Galois points for a plane curve and its dual curve

Satoru Fukasawa (*) - Kei Miura (**)

ABSTRACT - A point P in projective plane is said to be Galois for a plane curve of degree at least three if the function field extension induced by the projection from P is Galois. Further we say that a Galois point is extendable if any birational transformation by the Galois group can be extended to a linear transformation of the projective plane. In this article, we propose the following problem: If a plane curve has a Galois point and its dual curve has one, what is the curve? We give an answer. We show that the dual curve of a smooth plane curve does not have a Galois point. On the other hand, we settle the case where both a plane curve and its dual curve have extendable Galois points. Such a curve must be defined by $X^d - Y^e Z^{d-e} = 0$, which is a famous self-dual curve.

Mathematics Subject Classification (2010). 14H50, 14H05, 12F10.

KEYWORDS. Galois point, plane curve, dual curve, self-dual curve.

1. Introduction

Let the base field K be an algebraically closed field of characteristic p=0 and let $C\subset \mathbb{P}^2$ be an irreducible plane curve of degree $d\geq 3$. We recall the notions of dual curve and Galois point.

Let \mathbb{P}^{2*} be the dual projective plane which parameterizes projective lines of \mathbb{P}^2 and let (X:Y:Z), (U:V:W) be systems of homogeneous coordinates of \mathbb{P}^2 and of \mathbb{P}^{2*} respectively. We denote by $\operatorname{Sing}(C)$ the singular locus of C. If C is defined by a homogeneous polynomial F(X,Y,Z),

(*) Indirizzo dell'A.: Department of Mathematical Sciences, Yamagata University, Kojirakawa-machi 1-4-12, Yamagata 990-8560, Japan.

E-mail: s.fukasawa@sci.kj.yamagata-u.ac.jp

The first author was partially supported by JSPS KAKENHI Grant Numbers 22740001, 25800002.

(**) Indirizzo dell'A.: Department of Mathematics, Ube National College of Technology, Ube, Yamaguchi 755-8555, Japan.

E-mail: kmiura@ube-k.ac.jp

we have a rational map $\gamma = \gamma_C : C \dashrightarrow \mathbb{P}^{2*}$, which sends a smooth point $Q \in C \setminus \operatorname{Sing}(C)$ to the point $\left(\frac{\partial F}{\partial X}(Q) : \frac{\partial F}{\partial Y}(Q) : \frac{\partial F}{\partial Z}(Q)\right) \in \mathbb{P}^{2*}$ parameterizing the projective tangent line T_QC to C at Q. This rational map is called the *dual map* of C and (the closure of) the image of C is called the *dual curve*, which is denoted by C^* . It is well-known that *projective duality* $C^{**} = C$ holds (see, for example, [7, 11]).

If the function field extension $K(C)/K(\mathbb{P}^1)$ induced by the projection $\pi_P: C \dashrightarrow \mathbb{P}^1$ from a point $P \in \mathbb{P}^2$ is Galois, then the point P is said to be *Galois*. Moreover, denoting by G_P the Galois group associated to the projection π_P , we say that a Galois point P is *extendable* if any birational transformation of C induced by the Galois group G_P can be extended to a linear transformation of \mathbb{P}^2 .

The notion of Galois point was introduced by H. Yoshihara (see e.g. [4, 9, 13]) and it is an interesting topic on plane curves. For instance, a well-known theorem of Noether and later results assure that if $C \subset \mathbb{P}^2$ is a smooth curve of degree d, then the minimum degree of a morphism $C \to \mathbb{P}^1$ is d-1, and all the maps of degree $d-1 \geq 2$ and $d \geq 5$ are projections $\pi_P : C \dashrightarrow \mathbb{P}^1$ from some point $P \in C$ and $P \in \mathbb{P}^2 \setminus C$ respectively (cf. [3, 5, 10]). Thus describing Galois points on a smooth plane curve is equivalent to detect all the Galois coverings $C \to \mathbb{P}^1$ having minimal degrees.

The singular curve defined by $X^d - Y^eZ^{d-e} = 0$, where $e \ge 1$ and d, e are coprime, has lovely properties. Its dual curve is defined by the same equation (up to a projective equivalence, see Lemma 2.5). Therefore, this curve is a "self-dual" curve. It has an (extendable) Galois point (1:0:0) (Proposition 2.3) and its dual curve has one, by the self-duality. In the light of this fact, we propose the following problem.

PROBLEM 1.1. If a plane curve has a Galois point and its dual curve has one, what is the curve? Is it a self-dual curve?

In this article, we give an answer. We show the following for smooth curves.

THEOREM 1.2. Let C be a smooth plane curve of degree $d \geq 3$. Then, there exist no Galois points for the dual curve of C.

By projective duality, we have the following.

COROLLARY 1.3. Let C be a plane curve of degree $d \geq 3$ and let C^* be the dual curve. If both C and C^* have Galois points, then they are singular.

We say that a Galois point P is inner (resp. outer) if $P \in C \setminus \operatorname{Sing}(C)$ (resp. $P \in \mathbb{P}^2 \setminus C$). In the case where Galois points are extendable, we show the following characterization theorems.

