Connectedness of the Tannakian group attached to semi-stable multiple filtrations

MASAMI FUJIMORI

- ABSTRACT We show that the affine group scheme whose category of finite dimensional representations is equivalent to a tensor category of finite dimensional vector spaces equipped with semi-stable (multiple) filtrations of slope zero is connected.
- MATHEMATICS SUBJECT CLASSIFICATION (2010). 20G05 (primary), 14L24, 18D10 (secondary).
- KEYWORDS. Finite group, representation, semi-simple, slope, tensor category, unipotent.

1. Introduction

Let *K* be an arbitrary field, *L* a separable algebraic closure of *K*, and \mathfrak{M} any set of indices. We denote by $\mathcal{C}(K, L, \mathfrak{M})$ the tensor category of finite dimensional vector spaces over *K* equipped with multiple filtrations over *L* indexed by the set \mathfrak{M} . We write $\mathcal{C}_0^{ss}(K, L, \mathfrak{M})$ for the full subcategory of $\mathcal{C}(K, L, \mathfrak{M})$ composed of semi-stable objects of slope zero and of zero objects. We quickly recall the definitions [6, Definition 1.9 & Definition 1.16] of $\mathcal{C}(K, L, \mathfrak{M})$ and $\mathcal{C}_0^{ss}(K, L, \mathfrak{M})$.

For a finite dimensional vector space V over K, a family of subspaces F^iV $(i \in \mathbb{R})$ over L of $L \otimes_K V$ is called a filtration over L of V if the relations

(*) Indirizzo dell'A.: Kanagawa Institute of Technology (Shimo-Ogino 1030, Atsugi, Kanagawa) 243-0292 Japan.

E-mail: fujimori@gen.kanagawa-it.ac.jp

Masami Fujimori

(1)
$$F^{i}V \supset F^{j}V \ (i \leq j), \qquad \bigcup_{i \in \mathbb{R}} F^{i}V = L \otimes_{K} V,$$
$$\bigcap_{i \in \mathbb{R}} F^{i}V = 0, \qquad F^{i}V = \bigcap_{j < i} F^{j}V$$

are enjoyed. An object of $C(K, L, \mathfrak{M})$ is a finite dimensional vector space V over K equipped with a family of filtrations $F_v V$ ($v \in \mathfrak{M}$) over L of V such that for except a finite number of indices v, the filtrations are trivial:

(2)
$$F_v^i V = \begin{cases} L \otimes_K V & (i \le 0) \\ 0 & (i > 0) \end{cases}$$

A morphism between two objects of $\mathcal{C}(K, L, \mathfrak{M})$ is a linear map over K between the underlying vector spaces over K which respects all their filtrations when linearly extended over L. For two objects $(V, (F_v V)_{v \in \mathfrak{M}})$ and $(W, (F_v W)_{v \in \mathfrak{M}})$, their tensor product is the vector space $V \otimes_K W$ over Kequipped with filtrations over L

(3)
$$F_v^i(V \otimes_K W) = \sum_{j+q=i} F_v^j V \otimes_L F_v^q W \quad (i \in \mathbb{R}).$$

The category $\mathcal{C}(K, L, \mathfrak{M})$ thus defined is a *K*-linear additive tensor category.

For a non-zero object $(V, (F_v V)_{v \in \mathfrak{M}})$ (below, we call it V for short) of $\mathcal{C}(K, L, \mathfrak{M})$, the slope $\mu(V) = \mu(V, (F_v V)_{v \in \mathfrak{M}})$ is a real number given by

(4)
$$\mu(V) = \sum_{v \in \mathfrak{M}} \frac{1}{\dim_K V} \sum_{w \in \mathbb{R}} w \dim_L \operatorname{gr}^w(F_v V),$$

where $\operatorname{gr}^w(F_v^{\cdot}V) = F_v^w V/F_v^{w+}V$, $F_v^{w+}V = \bigcup_{j>w} F_v^j V$. A non-zero object V of $\mathcal{C}(K, L, \mathfrak{M})$ is semi-stable if it satisfies the condition that for any monomorphism $W \to V$ in $\mathcal{C}(K, L, \mathfrak{M})$ of a non-zero object W, we have $\mu(W) \leq \mu(V)$.

