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Galois points for a plane curve and its dual curve

SATORU FUKASAWA (¥) — KEI MIURA (¥%*)

ABSTRACT - A point P in projective plane is said to be Galois for a plane curve of
degree at least three if the function field extension induced by the projection
from P is Galois. Further we say that a Galois point is extendable if any birational
transformation by the Galois group can be extended to a linear transformation of
the projective plane. In this article, we propose the following problem: If a plane
curve has a Galois point and its dual curve has one, what is the curve? We give
an answer. We show that the dual curve of a smooth plane curve does not have a
Galois point. On the other hand, we settle the case where both a plane curve and
its dual curve have extendable Galois points. Such a curve must be defined by
X? — y°z9-¢ = 0, which is a famous self-dual curve.
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1. Introduction

Let the base field K be an algebraically closed field of characteristic
p =0 and let C C P? be an irreducible plane curve of degree d > 3. We
recall the notions of dual curve and Galois point.

Let P> be the dual projective plane which parameterizes projective
lines of P? and let (X :Y : Z), (U :V : W) be systems of homogeneous
coordinates of > and of P** respectively. We denote by Sing(C) the sin-
gular locus of C. If C is defined by a homogeneous polynomial (X, Y, Z),
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we have a rational map y =y, :C-—> P?*, which sends a smooth point
. . oFr oF oF 5

R P - ek _

Q@ € C\ Sing(C) to the point ( % @) : e @) : 57 (Q)) el para

meterizing the projective tangent line ToC to C at Q. This rational map is
called the dual map of C and (the closure of) the image of C is called the dual
curve, which is denoted by C*. It is well-known that projective duality
C** = C holds (see, for example, [7, 11]).

If the function field extension K(C)/K(Pl) induced by the projection
np : C——> P! from a point P € P? is Galois, then the point P is said to be
Galois. Moreover, denoting by Gp the Galois group associated to the
projection zp, we say that a Galois point P is extendable if any birational
transformation of C induced by the Galois group Gp can be extended to a
linear transformation of P2,

The notion of Galois point was introduced by H. Yoshihara (see e.g.
[4, 9, 13]) and it is an interesting topic on plane curves. For instance, a
well-known theorem of Noether and later results assure that if C c P? is
a smooth curve of degree d, then the minimum degree of a morphism
C — P! is d—1, and all the maps of degree d —1>2 and d >5 are
projections 7p : C—> P! from some point P € C and P € P? \ C respec-
tively (cf. [3, 5, 10]). Thus describing Galois points on a smooth plane
curve is equivalent to detect all the Galois coverings C — P! having
minimal degrees.

The singular curve defined by X? — Y°Z% ¢ =0, where ¢ > 1 and d, e
are coprime, has lovely properties. Its dual curve is defined by the same
equation (up to a projective equivalence, see Lemma 2.5). Therefore, this
curve is a “self-dual” curve. It has an (extendable) Galois point (1:0: 0)
(Proposition 2.3) and its dual curve has one, by the self-duality. In the light
of this fact, we propose the following problem.

ProBLEM 1.1. If a plane curve has a Galois point and its dual curve
has one, what is the curve? Is it a self-dual curve?

In this article, we give an answer. We show the following for smooth
curves.

THEOREM 1.2. Let C be a smooth plane curve of degree d > 3. Then,
there exist no Galotis points for the dual curve of C.

By projective duality, we have the following.
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COROLLARY 1.3. Let C be a plane curve of degree d > 3 and let C* be
the dual curve. If both C and C* have Galois points, then they are singular.

We say that a Galois point P is inner (resp. outer) if P € C \ Sing(C)
(resp. P € IP*\ (). In the case where Galois points are extendable, we show
the following characterization theorems.

THEOREM 1.4. Let C be a plane curve of degree d > 3 and let C* be the
dual curve of C.

(I) The following conditions are equivalent.
1) C and C* have extendable outer Galois points.
(2) C 1s projectively equivalent to the plane curve defined by
X4 —yezd=¢ =0 for some e > 1.

