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ABSTRACT - A homomorphism l : A! B between R-modules is called a localization if
for all W 2 HomR(A;B) there is a unique c 2 HomR(B;B) such that W � c � l. We
investigate localizations of tensor products of torsion-free abelian groups. For
example, we show that the natural multiplication map m : R
 R! R is a local-
ization if and only if R is an E-ring.
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1. Introduction

Let R denote some ring. Many notions in the theory of R-modules can

be stated in terms of some universal property. Here are some examples:

(1) The R-module F is free with basis B if B is a subset of F such that for

any R-module X and any function f : B! X there exists a unique homo-

morphism W : F ! X such that Wj33B � f .

(2) The R-module G is small, if for each family fXi : i 2 Ig of R-modules

theabeliangroupHomR

ÿ
G;
L
i2I

Xi

�
isnaturally isomorphic to

L
i2I

HomR(G;Xi).

(3) The R-module G is strongly slender [9] if for each family fXi : i 2 Ig
of R-modules the abelian group HomR

ÿQ
i2I

Xi;G
�

is naturally isomorphic toL
i2I

HomR(Xi;G).
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(4) Let l 2 HomR(A;B) be a homomorphism. We call l a split
homomorphism if for any R-module X and any W 2 HomR(A;X) there

exists some c 2 HomR(B;X) such that W � c � l. If one considers the

case of X � A and W � idA, then it is easy to see that l is indeed a

splitting homomorphism, i.e. l is injective and l(A) is a direct summand

of B.

(5) The R-module G is injective if for any R-module X and any sub-

module K of X and any W 2 HomR(K;G) there exists some c 2
HomR(X;G) such that W � cj33K . Note that `̀ projective'' is the dual of

`̀ injective''.

(6) Tensor products: To simplify notation, let us assume R � Z. Let

A;B and T be abelian groups and t : A� B! T a bilinear map. The pair

(T; t) is a tensor product of A and B, if for any abelian group X and any

bilinear map s : A� B! X, there exists a unique c 2 Hom(T;X) such

that s � c � t. It is well known, of course, that tensor products exist and

are unique up to isomorphism.

It would be easy to continue this list. All these definitions can be

modified by restricting the X's. Let us do this. We get

(1s) In (1), replace `̀ X '' by `̀ F''. A module F satisfying (1s) is called self-
free with basis B, c.f. [5].

(2s) In (2), replace all the `̀ Xi'' by `̀ G''. Such a module G is called self-
small. This notion has been studied by many authors, c.f. [3] and the

literature referenced there.

(3s) In (3), replace all the `̀ Xi'' by `̀ G''. Such a module is called strongly
self-slender, c.f. [9].

(4s) In (4) replace `̀ X'' by `̀ B'' and add the condition that the map c is

unique. Such a homomorphism l : A! B is called a localization of A.

There is a large amount of literature on localizations. See for instance [6]

and [7] and the papers referenced there.

(5s) In (5), replace `̀ X '' by `̀ G''. Then G is called quasi-injective. If

R � Z and K is restricted to p-pure subgroups of G, then G is called quasi-
p -pure-injective, or qppi for short. Again, there is a lot of literature on this

topic dating back to the 1970's, c.f. [1] or [13].

In this paper we focus on a specification (6s) of (6):
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DEFINITION 1. Let R be a ring, A � AR a right R-module, B �R B a

left R-module and T some Abelian group. Following [12, page 207], we

call a map t : A� B! T a middle linear map if t is bilinear and

t(ar; b) � t(a; rb) for all a 2 A; b 2 B and r 2 R. Let MidlinR(A;B; T) de-

note the set of all middle linear maps from A� B into T. We call the pair

(T; t) a qutensor product of A;B over R if for all s 2MidlinR(A;B; T),

there exists a unique homomorphism c 2 HomZ(T;T) such that s � c � t.
The map
 : A� B! A
R B is a middle linear map with
(a; b) � a
 b

for all a 2 A; b 2 B.

It follows from the definitions that qutensor products are a combination

of the notions in (4s) and (6):

The pair (T; t) is a qutensor product of the modules A;B if and only if

there exists a localization l : A
R B! T such that t � l � 
, where


 : A� B! A
R B is the natural map with 
(a; b) � a
 b for all a 2 A

and b 2 B.

In this paper we concern ourselves with localizations of tensor products

of torsion-free abelian groups A;B.

After some preliminaries in Section 2, we study localizations of ar-

bitrary direct sums of modules in Section 3. In Section 4, we look at

surjective localizations and find conditions for p-reduced torsion-free

abelian groups having a p-reduced tensor product. In Section 5, we use

the absolute E-rings constructed in [10] and [11] to obtain absolute

localizations of torsion-free abelian groups that are p-reduced for in-

finitely many primes p. In Section 6, we present some examples of

some surprising properties of tensor products of reduced torsion-free

abelian groups. For example, there exists a strongly indecomposable

reduced abelian group G such that G
 G is reduced and completely

decomposable. In Section 7, we consider torsion-free abelian groups of

finite rank whose p-rank is less than their rank. We find an example of

such a group G of rank 4 and p-rank 2 such that G
 G is not reduced,

but G has no pure subgroups of rank at least 2 but of p-rank 1. (It is

well known that G
 G is not p-reduced if G has rank at least 2 and p-

rank 1.) We also find a quasi-isomorphism invariant for such groups. In

the last section, we take a glimpse at zero product determinated al-

gebras, c.f. [4]. Let 1 2 R be a ring. Then there exists an epimorphism

m : R
Z R! R with m(a
 b) � ab for all a; b 2 R. We show that m is a

localization if and only if R is an E-ring.

Localizations of tensor products 239



2. Definitions and First Results

Recall the following, well established

DEFINITION 2. Let M;L;X be modules over some ring and l 2
Hom(M;L). Then l ? X provided that for any a 2 Hom(M;X) there is

a unique b 2 Hom(L;X) such that a � b � l. If l ? L, then l is called a

localization of M. Abusing notations, sometimes L is called a local-

ization of M.

Next we show that qutensors are exactly the localizations of the or-

dinary tensor product of the modules.

PROPOSITION 1. Let AR and RB be modules and t 2MidlinR(A;B; D).

