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Perverse sheaves on semiabelian varieties
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ABSTRACT - We give a Tannakian description for the category of perverse sheaves on
semiabelian varieties. Our construction is based on a vanishing theorem for the
hypercohomology of perverse sheaves and extends earlier results for tori and
abelian varieties. As an application we explain how perverse sheaves on abelian
varieties can be studied in terms of semiabelian degenerations via a Tannakian
interpretation for the functor of nearby cycles.
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1. Introduction

For constructible sheaves on complex abelian varieties an analog of
Artin’s affine vanishing theorem has been obtained in [14]. The proof in
loc. cit. is based on a Tannakian description for categories of perverse
sheaves, and the arising Tannaka groups are of interest in their own right
— for instance they provide a new tool for the study of smooth projective
varieties with non-trivial Albanese morphism [22], and they can be used to
approach classical moduli questions such as the Schottky problem [13].
However, in general these Tannaka groups are hard to compute. So far the
most effective tool has been to study degenerations (e.g. the Tannaka
group attached to a generic principally polarized abelian variety has been
determined in loc. cit. via degenerations where the theta divisor becomes
singular). To push this technique further, it is desirable to allow also de-
generations into semiabelian varieties. In this note we extend the previous
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constructions to the semiabelian case, combining arguments of Gabber and
Loeser for tori [6] with the vanishing theorem of [14] for abelian varieties.
For semiabelian degenerations of abelian varieties we then show that the
nearby cycles functor induces an embedding of the degenerate Tannaka
group into the generic one whenever possible, see theorem 6.4.

Before we come to the details, let us give a brief overview over the
constructions that follow. Throughout we work over an algebraically closed
field k of any characteristic p > 0. Let X be a semiabelian variety, i.e. a
commutative group variety which is an extension1 - 7T — X — A — 1 of
an abelian variety A by a torus T over k. In what follows we put A4 = Q; for
some fixed prime number [ # p and we denote by

D = DX) = D’X,4) and P = PX) = Perv(X, A)

the derived category of bounded constructible complexes of A-sheaves
resp. its full abelian subcategory of perverse sheaves [2]. On the derived
category the group law m : X x; X — X defines two convolution products

K«L = Rm(KXL) and K=x.L = Em,(KXL) for K,LeD,

but neither of these two convolution products preserves the abelian sub-
category of perverse sheaves. To get around this issue, consider the full
subcategory T C D of all complexes K € D which are negligible in the sense
that for all » € 7 the perverse cohomology sheaves PH"(K) have Euler
characteristic zero. For k = C we will see that

(a) the triangulated quotient category D = D/T exists (corollary 4.2),

(b) both %, and *, descend to the same bifunctor * : D x D — D which
preserves the essential image P ¢ D of P (theorem 5.1),

(¢) with * as its tensor product, the category P is an inductive limit of
neutral Tannakian categories (corollary 5.3).

Recall from [5, th. 2.11] that a neutral Tannakian category is a category
which is equivalent to the category Rep,(G) of finite-dimensional linear
representations of an affine group scheme G over A. Thus to any perverse
sheaf P € P we attach in corollary 5.3 an affine algebraic group G = G(P)
which controls how the convolution powers of the perverse sheaf decompose
into irreducible pieces. These groups G(P) are the Tannaka groups we are
interested in and whose behaviour under degenerations will be studied in
section 6.

In the case of algebraic tori X = T the properties (a), (b), (c) have been
shown by Gabber and Loeser in [6, sect. 3.6-3.7] via the Mellin transform
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as a result of Artin’s affine vanishing theorem, and our arguments in
sections 2-5 are modeled on loc. cit. However, for abelian varieties X = A
we no longer dispose of Artin’s theorem and instead use the generic van-
ishing theorem of [14]. An independent proof of this generic vanishing
theorem has been given by C. Schnell in [20] via the Fourier-Mukai
transform for holonomic D-modules, closer in spirit to the Mellin trans-
form of Gabber and Loeser but apparently confined to the base field k = C.
Even though the proof in [14] also uses the theory of D-modules at one
stage, it might generalize to positive characteristic. So in the next section
we formulate the generic vanishing theorem for abelian varieties as an
axiomatic assumption under which our constructions will work over an
arbitrary algebraically closed field k.