(IT) The following conditions are equivalent.
1) C has an extendable outer Galois point and C* has an extend-
able inner Galois point.
2) C and C* have extendable inner Galois points.
3) C 1is projectively equivalent to the plane curve defined by
X4 _yd-lz =,

To prove our result we will connect Galois points for a plane curve C and
its dual curve. In particular, we will show that — given an extendable Galois
point P for C' — the Galois group Gp has a natural action on the dual curve
C*, and such an action preserves the fibers of a certain projection
np: CF — P! Namely,

ProposiTION 1.5. Let C be a plane curve with an extendable Galois
point P € P? and let Gp be the Galois group. Any o € Gp induces a
natural linear transformation & : P% — P* (see Lemma 2.2 for details).
Then, there exists a unique point P € P** such that the map o — @ induces
an mjective homomorphism

Gp— G[P] := {t € Bir(C*) | «(C* n¢\ {P}) C ¢ for a general line ¢ > P},

where Bir(C*) is the group of all birational tmnsfomatjons of C*. In
particular, the degree of the projection np : C* ——> P! from P is at least the
order of Gp.

In the next Section we will recall some preliminary facts about projective
duality and Galois group, and we will achieve Proposition 1.5. Section 3 and
Section 4 will be devoted to prove Theorems 1.2 and 1.4 respectively.
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2. Preliminaries

Let C be an irreducible plane curve of degree d > 3. If a point P € P* is
not in C, we define the multiplicity of C at P as zero. We denote by d* the
degree of the dual curve C*.

We recall duality principle between P> and P?*. For a projective line
¢ c P?, we denote by [¢] the point in P?* corresponding to ¢. If ¢ is de-
fined by uX + vY + wZ = 0 for some u, v, w € K, then the point [¢] € P**
is given by (v : v : w). For a point P € ]P2, we denote by [P] C P?* the line
corresponding to P, which parameterizes the star of lines through P.
If P is defined by w1 X +v1Y + w1 Z = ueX + voY +weZ = 0 for some
Uy, U2, V1, V2, w1, we € K, then [P] is the line passing through the two
points (u; : v1 : wy), (ug : vs : we) € P?*. Then, we have the following ele-
mentary facts.

LEMMA 2.1. Let P e P* be a point and let £ C P* be a line. Then,
[[P1] = P and [[4]] = ¢ hold. Furthermore,

Pct s ] elP]
holds.

LeEmmA 2.2.  Let ¢ be a linear transformation of P? and let Ag be a
matric representing ¢, i.e. §X Y : Z) = (X,Y,Z)Ag. Then the induced
map E:]PZ* — Pz*;[f]H[qb(ﬂ)] 1s represented by the tramspose of the
matrix Aggl, that is

HU:V:W)=(U,V,W) tA;I.
Moreover, the diagram

C—Tp2

s{ P
)/Y
$(C) REASUN P2+
commutes, where the horizontal arrows are the dual maps of C and $(C).

We often use the standard form of the defining equation for a plane
curve with an extendable Galois point, which is given by the following.

PROPOSITION 2.3 (see [8, 13, 15]). Let P € % be a point with multi-
plicity m > 0. The point P is extendable Galois for C if and only if there
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exists a linear transformation ¢ on P? such that #P)=(1:0:0) and $C)
18 given by
X"G (Y, 2) + Ga(Y, Z) = 0,

where G;(Y , Z) is a homogeneous polynomaial of degree i in variables Y, Z.
In this case, the Galois group Ggp) is cyclic and there exists a primitive
(d — m)-th root { of unity such that a generator o € Gyp) is represented by
oX:Y:Z)=(X:Y:2).

Firstly, we prove the first assertion of Proposition 1.5 for the curves
with the standard form as in Proposition 2.3.

LEMMA 2.4. Let P =(1:0:0) € % let C be defined by
XT"G (Y, Z) + Gy(Y, Z) = 0,

and let a generator o € Gp be Vepresgnted byoX:Y:Z)=((X:Y :2).
Thgn, there exists a unique point P € % such that the map Gp —
G[P); ¢' — o' is a well-defined and injective homomorphism.

Proor. By Lemma 22, & is represented by o(U:V:W)=
CW:V:W) and a(C*)=C*. Let P=(1:0:0)e P¥. By the re-
presentation of @, we have

G € GIP] = {t € Bir(C*) | «(C* n¢\ {P}) C ¢ for a general line ¢ > P}.

