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A graph related to the join of subgroups of a finite group

HADI AHMADI (*) - BIJAN TAERI (**)

ABSTRACT - For a finite group G different from a cyclic group of prime power order,
we introduce an undirected simple graph D(G) whose vertices are the proper
subgroups of G which are not contained in the Frattini subgroup of G and two
vertices H and K are joined by an edge if and only if G�hH ;Ki. In this paper we
study D(G) and show that it is connected and determine the clique and chromatic
number of D(G) and obtain bounds for its diameter and girth. We classify finite
groups with complete graphs and also classify finite groups with domination
number 1. Also we show that if the independence number of the graph D(G) is at
most 7, then G is solvable.
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1. Introduction

There are different ways to associate to a group a certain graph. In this

context, it is interesting to ask for the relation between the structure of the

group, given in group theoretical terms, and the structure of the graph,

given in the language of graph theory.

As a pioneer, BosaÂk [5], in 1964, defined the graph of subsemigroups

of a semigroup. Inspired by his work, CsaÂkaÂny and PollaÂk [6] in 1969,

studied the intersection graph of subgroups of a finite group. Zelinka

continued the work on the intersection graph of subgroups of a finite

abelian group [12]. Also Shen [11] in 2009, classified finite groups with
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disconnected intersection graph of subgroups and solved a problem

posed by CsaÂkaÂny and PollaÂk [6]. More work on graphs associated to

subgroups of a group or submodules of a module or ideals of a ring can be

found in [9, 4, 1, 7].

Motivated by previous studies on the graph of algebraic structures, for

any finite group G different from a cyclic group of prime power order, we

define an undirected simple graph D(G) whose vertices are the proper

subgroups of G which are not contained in the Frattini subgroup of G and

two vertices H1 and H2 are joined by an edge if hH1;H2i � G. Our main

goal is to study the connection between the algebraic properties of a group

and the graph theoretic properties of the graph associated to it.

Throughout this paper all groups are finite different from a cyclic

pÿgroup. For a group G, p(G) denotes the set of all prime divisors of jGj.
For p 2 p(G), the set of all Sylow pÿsubgroups of G is denoted by Sylp(G)

and np :� jSylp(G)j. M(G) denotes the set of all maximal subgroups of G

and F(G) is the Frattini subgroup of G which is defined as the intersection

of all maximal subgroups of G.

Let D be a graph with vertex set V (D). The order of D is the number of

its vertices, that is jV (D)j. The degree of a vertex v denoted by deg(v) is the

number of edges incident to v. For distinct adjacent vertices v1 and v2 we

write v1 � v2. If D is connected we denote by d(v1; v2) the length of a

shortest path between v1 and v2. The diameter of D is defined as

d(D) :� maxfd(v1; v2) j v1; v2 2 V (D)g. The girth of D, denoted by g(D), is

the length of a shortest cycle and a graph with no cycle has infinite girth. A

tree is a connected graph which does not contain a cycle.

A star is a tree consisting of one vertex adjacent to all others. A

complete graph is a graph in which every pair of distinct vertices are

adjacent. A complete graph with n vertices is denoted by Kn. By a clique

in a graph D we mean a complete subgraph of D and the order of a largest

clique of D is called the clique number of D and is denoted by v(D). For a

graph D, let x(D) denote the chromatic number of D, that is the minimum

number of colors which can be assigned to the vertices of D such that

every two adjacent vertices have different colors. Let S � V (D), denote

by ND[S] the set of vertices in D which are in S or adjacent to a vertex in S.

If ND[S] � V (D), then S is said to be a dominating set of vertices in D. The

domination number of a graph D, denoted by g(D) is the minimum size of a

dominating set of the vertices in D. A subset X of the vertices of D is called

an independent set if the induced subgraph on X has no edges. The

maximum size of an independent set in a graph D(G) is called the in-

dependence number of D and is denoted by a(D). All other notations and
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definitions are standard; in the scope of group theory and graph theory;

see for instance [10, 3].

In this paper, we study some graph properties of the graph D(G). We

see that D(G) is always connected with diameter at most 3 and if it contains

a cycle, its girth is always 3 or 4. Also we classify finite groups with com-

plete graphs and also groups whose graphs have domination number 1. We

show that the clique and chromatic number of this graph is equal to the

number of maximal subgroups of G. Some results about the independence

number of D(G) are established. Regularity of D(G), in some partial cases, is

dealt with.