THEOREM 1.4. Let C be a plane curve of degree $d \geq 3$ and let C^* be the dual curve of C.

- (I) The following conditions are equivalent.
 - (1) C and C^* have extendable outer Galois points.
 - (2) C is projectively equivalent to the plane curve defined by $X^d Y^e Z^{d-e} = 0$ for some $e \ge 1$.
- (II) The following conditions are equivalent.
 - (1) C has an extendable outer Galois point and C* has an extendable inner Galois point.
 - (2) C and C^* have extendable inner Galois points.
 - (3) C is projectively equivalent to the plane curve defined by $X^d Y^{d-1}Z = 0$.

To prove our result we will connect Galois points for a plane curve C and its dual curve. In particular, we will show that – given an extendable Galois point P for C – the Galois group G_P has a natural action on the dual curve C^* , and such an action preserves the fibers of a certain projection $\pi_{\overline{P}}: C^* \to \mathbb{P}^1$. Namely,

PROPOSITION 1.5. Let C be a plane curve with an extendable Galois point $P \in \mathbb{P}^2$ and let G_P be the Galois group. Any $\sigma \in G_P$ induces a natural linear transformation $\overline{\sigma} : \mathbb{P}^{2*} \to \mathbb{P}^{2*}$ (see Lemma 2.2 for details). Then, there exists a unique point $\overline{P} \in \mathbb{P}^{2*}$ such that the map $\sigma \mapsto \overline{\sigma}$ induces an injective homomorphism

 $G_P \hookrightarrow G[\overline{P}] := \{ \tau \in \operatorname{Bir}(C^*) \mid \tau(C^* \cap \ell \setminus \{\overline{P}\}) \subset \ell \text{ for a general line } \ell \ni \overline{P} \},$ where $\operatorname{Bir}(C^*)$ is the group of all birational transformations of C^* . In particular, the degree of the projection $\pi_{\overline{P}} : C^* -- \gg \mathbb{P}^1$ from \overline{P} is at least the order of G_P .

In the next Section we will recall some preliminary facts about projective duality and Galois group, and we will achieve Proposition 1.5. Section 3 and Section 4 will be devoted to prove Theorems 1.2 and 1.4 respectively.

2. Preliminaries

Let C be an irreducible plane curve of degree $d \geq 3$. If a point $P \in \mathbb{P}^2$ is not in C, we define the multiplicity of C at P as zero. We denote by d^* the degree of the dual curve C^* .

We recall duality principle between \mathbb{P}^2 and \mathbb{P}^{2*} . For a projective line $\ell \subset \mathbb{P}^2$, we denote by $[\ell]$ the point in \mathbb{P}^{2*} corresponding to ℓ . If ℓ is defined by uX + vY + wZ = 0 for some $u, v, w \in K$, then the point $[\ell] \in \mathbb{P}^{2*}$ is given by (u:v:w). For a point $P \in \mathbb{P}^2$, we denote by $[P] \subset \mathbb{P}^{2*}$ the line corresponding to P, which parameterizes the star of lines through P. If P is defined by $u_1X + v_1Y + w_1Z = u_2X + v_2Y + w_2Z = 0$ for some $u_1, u_2, v_1, v_2, w_1, w_2 \in K$, then [P] is the line passing through the two points $(u_1:v_1:w_1), (u_2:v_2:w_2) \in \mathbb{P}^{2*}$. Then, we have the following elementary facts.

LEMMA 2.1. Let $P \in \mathbb{P}^2$ be a point and let $\ell \subset \mathbb{P}^2$ be a line. Then, [[P]] = P and $[[\ell]] = \ell$ hold. Furthermore,

$$P \in \ell \Leftrightarrow [\ell] \in [P]$$

holds.

LEMMA 2.2. Let ϕ be a linear transformation of \mathbb{P}^2 and let A_{ϕ} be a matrix representing ϕ , i.e. $\phi(X:Y:Z)=(X,Y,Z)A_{\phi}$. Then the induced map $\overline{\phi}:\mathbb{P}^{2*}\to\mathbb{P}^{2*};[\ell]\mapsto [\phi(\ell)]$ is represented by the transpose of the matrix A_{ϕ}^{-1} , that is

$$\overline{\phi}(U:V:W) = (U,V,W)\ ^t\!A_\phi^{-1}.$$

Moreover, the diagram

$$\begin{array}{c} C \xrightarrow{\gamma_C} \mathbb{P}^{2*} \\ \downarrow \downarrow \\ \phi(C) \xrightarrow{\gamma_{\phi(C)}} \mathbb{P}^{2*} \end{array}$$

commutes, where the horizontal arrows are the dual maps of C and $\phi(C)$.

We often use the *standard form* of the defining equation for a plane curve with an extendable Galois point, which is given by the following.