Then t factors through 
, i.e. there exists l : A
R B! D such that

t � l � 
. Moreover, (D; t) is a qutensor product of A;B if and only if

l : A
R B! D is a localization of A
R B.

PROOF. By the universal property of the tensor product, there is a

unique l 2 Hom(A
R B;D) such that t � l � 
. Assume that l is a local-

ization and let s : A� B! D be a bilinear map. By the universal property

of the tensor product, there exists a unique map d 2 Hom(A
R B;D) such

that s � d � 
. Then there is a unique b 2 End(D) such that d � b � l and

we have that s � b � l � 
 � b � t. On the other hand, assume that s � g � t.
We infer that g � t � g � l � 
 � b � l � 
 and thus g � l � b � l. We con-

clude that g � b and we have that (D; t) is a qutensor of A;B.

For the other direction, let a 2 Hom(A
R B;D) and put s � a � 
, a

middle linear map from A� B into D. Thus there exists a unique

b 2 End(D) such that s � b � t and thus a � 
 � b � l � 
, which implies

that a � b � l. If b0 2 End(D) is some other map with a � b0 � l, then

s � a � 
 � b0 � l � 
 � b � l � 
 and we infer b � t � b0 � t and thus

b � b0. This shows that l is a localization. p

3. Localizations of Direct Sums of Modules

We begin with:

PROPOSITION 2. Let l : A �L
i2I

Ai ! D be a localization, i.e. l ? D.

Then there exists a set fgi : i 2 Ig of orthogonal idempotents in End(D)

such that:
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(a) For Di � gi(D) we have that D0 �L
i2I

Di � D and di � l j33Ai
2

Hom(Ai;Di).

(b) dj ? Di for all i; j 2 I:

(c) ker (l) �L
i2I

(Ai \ ker (l)).

(d) If the index set I is finite, then D � D0.

PROOF. Define li : A! D by lij33Ai
� l j33Ai

and li(Aj) � f0g for all

i 6� j 2 I. Then there exist unique gi 2 End(D) such that

li � gi � l for all i 2 I.

Let a �P
j2I

aj 2 A where aj 2 Aj. Then (gi � li)(a) � (gi � li)(ai) �
(gi � l)(ai) � li(ai) � li(a) and we have:

li � gi � li for all i 2 I.

Now we have (g2
i ) � l � gi � (gi � l) � gi � li � li � gi � l and we infer

that gi is an idempotent element of End(D).

Let i 6� j 2 I and a 2 A as above. Then (gi � gj � l)(a) � (gi � lj)(a) �
gi(lj(aj)) � gi(l(aj)) � li(aj) � 0. This shows that (gi � gj) � l � 0 � 0 � l
and it follows that gi � gj � 0 for all i 6� j 2 I. We infer that fgi : i 2 Ig is a

set of orthogonal idempotents and thus D0 �L
i2I

Di is a submodule of D

where Di � gi(D).

Let ai 2 Ai. Then l(ai) � li(ai) � gi(li(ai)) � gi(D) � Di. This shows

that di 2 Hom(Ai;Di).

Note that D � Di � ker (gi) and gj(D) � ker (gi) for all i 6� j 2 I.

To show that di � l j33Ai
: Ai!Di is orthogonal to Dj, let h2Hom(Ai;Dj)

for some j 2 I. Then h naturally extends to a map h0 from A to D by setting

the map h0 equal to 0 on the other summands of A. Then there exists a unique

map u : D! D such that h0 � u � l. Let a � ai � a(i) 2 A where ai 2 Ai and

a(i) 2 L
i6�j2I

Aj . Then (u � l)(a) � (u � l)(ai)� (u � l)(a(i)) � h0(a) � h(ai) 2 Dj.

It follows that (u � l)(a(i)) � 0 by setting ai � 0. Since gj acts as the identity

map on Dj, we get (gj � u j33Di
) � (l j33Ai

) � h. Let ui � gj � u j33Di
2 Hom(Di;Dj).

Then h � ui � di.

Next we need to show that the map ui is unique with that property. Let

u0i be another such map, and note that l(A(i)) � ker (gi). Let u0 2 End(D)

with u0j33Di
� u0i and u0(ker (gi)) � f0g. It follows that h0 � u0 � l and since

l ? D, we infer that u � u0 and thus ui � u0i.
Let a �P

i

ai 2 ker (l) where ai 2 Ai. Then 0 �P
i

l(ai) �
P

i

li(ai) �P
i

gi(li(ai)) 2
L
i2I

Di and it follows that l(ai) � 0 for all i 2 I. This shows

that ker (l) �L
i2I

(Ai \ ker (l)) � ker (l) and (c) follows.
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Now assume that I is finite. Then idD �l�
P
i2I

li �
P
i2I

gi �l�
�P

i2I

gi

�
�l

and it follows that idD �
P
i2I

gi . p

COROLLARY 1. Given abelian groups D and A�L
i2I

Ai with I finite.

Let l 2 Hom(A;D). If l ? D, then D �L
i2I

Di and di � l j33Ai
2 Hom(Ai;Di)

satisfies di ? Dj for all i; j 2 I.

Conversely, if D �L
i2I

Di and li 2 Hom(Ai;Di) with li ? Dj for all

i; j 2 I, then l �L
i2I

li ? D.

COROLLARY 2. Let A �L
i2I

Ai with finite index set I and K a subgroup

of A. The canonical map p : A! A=K is a localization if and only if

(1) The canonical maps pi : Ai ! Ai=(K \ Ai) are localizations for all

i 2 I and

(2) K �L
i2I

(K \ Ai) and pi ? (Aj=(K \ Aj)) for all i; j 2 I.

PROOF. It follows from Proposition 2 that (1) and (2) are necessary.

Suppose (1) and (2) hold. Let W 2 Hom(A;A=K) and note that A=K �L
i2I

(Ai=(Ai \ K)) because of (2). There exist Wji : Ai ! Aj=(Ai \ K) such that

W is represented by the matrix [Wji]]. For each Wji there is a unique

cji : Ai=(Ai \ K)! Aj=(Aj \ K) such that Wji � cji � pi. It follows from the

definitions that c � [cji] 2 End(A=K) is the desired map. p

COROLLARY 3. With the above notation, if Ai � Aj then Di � Dj for

any i; j 2 I.