We prove the uniqueness of P. By contradiction we assume that
@ € G[P]1N G[Q], where Q # P. Let R € C* be a point not contained in the
line passing through P and @ such that @(R) # R.By & € G[P]1 N G[Q], 7(R)
is contained in the lines passing through R and P, R and @ respectively.
This implies that (k) = R. This is a contradiction. O

Proor or ProprosiTION 1.5. By Proposition 2.3, there exists a linear
transformation ¢ such that $(P) =(1:0:0), (C) is given by X d=-m@q, (Y, Z)+
G4(Y,Z) =0 and a generator o € Gyp) is represented by o(X : Y : Z)
X :Y:2). ByLemma24 we have aninjectionf : Ggp) c—>G[gb(P)] ot »—>aZ
Let P=¢ (gb(P)) We also have isomorphisms ¢ : Gp — G¢(p), T g1t
and h: G[P)] — G[Pl;y—¢ ng. Since (A HA1 A4 (A =
(tA ) 1A, tAT A 1('fA )="1A1, we have (h o fog)(r) =7 Therefore
Gp — G[F];f —T is a well-defined and injective homomorphism. The
uniqueness of the point P follows, similarly to the proof of Lemma 2.4.
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We prove the second assertion. Let m* be the multiplicity of C* at P.
Then, the order of G[P] is at most d* — m*, which is equal to the degree
of the projection 7np:C*-—> Pl By the first assertion, we have
d—m < d* —m*. O

Here, we summarize the properties of the curve defined by
X4 _yezd-—e =,

LemMmA 2.5. Let C be defined by X? — Y°Z%~¢ = 0. Then, we have the
following.
(1) The dual curve C* is given by ( — 1)%e¢(d — e)? U — diVeWd—¢ = .
() Points (1:0:0) € P? and (1:0:0) € P** are extendable outer
Galots for C and C* respectively.
3) If e=d —1, then points (0:1:0) € P* and (0:1:0) € P> are
extendable inner Galois for C and C* respectively.

ProOOF. Since the dual map y is given by
@X":—eY 127 —(d - oY 2"
=(dX": XY 270 1 —(d — XY 2"
=@Y°Z"C —eXY 270 —(d - XY 2
=(dYZ : —eXZ : —(d — e)XY),

we have (1). We have assertions (2) and (3) by Proposition 2.3. O

3. Galois points for the dual curve of a smooth curve

Let C C P? be a smooth curve of degree d > 3 and let C* be the dual
curve of C. The dual map y : C — C* is birational ([7], [11, Theorem 1.5.3])
OF OF OF
has no base point. Note that any birational transformation of C is ex-
tendable when d > 4 (see [1, Appendix A, 17 and 18] or [2]). Therefore any
Galois point is extendable in this case.

and C* is of degree d* = d(d — 1), since the linear system <

LemMA 3.1.  Let C be a smooth plane curve of degree d > 4. Then, any
birational map C* ——>C* can be extended to a linear transformation of
IP%*. Therefore, any Galois point for C* is extendable.
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Proor. Let t: C*——> C* be a birational map. Then the rational map
79 := y 11y : C ——> (C is a birational transformation of C. Since C is smooth
of degree d >4, 1y can be extended to a linear transformation of P? as
observed above. Since the diagram

b2
c— ¢

TOJ y l

o —% o

commutes, we have 7g|.. = 7. Hence 7 can be extended to a linear trans-
formation of P*". O

Proor or THEOREM 1.2. Let C be a smooth plane curve of degree d > 3.
Throughout we treat the cases d = 3 and d > 4 separately.

Firstly, we assume that d > 4. Aiming for a contradiction, let R € P* be
a Galois point for C*, and let m be the multiplicity of C* at R. It follows from
Lemma 3.1 and Proposition 1.5 that the degree of the projection from R is at
most d. Therefore, we have d* — m < d. Since R € C*, there exists a point
Ry € C with y(Ry) = R. Let ¢ C P* be a general line with R € ¢. Then,
C*Ne¢\ {R} consists of exactly d* —m smooth points of C*. Since
C* N ¢\ {R} consists of only smooth points, there are exactly d* — m points
in y1(C* N¢\ {R}) and such points are not flexes (i.e. the intersection
multiplicity of C and the tangent line at the point is two). It follows from
Lemma 2.1 that [¢] € [(Qo)] = Tq,C C P? for any point Qo € y~1(C* N ¥).
This implies that, for a general point P € [R] = [y(Ry)] = Tg,C, there exist
exactly d* — m points not in y~!(R) which are not flexes and the tangent lines
contain P. Then, by Hurwitz formula for the projection zp : C — P! from a
general point P € Tg,C \ C, we have 2g(C) — 2 + 2deg (zp) = deg B, where
g(C) = Wl;ﬁ is the genus of C and B is the ramification divisor.
Since the sum of the degrees of B given by points in C N Tz,C is at most
d —1, we have deg B < (d — 1) + (d* — m). Thus Hurwitz formula leads to
the following inequality

d>—3d+2d < (d—1)+(d* —m) < 2d—1.