PROPOSITION 2.3 (see [8, 13, 15]). Let $P \in \mathbb{P}^2$ be a point with multiplicity $m \geq 0$. The point P is extendable Galois for C if and only if there

exists a linear transformation ϕ on \mathbb{P}^2 such that $\phi(P)=(1:0:0)$ and $\phi(C)$ is given by

$$X^{d-m}G_m(Y,Z) + G_d(Y,Z) = 0,$$

where $G_i(Y,Z)$ is a homogeneous polynomial of degree i in variables Y,Z. In this case, the Galois group $G_{\phi(P)}$ is cyclic and there exists a primitive (d-m)-th root ζ of unity such that a generator $\sigma \in G_{\phi(P)}$ is represented by $\sigma(X:Y:Z) = (\zeta X:Y:Z)$.

Firstly, we prove the first assertion of Proposition 1.5 for the curves with the standard form as in Proposition 2.3.

LEMMA 2.4. Let $P = (1:0:0) \in \mathbb{P}^2$, let C be defined by

$$X^{d-m}G_m(Y,Z) + G_d(Y,Z) = 0,$$

and let a generator $\sigma \in G_P$ be represented by $\sigma(X:Y:Z) = (\zeta X:Y:Z)$. Then, there exists a unique point $\overline{P} \in \mathbb{P}^{2*}$ such that the map $G_P \to G[\overline{P}]$; $\sigma^i \mapsto \overline{\sigma^i}$ is a well-defined and injective homomorphism.

PROOF. By Lemma 2.2, $\overline{\sigma}$ is represented by $\overline{\sigma}(U:V:W) = (\zeta^{-1}U:V:W)$ and $\overline{\sigma}(C^*) = C^*$. Let $\overline{P} = (1:0:0) \in \mathbb{P}^{2*}$. By the representation of $\overline{\sigma}$, we have

$$\overline{\sigma} \in G[\overline{P}] = \{ \tau \in \operatorname{Bir}(C^*) \mid \tau(C^* \cap \ell \setminus \{\overline{P}\}) \subset \ell \text{ for a general line } \ell \ni \overline{P} \}.$$

We prove the uniqueness of \overline{P} . By contradiction we assume that $\overline{\sigma} \in G[\overline{P}] \cap G[Q]$, where $Q \neq \overline{P}$. Let $R \in C^*$ be a point not contained in the line passing through \overline{P} and Q such that $\overline{\sigma}(R) \neq R$. By $\overline{\sigma} \in G[\overline{P}] \cap G[Q]$, $\overline{\sigma}(R)$ is contained in the lines passing through R and \overline{P} , R and Q respectively. This implies that $\overline{\sigma}(R) = R$. This is a contradiction.

PROOF OF PROPOSITION 1.5. By Proposition 2.3, there exists a linear transformation ϕ such that $\phi(P)=(1:0:0), \phi(C)$ is given by $X^{d-m}G_m(Y,Z)+G_d(Y,Z)=0$ and a generator $\sigma\in G_{\phi(P)}$ is represented by $\sigma(X:Y:Z)=(\zeta X:Y:Z)$. By Lemma 2.4, we have an injection $f:G_{\phi(P)}\hookrightarrow G[\overline{\phi(P)}]; \sigma^i\mapsto \overline{\sigma^i}$. Let $\overline{P}=\overline{\phi}^{-1}(\overline{\phi(P)})$. We also have isomorphisms $g:G_P\to G_{\phi(P)}; \tau\mapsto \phi\tau\phi^{-1}$ and $h:G[\overline{\phi(P)}]\to G[\overline{P}]; \eta\mapsto \overline{\phi}^{-1}\eta\overline{\phi}$. Since $({}^tA_{\phi}^{-1})^{-1}({}^tA_{\phi}^{-1}A_{\tau}A_{\phi})^{-1}({}^tA_{\phi}^{-1})^{-1}=({}^tA_{\phi}^{-1})^{-1}A_{\phi}^{-1}({}^tA_{\phi}^{-1})^{-1}A_{\phi}^{-1}({}^tA_{\phi}^{-1})^{-1}$, we have $(h\circ f\circ g)(\tau)=\overline{\tau}$. Therefore, $G_P\to G[\overline{P}]; \tau\mapsto \overline{\tau}$ is a well-defined and injective homomorphism. The uniqueness of the point \overline{P} follows, similarly to the proof of Lemma 2.4.

We prove the second assertion. Let m^* be the multiplicity of C^* at \overline{P} . Then, the order of $G[\overline{P}]$ is at most $d^* - m^*$, which is equal to the degree of the projection $\pi_{\overline{P}}: C^* - \rightarrow \mathbb{P}^1$. By the first assertion, we have $d - m \leq d^* - m^*$.

Here, we summarize the properties of the curve defined by $X^d - Y^e Z^{d-e} = 0$.

Lemma 2.5. Let C be defined by $X^d - Y^e Z^{d-e} = 0$. Then, we have the following.

- (1) The dual curve C^* is given by $(-1)^d e^e (d-e)^{d-e} U^d d^d V^e W^{d-e} = 0$.
- (2) Points $(1:0:0) \in \mathbb{P}^2$ and $(1:0:0) \in \mathbb{P}^{2*}$ are extendable outer Galois for C and C* respectively.
- (3) If e = d 1, then points $(0:1:0) \in \mathbb{P}^2$ and $(0:1:0) \in \mathbb{P}^{2*}$ are extendable inner Galois for C and C^* respectively.