2. Generic vanishing theorems

To formulate a conjectural generalization of the generic vanishing
theorem of [14] to the non-proper case over an algebraically closed field &
of arbitrary characteristic we need to consider characters of the tame
fundamental group. As a base point we will always take the neutral ele-
ment 0 € X (k). Recall from [21, sect. 1.3] that every semiabelian variety X
has a smooth compactification with a normal crossing boundary divisor.
The tame fundamental group nf(X ,0) classifies the finite étale coverings
of X that are tamely ramified along each component of such a boundary
divisor, see [8, exp. XIII, sect. 2 and 5], [9], [19]. So by construction
7}{(X,0) is a quotient of the usual étale fundamental group 7;(X,0), and
both are equal if k& has characteristic zero or if X is proper.

The group /7(X) of continuous characters y : nlt(X ,0) — A" admits a
natural decomposition as a direct product

X)) = 1X)y x HX),

where I1(X); denotes the subgroup of all torsion characters of order prime
to [ and where the subgroup /7(X); consists of all characters that factor
over the maximal pro-I-quotient 7; (X, 0); = 7!(X, 0);. This latter quotient is
a free 7;-module of finite rank [3], so by the arguments in [6, sect. 3.2] we
can identify 77(X); with the set of 4-valued points of a scheme in a natural
way — though as in loe. cit. the multiplication of characters does not come
from a group scheme structure. Considering I7(X) as the disjoint union of
the infinitely many components y-/7(X); indexed by the characters
x € II(X)y, we will say that a statement holds for a generic character if it
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holds for all characters in an open subset of I7(X) that is dense in each
component.

Every character y € II(X) defines a local system L, of rank one on X.
Our Tannakian constructions are based on the following generic vanishing
assumption for the hypercohomology of perverse sheaves, where we de-
note by K, = K ® 1 L, the twist of a sheaf complex K € D(X).

ASSUMPTION GV(X). For any P € P(X) and generic y € I1(X) the forget
support morphism

H!(X,P,) — H*(X,P,)

is an isomorphism, and for all i # 0 we have H/(X,P,) = H\(X,P,) = 0.

For complex abelian varieties this holds by the vanishing theorem of [14].
We do not know(}) whether GV (X) is also satisfied for abelian varieties over
an algebraically closed field & of characteristic p = char(k) > 0, but in any
case the semiabelian version can be deduced from the abelian one as follows.

THEOREM 2.1.  If the maximal abelian variety quotient A = X/T of X
satisfies the assumption GV (A), then also GV(X) holds.

Proor. For P € P(X) we can consider with the same definition as
in [6, sect. 3.3] the Mellin transforms M,(P) and M.,(P). These Mellin
transforms are objects of the bounded derived category of coherent
sheaves on I7(X) such that for all 7 € 7 and any character y € I1(X) we
have

H{(X,P))

14

H'(Li; Mi(P)),

0

H'X,P)) = H(Li,M.(P)),

where i, : {y} — II(X) denotes the embedding of the closed point given
by . We also have a morphism M,(P) — M.,(P) which induces via the
above identifications the forget support morphism on cohomology. Since on
a Noetherian scheme the support of any coherent sheaf is a closed subset, it
follows that the locus of all characters y which violate GV (X) forms a closed
subset S(P) C I1(X).

(*) Recently R. Weissauer has established the generic vanishing property also
for perverse sheaves on abelian varieties over finite fields, see arXiv:1407.0844.
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We must show that under the assumption GV(A) the complement of
this closed subset S(P) intersects every irreducible component of 77(X). So
we must see that for at least one character y in each component the
properties in GV (X) hold. To this end consider the exact sequence

0—7T - x 140

which defines our semiabelian variety. Lemma 2.2 below shows that any
component of /7(X) contains a character y such that the natural morphism
Rfi(P,) — Rf.(P,)is anisomorphism. Artin’s affine vanishing theorem for f
then also shows that these two isomorphic direct image complexes are
perverse [6, lemma 2.4]. For all ¢ € I1(A) and w = f*(p) € I1(X) the pro-
jection formula says

(Bfi(Py), = RA(Py,) and (Rf.(P)), = Rf.(Py),

hence we are finished by an application of assumption GV (A). O

To fill in the missing statement in the above proof, we consider our
semiabelian variety as a T-torsor f : X — A in the sense of [16, sect. 111.4].
It will be convenient to forget about semiabelian varieties for a moment.
So let B be any irreducible variety over k, pick b € B(k), and consider a
T-torsor

f: Y - B withfibre i: Y, = f (b)) =Y.