2. Connectivity, clique, chromatic and domination number

It is easy to see that a group G has a unique maximal subgroup if and

only if G is a cyclic pÿgroup. We emphasize that in this work G is a finite

group different from a cyclic pÿgroup where p is a prime number.

DEFINITION 2.1. Let G be a group and F(G) denotes its Frattini

subgroup. We associate a graph D(G) to G whose vertex set is

fH < G j H<ÿjF(G)g, consists of proper subgroups H which are not con-

tained in F(G), with two vertices H1 and H2 adjacent if and only if

G � hH1;H2i.

REMARK 2.2. Let G be a group and H � G. We have H � F(G) if and

only if hH;Ki <ÿ4 G for each 1 6� K <ÿ4 G. Because F(G) is exactly the set of

non-generator elements of the group. Thus to avoid isolated vertices we

consider proper subgroups which are not contained in F(G).

In this section we firstly find the order of this graph and determine its

clique and chromatic number. We classify groups with complete graphs. In

the sequel we show that this graph is connected and classify groups whose

graphs have domination number 1.

PROPOSITION 2.3. D(G) is an (n1;n2; . . . ;nt)-regular graph for some

ni � 1, 1 � i � t and jV (D(G))j � Pt

i�1

jG : NG(Hi)j.

PROOF. The vertex set V (D(G)) of the graph, is Gÿinvariant under the

conjugacy action of G. Let [H1]G; [H2]G; . . . ; [Ht]G be the Gÿorbits of this

A graph related to the join of subgroups of a finite group 283



action. Hence V (D(G)) � [t
i�1[Hi]G and so

jV (D(G))j �
Xt

i�1

j[Hi]Gj �
Xt

i�1

jG : NG(Hi)j:

Also for each i 2 f1; 2; . . . ; tg and each g 2 G, we have deg(Hi) � deg(Hg
i ).

Because there exists a bijection u : ND[Hi]ÿ!ND[Hg
i ] such that u(Hx

j )�Hxg
j ,

where ND[Hi]�fHx
j 2V (D(G)) j Hx

j � Hig for x 2 G; 1 � j � t. Therefore

jND[Hi]j � jND[Hg
i ]j and D(G) is (n1;n2; . . . ;nt)ÿregular. p

PROPOSITION 2.4. For any group G we have x(D(G)) � v(D(G)) �
jM(G)j.

PROOF. Firstly note that v(D(G)) � x(D(G)). Let the vertex M 2M(G)

be colored with a color C. Now we can color all subgroups contained in M (if

any exist!) with C and since all vertices out ofM(G) are contained in ele-

ments ofM(G), we have a coloring for D(G). Hence x(D(G)) � jM(G)j.
Now note thatM(G) is a clique for D(G) and so jM(G)j � v(D(G)). This

finishes the proof. p

THEOREM 2.5. D(G) is complete if and only if G is one of the following

types:

(1) G � P� P, where P is a group of prime order.

(2) G � P�jQ, where P and Q are groups of prime order.

(3) G � Q8, the quaternion group of order 8.

PROOF. If G is one of the types (1), (2), (3), then clearly each vertex of

the graph is a maximal subgroup of G and so D(G) is complete.

Conversely, let D(G) be complete. We have jM(G)j � 2. Fix M 2M(G)

and x 2M n F(G). Thus hxi 2 V (D(G)). Now hhxi;Mi �M, that is hxi is

not adjacent to M and by completeness of D(G) we have M � hxi. Let

jxj � pn1

1 � � � pnk

k , where the pi's are distinct prime numbers, k � 1, ni � 1 and

1 � i � k.Thenthereexistelementsxi 2 G such that jxij � pni

i ; 1 � i � k and

M � hxi � hx1i � hx2i � � � � � hxki. Obviously there exists j 2 f1; 2; . . . ; kg
such that hxji<ÿjF(G). Again by completeness ofD(G) we have M � hxji and so

M is a cyclic pÿgroup, where p � pj. Now two cases hold:

Case 1. F(G) � 1. If jp(G)j � 1, then G is an elementary abelian

pÿgroup, that is, G � G

F(G)
� Zp

n, for some n � 2. If n � 3, then clearly
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D(G) is not complete. Hence n � 2 and so G � Zp �Zp and thus G is of

type (1). Now let jp(G)j � 2. Since all maximal subgroups of G are cyclic, all

Sylow subgroups of G are also cyclic and by [10, Theorem 10.1.10], G is

solvable and splits over G 0, the derived subgroup of G. So there exists a

subgroup K of G such that G � G 0 �jK and jG 0j and jKj are prime num-

bers. Hence G has type (2).