A fundamental fact about the full subcategory $C_0^{ss}(K, L, \mathfrak{M})$ of $\mathcal{C}(K, L, \mathfrak{M})$ consisting of semi-stable objects of slope zero and of zero objects is the following:

THEOREM 1.1 (Faltings [4], Totaro [7], cf. André [1]). Let $\omega_0^{ss}(K, L, \mathfrak{M})$ be the forgetful functor of $C_0^{ss}(K, L, \mathfrak{M})$ onto the tensor category of finite dimensional vector spaces over K. The category $C_0^{ss}(K, L, \mathfrak{M})$ is canonically equivalent to the tensor category of finite dimensional representations over K of an affine group scheme Aut $\omega_0^{ss}(K, L, \mathfrak{M})$ over K of natural equivalences of the functor $\omega_0^{ss}(K, L, \mathfrak{M})$.

210

In our previous paper [6], we have particularly shown that any connected reductive group over K appears (up to isomorphism) in many ways as a quotient group scheme of the affine group scheme Aut $\omega_0^{ss}(K, L, \mathfrak{M})$ when the cardinality of \mathfrak{M} is infinite. Denoting by $\omega_K(G)$ the forgetful tensor functor of the tensor category $\operatorname{Rep}_K(G)$ of finite dimensional representations over K of an affine group scheme G over K onto the tensor category of finite dimensional vector spaces over K, this result is differently stated that when G is connected reductive, there exists a fully faithful tensor functor ι of $\operatorname{Rep}_K(G)$ into $\mathcal{C}_0^{ss}(K, L, \mathfrak{M})$ such that $\omega_0^{ss}(K, L, \mathfrak{M}) \circ \iota = \omega_K(G)$.

In our present paper, we prove the next:

THEOREM 1.2. Let ι be any tensor functor of $\operatorname{Rep}_K(G)$ to $C_0^{ss}(K, L, \mathfrak{M})$ such that $\omega_0^{ss}(K, L, \mathfrak{M}) \circ \iota = \omega_K(G)$. If the group scheme G over K is finite, then for any object V of $\operatorname{Rep}_K(G)$, the image $\iota(V)$ must be an object with all the filtrations trivial. In particular, the functor ι cannot be full unless G = 1.

Since the group scheme $\pi_0(\text{Aut } \omega_0^{ss}(K, L, \mathfrak{M}))$ of connected components of the affine group scheme Aut $\omega_0^{ss}(K, L, \mathfrak{M})$ is pro-étale (cf., e.g., [3, III, § 3, 7.7]), our theorem implies the following:

COROLLARY 1.3. The affine group scheme Aut $\omega_0^{ss}(K, L, \mathfrak{M})$ over K is connected.

In Section 2, a proof of Theorem 1.2 is given for an arbitrary (finite or infinite) GALOIS extension L. It might be useful and natural to bring in a finite étale K-algebra L. But we would like in the present paper to stick to our original setting [5, 6] bearing Diophantine approximation in mind. A little deviation is that the index set \mathfrak{M} is any non-empty set. In Section 3, we make a few observations on the problem to find all (algebraic) quotients of Aut $\omega_0^{ss}(K, L, \mathfrak{M})$.

2. Finite groups

Let *K* be an arbitrary field, *G* a finite group scheme over *K*, and *K*[*G*] the *K*-algebra of global functions on *G*. Note that as *G* is finite over *K*, the group scheme *G* is affine (over *K*). The key to the result of the present paper is that the dual vector space $K[G]^*$ over *K* of K[G] is a *finite* dimensional representation of *G* by (left) translation. An immediate well-known consequence is the following:

LEMMA 2.1. Each finite dimensional representation over K of G is (canonically) a quotient representation of a finite direct sum of copies of $K[G]^*$.

We recall its proof for the convenience of readers.