Fixing a base point y € Y,(k) we denote by 11(Y;) = II(T) the group of
all continuous characters of the tame fundamental group = (Y;,¥), and
similarly for 77(Y).

Lemma 2.2.  Forany P € P(Y) there is a subset U C I1(Y}) which meets
every rreducible component of the character group and has the property
that the forget support movphism Rfi(P,) — Rf.(P,) is an isomorphism for
all y € H(Y) with i*(y) € U.

ProOF. Any torsor is étale-locally trivial [16, rem. 111.4.8(a)], and
the question whether or not Rf/(P,) — Rf.(P,) is an isomorphism can
be checked étale-locally on B. So via the smooth base change theorem
one reduces our claim to the case of the trivial torsor which is treated
in [6, cor. 2.3.2]. O
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Returning to our semiabelian variety X, for later reference it will be
convenient to reformulate theorem 2.1 in the following equivalent way.

COROLLARY 2.3. Let K € D(X), and suppose the abelian variety
A = X/T satisfies the generic vanishing assumption GV(A). Then for
all » € 7, and generic y € II(X) the forget support map and perverse
truncations induce 1somorphisms

H!(X,K,) ~ H'(X,K,) ~ HX,’H"(K),).

Proor. For the perverse cohomology groups P, =PH"(K) and any
x € II(X) we have (P,), = PH"(K,). Only finitely many P, are non-zero, so
theorem 2.1 implies that for generic y and all 7, s € '/ the groups H3(X, (P,.),)
and H*(X,(P,),) are isomorphic to each other via the forget support
morphism, and non-zero at most for s = 0. Then the spectral sequences

By = H'(X.(P)) — H™(X,K,)
By = HIX.(P,)) — H"(X,K,)

degenerate, and our claim follows since the forget support map between the
limit terms is induced from the one between the Es-terms. O

3. Some properties of convolutions

At this point it will be convenient to gather some properties of the con-
volution products *; and x*, for reference. As in [22, sect. 2.1] the category
D = D(X) is a symmetric monoidal category with respect to each of these
products, and in both cases the unit object 1 is the rank one skyscraper sheaf
supported in the neutral element of the semiabelian variety X. For K € D
we consider the Verdier dual D(K) and define the adjoint dual to be the
pull-back KV = (—id)*D(K) under the morphism —id : X — X that sends
an element to its inverse.

LEmma 3.1. For K,M € D and y € II1(X) one has the following natural
1s0morphisms.

(a) Adjoint duality:
Homp(1, K" «, M) =~ Homp(K,M) =~ Homp(K x M",1).

(b) Character twists:
(K, =~ K",

KxM), =2 K,xM, and Kx.M), = K, *.M,.
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(c) Verdier duality:
DK« M) = DK)*, DIM), DK *, M) = DK)* DWM).
(d) Kiinneth formulae:

HY(X,K) @, H(X, M) = H(X, K % M),
H*(X,K +, M) = H*(X, K) @, H*(X, M).

Proor. Part (a) follows by adjunction as in [6, p. 533]. The first
identity in (b) comes from RHom(L,, Ax) = L, and ( — id)*(fol) =L,
the other two follow as in [14, prop. 4.1]. Property (c) holds because Verdier
duality is compatible with exterior tensor products. Finally, the iso-
morphisms in part (d) are the Kiinneth isomorphism [1, exp. XVII.5.4] and
its Verdier dual. O

4. The thick subcategory of negligible objects

In this section we always assume that the abelian variety A = X /T
satisfies the assumption GV(A) of section 2, in which case theorem 2.1 says
that GV (X) holds as well. For sheaf complexes K € D = D(X) consider the
Euler characteristic

2K) = > (= D'dim,(H'X,K) = Y (—1)'dim(H(X, K)),
€7, €7,
where the second equality is due to [15]. We write S = S(X) ¢ P =P(X) for
the full subcategory of all perverse sheaves with Euler characteristic zero,
and we define T = T(X) C D(X) to be the full subcategory of all sheaf

complexes K such that the perverse cohomology sheaves PH"(K) lie in S for
alln € 7.