This implies that d < 3. This is a contradiction to the assumption d > 4.
So we assume that d = 3. Then, we have d* = 6. We recall the well-
known fact that there are nine flexes for C. Let Flex(C) C C be the set of all
flexes of C. Then y(Flex(C)) = Sing(C*) as C does not admit bitangent
lines. Firstly we would like to determine lines ¢ c P** such that
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N Sing(C*) # 0. Let Q € Flex(C) and let P € T¢C, which is maybe Q.
Using Hurwitz formula for the projection 7np, the ramification divisor has
degree 6 (resp. 4) if P # Q (resp. P =@). Hence one of the following
conditions holds.

(1) There exist three flexes whose tangent lines contain P.

(2) There exist exactly two flexes and two other points whose four
tangent lines contain P.

(3) There exist exactly one flex and four other points whose five tan-
gent lines contain P.

(4) P = @ and there exist three points which are not flexes and tangent
lines at them contain P.

It follows from Lemma 2.1 that one of the following conditions holds if
£ N Sing(C*) # () for a line ¢ C P2,

(1*) C* N/ consists of three singular points.
(2*) C* N/ consists of two singular points and two smooth points.
(8*) C* N/ consists of one singular point and four smooth points.

(4*) C* N ¢ consists of exactly one singular point and three smooth points.

Let R € P* be a point and let 7z := g oy : C — P, We denote by ep
the ramification index at P € C for 7z. Note that if @ € Flex(C) and
Q) # R, then 7p is ramified at @, since the differential of y at @ is zero.
The above conditions represent types of ramification indices of flexes for
nig. For example, condition (1*) implies that eg, = eq, = eg, = 2, where
7(Q1), (@), Y (Q3) € C*NLif R e land R ¢ C.

Assume by contradiction that R € P* is a Galois point for C*. Then, the
field extension induced by 7p is Galois. We often use the property of
Galois extensions that the ramification index eg, is equal to the one e, if
7r(Q1) = 71Rr(Q2) ([12, Corollary 3.7.2]). Moreover, we separate the cases
R € C*\ Sing(C*), R € P>\ C* and R € Sing(C*).

Firstly we suppose that R is an inner Galois point, that is
R € C*\ Sing(C*). Then, the projection 7z is of degree five. Then, any
ramification index is five, by the property mentioned above. Therefore,
the set ﬁﬁl(ﬁR(Q)) ={Q} if @ € Flex(C). Since this condition does not
coincide with (1), ..., (4) we have a contradiction.

Then we assume that R is an outer Galois point, that is R € p? \ C*, so
that deg7z = 6. Note that there exist no tangent lines with two contact
points for C*, by the smoothness of C and projective duality. By the property
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of Galois extensions, any line containing R and a singular point must satisfy
(1*). Since the number of singular points is nine, there exists at most
three lines containing R and satisfying (1*). Applying Hurwitz formula to
the projection 7, we have that the ramification divisor must have de-
gree 12. Thus there exists another ramification point which is not a flex
of C, but this contradicts the property of Galois extensions.

Finally, we assume that R € Sing(C*). Let R, € Flex(C) with
"(Ry) = R. By the property of Galois extensions, any line containing R
and another singular point must satisfy (1*). Let points P e P? and
Q1,Q2, Q3 € Flex(C) satisfy P € Tq,C for any ¢, as in condition (1). We
may assume that P=(1:0:0),Q; =(0:1:0),Q2=(0:0:1) and C is
defined by