PROOF. Let sji : Ai ! Aj be an isomorphism with sij : Aj ! Ai the

inverse map. Extend sji to s0ji : A! A by setting s0ji(Aa) � f0g for all

i 6� a 2 I. Then l � s0ji 2 Hom(A;D) and there exists a unique dji 2 End(D)

such that

(1) l � s0ji � dji � l. In a similar fashion we get

(2) l � s0ij0 � dij � l:
It follows that gj � l� lj� (l�s0ji) � s0ij� (dji � l) � s0ij� dji � (l � s0ij) �

(dji � dij) � l. We infer

(3) gj � dji � dij as well as gi � dij � dji. It follows that

(4) gi � dij � dij � dji � dij � dij � gj and gj � dji � dji � dij � dji � dji � gi.
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Taking the restrictions to Dj, Di we get

(5) dijj33Dj
� gi � dijj33Dj

: Dj ! Di as well as djij33Di
� gj � djij33Di : Di ! Dj.

The equations (3) now imply that dijj33Dj
and djij33Di

are a pair of inverse

isomorphisms and we have Di � Dj. p

PROPOSITION 3. Same notations as above. If D is slender, then

D �L
i2I

Di .

PROOF. Since l is a localization, we have that
Q
i2I

Hom(Ai;D) �
Hom

ÿL
i2I

Ai;D
��Hom(A;D)�End(D). The latter isomorphism � : End(D)!

Hom(A;D) is given by W� � W � l for all W 2 End(D). Let # denote the inverse

of �.
Pick an element d 2 D.

Define a map sd : End(D)! D by sd(W) � W(d) for all W 2 End(D). This

gives rise to a homomorphism td :
Q
i2I

Hom(Ai;D)! D. Since D is slender,

there exists a cofinite subset J of I such that td

ÿ Q
i2J

Hom(Ai;D)
� � f0g.

Note that (li)
# � gi for all i 2 I and td(lj) � 0 for all j 2 J. But now we have

0 � td(lj) � gj(d) for all j 2 J. We infer that
P
i2I

gi(d) is a finite sum for all

d 2 D and thus g �P
i2I

gi 2 End(D) with g � l � l � idD � l. It follows that

g � idD and thus D �L
i2I

Di . p

DEFINITION 3. Let (A;D) be a pair of abelian groups. We call this pair

relatively semi-rigid, if each 0 6� W 2 Hom(A;D) is injective.

For example, if A � Z and D is torsion-free, then the pair (A;D) is

relatively semi-rigid.

PROPOSITION 4. Let I be an index set and Ai, Di be abelian groups for

all i 2 I. Moreover, let li 2 Hom(Ai;Di) for all i 2 I such that:

(1) li ? Dj for all i; j 2 I.

(2) For all i 2 I, we have that the pair (Ai;Dj) is relatively semi-rigid

for all but finitely many j 2 I.

Then l �L
i2I

li : A �L
i2I

Ai ! D �L
i2I

Di is a localization, i.e. l ? D.
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PROOF. Let W 2 Hom(A;D). Then W � [Wji] where Wji 2 Hom(Ai;Dj)

and for all i 2 I and ai 2 Ai we have Wji(ai) � 0 for all but finitely many j 2 I.

By (2) we infer that Wji � 0 for all but finitely many j 2 I. By (1), there exist

unique gji 2 Hom(Di;Dj) such that Wji � gji � li. Note that gji � 0 whenever

Wji � 0. This implies that g � [gji] 2 End(D) and W � g � l. The uniqueness

of g with that property follows immediately. p

COROLLARY 4. Let I be an index set and Ai , Di be abelian groups for

all i 2 I. Moreover, let li 2 Hom(Ai;Di) for all i 2 I such that:

(1) li ? Dj for all i; j 2 I.

(2) For all i 2 I, we have that Hom(Ai;Dj) � 0 for all but finitely many

j 2 I.

Then l �L
i2I

li : A �L
i2I

Ai ! D �L
i2I

Di is a localization, i.e. l ? D.

4. Surjective Localization

PROPOSITION 5. Let B be a subgroup of the abelian group A such that:

(1) B is fully invariant in A.

(2) The natural map End(A)! Hom(A;A=B) is surjective.

Then the canonical map p : A! A=B is a localization.

PROOF. Let W : A! A=B be a homomorphism. By (2), there is some

u 2 End(A) such that W � p � u. Define c : A=B! A=B by c(a� B) �
u(a)� B. Note that c is well defined by (1) and it follows that W � c � p.

Since p is surjective, we infer that c is unique with that property. p

Let G be a torsion-free abelian group. For a 2 G, let ak k denote the

type of a 2 G and G(t) � fg 2 G : gk k � tg. A type t � (tp)p2P is called

idempotent (or ring) type, if tp 2 f0;1g for all primes p 2 P. Moreover

Gk k denotes the set of all types of the elements of G.

PROPOSITION 6. Let G be a torsion-free abelian group. Suppose the

type t is an element in Ak k and of ring type, i.e. for t � (tp)p2P we have

tp 2 f0;1g. Then (G=G(t))(t) � f0g and for all W 2 Hom(G;G=G(t)) we

have G(t) � ker (W). Moreover, the natural map p : G! G=G(t) is a

localization.
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PROOF. Let x 2 G such that x� G(t)k k � t. Let p be a prime such that

tp � 1. We have that for all n 2 N, there is some xn 2 G such that

pnxn ÿ x � kn 2 G(t). Now kn is p-divisible in G and it follows that x is p-

divisible in G. This implies that x 2 G(t) and thus x� G(t) � 0. Note that

W(G(t)) � (G=G(t))(t) � f0g. Thus W induces a map eW 2 End(G=G(t)) byeW(x� G(t)) � W(x). It follows that W � eW � p and eW is unique with this

property because p is surjective. This shows that p is a localization. p

Let p be a prime integer. Then Zp �
� z

n
: z 2 Z;n 2 N; gcd(p;n) � 1

	
denotes the ring of integers localized at p. The torsion-free abelian group is

called p-locally free if G
Z Zp is a free Zp-module.

REMARK 1. Let A0;B0 be pure subgroups of the torsion-free abelian

groups A;B respectively. Then A0 
 B0 is a pure subgroup of A
 B.