LEmma 4.1.  Let K € D. Then we have y(K) = y(K,) for all ¢ € II(X),
and the following conditions are equivalent:

(a) The complex K lies in the full subcategory T.
(b) We have H*(X,K,) = 0 for generic ¢ € I1(X).
(¢) We have H3(X,K,) = 0 for generic ¢ € I1(X).

Proor. To prove the invariance of the Euler characteristic under twists
we can by dévissage assume that K is a constructible sheaf. Then [10, cor. 2.9]
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says that for any smooth compactification j : X< X the Euler characteristics
of the direct images ji(K) and ji(K,) coincide. Here we use that ¢ is tame, see
section 2.6 of loc. cit. It then follows that y(K) = x(X,), and corollary 2.3
implies that the three conditions (a) — (¢) are equivalent. O

A full subcategory of an abelian category is called a Serre subcategory
if it is stable under taking subquotients and extensions. More generally
a full triangulated subcategory of a triangulated category is said to be
thick if for any morphism f : K — L which factors over an object of the
subcategory and has its cone in the subcategory, both K and L lie in the
subcategory as well.

COROLLARY 4.2. The subcategory S C P is Serre, and T C D is thick.

Proor. Consider a short exact sequence 0 — P — @ — R — 0in the
abelian category P of perverse sheaves. Theorem 2.1 says that for
generic y € I1(X) the hypercohomology of P,, @, and R, is concentrated
in degree zero so that after a generic twist we obtain a short exact
sequence 0 — H'(X, P,) — H'X,Q,) — H'X,R,) — 0. Hence Q€S
iff P,R €S because of the equivalences in lemma 4.1. Therefore
S C P is a Serre subcategory, and T C D is then automatically thick
by [6, prop. 3.6.1()]. O

Localizing the abelian category P at the class of morphisms whose
kernel and cokernel lie in S we can thus form the abelian quotient category
P = P/S in the sense of [7, chap. III]. Recall that by definition this quo-
tient category has the same objects as P and that for any objects Py, Ps the
elements of Homg(Py, P2) can be represented by equivalence classes of
diagrams in P of the form

f1 Q f2
/ \
P Py

where the kernel and cokernel of the morphism f; lie in S. Similarly,
localizing the triangulated category D at the class of all morphisms
whose cone lies in the thick subcategory T we can form the triangulated
quotient category D =D/T as in [17, sect. 2.1]. These two quotient
constructions are compatible in the sense that the perverse t-structure
on D induces a t-structure on D whose core is equivalent to P in a natural
way [6, prop. 3.6.1].
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Lemma 4.3.  For K, M € D the following properties hold.

(a) The cone of the morphism K «y M — K x, M lies in T.
(b) If K or M lies in T, then K xy M and K x. M are also in T.
(¢) If K,M c P, then PH"(K  M),PH" (K *, M) € S for all n # 0.

Proor. (a) Let C be the cone of the morphism K « M — K x, M. We
must show H*(X, C)) = 0 for generic y € II(X). For this it suffices to check
that on hypercohomology the map

H*X, K, « M,)— H*(X,K, =, M,)

is an isomorphism for generic y. By corollary 2.3 we can replace the left
hand side with the compactly supported hypercohomology, so it remains to
see that the forget support map

Jrkwr, 0 HI{X < X, K, XIM,) — H*(X x; X, K, X M,)

is an isomorphism for generic y. For simplicity we will suppress the char-
acter twist in what follows, replacing K and L by their twists K, and L,.. Let
j : XX be a compactification, and consider the following diagram where
all horizontal arrows are forget support morphisms (the vertical arrows will
be defined below).

H*(X x, X, KR L) Frw H*(X x, X, KR L)

H S H

H*(X x5 X, (j,))(K R L)) ————> H*(X ) X, R(j, j)(K B L))
T T

H*(X x3 X, ji(K) X ji(L)) ———— H*(X x; X, Rj.(K)X Rj.(L))
! @ |

H*(X,ji(K)) ® H*(X, ji(L)) — H*(X, Rj.(K)) ® H*(X, Rj.(L))

(4)
H(X,K) !@ H?(X,L) fK®fL H*(X, K)(!@H'(X, L)