Case 2. F(G) 6� 1. Let M1;M2 2M(G). There exist prime numbers

p1; p2 and positive integers n1;n2 such that jM1j � pn1

1 , jM2j � pn2

2 . Since

F(G) 6� 1, p1 � p2. This means that all maximal subgroups of G are cyclic

pÿgroup, for some prime p. Hence jGj � pn, for some n � 1 and all max-

imal subgroups of G are cyclic. Now by [10, Theorem 5.3.4] which classifies

finite pÿgroups with a cyclic maximal subgroup, up to isomorphism, G has

one of the following types:

(i) Zpn

(ii) Zpnÿ1 �Zp

(iii) hx; a j xp � 1 � apnÿ1
; ax � a1�pnÿ2i; n � 3

(iv) The dihedral group D2n ;n � 3, of order 2n

(v) Generalized quaternion group Q2n � hx; y j x2nÿ1 � 1; y2 � x2nÿ2
,

xy � xÿ1i; n � 3

(vi) Semidihedral group SD2n � hx; a j x2 � 1� a2nÿ1
; ax � a2nÿ2ÿ1i;

n � 3.

Recall that all groups in the paper are different from a cyclic group of

prime power order, so the case (i) cannot happen.

Suppose that (ii) holds. If n � 3, then G has a non-cyclic maximal

subgroup and so n � 2. Thus G has type (1).

Now suppose that (iii) holds. Then clearly hxi and hx; apnÿ2i are two

distinct vertices of D(G) which are not adjacent, contradicting the com-

pleteness of D(G) so this case does not happen.

Similarly the cases (iv) and (vi) cannot happen, as we can find two

distinct vertices which are not adjacent.

Finally suppose that (v) holds. If n � 3, then G � Q8 and D(G) � K3 so

D(G) is complete. When n � 4, it suffices to consider two distinct vertices

hyi and hy; x2nÿ3i of D(G) which are not adjacent again contradicting the

completeness of D(G). Hence in this case the only possibility is Q8. p

LEMMA 2.6. For a group G we have the following properties:

(1) D(G) is a connected graph with d(D(G)) � 3.
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(2) If D(G) contains a cycle, then 3 � g(D(G)) � 4 .

(3) For an arbitrary normal subgroup N of G with N � F(G); we have

a(D(G)) � a
�
D
� G

N

��
.

PROOF. (1) Let H1;H2 be arbitrary vertices of V (D(G)). Since

Hi <ÿjF(G), i � 1; 2, there exist Mi 2 M(G) such that HiMi (may be

M1 �M2). Therefore hH1;M1i � G � hH2;M2i and H1 �M1 �M2 � H2,

which means that D(G) is connected and d(D(G)) � 3.

(2) Let M1;M2 2 M(G) and take z 2 G n (M1 [M2). If hzi <ÿ4 G, then

we have a triangle in D(G) with vertices fM1; hzi;M2g, hence

g(D(G)) � 3. Thus let G � hzi and jzj � p1
n1 � � � pk

nk , where the pi's are

distinct prime numbers k � 2 and ni � 1 for 1 � i � k. Hence

G � Zp1
n1 ...pk

nk . If k � 3, then jM(G)j � 3 and clearly g(D(G)) � 3. Now

let k � 2. If n1 � 1 or n2 � 1, then D(G) is a star graph and so does not

contain a cycle; a contradiction. Thus n1 � 2 and n2 � 2, from which it

follows easily that g(D(G)) � 4.

(3) This is straightforward. p

PROPOSITION 2.7. (1) If a(D(G)) � 7, then G is a solvable group.