XP + Gi(Y, 2)X* + Go(Y, D)X + G3(Y, Z) = 0,

where G; is a homogeneous polynomial of degree 7. Since @1, Q2 € Flex(C)
and T, C (resp. Tq,C) is defined by Z = 0 (resp. Y = 0), G; = 0 and Gz, G3
is divisible by YZ. Since Ty,C is defined by oY + fZ =0 for some
B € K\ 0, we also have Gz = 0. We have an equation X3 + G3(Y,Z) = 0.
We can take a linear transformation ¢ of P? such that ¢(P) = P and the
three points given by X = G3(Y,Z) =0 move to (0:1:-1), (0:1: w),
(0:1:0?) by ¢, where w is a cubic root of —1 different from —1. Then,
#(C) is given by X3 + a(Y? + Z3) = 0 for some « € K. We may assume that
C is defined by X 4 Y3 + Z? = 0. Note that the nine flexes are contained
in the union of lines X =0, Y =0 and Z = 0. For this Fermat curve, if
Py, Py € Flex(C), then there exists a linear transformation y such that
w(P1) =Py and w(C)=C. Therefore, we may assume that R, =
(0:1:—1). The dual map is given by (X?:Y?:Z2). We find that
y(Flex(C) N {X = 0}) = C* n{U = 0}, and analogous equalities holds for
the pairs Y,V and Z,W. Here, we have R =(0:1:1). Let R  =(1:0:1)
and let ¢ be the line passing through R, R’ € Sing(C*), which is defined by
U+V-W=0.Since Re C*n {U =0}, R e C*N{V =0} and ¢ sat-
isfies condition (1*), we have that ¢ must meet C* at another singular
point lying on the line {W = 0}. Thus we have a contradiction as ¢ in-
tersects {W =0} at (1: —1:0) ¢ Sing(C*). O

4. Curves with extendable Galois points

Before proving Theorem 1.4, we present a preliminary lemma involved
in the proof.
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Lemmva 4.1, Let G(Y,Z), HV,W) be homogeneous polynomials of de-
gree d. Assume that di(— G)“H = —H(Gy,Gy) holds and m > 1 is the
maximal number such that Y™ divides G. Then, W™ divides H.

Proor. Let G = Y™F. Then F' is not divisible by Y and, by Euler
formula (d — m)F = YFy + ZF,, F also is not. Then, Gy = mY™ 1F+
Y"Fy =YY" YmF +YFy) and Gz =Y"F;. We denote by H =
d ) )

S o;VIW®, Then, by the assumption,
i=0
d'(= )T Y IVRCT — —H(Gy, Gy)

== Yl VD 4 YEy) FY

Since (mF + YFy)'F4 is not divisible by Y for any 4, we have o; = 0 for
any 7 such that m(d — 1) > i«(m — 1) + m(d — 1), i.e. i > m. Therefore,

H = Z OCiVin_i = Wd—m Z OCiVin_i_ .
=0 i—0

Proor oF THEOREM 1.4(I). The assertion (2) = (1) is nothing but
Lemma 2.5(2). We prove (1) = (2). By using projective duality, we may
assume that d > d*. By Proposition 2.3, we may assume that P = (1: 0: 0)
be an extendable outer Galois point, C is given by

X'+ G(Y,Z) =0,

where G(Y, Z) is a homogeneous polynomial of degree d, and any birational
transformation o € Gp is represented by o(X : Y : 7) = (CiX .Y : Z) for
some 1. By Lemma 2.4, we have an injection Gp<— G[P], where
P=(1:0:0). Then, d* = d and Gp = G[P]. Therefore P € P** is extend-
able outer Galois for C*. Furthermore, C* is given by

U+ HV,W) =0,

where H is a homogeneous polynomial of degree d. Since the dual map
y:C-—>C* is given by y=(dX"':Gy:Gz), we have (@X? )"+
H(Gy,Gyz) = 0. Since X? = —G on C, we have an equation

dU(— " + HGy,Gy) =0

on C. Since the variable X does not appear, this equation holds as poly-
nomials. For a suitable system of coordinates, by Lemma 2.2, G(Y,7) is
divisible by YZ. Let m > 1 (resp. n > 1) be the maximal number such that
Y™ (resp. Z") divides G. Note that m + n < d. Then, by Lemma 4.1, H is
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divisible by V@"We"  Since (d—n)+(d—m)=2d—mn+m)>d =
deg H, we have H = oV "W for some o € K. Therefore, C* is projec-
tively equivalent to the curve given by U? — V*W?=¢ = 0 for some e > 1.
The curve C is also by Lemma 2.5(1). O

Proor orF THEOREM 1.4(II). The assertion (3) = (1) is nothing but
Lemma 2.5. We prove (1) = (2). Let P be an extendable outer Galois point
for C and let @ be an extendable inner Galois point for C*. By Proposition
1.5, d* > d and d > d* — 1. Then we treat the casesd =d* — 1 and d = d*
separately.

Firstly, we assume that d = d* — 1. By Proposition 2.3, we may assume
that P=(1:0:0), a generator o € Gp is represented by o X : Y : Z) =
(X :Y :Z)and C is given by

X'+ G, Z)=0.