PROOF. Let V be a finite dimensional representation over K of G. By the very definition of representation, the comorphism

$$V^* \hookrightarrow K[G] \otimes_K V^*$$

of the action of G on V is an injective comorphism between representation spaces when the tensor product $K[G]^* \otimes_K V$ is regarded as a representation with the trivial action on V. This tells us that the representation V is a quotient of $K[G]^* \otimes_K V$ which is isomorphic to a finite direct sum of copies of $K[G]^*$.

Let L be a (finite or infinite) GALOIS extension field of K and \mathfrak{M} any non-empty set of indices. For finite dimensional vector spaces over Kequipped with descending exhaustive separated left-continuous (multiple) filtrations defined over L (called (multiple) filtrations over L for simplicity [2][6], cf. (1) in Section 1), we consider the following quantities:

DEFINITION 2.2. Let V be a finite dimensional non-zero vector space over K equipped with a family of filtrations F_vV over L indexed by \mathfrak{M} . Writing gr for the graduation derived from a filtration, we set for all $v \in \mathfrak{M}$

$$m_v(V) = \min\{w \in \mathbb{R} \mid \operatorname{gr}^w(F_v V) \neq 0\}.$$

Remember that when saying multiple filtrations, we are tacitly assuming for except a finite number of indices $v \in \mathfrak{M}$, the filtrations $F_v V$ are trivial in the sense of (2) in Section 1. In particular, we see that $m_v(V) = 0$ for almost all $v \in \mathfrak{M}$. We put

$$m(V) = \sum_{v \in \mathfrak{M}} m_v(V).$$

REMARK 2.3. By the definition of slopes μ_v ($v \in \mathfrak{M}$) of filtrations [6, Definition 1.12], we have for each $v \in \mathfrak{M}$

$$m_v(V) \le \frac{1}{\dim_K V} \sum_{w \in \mathbb{R}} w \dim_L \operatorname{gr}^w (F_v V) = \mu_v(V)$$

and

$$m(V) \le \sum_{v \in \mathfrak{M}} \mu_v(V) = \mu(V).$$

For finite dimensional vector spaces V and W over K equipped with multiple filtrations over L indexed by \mathfrak{M} , the direct sum of filtrations was defined as

$$F^i_v(V\oplus W)=F^i_vV\oplus F^i_vW \quad (i\in \mathbb{R}, \; v\in \mathfrak{M}).$$

We obtain

$$m_v(V \oplus W) = \min\{m_v(V), m_v(W)\} \quad (v \in \mathfrak{M}),$$

hence

(5)
$$m_v(V \oplus \cdots \oplus V) = m_v(V).$$

From the definition of the tensor product of filtrations ((3) in Section 1), we get

$$m_v(V \otimes W) = m_v(V) + m_v(W) \quad (v \in \mathfrak{M}),$$

in particular,

(6)
$$m_v(V^{\otimes n}) = n \cdot m_v(V).$$

LEMMA 2.4. Let V and W be finite dimensional non-zero vector spaces over K equipped with multiple filtrations over L indexed by \mathfrak{M} . If there is a filtered homomorphism of V to W which is surjective as a linear map between vector spaces, then we have $m_v(V) \leq m_v(W)$.

PROOF. Call f the filtered homomorphism in the statement. By the definition of filtered homomorphism, we have

$$f(L \otimes_K V) = f(F_v^i V) \subset F_v^i W \subset L \otimes_K W \quad (i \le m_v(V)).$$

Since f is surjective, we see

$$F_v^i W = L \otimes_K W \quad (i \le m_v(V)),$$

which means $m_v(W) \ge m_v(V)$.

Let $\operatorname{Rep}_K(G)$ be the tensor category of finite dimensional representations over K of G, Vec_K the tensor category of finite dimensional vector

213

Masami Fujimori

spaces over K, and $C_0^{ss}(K, L, \mathfrak{M})$ the tensor category of finite dimensional vector spaces over K equipped with semi-stable multiple filtrations over L indexed by \mathfrak{M} of slope zero ([6, Definition 1.16], cf. Section 1). We denote respectively by $\omega_K(G)$ and by $\omega_0^{ss}(K, L, \mathfrak{M})$ the forgetful tensor functors of $\operatorname{Rep}_K(G)$ and of $C_0^{ss}(K, L, \mathfrak{M})$ to Vec_K .