To see this, note that 0! A0 
 B! A
 B! (A=A0)
 B! 0 is pure-

exact, and 0! A0 
 B0 ! A0 
 B! A0 
 (B=B0)! 0 is pure-exact and

purity is transitive. This shows:

PROPOSITION 7. Let A;B be torsion-free abelian groups. Then A
 B is

p-reduced if and only if A0 
 B0 is p-reduced for all pure, finite rank

subgroups A0;B0 of A;B respectively.

THEOREM 1. Let A;B be torsion-free, p-reduced abelian groups such

that all pure, finite rank subgroups of A are p-locally free. Then A
 B is

p-reduced.

PROOF. If there exists a non-zero element w in A
 B of infinite p-

height, then there exists a pure, finite subgroup A0 of A such that w is an

element of A0 
 B. Now consider the localization (A0 
 B)p of A0 
 B at the

prime p. We have (A0 
 B)p � A0p 
 Bp �
P
k

Bp as Zp-modules since A0p is a

free Zp-module of some rank k. Since B is p-reduced, the Zp-module Bp has

no elements of infinite p-height, which shows that no such element w exists.

p

By an assertion of Warfield's, a torsion-free group G of finite rank m is

p-locally free if and only if m � rp(G) :� dimZ=pZ(G=pG). For the con-

venience of the reader, here is an outline of the proof:
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Let fai � pG : 1 � i � mg be a basis of G=pG and B � P
1�i�m

aiZ. Then

fai : 1 � i � mg is p-independent and B is a p-basic subgroup of G, i.e. B is

a free, p-pure subgroup of G and G=B is p-divisible and a torsion group

with (G=B)[p] � f0g: It follows that G
Zp � B
Zp is a free Zp-module.

COROLLARY 5. Let A;B be torsion-free, p-reduced abelian groups such

that for all pure, finite rank subgroups A0 of A the rank of A0 is equal to the

p-rank rp(A0) of A0. Then A
 B is p-reduced.

5. Absolute Localizations

Let A be some algebraic structure that has some property P. Then A

has property P absolutely if A has property P in any generic extension of

the set-theoretic universe in which A was originally constructed. Let k(v)

denote the first v-ErdoÈs cardinal. In a remarkable paper [10], GoÈbel,

Herden and Shelah constructed absolute E-rings R of cardinality l for any

infinite cardinal l < k(v). Inspecting their proof, one realizes that the

following result was shown:

THEOREM 2. [10] Let l < k(v) be a cardinal and Z[X] (resp. Q[X])

the polynomial ring in l commuting variable over Z (resp. Q). Then

there exists a countable family fLi : i < vg of ideals of Z[X] such that

(1) Each Li is a direct summand of the abelian group Z[X] and

(2) fW 2 EndQ(Q[X]) : W(QLi) � QLi for all i < vg � Q[X]� absolutely.

This version will appear in [11].

We will use this result to construct absolute localizations. First we

show:

LEMMA 1. Let A be a commutative Q-algebra andF a family of ideals of

A such that fW2EndQ(A) : W(J)� J for all J 2Fg � A�. Let V be a Q-vector

space. Then fW 2 HomQ(A;V 
Q A) : W(J) � V 
Q J for all J 2 Fg �
HomA(A;V 
Q A).

PROOF. Let B be a basis of the vector space V . Let pb : V 
Q A!
b
 A be the natural projection with pb(c
 A) � f0g for all b 6� c 2 B.

Let W 2 fW 2 HomQ(A;V 
Q A) : W(J) � V 
Q J for all J 2 Fg. Then

pb � W : A! b
 A � A and (pb � W)(J) � pb(V 
Q J) � b
 J � J. Thus,
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by hypothesis, (pb � W)(x) � ((pb � W)(1))x for all x 2 A. It follows that

W(x) � P
b2B

pb(W(x)) � P
b2B

((pb � W)(1))x � W(1)x and W is A-linear. p

Let G bea torsion-free abeliangroupandP � fpi : i < vgan infinite set of

prime integers such that G is p-reduced for all p 2 P. Let ti denote the type of

the subring Z
� 1

pi

�
of Q. With the notations of Theorem 2, let R �

Z[X]� P
i<v

Z
� 1

pi

�
Li � Q[X]. Then R is the absolute E-ring constructed in

[10]. Note that R=Z[X] is a torsion abelian group. By (1) we have Z[X] �
Li�Ti as abelian groups. Then R=Z[X]�P

i<v

(Z[X]�Z
� 1

pi

�
Li)=Z[X] �P

i<v

ÿ
Ti �Z

� 1

pi

�
Li

�
=(Ti � Li) �

P
i<v

ÿ
Z
� 1

pi

�
Li

�
=Li where the i-th summand

is a divisible pi-group. This shows that R(ti) � Z
� 1

pi

�
Li for all i < v. Now

let W 2 EndZ(R). Then W�Z� 1

pi

�
Li

� � W(R(ti)) � R(ti) � Z
� 1

pi

�
Li. Let c 2

EndQ(Q[X]) be the unique homomorphism induced by W. Then c(QLi) �
QLi for all i < v and Theorem 2 supplies some d 2 Q[X] with c � d � . Since

d � c(1) � W(1) 2 R, we have W � d� for some d 2 R, i.e. R is an E-ring.

Let us call such a ring R an (GHS)-E-ring with prime number set P.

LEMMA 2. Let B be a torsion-free abelian group and R, ti as above. If

B(ti) � f0g, then (B
 R)(ti) � B
 R(ti). (Here `̀
'' is understood to mean

`̀
Z''.)

PROOF. Consider the short exact sequence 0! Z[X]! R!
R=Z[X] � L

i<v

�ÿ
Z
� 1

pi

�
Li

�
=Li

�
! 0, which gives rise to the sequence

0! B
Z[X]! B
 R! L
i<v

B

�ÿ

Z
� 1

pi

�
Li

�
=Li

�
! 0. Note that Z[X]

is a free abelian group and thus B
Z[X] is isomorphic to a direct sum

of copies of B and thus has no elements of infinite pi-height. Let

x 2 (B
 R)(ti), i.e. x has infinite pi-height in B
 R. We may assume

that x 2 B
Z[X]. Then Z
� 1

pi

�
x � B
 R and

�ÿ
Z
� 1

pi

�
x� B

�
Z[X]
�
=

B
Z[X]� � is a pi-torsion group. We infer that Z
� 1

pi

�
x � B
 ÿZ[X]�

Z
� 1

pi

�
Li

� � B
 ÿTi �Z
� 1

pi

�
Li

�
with Ti free abelian. It follows that

Z
� 1

pi

�
x � B
Z

� 1

pi

�
Li and the claim follows. p
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We are now ready for the following:

THEOREM 3. Let B be a torsion-free abelian group and P an infinite set

of prime integers such that B is p-reduced for all p 2 P. Let R be a (GHS)-

E-ring with prime number set P. Then the natural map a : B! B
Z R is

an absolute localization of B.

