh. For any e > 0 there exists k 2 N such

that L1(E n Ik) <
e

3
. By step (I) above, there exists �n 2 N such that for

every n � �n Xk

h�0

�����
Z
Jh

rn(x)ÿ r(x)� � dx

����� < e

3
:

Compute preliminarily�����
Z
Ik

rn(x) dxÿ
Z
Ik

r(x) dx

����� �
�����
Z Xk

h�0

xJh
rn(x)ÿ r(x)� � dx

����� �Xk

h�0

�����
Z
Jh

rn(x)ÿ r(x)� � dx

����� :
Hence, for every n � �n,�����

Z
E

rn ÿ
Z
E

r

����� �
�����
Z
E

rn ÿ
Z
Ik

rn

������
�����
Z
Ik

rn ÿ
Z
Ik

r

������
�����
Z
Ik

rÿ
Z
E

r

�����
�
�����
Z
E

rn 1ÿ xIk

ÿ �������
�����
Z
Ik

rn ÿ
Z
Ik

r

������
�����
Z
E

r 1ÿ xIk

ÿ ������
<L1(E n Ik)� e

3
� L1(E n Ik) < e ;

completing step (II). p
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(III) E has finite measure.

For every e > 0 there exists an open set A such that E � A and

L1(A n E) < e=3. By step (II) above there exists �n 2 N such that for every

n � �n �����
Z
A

rn(x) dxÿ
Z
A

r(x) dx

�����< e

3
:

Then, for every n � �n,�����
Z
E

rn ÿ
Z
E

r

����� �
�����
Z
E

rn ÿ
Z
A

rn

������
�����
Z
A

rn ÿ
Z
A

r

������
�����
Z
A

rÿ
Z
E

r

�����
�
�����
Z
A

rn 1ÿ xE� �
������
�����
Z
A

rn ÿ
Z
A

r

������
�����
Z
A

r 1ÿ xE� �
�����

<L1(A n E)� e

3
� L1(A n E) < e ;

completing the proof. p

LEMMA 4.3. For every m > 0, fix r 2 Rm and call K � spt r. Then,

(Cn � En)(r)* r in L1(K;R) and, hence, in L1(R;R).

PROOF. Denote rn � (Cn � En)(r). Let W 2 L1(K;R) and h 2 N, h > 0.

Set

Wh �
Xh�1

i�ÿh�1

i

h

W1 xEi;h
with Ei;h � Wÿ1 iÿ 1

h

W1; i

h

W1� �� �
:

The Ei;h have finite measure and, for fixed h, are pairwise disjoint. More-

over, Wÿ Wh


L1 � L1(K) sup

x2K

��W(x)ÿ Wh(x)
�� � L1(K)

W1
h

:

Fix e > 0 and choose h so that
Wÿ Wh


L1 < e. Then, by Lemma 4.2, choose

�n so that �����
Z

Ei;h

rn(x) dxÿ
Z

Ei;h

r(x) dx

�����< e

h
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for every n � �n. Hence�����
Z

rnWÿ
Z

r W

����� �
�����
Z

rn Wÿ
Z

rn Wh

������
�����
Z
rn Wh ÿ

Z
r Wh

������
�����
Z
r Wh ÿ

Z
r W

�����
� rn


1
Wÿ Wh


L1

������
Z

Wh rn ÿ r� �
������ r1Wÿ Wh


L1

< e�
����� Xh1

i�ÿh�1

i

h

W1 Z
Ei;h

rn ÿ r� �
������ e

� 2 e�
Xh�1

i�ÿh�1

����� i

h

����� W1
�����
Z

Ei;h

rn ÿ r� �
�����

< 2 e�
Xh�1

i�ÿh�1

����� i

h

����� eh W1
� e

 
2�

�
1� 1

h
� 1

h2

�W1
!

� e 2� 3
W1� �

;

completing the proof. p

PROOF OF PROPOSITION 2.1. Consider first En � Cn: Pn ! Pn. Call

q � (En � Cn)(p). By (2.3), spt Cn p � [p1; pn�1[ and
R
R

Cn p(x) dx � n`n.

By (2.2), qn�1 � max spt Cn p� � � pn�1 and qn is such that

Zpn�1

qn

Cn p(x) dx �
Zqn�1

qn

Cn p(x) dx � `n �
Zpn�1

pn

`n

pn�1 ÿ pn
dx

so that qn � pn since Cn p is piecewise constant. Recursively qi � pi for all

i � 1; . . . ;nÿ 1, proving that En � Cn � IdPn
.

Consider now Cn � En . Let r 2 Rm \ BV R; [0; 1]� � and set

(Cn � En)(r) � rn.

By contradiction, suppose that rn does not converge strongly to r
in L1. This means that we can extract a subsequence rnk

ÿ �
such thatrnk

ÿr


L1 > e for all k. Note that for all k,
rnk


L1 � 1 and, by

Lemma 4.1, TV(rnk
) � TV(r). Then, Helly Theorem [2, Theorem 2.3]
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ensures that there exist a function r� 2 (L1 \BV)(R; [0; 1]) and a
ÿ
rnkh

�
such that lim

h!�1
rnkh

(x) � r�(x) for every x 2 R. Remark that

spt rn � spt r for all n and hence, by the Dominated Convergence

Theorem, rnkh
! r� in L1. Lemma 4.3 then implies that r� � r. This

contradicts the choice of the subsequence rnk
. p

PROOF OF PROPOSITION 2.3. The function v is uniformly bounded and

Lipschitz continuous. Extend it to a function with the same properties and

defined on R�:

u(r) � v(r) if r 2 [0; 1] ;

0 if r > 1 :

(
(4:1)

Note that the composition fd 7!u(`n=d)g can be extended to a uniformly

bounded and Lipschitz continuous function on R�.