(2) If G is a nilpotent group such that D(G) is non-complete, then

a(D(G)) � maxfjG : NG(H)j j H 2 V (D(G))g � 1:

PROOF. (1) Let �G :� G

F(G)
. By (3) of Lemma 2.6, we have a(D(�G)) �

a(D(G)). Hence a(D(�G)) � 7. Thus each maximal subgroup �M of �G contains

at most 7 proper non-trivial subgroup. Therefore if jp( �M)j � 2 and �M is non-

nilpotent, by an inspection we can show that each Sylow subgroup of �M is

cyclic. Hence �M is supersolvable, thus �G is solvable (see [10, Theorems

10.1.10 and 10.3.4]). Since F(G) is solvable, G is solvable.

(2) Suppose, if possible, that there exists a maximal subgroup of G of

prime order p. Then by nilpotency of G, jGj � pq, where q is a prime. Since

G is non-cyclic of prime power order, we have G � Zp �Zq, which implies

that D(G) is complete, a contradiction. Therefore the order of every max-

imal subgroup of G is not prime.

Now let H 2 V (D(G)). There exists a maximal subgroup M of G such

that H �M. Since G is nilpotent, every maximal subgroup M of G is

normal. Therefore Hg �M for each g 2 G. Hence [H]G [ fMg is an in-

dependent set of D(G). Since H is arbitrary, the result follows. p
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REMARK 2.8. The converse of Proposition 2.7 (1), does not hold, as it is

shown by the elementary abelian group Zm
p , where m � 3, p � 7.

Recall that, by [10, Theorem 9.2.1], every finite solvable group G has a

Sylow basis, namely a set of mutually permutable Sylow subgroups, one for

each prime dividing the group order.

THEOREM 2.9. g(D(G)) � 1 if and only if G is solvable with a Sylow

basis fP1;P2g such that P1 is a cyclic maximal subgroup of G and F(G) is a

maximal subgroup of P1, or G is a pÿgroup of order pn, where n is a pos-

itive integer and G is isomorphic to one of the groups:

(1) Zp �Zpnÿ1 , p is a prime number

(2) hx; a j xp � 1 � apnÿ1
; ax � a1�pnÿ2i; p is a prime number and

n � 3

(3) The dihedral group D2n ;n � 3, of order 2n

(4) Generalized quaternion group Q2n ;n � 3

(5) Semidihedral group SD2n � hx; a j x2 � 1 � a2nÿ1
; ax � a2nÿ2ÿ1i;

n � 3.

PROOF. First let G be a solvable group with Sylow basis fP1;P2g,
where P1 is a maximal subgroup of G and F(G) is a maximal subgroup of P1.

We show that fP1g is a dominating set for D(G). Suppose that H2
V (D(G)) n fP1g. If H < P1, then HF(G) � P1 and maximality of F(G) in P1

implies that HF(G) � P1. Since G � P1P2 � HF(G)P2 � HP2, and thus

H � P1 a contradiction. Therefore H<ÿjP1 and so hH;P1i � G, that is

H � P1.

Now let G be one of the types (1); (2); (3); (4); (5), then �G :� G

F(G)
� Zm

p ,

m � 2. By [10, Theorem 5.3.4] G has a cyclic maximal subgroup A. Let

�A :� A

F(G)
, which is a cyclic maximal subgroup of �G, so �A � h�ai for some

�a 2 �G and j�Aj � pmÿ1. Since �G is an elementary abelian pÿgroup, m � 2.

Thus jF(G)j � pnÿ2. If K 2 V (D(G)) n fAg, then K<ÿjA, because A is cyclic.

Therefore hK;Ai � G and so K � A. Thus if G has one of the types (1)-(5),

then g(D(G)) � 1.

Conversely suppose that g(D(G)) � 1 and D � fAg is a dominating

set for D(G). We claim that A is a cyclic maximal subgroup of G. If not,

then there exists a maximal subgroup M of G such that A <ÿ4 M and A is

not adjacent to M, which is a contradiction. Hence A is a maximal

subgroup of G. Now take a 2 A n F(G). Then the vertex hai is not ad-
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jacent to A and so A � hai and the claim is proved. Clearly F(G) is a

maximal subgroup of A. Therefore G is a solvable group and A is of

primary index (see [10, Exercise 10.5.7 and 5.4.3-(iii)]). Suppose that

jG : Aj � pn, where p is prime and n � 1 and P is a Sylow pÿsubgroup

of G. If G is a pÿgroup, then by [10, Theorem 5.3.4] G is one of the

types (1), (2), (3), (4) and (5). Therefore suppose that G is not a

pÿgroup. Since G is a solvable group, it posseses a Sylow basis

fP1;P2; . . . ;Pl;Pg, l � 1.