PROOF. Since the dual map γ is given by

$$(dX^{d-1}: -eY^{e-1}Z^{d-e}: -(d-e)Y^{e}Z^{d-e-1})$$

$$= (dX^{d}: -eXY^{e-1}Z^{d-e}: -(d-e)XY^{e}Z^{d-e-1})$$

$$= (dY^{e}Z^{d-e}: -eXY^{e-1}Z^{d-e}: -(d-e)XY^{e}Z^{d-e-1})$$

$$= (dYZ: -eXZ: -(d-e)XY).$$

we have (1). We have assertions (2) and (3) by Proposition 2.3. \Box

3. Galois points for the dual curve of a smooth curve

Let $C\subset \mathbb{P}^2$ be a smooth curve of degree $d\geq 3$ and let C^* be the dual curve of C. The dual map $\gamma:C\to C^*$ is birational ([7], [11, Theorem 1.5.3]) and C^* is of degree $d^*=d(d-1)$, since the linear system $\left\langle \frac{\partial F}{\partial X}, \frac{\partial F}{\partial Y}, \frac{\partial F}{\partial Z} \right\rangle$ has no base point. Note that any birational transformation of C is extendable when $d\geq 4$ (see [1, Appendix A, 17 and 18] or [2]). Therefore any Galois point is extendable in this case.

LEMMA 3.1. Let C be a smooth plane curve of degree $d \geq 4$. Then, any birational map $C^* --> C^*$ can be extended to a linear transformation of \mathbb{P}^{2*} . Therefore, any Galois point for C^* is extendable.

PROOF. Let $\tau: C^* - - > C^*$ be a birational map. Then the rational map $\tau_0 := \gamma^{-1}\tau\gamma: C - - > C$ is a birational transformation of C. Since C is smooth of degree $d \geq 4$, τ_0 can be extended to a linear transformation of \mathbb{P}^2 as observed above. Since the diagram

$$\begin{array}{ccc} C & \xrightarrow{\gamma_C} C^* \\ \tau_0 & & \downarrow \tau \\ C & \xrightarrow{\gamma_C} C^* \end{array}$$

commutes, we have $\overline{\tau_0}|_{C^*} = \tau$. Hence τ can be extended to a linear transformation of \mathbb{P}^{2*} .

PROOF OF THEOREM 1.2. Let C be a smooth plane curve of degree $d \ge 3$. Throughout we treat the cases d = 3 and $d \ge 4$ separately.

Firstly, we assume that $d \geq 4$. Aiming for a contradiction, let $R \in \mathbb{P}^{2*}$ be a Galois point for C^* , and let m be the multiplicity of C^* at R. It follows from Lemma 3.1 and Proposition 1.5 that the degree of the projection from R is at most d. Therefore, we have $d^* - m \le d$. Since $R \in C^*$, there exists a point $R_0 \in C$ with $\gamma(R_0) = R$. Let $\ell \subset \mathbb{P}^{2*}$ be a general line with $R \in \ell$. Then, $C^* \cap \ell \setminus \{R\}$ consists of exactly $d^* - m$ smooth points of C^* . Since $C^* \cap \ell \setminus \{R\}$ consists of only smooth points, there are exactly $d^* - m$ points in $\gamma^{-1}(C^* \cap \ell \setminus \{R\})$ and such points are not flexes (i.e. the intersection multiplicity of C and the tangent line at the point is two). It follows from Lemma 2.1 that $[\ell] \in [\gamma(Q_0)] = T_{Q_0}C \subset \mathbb{P}^2$ for any point $Q_0 \in \gamma^{-1}(C^* \cap \ell)$. This implies that, for a general point $P \in [R] = [\gamma(R_0)] = T_{R_0}C$, there exist exactly $d^* - m$ points not in $\gamma^{-1}(R)$ which are not flexes and the tangent lines contain P. Then, by Hurwitz formula for the projection $\pi_P: C \to \mathbb{P}^1$ from a general point $P \in T_{R_0}C \setminus C$, we have $2g(C) - 2 + 2\deg(\pi_P) = \deg B$, where $g(C) = \frac{(d-1)(d-2)}{2}$ is the genus of C and B is the ramification divisor. Since the sum of the degrees of B given by points in $C \cap T_{R_0}C$ is at most d-1, we have $\deg B \leq (d-1) + (d^*-m)$. Thus Hurwitz formula leads to the following inequality

$$d^2 - 3d + 2d \le (d - 1) + (d^* - m) \le 2d - 1.$$

This implies that $d \leq 3$. This is a contradiction to the assumption $d \geq 4$.

So we assume that d=3. Then, we have $d^*=6$. We recall the well-known fact that there are nine flexes for C. Let $\mathrm{Flex}(C) \subset C$ be the set of all flexes of C. Then $\gamma(\mathrm{Flex}(C)) = \mathrm{Sing}(C^*)$ as C does not admit bitangent lines. Firstly we would like to determine lines $\ell \subset \mathbb{P}^{2*}$ such that

 $\ell \cap \operatorname{Sing}(C^*) \neq \emptyset$. Let $Q \in \operatorname{Flex}(C)$ and let $P \in T_Q C$, which is maybe Q. Using Hurwitz formula for the projection π_P , the ramification divisor has degree 6 (resp. 4) if $P \neq Q$ (resp. P = Q). Hence one of the following conditions holds.