Consider the Cauchy problem

_pi � u
`n

pi�1 ÿ pi

� �
i � 1; . . . ;n

_pn�1 � V

pi(0) � ~pi i � 1; . . . ;n� 1 :

8>>>><>>>>:
By (V) and the standard theory of Ordinary Differential Equations,

there exists a C1 solution p defined as long as pi�1 ÿ pi > 0 for all

i � 1; . . . ;n.

We prove now that for every t � 0, pi�1(t)ÿ pi(t) � `n , that is p(t) 2 Pn.

Assume by contradiction that there exist positive �t and t�, with �t < t�, such

that

pi�1(�t )ÿ pi(�t ) � `n;

pi�1(t)ÿ pi(t) < `n 8t 2 ]�t; t��:
(4:2)

Then, for every t 2 ]�t; t�� we have:

pi(t) � pi(�t )�
Z t

�t

_pi(s) ds � pi(�t )�
Z t

�t

u
`n

pi�1(s)ÿ pi(s)

� �
ds � pi(�t ) :

Combining (4.2) and (4.1), we find pi(t) � pi(�t ). This yields a contradiction,

since for every t 2 ]�t; t��, `n > pi�1(t)ÿ pi(t) � pi�1(�t )ÿ pi(�t ) � `n , com-

pleting the proof. p
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PROOF OF THEOREM 2.4. (We follow the general lines of the proof

of [3, Proposition 4.2]). Proposition 2.3 implies that rn(t; x) 2 [0; 1] for

every t 2 [0;T] and x 2 R. This holds also for its limit: r(t; x) 2 [0; 1].

Let D � sup spt ~rÿ inf spt ~r. Recalling [2, Formula (4.5)], for any

W 2 C1
c(]ÿ1;T� �R; R), compute

In :�
ZT

0

Z
R

rn@tW� rnv(rn)@xW� � dx dt�
Z
R

~r(x) W(0; x) dx

�
Xn

i�1

ZT

0

`n

pi�1(t)ÿ pi(t)

Zpi�1(t)

pi(t)

@tW� v
`n

pi�1(t)ÿ pi(t)

� �
@xW

� �
dx dt

�
Z
R

rn(0; x)W(0; x) dx�
Z
R

~r(x)ÿ rn(0; x)� �W(0; x) dx

�
Xn

i�1

ZT

0

`n

pi�1(t)ÿ pi(t)

Zpi�1(t)

pi(t)

@tW(t; x)� _pi(t)@xW(t; x)� � dx dt

�
Xn

i�1

`n

~pi�1 ÿ ~pi

Z~pi�1

~pi

W(0; x) dx�
Z
R

~r(x)ÿ rn(0; x)� �W(0; x) dx :

Now approximate W(t; x) with W t; pi(t)� � for every x in [pi(t); pi�1(t)] and

introduce the quantity
W

C2 that uniformly bounds from above the modulus

of W and all its derivatives up to second order. Then, for x 2 [pi(t);pi�1(t)]����@tW(t; x)� _pi(t)@xW(t; x)ÿ d

dt
W t; pi(t)� �

���� � (1� V )
W

C2

��pi�1(t)ÿ pi(t)
�� ;

and, equivalently,

@tW(t; x)� _pi(t)@xW(t; x) � d

dt
W t; pi(t)� � � O(1) pi�1(t)ÿ pi(t)� �;

where, in particular, O(1) depends neither on pi(t), nor on i, nor on n.

Using the latter estimate in the expression for In above:

In �
Xn

i�1

ZT

0

`n

pi�1(t)ÿ pi(t)

Zpi�1(t)

pi(t)

d

dt
W t; pi(t)� � dx dt

�
Xn

i�1

ZT

0

`n

pi�1(t)ÿ pi(t)

Zpi�1(t)

pi(t)

O(1) pi�1(t)ÿ pi(t)� � dx dt
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�
Xn

i�1

`n

~pi�1 ÿ ~pi

Z~pi�1

~pi

W(0; x) dx�
Z
R

~r(x)ÿ rn(0; x)� �W(0; x) dx

� `n

Xn

i�1

ZT

0

d

dt
W t; pi(t)� � dt� `n

Xn

i�1

ZT

0

O(1) pi�1(t)ÿ pi(t)� � dt

�
Xn

i�1

`n

~pi�1 ÿ ~pi

Z~pi�1

~pi

W(0; x) dx�
Z
R

~r(x)ÿ rn(0; x)� �W(0; x) dx

�ÿ `n

Xn

i�1

W(0; ~pi)�O(1) `n

ZT

0

pn�1(t)ÿ p1(t)� � dt

�
Xn

i�1

`n

~pi�1 ÿ ~pi

Z~pi�1

~pi

W(0; x) dx�
Z
R

~r(x)ÿ rn(0; x)� �W(0; x) dx

�
Xn

i�1

`n

~pi�1 ÿ ~pi

Z~pi�1

~pi

W(0; x)ÿ W(0; ~pi)� � dx�O(1) `n (D� VT) T

�
Z
R

~r(x)ÿ rn(0; x)� �W(0; x) dx

�O(1) `nD�O(1) `n(D� VT) T �
Z
R

~r(x)ÿ rn(0; x)� �W(0; x) dx :

Since rn(0; x) � ~rn(x) and ~rn � Cn � En ~r� � ! ~r (by Proposition 2.1) and

`n ! 0 (by definition), all the terms in the latter quantity vanish as

n! �1, completing the proof. p
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