PROOF OF THEOREM 1.2 (for general L). We may suppose V is not zero. Let n be an arbitrary positive integer. By Lemma 2.1, there exists a surjective G-homomorphism f onto the n-times tensor product $V^{\otimes n}$ of V of a G-representation W which is isomorphic to a finite direct sum of copies of $K[G]^*$. The assumption $\omega_0^{ss}(K, L, \mathfrak{M}) \circ \iota = \omega_K(G)$ says that the morphism $\iota(f)$ as a linear map between vector spaces is f itself. Due to Lemma 2.4, we see $m_v(W) \leq m_v(V^{\otimes n})$. On the other hand, thanks to (5) and (6), we have $m_v(W) = m_v(K[G]^*)$ and $m_v(V^{\otimes n}) = n \cdot m_v(V)$. Hence we get

$$\frac{1}{n} m_v(K[G]^*) \le m_v(V).$$

Making n large, we obtain

$$0 \leq m_v(V).$$

As $\mu(V) = 0$ by the definition of ι , Remark 2.3 forces

$$m(V) = \mu(V),$$

which is possible only when all the filtrations are trivial.

REMARK 2.5. In general, the condition $m(V) = \mu(V)$ is not sufficient to assure that the filtrations are trivial. For example, let $\mathfrak{M} = \{0, \infty\}$, V = K,

$$F^i_0V=egin{cases} L\otimes_KV & (i\leq-1)\ 0 & (i>-1) \end{cases}$$

and

$$F^i_{\infty}V = egin{cases} L\otimes_K V & (i\leq 1) \ 0 & (i>1) \end{cases}$$

We have $m_0(V) = \mu_0(V) = -1$, $m_\infty(V) = \mu_\infty(V) = 1$, and $m(V) = \mu(V) = 0$. The point of the proof of THEOREM 1.2 is that we can show $m_v(V) \ge 0$ for all $v \in \mathfrak{M}$.

3. Algebraic groups which do not or do appear

Let *K* be an arbitrary field, *L* a (finite or infinite) GALOIS extension, and \mathfrak{M} any non-empty set of indices. We consider in this section a connected linear algebraic group *G* over *K* in general.

PROPOSITION 3.1. Let ι be any tensor functor of $\operatorname{Rep}_K(G)$ to $C_0^{\operatorname{ss}}(K, L, \mathfrak{M})$ such that $\omega_0^{\operatorname{ss}}(K, L, \mathfrak{M}) \circ \iota = \omega_K(G)$. If the group scheme G over K is unipotent, then for any object V of $\operatorname{Rep}_K(G)$, the image $\iota(V)$ must be an object with all the filtrations trivial.

PROOF. Denote by *U* a one-dimensional trivial representation space over *K* of *G*. Since $\iota(U) \otimes \iota(U) \simeq \iota(U \otimes U) \simeq \iota(U)$, the filtrations of $\iota(U)$ must be trivial, i.e., unit objects go to unit objects.

Let V be any non-zero finite dimensional representation over K of G. On the assumption that G is unipotent, there exists an injective G-homomorphism of U into V. The other assumption $\omega_0^{ss}(K, L, \mathfrak{M}) \circ \iota = \omega_K(G)$ implies that the functor ι sends kernels to kernels and cokernels to cokernels (cf. [5, Lemma 1.8]). We have particularly an exact sequence

$$0 \to \iota(U) \to \iota(V) \to \iota(V/U) \to 0.$$

When the filtrations of $\iota(V/U)$ are trivial, we see readily that those of $\iota(V)$ are also trivial. By the induction on the dimensions of representation spaces, we are done.