PROOF. Note that a(x) � x
 1 for all x 2 B. It follows from Lemma 2

that B
R is an E(R)-module. By Proposition 1.2 in [6] we obtain that

EndZ(B
 R) � EndR(B
 R). By Proposition 1.1 in [6] the map a is a lo-

calization of B.

6. Examples

The following is a well-known and highly instructive example.

EXAMPLE 1. Even if A is p-reduced, the tensor product A
 A might

not be p-reduced:

Let p be prime, Jp the ring of p-adic numbers, Zp the ring of integers

localized at p, and p 2 Jp ÿ Zp, a unit. Thus

p � lim
n!1 zn;

zn 2 Zp, in the p-adic topology with p 6 jzn and pnj(pÿ zn) in Jp.

Let A � h1; pi� � Jp, the pure subgroup of Jp generated by 1 and p.

Then A
 A � h1
 1; 1
 p; p
 1; p
 pi� is a pure subgroup of rank 4 of

Jp 
 Jp .

Since p
 pÿ p
 zn � p
 (pÿ zn) we have pnj(p
 pÿ p
 zn). Simi-

larly pnj(p
 pÿ zn 
 p). Hence pnj[(p
 pÿ p
 zn)ÿ (p
 pÿ zn 
 p)] �
(1
 pÿ p
 1)zn. Then there must exist an and bn in the integers such that

1 � znan � pnbn. Hence pnj(1
 pÿ p
 1)znan � (1
 pÿ p
 1)(1ÿ pnbn)

which implies pnj(1
 pÿ p
 1) for all n < v.

Since A is a Zp-module this means 0 6� 1
 pÿ p
 1 is a divisible ele-

ment. Hence A
 A is not reduced.

EXAMPLE 2. Even if A is strongly indecomposable, the tensor product

A
 A might be completely decomposable:

Given distinct primes p, q, r, define A�e1Z
� 1

p

��e2Z
� 1

q

�� (e1�e2)Z
� 1

r

�
.
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Then A is strongly indecomposable of rank 2 with End(A) � Z. We

have

A
 A � b1Z
� 1

p

�� b2Z
� 1

pq

�� b3Z
� 1

pq

�� b4Z
� 1

q

��
�(b1 � b3)Z

� 1

rp

�� (b2 � b4)Z[
1

rq
]� (b1 � b2)Z

� 1

pr

��
�(b3 � b4)Z

� 1

qr

�� (b1 � b2 � b3 � b4)Z
� 1

r

�
where b1 � e1 
 e1; b2 � e1 
 e2; b3 � e2 
 e1; b4 � e2 
 e2.

Define r by r(b1) � b1 � b2; and r(bi) � 0 for 2 � i � 4. Then

r(A
 A) � (b1 � b2)Z
� 1

p

�� (b1 � b2)Z
� 1

rp

��
�(b1 � b2)Z

� 1

pr

�� (b1 � b2)Z
� 1

r

� � (b1 � b2)Z
� 1

pr

�
.

and thus r(A
 A) � A
 A, i.e. r 2 End(A
 A) with r2 � r.

Define s by s(b4) � b3 � b4; and s(bi) � 0 for 1 � i � 3. Then

s(A
 A) � (b3 � b4)Z
� 1

qr

�� (b3 � b4)Z
� 1

qr

��
�(b3 � b4)Z

� 1

q

�� (b3 � b4)Z
� 1

r

� �
� (b3 � b4)Z

� 1

qr

� � A
 A and thus

s 2 End(A
 A); s2 � s. s � r � r � s � 0.

Note that (1ÿ rÿ s)(bi) �

ÿb2 for i � 1

b2 for i � 2

b3 for i � 3

ÿb3 for i � 4

8>>>><>>>>:
and (1ÿrÿs)(A
 A)� ÿb2Z

� 1

p

��b2Z
� 1

pq

��b3Z
� 1

pq

�ÿb3Z
� 1

q

��
�(ÿ b2 � b3)Z

� 1

rp

�� (b2 ÿ b3)Z[
1

rq
]� 0� 0� 0 �

� b2Z
� 1

pq

�� b3Z
� 1

pq

�� (b2 ÿ b3)Z
� 1

pqr

� �: C.
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Observe that C � (b2 ÿ b3)Z
� 1

pqr

�� b2Z
� 1

pq

�
, and thus

A
 A� (b1�b2)Z
� 1

pr

�
|�����������{z�����������}

im(r)

�(b3 � b4)Z
� 1

qr

�
|������������{z������������}

im(s)

� (b2 ÿ b3)Z
� 1

pqr

�� b2Z
� 1

pq

�
|�������������������������{z�������������������������}

im(1ÿrÿs)�C

is

completely decomposable.

7. Torsion-free Abelian Groups of Finite Rank with Small p-rank

Again, let Jp denote the ring of p-adic integers and `̀
'' means `̀
Z''.

We view Jp 
 Jp as a right Jp-module. (Of course, Jp 
 Jp is also a left

Jp-module, but we need to pick a side.)

Let D denote the divisible part of the torsion-free group Jp 
 Jp. There

is a natural (surjective) map m : Jp 
 Jp ! Jp with m(a
 b) � ab. Since Jp

is p-reduced, we have D � ker (m).

Let w � P
1�i�n

ai 
 bi �
P

1�i�n

(ai 
 1)bi 2 ker (m) and v � P
1�i�n

(1
 aiÿ
ai 
 1)bi. Then v 2 D as shown in Example 1. Note that 0 � 1
 m(w) �
1


� P
1�i�n

aibi

�
� P

1�i�n

(1
 ai)bi � w� v. This shows that w � ÿv 2 D

and thus D � ker (m).