- (1) There exist three flexes whose tangent lines contain P.
- (2) There exist exactly two flexes and two other points whose four tangent lines contain P.
- (3) There exist exactly one flex and four other points whose five tangent lines contain P.
- (4) P = Q and there exist three points which are not flexes and tangent lines at them contain P.

It follows from Lemma 2.1 that one of the following conditions holds if $\ell \cap \operatorname{Sing}(C^*) \neq \emptyset$ for a line $\ell \subset \mathbb{P}^{2*}$.

- (1*) $C^* \cap \ell$ consists of three singular points.
- (2*) $C^* \cap \ell$ consists of two singular points and two smooth points.
- (3*) $C^* \cap \ell$ consists of one singular point and four smooth points.
- (4*) $C^* \cap \ell$ consists of exactly one singular point and three smooth points.

Let $R \in \mathbb{P}^{2*}$ be a point and let $\hat{\pi}_R := \pi_R \circ \gamma : C \to \mathbb{P}^1$. We denote by e_P the ramification index at $P \in C$ for $\hat{\pi}_R$. Note that if $Q \in \operatorname{Flex}(C)$ and $\gamma(Q) \neq R$, then $\hat{\pi}_R$ is ramified at Q, since the differential of γ at Q is zero. The above conditions represent types of ramification indices of flexes for $\hat{\pi}_R$. For example, condition (1*) implies that $e_{Q_1} = e_{Q_2} = e_{Q_3} = 2$, where $\gamma(Q_1), \gamma(Q_2), \gamma(Q_3) \in C^* \cap \ell$ if $R \in \ell$ and $R \notin C^*$.

Assume by contradiction that $R \in \mathbb{P}^{2*}$ is a Galois point for C^* . Then, the field extension induced by $\hat{\pi}_R$ is Galois. We often use the property of Galois extensions that the ramification index e_{Q_1} is equal to the one e_{Q_2} if $\hat{\pi}_R(Q_1) = \hat{\pi}_R(Q_2)$ ([12, Corollary 3.7.2]). Moreover, we separate the cases $R \in C^* \setminus \operatorname{Sing}(C^*)$, $R \in \mathbb{P}^{2*} \setminus C^*$ and $R \in \operatorname{Sing}(C^*)$.

Firstly we suppose that R is an inner Galois point, that is $R \in C^* \setminus \operatorname{Sing}(C^*)$. Then, the projection $\hat{\pi}_R$ is of degree five. Then, any ramification index is five, by the property mentioned above. Therefore, the set $\hat{\pi}_R^{-1}(\hat{\pi}_R(Q)) = \{Q\}$ if $Q \in \operatorname{Flex}(C)$. Since this condition does not coincide with $(1), \ldots, (4)$ we have a contradiction.

Then we assume that R is an outer Galois point, that is $R \in \mathbb{P}^{2*} \setminus C^*$, so that $\deg \hat{\pi}_R = 6$. Note that there exist no tangent lines with two contact points for C^* , by the smoothness of C and projective duality. By the property

of Galois extensions, any line containing R and a singular point must satisfy (1*). Since the number of singular points is nine, there exists at most three lines containing R and satisfying (1*). Applying Hurwitz formula to the projection $\hat{\pi}_R$, we have that the ramification divisor must have degree 12. Thus there exists another ramification point which is not a flex of C, but this contradicts the property of Galois extensions.

Finally, we assume that $R \in \operatorname{Sing}(C^*)$. Let $R_0 \in \operatorname{Flex}(C)$ with $\gamma(R_0) = R$. By the property of Galois extensions, any line containing R and another singular point must satisfy (1^*) . Let points $P \in \mathbb{P}^2$ and $Q_1, Q_2, Q_3 \in \operatorname{Flex}(C)$ satisfy $P \in T_{Q_i}C$ for any i, as in condition (1). We may assume that $P = (1:0:0), Q_1 = (0:1:0), Q_2 = (0:0:1)$ and C is defined by