COROLLARY 3.2. If G is isomorphic to a quotient of the affine group scheme Aut $\omega_0^{ss}(K, L, \mathfrak{M})$, then semi-simple elements generate a dense subgroup of G.

PROOF. Let *N* be the (ZARISKI) closure of the subgroup generated by semi-simple elements of *G*. The variety *N* is a (closed) normal subgroup defined over *K* of *G*. By definition, all the elements of the quotient group G/N are unipotent, hence G/N is unipotent. Since G/N is isomorphic to a quotient of Aut $\omega_0^{ss}(K, L, \mathfrak{M})$, Proposition 3.1 means that G/N = 1.

REMARK 3.3. When L is a separable closure of the base field K and \mathfrak{M} is infinite, we have shown in the appendix of our previous paper [6] that any affine algebraic group scheme a dense subgroup of which is generated by tori defined over K appears (up to isomorphism) as a quotient of Aut $\omega_0^{ss}(K, L, \mathfrak{M})$. Applying the method of [6] to tori defined

over L, we observe that any affine algebraic group which fills the necessity in Corollary 3.2 really appears (up to isomorphism) as a quotient of Aut $\omega_0^{ss}(K, L, \mathfrak{M})$. In this way, Corollary 3.2 presents a kind of characterization for linear algebraic groups which can be isomorphic to quotients of Aut $\omega_0^{ss}(K, L, \mathfrak{M})$.

REMARK 3.4. Let S be the linear algebraic group of upper triangular matrices of degree 2 with determinant 1. The group S is defined over an arbitrary field K, solvable, and generated by two split tori. According to [6, Theorem A.14], the solvable group S appears (up to isomorphism) as a quotient of Aut $\omega_0^{ss}(K, L, \mathfrak{M})$ provided at least the cardinality of the index set \mathfrak{M} is greater than three. Thus the affine group scheme Aut $\omega_0^{ss}(K, L, \mathfrak{M})$ is not pro-reductive and the Tannakian category $\mathcal{C}_0^{ss}(K, L, \mathfrak{M})$ is not poly-stable in that case.

On the other hand, if the cardinality of \mathfrak{M} is one, then the group S cannot be isomorphic to any quotient of Aut $\omega_0^{\mathrm{ss}}(K, L, \mathfrak{M})$, because the onedimensional multiplicative group \mathbb{G}_{m} is isomorphic to a quotient of S but one-dimensional objects of $\mathcal{C}_0^{\mathrm{ss}}(K, L, \mathfrak{M})$ are all units in this case.

Acknowledgments. The author expresses his gratitude to THE REF-EREE for valuable suggestions and comments on the first version of the present paper.

REFERENCES

- Y. ANDRÉ, On nef and semistable hermitian lattices, and their behaviour under tensor product. Tôhoku Math. J., 63(4): pp. 629–649, 2011.
- [2] J.-F. DAT S. ORLIK M. RAPOPORT, Period Domains over Finite and p-adic Fields, volume 183 of Cambridge Tracts in Math. Cambridge Univ. Press, New York, 2010.
- [3] M. DEMAZURE P. GABRIEL, Groupes Algébriques, volume 1. North-Holland Publishing Company, Amsterdam, The Netherlands, 1970.
- [4] G. FALTINGS, Mumford-Stabilität in der algebraischen Geometrie. In Proceedings of the International Congress of Mathematicians, Zürich, Switzerland 1994, pp. 648–655, Basel, Switzerland, 1995. Birkhäuser Verlag.
- [5] M. FUJIMORI, On systems of linear inequalities. Bull. Soc. Math. France, 131(1): pp. 41–57, 2003. Corrigenda. *ibid.*, 132(4): pp. 613–616, 2004.
- [6] M. FUJIMORI, The algebraic groups leading to the Roth inequalities. J. Théor. Nombres Bordeaux, 24: pp. 257–292, 2012.
- B. TOTARO, Tensor products in p-adic Hodge theory. Duke Math. J., 83: pp. 79–104, 1996.

Manoscritto pervenuto in redazione il 13 Febbraio 2013.