By Lemma 2.4, we have an injection Gp— G[P], where P =(1:0:0).
Considering the orders of Gp and G[P], we have Gp = G[P]. Hence P € C* is
smooth and extendable inner Galois. Considering the action, C* is given by

U'H,(V, W) + Hyga(V, W) = 0,

where H; is a homogeneous polynomial of degree 7. For a suitable system
of coordinates, by Lemma 2.2, we may assume that H; = W. We denote by
H,.1 = H. Then H is not divisible by W as C* cannot contain lines, and
also Hy is not by Euler formula. Since the dual map y.. : C* ——>C* = Cis
given by

voo = @UIW : Hy : U + Hy) = (dUW? : WHy : UW + WHyy)
= (dU'W?: WHy : —H + WHy)
by using U‘W = —H, we have
@UWH! 4+ GWHy, —H + WHy) = 0.
Since U'W = —H on C*, we have an equation
d(— H)"'W = ~G(WHy, —H + WHy)
on C*. Since the variable U does not appear, this equation holds as poly-

d . .
nomials. Let G(Y,Z) = " o;Y'Z?~". Then, we have
i=0

A~ W = =N o WH(— H + WHy) ™.
1
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Since Hy and —H + WHy are not divisible by W, o; = 0 for any <. This is a
contradiction.

Then we assume that d* = d. By Proposition 1.5, we have an injection
Gg— G[Q]. Considering the orders, we have Gg = GIQ]. Hence Q € C is
smooth and extendable inner Galois. We have assertion (2).

Then it remains to prove (2) = (3). Let P be an extendable inner Galois
point for C and let @ be an extendable inner Galois point for C*. By pro-
jective duality, we may assume that d > d*, and Proposition 1.5 assures
that d* > d — 1. Hence we deal with the cases d* =d — 1 and d* = d sep-
arately.

Assume that d* = d — 1. By Proposition 1.5 and considering the orders,
we have Gp = G[P]. Then, P is extendable outer Galois for C*. Similarly to
the above discussion to prove (1) = (2), we have a contradiction.

Therefore, we have d* = d. By Proposition 2.3, we may assume that
P=(1:0:0)and C is given by

XZ+G(Y,2) =0.

By Lemma 2.4, we have an injection Gp<— G[P], where P =(1:0:0).
Considering the orders of Gp and G[P], we have Gp = G[P]. Therefore,
P e P** is extendable inner Galois for C*. Furthermore, C* is given by

U@V + W) + H(V, W) = 0,
where o, € K. Since the dual map y : C ——> C* is given by
y=d—-DX"2Z :Gy : X" + Gy =(d - DXI22% . ZGy : X" Z+ ZGy)
=(d-DX"2Z% . ZGy : -G + ZGy)
by using X4 1Z = —G, we have
((d — DX 222" Y aZGy + f( — G + ZGp) + HZGy, -G + ZGz) = 0.

Since X417 = —G on C, we have an equation
d - DN = O 2Z2%0ZGy + (- G + ZGy) = —H(ZGy, -G + ZGy)

on C. Since the variable X does not appear, this equation holds as poly-

d ) .
nomials. Let H(V, W) = 3" o;ViW?, Then, we have
i=0

=D N~ PZ0ZGy +H(=G+2Gr) = =Y % Z'Gy(=G+Z4G)""

Since Gy and —G + ZGy are not divisible by Z, o; =0 for any 7 < d.
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Therefore, H(V,W) = ¢V for some ¢ € K. We have an equation
UtV + W) + ¢V =0

for C*. The dual curve C* is projectively equivalent to the curve given by
U? — V&1W = 0. Therefore, C is also by Lemma 2.5(1). O

REMARK 4.2. In order to deal with Problem 1.1, the condition
P ¢ Sing(C) in the definition of inner Galois point is crucial. In particular,
Theorem 1.4 fails to hold true as we extend the assertion to (non-extend-
able) outer Galois point for C and Galois point lying on Sing(C*).

For example, let C C P? be curve defined by X+Y+ 77—
27XYZ = 0.Then (1 : 0 : 0) is an outer Galois point for C ([14, Example 2]).
Since C is a rational nodal curve with three flexes, the dual curve C* is a
quartic plane curve with three singular double points. Thus C is not a self-
dual curve. However, any singular point @ € Sing(C*) is a Galois point for
C* as the projection 7 : C* —> P! has degree two.

REMARK 4.3.  According to [6], the set of all Galois points for the plane
curve defined by X? —Y°Z?¢ =0 is equal to {(1:0:0),(0:1:0),(0:0:1)}
(ifd>4).
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