$$X^{3} + G_{1}(Y,Z)X^{2} + G_{2}(Y,Z)X + G_{3}(Y,Z) = 0,$$

where G_i is a homogeneous polynomial of degree i. Since $Q_1, Q_2 \in Flex(C)$ and $T_{Q_1}C$ (resp. $T_{Q_2}C$) is defined by Z=0 (resp. Y=0), $G_1=0$ and G_2,G_3 is divisible by YZ. Since $T_{Q_2}C$ is defined by $\alpha Y + \beta Z = 0$ for some $\alpha, \beta \in K \setminus 0$, we also have $G_2 = 0$. We have an equation $X^3 + G_3(Y, Z) = 0$. We can take a linear transformation ϕ of \mathbb{P}^2 such that $\phi(P) = P$ and the three points given by $X = G_3(Y, Z) = 0$ move to (0:1:-1), $(0:1:\omega)$, $(0:1:\omega^2)$ by ϕ , where ω is a cubic root of -1 different from -1. Then, $\phi(C)$ is given by $X^3 + \alpha(Y^3 + Z^3) = 0$ for some $\alpha \in K$. We may assume that C is defined by $X^3 + Y^3 + Z^3 = 0$. Note that the nine flexes are contained in the union of lines X = 0, Y = 0 and Z = 0. For this Fermat curve, if $P_1, P_2 \in \text{Flex}(C)$, then there exists a linear transformation ψ such that $\psi(P_1) = P_2$ and $\psi(C) = C$. Therefore, we may assume that $R_0 =$ (0:1:-1). The dual map is given by $(X^2:Y^2:Z^2)$. We find that $\gamma(\operatorname{Flex}(C) \cap \{X=0\}) = C^* \cap \{U=0\},$ and analogous equalities holds for the pairs Y, V and Z, W. Here, we have R = (0:1:1). Let R' = (1:0:1)and let ℓ be the line passing through $R, R' \in \operatorname{Sing}(C^*)$, which is defined by U + V - W = 0. Since $R \in C^* \cap \{U = 0\}, R' \in C^* \cap \{V = 0\}$ and ℓ satis fies condition (1*), we have that ℓ must meet C^* at another singular point lying on the line $\{W=0\}$. Thus we have a contradiction as ℓ intersects $\{W = 0\}$ at $(1 : -1 : 0) \notin \text{Sing}(C^*)$.

4. Curves with extendable Galois points

Before proving Theorem 1.4, we present a preliminary lemma involved in the proof.

LEMMA 4.1. Let G(Y,Z), H(V,W) be homogeneous polynomials of degree d. Assume that $d^d(-G)^{d-1} = -H(G_Y,G_Z)$ holds and $m \ge 1$ is the maximal number such that Y^m divides G. Then, W^{d-m} divides H.

PROOF. Let $G = Y^m F$. Then F is not divisible by Y and, by Euler formula $(d-m)F = YF_Y + ZF_Z$, F_Z also is not. Then, $G_Y = mY^{m-1}F + Y^mF_Y = Y^{m-1}(mF + YF_Y)$ and $G_Z = Y^mF_Z$. We denote by $H = \sum_{i=0}^d \alpha_i V^i W^{d-i}$. Then, by the assumption,

$$\begin{split} d^{d}(-1)^{d-1}Y^{m(d-1)}F^{d-1} &= -H(G_{Y},G_{Z}) \\ &= -\sum_{i}\alpha_{i}Y^{i(m-1)+m(d-i)}(mF+YF_{Y})^{i}F_{Z}^{d-i}. \end{split}$$

Since $(mF+YF_Y)^iF_Z^{d-i}$ is not divisible by Y for any i, we have $\alpha_i=0$ for any i such that m(d-1)>i(m-1)+m(d-i), i.e. i>m. Therefore, $H=\sum\limits_{i=0}^m\alpha_iV^iW^{d-i}=W^{d-m}\sum\limits_{i=0}^m\alpha_iV^iW^{m-i}$.

PROOF OF THEOREM 1.4(I). The assertion $(2) \Rightarrow (1)$ is nothing but Lemma 2.5(2). We prove $(1) \Rightarrow (2)$. By using projective duality, we may assume that $d \geq d^*$. By Proposition 2.3, we may assume that P = (1:0:0) be an extendable outer Galois point, C is given by

$$X^d + G(Y, Z) = 0,$$

where G(Y,Z) is a homogeneous polynomial of degree d, and any birational transformation $\sigma \in G_P$ is represented by $\sigma(X:Y:Z) = (\zeta^i X:Y:Z)$ for some i. By Lemma 2.4, we have an injection $G_P \hookrightarrow G[\overline{P}]$, where $\overline{P} = (1:0:0)$. Then, $d^* = d$ and $G_P = G[\overline{P}]$. Therefore $\overline{P} \in \mathbb{P}^{2^*}$ is extendable outer Galois for C^* . Furthermore, C^* is given by

$$U^d + H(V, W) = 0,$$

where H is a homogeneous polynomial of degree d. Since the dual map $\gamma: C \longrightarrow C^*$ is given by $\gamma = (dX^{d-1}: G_Y: G_Z)$, we have $(dX^{d-1})^d + H(G_Y, G_Z) = 0$. Since $X^d = -G$ on C, we have an equation

$$d^{d}(-G)^{d-1} + H(G_{Y}, G_{Z}) = 0$$

on C. Since the variable X does not appear, this equation holds as polynomials. For a suitable system of coordinates, by Lemma 2.2, G(Y,Z) is divisible by YZ. Let $m \geq 1$ (resp. $n \geq 1$) be the maximal number such that Y^m (resp. Z^n) divides G. Note that $m + n \leq d$. Then, by Lemma 4.1, H is

divisible by $V^{d-n}W^{d-m}$. Since $(d-n)+(d-m)=2d-(n+m)\geq d=\deg H$, we have $H=\alpha V^{d-n}W^{d-m}$ for some $\alpha\in K$. Therefore, C^* is projectively equivalent to the curve given by $U^d-V^eW^{d-e}=0$ for some $e\geq 1$. The curve C is also by Lemma 2.5(1).