The horizontal arrow fx ® fz, is the tensor product of the forget support
morphisms for K and L, hence by corollary 2.3 it is an isomorphism for
generic y. On the other hand, the horizontal arrow fx g, is the forget sup-
port morphism we are interested in. So we will be finished if we can show
that the above diagram commutes and that all the vertical arrows (to be
defined yet) are isomorphisms.
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The squares (1) and (4) commute by definition of fx x;, and fx ® f7,. The
vertical arrows in (3) are the Kiinneth isomorphisms for the proper variety
X over k, and the commutativity of this square follows from the naturality
of the Kiinneth isomorphism. Finally, the square (2) is induced by the
square

Tad!1 T{Ld*

where ad, and ad, are the natural morphisms which correspond via ad-
junction to the identity of

KRL = (G,) K RHL) = (G,)) (Rj.(K)R Rj.(L)).

Note that ad, is an isomorphism and that over U =X x;, X =X x;, X
all the morphisms in the above diagram restrict to the identity. The
diagram commutes since by adjunction there is only one morphism
WE)RH(L) — R(j,7). (KX L) which restricts over U to the identity.
By the same argument the diagram

Rj.(K)® Rj.(L) = R(j,j)«(K ® L)

D(H(D(K)) B ji(D(L))) — L+ D((j, /)(D(K) B D(L)))

commutes. Since the lower row is an isomorphism, it follows that ad, must
be an isomorphism as well, and this finishes the proof of (a).

(b) For any K € T and generic y € I1(X) we have H}(X,K,) =0 by
lemma 4.1, and the Kiinneth formula in lemma 3.1 then implies

as well. So K M lies in T as required. The statement for K *, M follows in
the same way or can be deduced via Verdier duality.

(¢c) For generic y € II(X) theorem 2.1 says that H3(X,K,) ~ H*(X,K,)
and that this hypercohomology is concentrated in degree zero. The same
holds with M in place of K. So lemma 3.1 shows that H(X, K % M) and
H*(X,K *, M) are concentrated in degree zero for generic y, and we can
apply corollary 2.3. O
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5. Tannakian categories

Throughout this section we assume as before that for the semiabelian
variety X and its quotient A = X /T the generic vanishing assumption
GV(A) and hence also GV(X) are satisfied. The results of the previous
section then imply

THEOREM 5.1.  The two convolution products x and *, both descend to
the same well-defined bifunctor

x: DxD—D

which satisfies P« P C P and with respect to which both D and P are
symmetric monoidal A-linear triangulated categories.

ProOF. By lemma 4.3 (b) both % and *, descend to a bifunctor on D,
and part (a) of the lemma shows that these two bifunctors coincide. As
in [22, sect. 2.1]it follows that (D, *) is a symmetric monoidal category, and
part (c) of lemma 4.3 furthermore shows that we have P « P C P. O

It is sometimes convenient to lift the quotient category P to a category
of true perverse sheaves. To obtain such a lift, consider the full sub-
category P;,; C P of all perverse sheaves which have neither subobjects
nor quotients in S. Then as in [6, sect. 3.7] the quotient functor P — P
restricts to an equivalence of categories between P;,; and P, and via this
equivalence the convolution product * induces a bifunctor

*int ¢ Poat X Py 3

with respect to which P;, is a A-linear symmetric monoidal category
equivalent to P. The unit object 1 of P;,; is the rank one skyscraper sheaf
supported in the neutral element of the group variety X. As an application
we show that the category P is rigid, i.e. that we have a notion of duality
which involves evaluation and coevaluation morphisms with the usual
properties [5, def. 1.7].

THEOREM 5.2. The symmetric monoidal abelian category P is rigid.

Proor. Let P € P;,; be a perverse sheaf without constituents in S. Via
the adjunction property in lemma 3.1 the identity morphism idp : P — P
defines two morphisms 1 — PY %, P and P % PV — 1 in the derived cate-
gory D. Via the quotient functor these two morphisms induce morphisms in
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the full subcategory P by lemma 4.3. Denote by
coev: 1— PY x;,, P and ev: Py, PY—1

the corresponding morphisms in the lift P;,;. We must show that for all
P € P;,; the composite morphism

id sy cOCV ev i id

y: P=Pxyl P*inth *int P 1%y P =P

and its counterpart (id *;,; ev) o (coev x;,; id) : PY— P are the identity.
Since the argument is the same in both cases, we will only deal with .