We record this as:

REMARK 2. We have Jp 
 Jp � D� (1
 Jp) and m : Jp 
 Jp ! Jp is a

surjective homomorphism such that D � ker (m) is the divisible part of

Jp 
 Jp .

Let G be a torsion-free group and Zp the ring of integers localized at

the prime p. Then each y 2 G
Zp has the form y � a
 1

n
for some a 2 G

and integer n relatively prime to p. An easy argument shows that G is p-

reduced if and only if G
Zp is p-reduced.

Let A be a torsion-free, p-reduced group of, say, rank 2 and p-rank 1. It

is easy to see that there exists a p-pure subgroup A0 of Jp such that 1 2 A0

and A � A0.

NOTATION 1. Let G be a p-reduced, torsion-free Zp-module of finite

rank n�m and n � rp(G) � dim Z=pZ(G=pG) for some prime p. Then G
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can be represented as a pure subgroup of
L

1�i�n

ei Jp generated by

B � L
1�i�n

eiZp together with elements uj �
P

1�i�n

eipij for 1 � j � m and

P � [pij] 2Matn�m(Jp). We call P a representing matrix for G. Of course,

the matrix P is not uniquely determined by G. Moreover, we may, and

will, make the convention that pij � 0 whenever pij 2 Zp .

Fomin [8] has shown that if the entries of the matrix P are algebraically

independent (over Zp) and G
 G is not p-reduced but G is p-reduced, then

rp(G) � 1. The following example shows that this rather strong hypothesis

on P is needed:

EXAMPLE 3. There exists a p-reduced torsion-free Zp-module G such

that rank(G) � 4, rp(G) � 2 and G
 G is not p-reduced. Moreover, G does

not contain a pure subgroup A with rp(A) � 1 and rank(A) � 2.

PROOF. Pick an odd prime p and a; b; g 2 N. such that
���
a
p

,
���
b

p
,���

g
p 2 Jp ÿZp and the field extensions Q [

���
b

p
;
���
a
p

] and Q [
���
b

p
;
���
g
p

] have

dimension 4 over Q with
���
g
p

=2Q [
���
b

p
;
���
a
p

]. Let u � e1
���
a
p 
 e2

�����
bg

p
and

v � e1

�����
ab

p 
 e2
���
g
p

. Let G � e1Zp � e2Zp;u; v

 �

�� e1 Jp � e2 Jp . Let w �
e1
e1a(bÿ1)�e2
e2g(1ÿb)�u
uÿv
v2G
 G � L

1�i; j�2

Jp(ei 
 ej)Jp.

We claim that

w is a p-divisible element of G:

Note that w � �e1 
 e1a(b ÿ 1)� ���
a
p

e1 
 e1
���
a
p ÿ �����

ab
p

e1 
 e1

�����
ab

p ��
�� ���

a
p

e1 
 e2

�����
bg

p ÿ �����
ab

p
e1 
 e2

���
g
p ��

�� �����
bg

p
e2 
 e1

���
a
p ÿ ���

g
p

e2 
 e1

�����
ab

p ��
��e2 
 e2g(1ÿ b)� �����

bg
p

e2 
 e2

�����
bg

p ÿ ���
g
p

e2 
 ���
g
p

e2

�
:

Each term in a square bracket is in the divisible part of Jpei 
 ejJp and

thus w 6� 0 is a divisible element of G
 G.

Now let 0 6� g � e1a1 � e2a2 � ub� vc 2 G. We claim that gp =2G for all

p 2 Jp ÿZp. This allows us to infer that G has no pure subgroup A with

rank(A) � 2 and p-rank rp(A) � 1.

Let g0 � e1a01 � e2a02 � ub0 � vc0 2 G such that gp � g0.
W.l.o.g. we may assume that all coefficients are integers. Using matrix

notation, we get
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a1 � b
���
a
p � c

�����
ab

p
a2 � b

�����
bg

p � c
���
g
p

" #
p � a01 � b0

���
a
p � c0

�����
ab

p
a02 � b0

�����
bg

p � c0
���
g
p

" #
.

Case 1: a1 � b
���
a
p � c

�����
ab

p 6� 0 6� a2 � b
�����
bg

p � c
���
g
p

.

In this case we have p 2 Q[
���
a
p

;
���
b

p
] \Q[

���
b

p
;
���
g
p

] � Q[
���
b

p
] and w.l.o.g.

we may assume that p � ���
b

p
and we get

a1 � b
���
a
p � c

�����
ab

p
a2 � b

�����
bg

p � c
���
g
p

" # ���
b

p �
���
b

p
a1 � b

�����
ab

p � cb
���
a
p���

b
p

a2 � c
�����
bg

p � bb
���
g
p

" #
� a01 � b0

���
a
p � c0

�����
ab

p
a02 � b0

�����
bg

p � c0
���
g
p

" #
and we infer the

equations:

a1 � 0 � a01; b � c0; cb � b0 as well as

a2 � 0 � a02; c � b0; bb � c0 and thus bb � b and cb � c. We now have

that b � 0 � c and g � 0, a contradiction.

Case 2: a1 � b
���
a
p � c

�����
ab

p � 0 but a2 � b
�����
bg

p � c
���
g
p 6� 0 (or vice versa).

In this case we have that a01 � b0 � c0 � 0 � a1 � b � c and thus

a2p � a02, a contradiction to p =2Zp. p

A possible choice for p; a; b; g satisfying our hypotheses would be

p � 19, a � 7, b � 11 and g � 17, because these are distinct primes and

82 � 7 mod 19, 72 � 11 mod 19 and 62 � 17 mod 19. Therefore, by Hensel's

Lemma, we have that
���
7
p

;
�����
11
p

;
�����
17
p 2 J19 .

Next we will introduce a quasi-isomorphism invariant for our group G.

Let G � eiZp;uj; 1 � i � n; 1 � j � k

 �

��
L

1�i�n

ei Jp be a p-reduced

group of rank n� k and rp(G) � n where uj �
P

1�i�n

eipij with pij 2 Jp. Let

G0 � e0iZp;u
0
j; 1 � i � n0; 1 � j � k0

D E
�
� L

1�i�n

e0i Jp be another such group

with u0j �
P

1�i�n0
e0ip
0
ij for 1 � j � k0.