PROOF OF THEOREM 1.4(II). The assertion (3) \Rightarrow (1) is nothing but Lemma 2.5. We prove (1) \Rightarrow (2). Let P be an extendable outer Galois point for C and let Q be an extendable inner Galois point for C^* . By Proposition 1.5, $d^* \geq d$ and $d \geq d^* - 1$. Then we treat the cases $d = d^* - 1$ and $d = d^*$ separately.

Firstly, we assume that $d = d^* - 1$. By Proposition 2.3, we may assume that P = (1:0:0), a generator $\sigma \in G_P$ is represented by $\sigma(X:Y:Z) = (\zeta X:Y:Z)$ and C is given by

$$X^d + G(Y, Z) = 0.$$

By Lemma 2.4, we have an injection $G_P \hookrightarrow G[\overline{P}]$, where $\overline{P} = (1:0:0)$. Considering the orders of G_P and $G[\overline{P}]$, we have $G_P = G[\overline{P}]$. Hence $\overline{P} \in C^*$ is smooth and extendable inner Galois. Considering the action, C^* is given by

$$U^{d}H_{1}(V,W) + H_{d+1}(V,W) = 0,$$

where H_i is a homogeneous polynomial of degree i. For a suitable system of coordinates, by Lemma 2.2, we may assume that $H_1=W$. We denote by $H_{d+1}=H$. Then H is not divisible by W as C^* cannot contain lines, and also H_V is not by Euler formula. Since the dual map $\gamma_{C^*}: C^*--> C^{**}=C$ is given by

$$\begin{split} \gamma_{C^*} &= (dU^{d-1}W: H_V: U^d + H_W) = (dU^{d-1}W^2: WH_V: U^dW + WH_W) \\ &= (dU^{d-1}W^2: WH_V: -H + WH_W) \end{split}$$

by using $U^dW = -H$, we have

$$(dU^{d-1}W^2)^d + G(WH_V, -H + WH_W) = 0.$$

Since $U^dW = -H$ on C^* , we have an equation

$$d^{d}(-H)^{d-1}W^{d+1} = -G(WH_{V}, -H + WH_{W})$$

on C^* . Since the variable U does not appear, this equation holds as polynomials. Let $G(Y,Z)=\sum\limits_{i=0}^d \alpha_i Y^i Z^{d-i}$. Then, we have

$$d^d (-H)^{d-1} W^{d+1} = -\sum_i \alpha_i W^i H^i_V (-H + W H_W)^{d-i}.$$

Since H_V and $-H + WH_W$ are not divisible by W, $\alpha_i = 0$ for any i. This is a contradiction.

Then we assume that $d^* = d$. By Proposition 1.5, we have an injection $G_Q \hookrightarrow G[\overline{Q}]$. Considering the orders, we have $G_Q = G[\overline{Q}]$. Hence $\overline{Q} \in C$ is smooth and extendable inner Galois. We have assertion (2).

Then it remains to prove $(2) \Rightarrow (3)$. Let P be an extendable inner Galois point for C and let Q be an extendable inner Galois point for C^* . By projective duality, we may assume that $d \geq d^*$, and Proposition 1.5 assures that $d^* \geq d - 1$. Hence we deal with the cases $d^* = d - 1$ and $d^* = d$ separately.

Assume that $d^* = d - 1$. By Proposition 1.5 and considering the orders, we have $G_P = G[\overline{P}]$. Then, \overline{P} is extendable outer Galois for C^* . Similarly to the above discussion to prove $(1) \Rightarrow (2)$, we have a contradiction.

Therefore, we have $d^* = d$. By Proposition 2.3, we may assume that P = (1:0:0) and C is given by

$$X^{d-1}Z + G(Y,Z) = 0.$$

By Lemma 2.4, we have an injection $G_P \hookrightarrow G[\overline{P}]$, where $\overline{P} = (1:0:0)$. Considering the orders of G_P and $G[\overline{P}]$, we have $G_P = G[\overline{P}]$. Therefore, $\overline{P} \in \mathbb{P}^{2*}$ is extendable inner Galois for C^* . Furthermore, C^* is given by

$$U^{d-1}(\alpha V + \beta W) + H(V, W) = 0,$$

where $\alpha, \beta \in K$. Since the dual map $\gamma : C \longrightarrow C^*$ is given by

$$\begin{split} \gamma = & ((d-1)X^{d-2}Z:G_Y:X^{d-1}+G_Z) = ((d-1)X^{d-2}Z^2:ZG_Y:X^{d-1}Z+ZG_Z) \\ & = ((d-1)X^{d-2}Z^2:ZG_Y:-G+ZG_Z) \end{split}$$

by using $X^{d-1}Z = -G$, we have

$$((d-1)X^{d-2}Z^2)^{d-1}(\alpha ZG_Y + \beta(-G + ZG_Z)) + H(ZG_Y, -G + ZG_Z) = 0.$$