In order to show y — idp = 0, we can by the axiom GV(X) assume that
for all subquotients @ of the perverse sheaf P the hypercohomology
H*(X, Q) vanishes in all non-zero degrees. Then H*(X, —) behaves like an
exact functor on all short exact sequences which only involve subquotients
of P. After a suitable character twist we can furthermore assume that

H*X,P" % P) = H*X,P" %; P) = H*X,P" *, P)

and that the forget support morphism for these hypercohomology groups is
an isomorphism. Then for H = H*(X,P) and HY = Hom(H, A) the dia-
grams in [6, appendix A.5.4] show that the morphism

A=H"X,1) 2 B*X, PV %y P) = H*X,P' +, P)=H' @, H

is the coevaluation in the category of vector spaces, and dually for ev. Since
the category of vector spaces of finite dimension over A is rigid, it follows
that on hypercohomology y — idp induces the zero morphism. Then @ =
P/ker(y — idp) is acyclic in the sense that H*(X, Q) = 0. By definition of P;,,;
it follows that € = 0 and hence y — idp = 0 as required. O

For P € P let us denote by ( P) C P the full subcategory of all objects
which are isomorphic to subquotients of convolution powers of P @ PV.
Subcategories of this form are said to be finitely tensor generated. By
construction they inherit from P the structure of a rigid symmetric
monoidal /-linear abelian category, and we claim that they are neutral
Tannakian:

COROLLARY 5.3. For any P € P there is an affine algebraic group
G = G(P) over A, unique up to non-canonical isomorphism, such that we
have an equivalence

w: (P) = Rep,(G)
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where Rep ((G) denotes the rigid symmetric monoidal A-linear abelian
category of finite-dimensional algebraic representations of G.

Proor. Consider P as an object of P;,; C P. By theorem 2.1 there
exists a character y € I1(X) such that all constituents of all convolution
powers

(PEBPV)X *int " Fint (P@PV)Z

have their hypercohomology concentrated in degree zero (note that these
are only countably many conditions and that I7(X); cannot be covered by
countably many closed subsets). For such a character y the functor
Q+— H°(X,Q,) is a fibre functor from ( P) to the category of finite-dimen-
sional vector spaces, and our corollary follows from theorem 5.2 via the
Tannakian formalism [5, th. 2.11]. O

The above fibre functor depends on the chosen character twist, and this
is the reason why we have restricted ourselves to finitely tensor generated
subcategories and why the Tannaka group is only determined up to iso-
morphism. Alternatively one could as in [6, th. 3.7.5] take the fibre functor
which to a perverse sheaf assigns the generic fibre of its Mellin transform,
but this fibre functor is defined over a large function field, and the descent
to A again involves non-canonical choices.

REMARK 5.4. With notations as above, if P € P(X) is semisimple, then
G(P) is a reductive algebraic group. If X is a complex abelian variety, then
the Tannaka group G(P) is isomorphic to the one defined in [14].

Proor. The group G(P) acts faithfully on the representation V' = w(P)
which is a direct sum of irreducible representations if P is semisimple. Since
the unipotent radical of an algebraic group acts trivially on any irreducible
representation, the claimed reductivity follows. The isomorphism with the
Tannaka group of [14] can be deduced from the universal property of the
localization D — D. O

6. Nearby cycles
To describe the behaviour of the above Tannaka groups under degen-

erations, we work over the spectrum S of a strictly Henselian discrete
valuation ring with closed point s. We consider perverse sheaves with
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coefficients in A4 = Q; for a prime [ that is invertible on S. Fix a geometric
point 7 over the generic point 7 € S and denote by S the normalization of S
in the residue field of 7.

Consider a semiabelian scheme X — S, i.e. a smooth commutative
group scheme over S whose fibres X, and X, are semiabelian varieties.
Throughout this section we will for simplicity always assume that the
generic fibre X, is an abelian variety. The base change X =X xg S fits
into a commutative diagram

<l

X; ! X X;
arvar X/”
Lo by l
i/s l/s i/"

in which all squares are Cartesian. Degenerations of constructible
sheaves can in this setting be studied via the functor of nearby cycles
[4, exp. XIII-XIV]

T: DXy —DXy) =DX,), UK =i (Rj.(K).