Assume that for all b; 1 � b � n0, the sets Pb � f1; p0bj : 1 � j � k0g are

linearly independent over the field extension K�Q pij; 1� i�n; 1� j� k
ÿ �

.

Then G
G0 is p-reduced:

We have G
G0�L
i; j

ei
e0jZp�
P
i; j

ei
u0jZp�
P
i; j

ui
e0jZp�
P
i; j

ui
u0jZp.

Let y� P
1�i; j�n

ei 
 e0jaij�
P
i; j

ei
u0jbij �
P
i; j

ui
e0jcij�
P
i; j

ui 
 u0jdij 2 G
 G0.
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Note that the ea 
 e0b entry of y is

yab � ea 
 e0baab �
P

j

ea 
 e0bp
0
bjbaj �

P
i

paiea 
 e0bcib �
P
i; j

pai(ea 
 e0b)p0bjdij:

If y is a divisible element, then, by Remark 2, we have

0 � m(yab) � aab �
P

j

p0bjbaj �
P

i

paicib �
P
i; j

paip
0
bjdij �

�
�

aab �
P

i

paicib

�
�P

j

p0bj

�
baj �

P
i

paidij

�
for all a; b.

By our hypothesis that f1; p0bj : 1 � j � k0g is linearly independent

over the field extension K � Q pij; 1 � i � n; 1 � j � k
ÿ �

, we infer that

aab �
P

i

paicib � 0 and it follows that
P

i

uicib 2
L

1�j�n

ejZp. This is a con-

tradiction to n� k � rank(G) unless all aab � 0 � cib.

We infer that
P

j

p0bj(baj �
P

i

paidij) � 0 >for all a; b and thus

baj �
P

i

paidij � 0 for all a; j. Again, it follows that
P

i

uidij 2
L

1�g�n

egZp and

thus dij � 0 for all i; j. Now we infer that baj � 0 for all a; j and we have that

y � 0.

PROPOSITION 8. Let G � eiZp;uj; 1 � i � n; 1 � j � k

 �

��
L

1�i�n

ei Jp

be a p-reduced group of rank n� k and rp(G) � n where uj �
P

1�i�n

eipij

with pij 2 Jp. Let G0 � 
e0iZp;u
0
j; 1 � i � n; 1 � j � k

�
� �

L
1�i�n

ei Jp be

another such group with u0j �
P

1�i�n

eip
0
ij . Let K (K0) be the field extension

of Q generated by the elements pij (p0ij ).

If G is quasi-isomorphic to G0, then K � K0.

PROOF. Note that G �
D� L

1�i�n

eiZp

�
�
� L

1�i�k

uiZp

�E
�
� L

1�i�n

ei Jp

where ui �
P

1�j�n

ejpji for some pji 2 Jp. Put P � [pji] 2Matn�k(Jp).

Let W : G! G0 be a quasi-isomorphism. Then there exist matrices

A � [aij] 2Matn�n(Q);B � [bij] 2Matk�n(Q) such that

W(ei) �
P

j

e0jaji �
P

j

u0jbji. Now
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W(ui) �
P

j

W(ej)pji �
P

j

�P
a

e0aaaj �
P
b

u0bbbj

�
pji �

�P
j

�P
a

e0aaaj �
P
b

P
a

ÿ
e0ap
0
ab

�
bbj

�
pji �

�P
a

e0a
�P

j

�
aajpji �

P
b

p0abbbjpji

��
�

�P
a

e0a [AP]ai � [P 0BP]ai� �.

Since W(ui) 2 G0 for all 1 � i � k, we have that

W(ui) �
P

j

e0jxji �
P

j

u0jyji �
P
a

e0axai �
P

j

ÿP
a

e0ap
0
aj

�
yji �

�P
a

e0a
�

xai �
P

j

p0ajyji

�
. Let X � [xai] 2Matn�k(Q) and

Y � [yai] 2Matk�k(Q). We now have a matrix equation

AP �P 0BP � X �P 0Y of n� k matrices, which is equivalent to

P 0(BP ÿ Y) � X ÿ AP where BP ÿ Y is a square k� k matrix.

Note that

W(ei) �
P

j

e0jaji �
P

j

u0jbji �
P
a

e0aaai �
P

j

P
a

e0ap
0
ajbji �

P
a

e0a(A�P 0B)ai.

Since W is injective, the square matrix
A X
B Y

� �
2Mat(n�k)�(n�k)(Q) is

invertible.

Assume that there is some T 2Matk�k(Jp) such that (BP ÿ Y)T � 0:

Then 0 � P 0(BP ÿ Y)T � (X ÿ AP)T.

This implies that
A X
B Y

� �
PT
ÿT

� �
� APT ÿ XT

BPT ÿ YT

� �
� 0

0

� �
. Since

A X
B Y

� �
is invertible, we infer that T � 0. It follows that BP ÿ Y is in-

vertible.

Let K�Q pij; 1� i�n; 1� j� k
ÿ �

and K0 �Q
ÿ
p0ij; 1� i�n; 1� j � k

�
.

Then BP ÿ Y 2Matm�m(K) and so is (BP ÿ Y)ÿ1, which implies P 0 2
Matk�k(K) and thus K0 � K. By symmetry it follows that K � K0. p

Let A be an E-ring. Let W 2 Hom(A
 A;A). The group A
 A contains

subgroups of the form A
 b and a
 A. There exists a surjective map

ib : A! A
 b with ib(x) � x
 b for all x 2 A. Then cb � W � ib : A! A
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and since A is an E-ring, there is some sb 2 A such that cb(x) �
W(x
 b) � xsb for all x 2 A. By a similar argument, there are elements

pa 2 A such that W(a
 y) � ypa for all y; a 2 A.

Note that W(a
 b) � bpa � sba. It follows that s1 � p1. For a � 1 we

get sb � bp1 and thus W(a
 b) � abp1 for all a; b 2 A.

We conclude that W � p1m where m 2 Hom(A
 A;A) is the map with

m(a
 b) � ab for all a; b 2 A. We have shown:

PROPOSITION 9. If A is an E-ring, then the map m : A
 A! A with

m(a
 b) � ab for all a; b 2 A is a localization.