Without loss of generality we can assume that Pi � A; 1 � i � l, (see

[8]). If P1
<ÿ4 A, then P1 is not adjacent with A, a contradiction. Thus

A�P1, that is fA;Pg is a Sylow basis of G as desired. This completes

the proof. p

3. Bipartiteness and regularity

In this section we firstly investigate D(G), when it is a cycle or when it is

bipartite. Then we classify groups whose graphs are rÿregular for

r 2 f3; 4g.

PROPOSITION 3.1. (1) D(G) is a cycle if and only if G � Q8 or Zp2
1
p2

2
or

Z2 �Z2, where p1; p2 are distinct prime numbers.

(2) D(G) is bipartite if and only if G � Zp
n1
1

p
n2
2

where ni � 1; i 2 f1; 2g.

PROOF. (1) If G is one of the groups Q8 or Z2 �Z2, then D(G) � K3.

Also if G � Zp2
1
p2

2
, then D(G) � C4 where Cn denotes the cycle of length

n;n � 1.

Conversely let D(G) be a cycle. By Lemma 2.6, D(G) is connected

and d(D(G)) � 3. Hence D(G) 2 fC3;C4;C5;C6;C7g. Suppose, if possible,

that D(G) � C5 and V (D(G)) � fH1;H2;H3;H4;H5g and D(G) is:

H1 � H2 � H3 � H4 � H5 � H1. It is easy to see that jM(G)j � 2, say

M(G) � fH1;H2g. Thus H4 � F(G) so H4 =2V (D(G)), a contradiction.

Similarly D(G) 2 fC6;C7g, is impossible.

Therefore D(G) 2 fC3;C4g. First let D(G) � C3 so D(G) is complete and

by Theorem 2.5, G is isomorphic to one of the following: Zp �Zp or Zp�jZq

or Q8. Clearly V (D(G)) �M(G). If G � Zp �Zp, then D(G) � Kp�1 and so

p � 2. Hence G � Z2 �Z2 . Now suppose, if possible, that G � Zp�jZq. We

can assume that p 6� q and so we have V (D(G)) � Sylp(G) [ Sylq(G). Thus

jV (D(G))j � np � nq � 1� p > 1� 2 � 3 a contradiction. Therefore this

case is impossible.
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Now let D(G) � C4 . Then jM(G)j � 2 and G � hgi is a cyclic group.

Suppose that jgj � pn1

1 pn2

2 � � � pnk

k , where the pi's are distinct primes and

ni � 1; 1 � i � k. Since jM(G)j � 2 we conclude that k � 2 and

G � Zp
n1
1

p
n2
2

. Let V (D(G)) � fH1;H2;H3;H4g such that M(G) � fH1;H2g
and D(G) is the cycle: H1 � H2 � H3 � H4 � H1. If n1 � 3 or n2 � 3, then

D(G) contains K1;3 as a subgraph, a contradiction. Therefore (n1;n2) 2
f(1; 1); (1; 2); (2; 1); (2; 2)g. If (n1;n2) 2 f(1; 1); (1; 2); (2; 1)g, then jV (D(G))j 2
f2; 3g. contradicting jV (D(G))j � 4. Thus (n1;n2) � (2; 2), that is G � Zp2

1
p2

2

and the proof is complete.

(2) If D(G) is bipartite, it contains no odd cycle and this implies that

jM(G)j � 2. Hence G is cyclic and the proof of (1) gives the result. The

converse is obvious. p

PROPOSITION 3.2. (1) D(G) is 3ÿregular if and only if G has one of the

types Zp3
1
p3

2
, Z3 �Z3 or S3, where p1 and p2 are distinct primes and S3 is

the symmetric group on three symbols.

(2) D(G) is 4ÿregular if and only if G � Zp4
1
p4

2
.