Here we use the [-adic formalism, which reduces us to the case of
constructible complexes of torsion sheaves. By [11, th. 4.2 and cor. 4.5]
the functor of nearby cycles commutes with Verdier duality, and it re-
stricts to an exact functor between the abelian categories P(X3;) and
P(X;) = P(X;) of perverse sheaves. However, in the non-proper case it
does not in general preserve the Euler characteristic.

ExamPLE 6.1. For n € N the #n-torsion subscheme X[n]— X is a
quasi-finite group scheme over S. It decomposes as a disjoint union
X[n] =Y II Z where Y is finite over S and where Z N X = ¢. In general
Z # & but the skyscraper sheaf P = AZZ € P(Xj) satisfies U(P) =

For the rest of this section we always assume that for all geometric
points t of S the fibre X; satisfies the assumption GV (X}) of section 2. We
can then consider the quotient categories

D(X;) = D(X)/T(X;) and P(X;) = P(X,)/S(Xy)

as defined in section 5. Note that the Euler characteristic is well-defined on
objects of these quotient categories.
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LEMMA 6.2. The functor ¥ descends to a functor ¥ : P(X;) — P(X;).
For all objects P,Q € P(X;) we have

(@) 0 < 4(W(P) < x(P),
) 0 < x(T(P)xT@Q) < x(U(PxQ)),

and U(P) « U(Q) is a direct summand of (P x Q) in the category P(X,).

Proor. We first need some general remarks. Let f:Y — Z be a
homomorphism of semiabelian S-schemes. By abuse of notation we again
write f for any base change of it. For Y = Y xgSand Z = Z xg Swe have a
commutative diagram

I

Zg—;>2<]—Z7-7

-

over S. For any constructible complex K of torsion sheaves on Y this gives
a commutative diagram

T (RAK)) —= R (K))

L
i (Rf.(K)) — Rf.(i" (K))
where o and f denote the forget support morphisms and where bc, and be, are

the base change morphisms. Recall how these latter are defined: The direct
image of the adjunction morphism K — 1, (i*(K)) yields two morphisms

R(K) — Rf(i.( (K)) = i.(RAG (K))),
Rf.(K) — Rf.G.G(K) = L.(RAG (K))),

and again by adjunction these give rise to the base change morphisms bc;
and bc, from above. We also remark [1, exp. XVII, th. 5.2.6] that as a result
of the proper base change theorem bc; is always an isomorphism. Replacing
K by Rj,(L) for a complex L € D(Y3), we obtain a factorization

Rfi(Wy (L)) ’ Rf.(y (L))

am /

Vz(Rf(L))
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where Uy and ¥, denote the nearby cycles for Y — S resp. Z — S. We
apply these remarks in the following two situations.

First we take f: X — S to be the structure morphism with ¥ = X,
Z =8 and L = P. The above diagram then says that the forget support
morphism f : H3 (X, U(P)) — H* (X, ¥(P)) factors over H*(Xj, P). Let y be
a character of the tame fundamental group of X, and y, € I1(X;) its pull-
back to the fibre X; over a geometric point ¢ of S. The appendix in section 7
shows that

W(P,) = (W(P),

and that y can be chosen in such a way that the characters y; and y; are both
generic. So by the generic vanishing axiom GV (X;) we can assume that the
forget support morphism f is an isomorphism, in which case the above
factorization shows that H*(X, ¥(P)) is a direct summand of H*(Xj, P).
Furthermore, by the generic vanishing axiom GV (X3;) we can also assume
that all occuring hypercohomology groups are concentrated in cohomology
degree zero. It follows that 0 < y(¥(P)) < y(P), in particular the nearby
cycles functor ¥ sends the Serre subcategory S(X;) C P(X5) into the Serre
subcategory S(X;) C P(X;) and hence induces a functor

7 P(X;) — P(X,)

between the quotient categories. The property (a) of the functor ¥ is in-
herited from the corresponding estimate for ¥ shown above.

Secondly we take f = m to be the group law, with Y = X xg X, Z =X
and L = PR Q. In D(X;) we can identify U (Rf.(L)) with U(P * Q). Since
by [11, th. 4.7] the exterior tensor product X commutes with nearby
cycles, we can also identify Rf,(Vy(L)) with W(P) * ¥(Q). Then the fac-
torization of  from above says that the nearby cycles W(P * @) admit
T(P) « U(Q) as a direct summand in P(X;). Hence claim (b) follows. [

In general we cannot expect ¥ to be compatible with the convolution
product since it does not preserve the Euler characteristic (see example 6.1).
Let us say that a perverse sheaf P ¢ P(X3) is admissible if

2(W(P)) = x(P).