8. Zero Product Determined Algebras

The following definition can be found in [4] and elsewhere:

DEFINITION 4. Let A be an algebra over the commutative ring C. Then

A is called zero product determined if for any C-module X and every C-

bilinear map jh i : A� A! X the following holds:

If for all a; b 2 A, ab � 0 implies a j bh i � 0, then there exists some

T 2 HomC(A2;X) with x j yh i � T(xy) for all x; y 2 A. As usual A2 denotes

the C-submodule of A generated by the set of products xy for x; y 2 A.

REMARK 3. Let C be a commutative ring and X some C-module. We

will always assume that X is a C-bimodule with sx � xs for all x 2 X

and all s 2 C. Let X;Y ;W be C-modules. Then each C-linear map

jh i : X � Y !W is automatically a middle linear map, i.e. xs j yh i �
x j syh i for all x 2 X; y 2 Y and s 2 C. This means that jh i factors

through X 
C Y. We will write `̀
'' instead of `̀
C''.

PROPOSITION 10. Let A be a C-algebra. Consider the maps

A� A!
 A
 A!m A2 � spanCfxy : x; y 2 Ag where m(x
 y) � xy.

The following are equivalent:

(a) Let X be some C-module and u 2 HomC(A
 A;X). If ker (m � 
) �
ker (u � 
), then there exists some T 2 HomC(A2;X) making the following

diagram commutative:
A� A !
 A
 A !m A2

# u T� �#

X

: Note that if 12A,

then A � A2.

(b) A is zero product determined.
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(c) Let X be some C-module and u 2HomC(A
A;X). If ker (m � 
) �
ker (u � 
), then ker (m) � ker (u).

PROOF. Assume that (a) holds and let jh i : A� A! X be a C-bi-

linear map such that a j bh i � 0 whenever ab � 0. Then there exists a un-

ique u 2 HomC(A
 A;X) such that a j bh i � u(a
 b) for all a; b 2 A. Thus

u(a
 b) � 0 whenever ab � 0, i.e. ker (m � 
) � ker (u � 
). By clause (a),

there is some T 2 HomC(A2;X) such that u � T � m. It follows that

a j bh i � (T � m)(a
 b) � T(ab) for all a; b 2 A and (b) holds.

For the converse, assume that (b) holds. With the notations in (a), define

jh i : A� A!X by a j bh i � u(a
b) for all a; b 2 A. Since ker (m � 
) �
ker (u � 
) we have that ab � 0 implies a j bh i � 0 for all a; b 2 A. By clause

(b), there exists some T 2 HomC(A2;X) such that a j bh i � T(ab) for all

a; b 2 A. Therefore u(a
 b) � a j bh i � T(ab) � T(m(a
 b)) for all a; b 2 A.

This shows that u � T � m and (a) follows.

That (a) implies (c), is a trivial consequence of the commutative diagram

in (a). For the converse, if ker (m) � ker (u), the map T may be defined by

T
ÿP

i

aibi

�� u
ÿP

i

ai 
 bi

�
, since

P
i

aibi� 0 means m
ÿP

i

ai 
 bi

�� 0. p

Note that the map T in clause (a) is unique since the map m is surjective.

DEFINITION 5. Let C be a commutative ring and A a C-algebra and X a

C-module. Then Hom0
C(A;X) � fu 2 HomC(A
 A;X) : If x; y 2 A with

xy � 0, then u(x
 y) � 0g.

Then A is zero product determined if and only if for any

u 2 Hom0
C(A;X) there exists a (unique) T 2 HomC(A2;X) such that

u � T � m.

Note that for any T 2 HomC(A2;X) we have that T(m(x
 y)) �
T(xy) � T(0) � 0 whenever xy � 0, i.e. T � m 2 Hom0

C(A;X). This shows

that

HomC(A2;X) !�m Hom0
C(A;X)! 0 is exact. We have shown:

PROPOSITION 11. The C-algebra A is zero product determined if and

only if HomC(A2;X) � Hom0
C(A;X) via the natural map � m.

Assume that 12A has no zero divisors and is zero product de-

termined. Then Hom0
C(A;X) � HomC(A
 A;X) � HomC(A;X) via the

natural map � m.
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PROPOSITION 12. Let C be an integral domain and A a torsion-free

C-algebra with 1 2 A and without zero divisors. Then A is a zero

product determined algebra if and only if A is a subring of the field of

fractions of C.

PROOF. Note that ker (m � 
) � f(a; 0) : a 2 Ag [ f(0; a) : a 2 Ag �
ker (u � 
) for all u 2 HomC(A
 A;X). Consider the identity map

id : A
 A! A
 A. If A is zero-product determined, then there exists a

map T : A! A
 A such that id � T � m and thus m is an isomorphism.

This shows that the C-rank of A is 1 and thus A is a subring of the field of

fractions of C. The converse is obvious. p

COROLLARY 6. The ring Jp of p-adic integers is not zero product

determined.

This motivates a weaker condition:

DEFINITION 6. Let C be a commutative ring and A a C-algebra. We call

A zero product self-determined, if A has the property (a) of Proposition 11

with `̀ X'' replaced by `̀ A2''.

THEOREM 4. Let A be an integral domain. The following are equiva-

lent:

(a) The ring A is a zero product self-determined Z-algebra.

(b) The map m : A
 A! A is a (surjective) localization of A
 A.

(c) The ring A is an E-ring.

PROOF. Because of Proposition 9 and 10, we only have to show that (b)

implies (c). To this end, pick any b 2End(A) and consider idA
b : A
A!
A
 A. Then there exists some T : A! A withm � (idA 
 b) � T � m and thus

ab(b) � T(ab) for all a; b 2 A. Let a � 1. Thenb(b) � T(b) follows for all b 2 B

and thus ab(b)� b(ab) for all a; b2A. Now, for b� 1, we get b(a)� ab(1)

for all a 2 A. Since b 2 End(A) was arbitrary, it follows that A is an E-ring.

Note that the hypothesis that A has no zero divisors was not used in the

previous argument. p

We may use the previous argument and Proposition 9 to obtain the

following characterization of E-rings:
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COROLLARY 7. Let A be some ring (viewed as a Z-algebra). The

following are equivalent:

(a) The natural map m : A
 A! A is a localization.

(b) The ring A is an E-ring.
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