Since $X^{d-1}Z = -G$ on C, we have an equation

$$(d-1)^{d-1}(-G)^{d-2}Z^{d}(\alpha ZG_{Y}+\beta (-G+ZG_{Z}))=-H(ZG_{Y},-G+ZG_{Z})$$

on C. Since the variable X does not appear, this equation holds as polynomials. Let $H(V,W)=\sum\limits_{i=0}^{d}\alpha_{i}V^{i}W^{d-i}$. Then, we have

$$(d-1)^{d-1}(-G)^{d-2}Z^{d}(\alpha ZG_{Y}+\beta (-G+ZG_{Z}))=-\sum_{i}\alpha_{i}Z^{i}G_{Y}^{i}(-G+ZG_{Z})^{d-i}.$$

Since G_Y and $-G + ZG_Z$ are not divisible by Z, $\alpha_i = 0$ for any i < d.

Therefore, $H(V,W)=cV^d$ for some $c\in K$. We have an equation

$$U^{d-1}(\alpha V + \beta W) + cV^d = 0$$

for C^* . The dual curve C^* is projectively equivalent to the curve given by $U^d - V^{d-1}W = 0$. Therefore, C is also by Lemma 2.5(1).

REMARK 4.2. In order to deal with Problem 1.1, the condition $P \notin \operatorname{Sing}(C)$ in the definition of inner Galois point is crucial. In particular, Theorem 1.4 fails to hold true as we extend the assertion to (non-extendable) outer Galois point for C and Galois point lying on $\operatorname{Sing}(C^*)$.

For example, let $C \subset \mathbb{P}^2$ be curve defined by $(X+Y+Z)^3-27XYZ=0$. Then (1:0:0) is an outer Galois point for C ([14, Example 2]). Since C is a rational nodal curve with three flexes, the dual curve C^* is a quartic plane curve with three singular double points. Thus C is not a self-dual curve. However, any singular point $Q \in \operatorname{Sing}(C^*)$ is a Galois point for C^* as the projection $\pi_Q: C^*--\to \mathbb{P}^1$ has degree two.

REMARK 4.3. According to [6], the set of all Galois points for the plane curve defined by $X^d - Y^e Z^{d-e} = 0$ is equal to $\{(1:0:0), (0:1:0), (0:0:1)\}$ (if d > 4).

Acknowledgments. The authors are grateful to Professor Yoshiaki Fukuma for helpful comments. The authors thank Professor Hisao Yoshihara for informing a new result of him with Hayashi [6]. The authors also thank the referee for helpful advice.

REFERENCES

- E. Arbarello, M. Cornalba, P. A. Griffiths and J. Harris, Geometry of algebraic curves, Vol. I. Grundlehren der Mathematischen Wissenschaften 267, Springer-Verlag, New York, 1985.
- [2] H. C. Chang, On plane algebraic curves, Chinese J. Math. 6 (1978), 185–189.
- [3] C. CILIBERTO, Alcune applicazioni di un classico procedimento di Castelnuovo, Seminari di geometria, 1982-1983 (Bologna, 1982/1983), Univ. Stud. Bologna, Bologna, 1984, 17-43.
- [4] S. Fukasawa, Galois points for a plane curve in arbitrary characteristic, Proceedings of the IV Iberoamerican conference on complex geometry, Geom. Dedicata 139 (2009), 211–218.
- [5] R. Hartshorne, Generalized divisors on Gorenstein curves and a theorem of Noether, J. Math. Kyoto Univ. 26 (1986), 375–386.

- [6] H. HAYASHI and H. YOSHIHARA, Galois group at each point for some self-dual curves, Geometry 2013 (2013), Article ID 369420, 6 pages.
- [7] S. L. KLEIMAN, Tangency and duality, In: Proceedings of the 1984 Vancouver conference in algebraic geometry, CMS Conference Proceedings, 6, Amer. Math. Soc., Providence, RI, 1986, pp. 163–226.
- [8] K. Miura, Galois points for plane curves and Cremona transformations, J. Algebra 320 (2008), 987–995.
- [9] K. MIURA and H. YOSHIHARA, Field theory for function fields of plane quartic curves, J. Algebra 226 (2000), 283–294.
- [10] M. Namba, Families of meromorphic functions on compact Riemann surfaces, Lecture Notes in Math. 767, Springer-Verlag, Berlin, 1979.
- [11] M. Namba, Geometry of projective algebraic curves, Marcel Dekker, Inc., New York, 1984.
- [12] H. STICHTENOTH, Algebraic function fields and codes, Universitext, Springer-Verlag, Berlin, 1993.
- [13] H. Yoshihara, Function field theory of plane curves by dual curves, J. Algebra 239 (2001), 340–355.
- [14] H. Yoshihara, Galois points for plane rational curves, Far East J. Math. Sci. 25 (2007), 273–284.
- [15] H. Yoshihara, Rational curve with Galois point and extendable Galois automorphism, J. Algebra 321 (2009), 1463–1472.

Manoscritto pervenuto in redazione il 29 Novembre 2012.