For an abelian scheme X — S of course every perverse sheaf is admissible
since the nearby cycles are compatible with proper morphisms.
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LeEmMA 6.3. The admissible objects form a rigid symmetric monoidal
Sfull abelian subcategory

PX)" c PX;

which is stable under the formation of extensions and subquotients.

Proor. Any exact sequence 0 — Py — Py — P3 — 0in I_’(Xﬁ) is map-
ped under the nearby cycles functor to a short exact sequence in the ca-
tegory P(X;). Then in particular

7(P2) = y(P1)+ y(Ps) and x(U(P2) = z(¥(Py)+ 7(¥(Ps))

since the Euler characteristic is additive in short exact sequences. But on
the other hand y(P;) > 4 (¥(P;)) by lemma 6.2 (a). Hence P is admissible iff
Py and P3 are both admissible. So the category of admissible objects is
stable under extensions and subquotients. It remains to show that for ad-
missible P, Py € I_’(Xﬁ) also the convolution P; * P is admissible. This
follows from

7Py x Pg) = x(P1) - x(P2) (part (d) of lemma 3.1)
= 7(W(Py)) - x(W(P3)) (admissibility of Py, Ps)
= 7(U(Py) * U(Py)) (part (d) of lemma 3.1)
< y(W(Py * Py)) (part (b) of lemma 6.2)
< x(P1 * Pg) (part (a) of lemma 6.2)
which implies that the last two estimates must in fact be equalities. O

For the compatibility of the nearby cycles with convolution products
it now follows that the situation is as good as one could possibly hope
for.

THEOREM 6.4. On the above rigid symmetric monoidal abelian
subcategory l_)(Xﬁ)“d the nearby cycles define a tensor functor ACU in
the sense of [18]

U: Py — PXy).

In particular, for P € P(X,—i)“d we have a closed immersion G(U(P)) — G(P).
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Proor. For P, Py € P(Xﬁ)“d the last statement in lemma 6.2 (b)
shows that we have a split monomorphism W(P;) * W(Py) < W(P; * Pp) in
P(X,). But we know from the proof of lemma 6.3 that the source and target
of this monomorphism have the same Euler characteristic. So the mono-
morphism is in fact an isomorphism and hence ¥ is a tensor functor on the
category of admissible objects. For the statement about the Tannaka
groups recall that every object of (U(P)) is a subquotient of the image
under ¥ of some object in (P). So our claim follows from the Tannakian
formalism [5, prop. 2.21b)]. O

7. Appendix: Specialization of characters

Let X — S be a semiabelian scheme as in the previous section. Since [ is
assumed to be invertible on S, we know that

mX;,0), = n{(X5,0), and m(X;,0) = nl(X;,0)

are free 7,;-modules of finite rank [3]. However, the existence of abelian
varieties with semiabelian reduction shows that in general 7;(X;, 0); may
have smaller rank than 7;(Xj, 0);. To complete the proof of lemma 6.2 we
need to justify why in passing from the generic to the special fibre, we
retain enough characters to apply the generic vanishing assumption from
section 2 on both fibres. Let I7(X); denote the group of all continuous
characters of 7;(X, ); for any chosen geometric point « in X. The passage
to a different choice of x corresponds to an inner automorphism of the
fundamental group, which is not seen on the level of characters. So we have
well-defined restriction homomorphisms

%* : H(X)l — H(X?)la 1= Xs
i IX), — IXG), 1= X

From the theory of Néron models one deduces that i is surjective and that
j* is an isomorphism, see [12, sect. 3.6]. This in particular implies that if a
statement holds for a generic character on the fibres X, resp. Xy, then we
can find a global character y € I7(X); such that the statement holds for both
Zs and yz. This is precisely what we ne(id for the proof of lemma 6.2. The
character y defines alocal system L, on X, and for K € D(Xj3) the projection
formula implies

U(K,) =i (Rj,(Ko.j (L)) =i Rj,K)@sL,) = W(EK),

(i
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so that we can apply the generic vanishing axiom from section 2 simulta-
neously on both fibres X and X; as required.
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