PROOF. (1) If G � Zp3
1
p3

2
, then one can see that D(G) has exactly six

vertices and G has exactly two maximal subgroups with no common

neighbors. Thus D(G) is 3ÿregular. In fact D(G) � K3;3. If G � S3 or

G � Z3 �Z3, then D(G) � K4.

Conversely let D(G) be 3ÿregular. Thus jM(G)j � 4. First let

jM(G)j � 2. Therefore G is cyclic with two distinct prime divisors p1;p2.

Note that the maximal subgroups have no common neighbors. So

jV (D(G))j � 6 and thus G � Zp3
1
p3

2
. Now suppose that jM(G)j � 4. Then

D(G) � K4 and by Theorem 2.5, G � P�jQ or G � P� P, where P and Q

are groups of prime order. If G � P� P, then D(G) � Kp�1 and so p � 3,

Fig. 1.
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that is G � Z3 �Z3. If G � P�jQ, then V (D(G)) � Sylp(G) [ Sylq(G) and

obviously we have jPj � 3 and jQj � 2. Thus G � S3.

Finally let jM(G)j � 3. By [2, Lemma 1] G is a cyclic group of order

pnqmrk, where p; q; r are distinct primes and n;m; k � 1 or G is a

2ÿgroup. In both cases one can easily see that jV (D(G))j � 6 and any

two of the maximal subgroups of G have no common neighbors as

shown in Figure 1. Now note that F(G) �Mi \Mj, for each Mi;Mj 2
M(G); 1 � i; j � 3. So if H is a non-maximal vertex of D(G), then

H � F(G), which is a contradiction. Thus this case does not hold and the

proof is complete.

(2) Let G � Zp4
1
p4

2
. Then jV (D(G))j � 8 and jM(G)j � 2. So D(G) has six

non-maximal vertex and clearly it is 4ÿregular. In fact D(G) � K4;4.

Conversely if D(G) is 4ÿregular, then jM(G)j � 5. First let jM(G)j � 5.

So D(G) � K5 and by Theorem 2.5, we have G � P� P or G � P�jQ where

P and Q are groups of prime orders. By an easy inspection we can see that

neither case can happen. We claim that if jM(G)j � 4, then D(G) cannot be

4ÿregular and this case also does not hold. In fact if D(G) is 4ÿregular, then

G has a non-maximal subgroup H which contained in exactly one maximal

vertex of D(G), as F(G) �Mi \Mj, for each Mi;Mj 2M(G); 1 � i; j � 4.

Since deg(H) � 4, D(G) has another non-maximal vertex different from H,

say K. Similarly K is contained in exactly one maximal vertex of D(G). This

shows that there exists a maximal vertex of D(G) whose degree is greater

than 4, which is a contradiction. Thus the claim is proved.

Now let jM(G)j � 3. Similar to the proof of (1), we have jV (D(G))j � 6

and so any two maximal subgroups of G have a common neighbour and

every maximal subgroup of G contains exactly one vertex of the graph

which is shown in Figure 2.

Fig. 2.
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Again by [2, Lemma 1] G is a cyclic group of order pnqmrk, where p; q; r

are distinct primes and n;m; k � 1 or G is a 2ÿgroup such that
G

F(G) � Z2 �Z2. If G is of the first type, then obviously each maximal

subgroup of G contains more than one vertex of D(G), which is a contra-

diction. If G is of the second type, then each maximal subgroup of G is

cyclic. To see this suppose that H is a non-maximal vertex of the graph.

Then there is a maximal subgroup M of G such that H <ÿ4 M. Now take

x 2M n (H [ F(G)). Then hxi 2 V (D(G)) and hxi �M. But exactly one

vertex of D(G) is contained in M. Hence M � hxi. Therefore F(G) is a

maximal subgroup of H and also H is maximal in M and so we have:

jG : F(G)j � jG : MjjM : HjjH : F(G)j � 23;

which is a contradiction.

Finally let jM(G)j � 2. Then G is cyclic with two distinct prime divisors

p1; p2. Since D(G) is 4ÿregular, every maximal subgroup of G contains

exactly three non-maximal vertex of the graph. Also maximal subgroups of

G have no common neighbor. Therefore G � Zp4
1
p4

2
and D(G) � K4;4, which

completes the proof.
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