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Classicality of overconvergent Hilbert eigenforms:
case of quadratic residue degrees

Y1CHAO TIAN(¥)

ABSTRACT - Let F' be a real quadratic field, p be a rational prime inertin F,and N > 4
be an integer coprime to p. Consider an overconvergent p-adic Hilbert eigen-
form f for F' of weight (k1, k2) € 72 and level I'yo(N). We prove that if the slope of
[ is strictly less than min{k;, ka2 } — 2, then f is a classical Hilbert modular form
of level I'oo(N) N Io(p).

1. Introduction

We fix a prime number p > 0. A famous theorem of Coleman says that
an overconvergent p-adic (elliptic) modular eigenform of small slope is
actually classical. More precisely, let N > 5 be an integer coprime to p, and
X1(N)*™ Dbe the rigid analytification of the usual modular curve of level
I'y(N) over Q,. We denote by X;(N);; the ordinary locus of X;(N)™. For
p > 5, X3(N)3,4 is simply the locus where E,_; (Eisenstein series of weight
p — 1), the standard lift of the Hasse invariant, has non-zero reduction
modulo p. For any integer k € Z, Katz [Ka73] defined the space M,TC(F 1N))
of overconvergent p-adic modular forms of weight k. An element in
M};(F 1(V)) is a section of the modular line bundle o defined over a strict
neighborhood of X;(N):; in X;(N)™. Moreover, Katz also defined a com-
pletely continuous operator U, acting on M'(I'y(N)). There is a natural
injection from M (I';(N) N Ty(p)) to M};(Fl(N)), where M;.(1I'1(N) N I'y(p))
is the space of classical modular forms of weight &k and level I'1(N) N I'y(p),
that is, sections of »* over the modular curve X(I'y(N) N I'o(p)). In [Col96],
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Coleman proved that if f € M,t(]" 1(V)) is a U),-eigenvector with eigenvalue
a, and v,(a,) < k — 1, then f actually lies in M;,("1(N) N I'o(p)). Coleman’s
original proof for this deep result was achieved by an ingenious dimension
counting argument. Later on, Buzzard [Bu03] and Kassaei [Ks06] re-
proved Coleman’s theorem by an elegant analytic continuation process.
The basic idea of Buzzard- Kassaei was to extend successively the section f

by the functional equation f = — U (f) to the entire rigid analytic space

X(I1(N) N To(p)™. Actually, Buzzard proved that f can be extended to
the union of ordinary locus and the area with supersingular reduction of
X(Ii(N) N I'o(p)*™. Then Kassaei constructed another form ¢ on the
complement to Buzzard’s area, and showed that f and g glue together to an
analytic section of @ over X(I'y(N) N I'y(p))*. The rigid GAGA theorem
[Abl1, 7.6.11] then implies that this is indeed a genuine section of ¢* over
the algebraic modular curve X(I'1(N) N I'o(p)). In this process, the theory
of canonical subgroups for elliptic curves developed in [Ka73] due to Lubin
and Katz plays a fundamental role.

There have been many efforts in generalizing the classical theory on
overconvergent p-adic modular forms to other situations. First of all, to
generalize overconvergent p-modular forms and the U),-operator, we need
to construct canonical subgroups in more general context. This has been
done by many authors. For instance, [KL05], [GK09] consider the Hilbert
case, and [AMO04], [AG07] treat the general case for abelian varieties, and
finally in [Ti10], [Fa09], [Ra09] and [Hal0] the canonical subgroups are
constructed for general p-divisible groups. Using the canonical subgroups,
overconvergent p-adic modular forms and the U,-operators can be con-
structed similarly in various settings. However, the generalization of Co-
leman’s classicality criterion need more hard work. As far as I know, this
criterion has been generalized in the following cases. In [Col97a], Coleman
himself generalized his results to modular forms of higher level at p.
Kassaei considered in [Ks09] the case of modular forms defined over
various Shimura curves. In [Sal0], Sasaki generalized it to the case of
Hilbert eigenforms when p totally splits in the totally real field defining the
Hilbert-Blumenthal modular variety. Finally, Pilloni proved in [Pi09] the
classicality criterion for overconvergent Siegel modular forms of genus 2.
In this paper, we will follow the idea of Buzzard-Kassaei to study over-
convergent Hilbert modular forms in the quadratic inert case.

To simplify the notation, let’s desecribe our result in a special but es-
sential case. Let F' be a real quadratic number field in which p is inert, and
Or be its ring of integers. We put k ~ F 2, W = Op, and Q, = W[1/p]. We
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denote by B = {f;, 5} the two embeddings of F" into Q,. Let N > 4 be an
integer coprime to p. We consider the Hilbert-Blumenthal modular variety
X over Spec(W) that classifies prime-to-p polarized abelian schemes A with
real multiplication by Op of level I'go(N). Let Y be the moduli space that
classifies the same data and together with an (Op/p)-cyclic subgroup of
Alp]. For each pair of integers k= (K1, ko) € ZB, we have the modular line
bundle w” over X and Y (See 2.2 for its precise definition). For each finite
extension L of Q,, we put Mz(I'oo(N) N I'o(p), L) = H'(YL,, "), and call it
the space of (geometric) Hilbert modular forms of level I"go(N) N I'y(p) and
weight k with coefficients in L. This is a finite dimensional vector space
over L by classical Koecher principle, and the theory of arithmetic com-
pactifications of Hilbert-Blumenthal modular varieties [Rap78, Ch90,
DP94] implies that it actually descends to a finite flat Z[1/N]-module.
Let X and ?) be respectively the completion of X and Y along their special
fibers, and X,i; and ?),;, be their rigid analytic generic fibers a la Raynaud
[Abll Ch. 4]. We still have a natural forgetful map = : ?),;, — %Hg For each
kez" , we denote still by @ the rigidification of the line bundle w*. Let %f;;
be the ordlnary locus of X,ig, i.e. the locus where the universal rigid Hilbert-
Blumenthal abelian variety g over X,;; has good ordinary reduction. Then
the multiplicative part of the universal finite flat group scheme .i;[p] de-
fines a section s° %md — ¥),ig of the projection 7 over %ng We denote by
s2)0“i the image of s° so that 7|y : é)fgd - ’cﬂ; is an isomorphism of quasi-
compact rigid analytic spaces. Fér a finite extension L of Q,, Kisin and Lai
[KL05] defined an overconvergent Hilbert modular form of level I'yy(V) and
weight ke with coefficients in L to be a section of o over %Old that extends to a
strict neighborhood of %l‘f d 1.~ We denote by MT (F 00(V), L) the space of such
forms. This is a direct hmlt of infinite dlmenswnal Banach spaces over L.
Moreover, the theory of canonical subgroups for Hilbert modular vari-
etles allows them to define a completely continuous U,-operator on
M (F 00(N), L). Note that a relatively weak formulation of the existence of
canonical subgroups says that the section s° %Ord ?)fgd extends to a strict
neighborhood of f{ﬁfg, or equivalently the 1s0morphlsm n\g)&? extends to a

strict neighborhood. Therefore, there exists a natural injection
My(Ioo(N) N To(p), L) — MUT00(N), L),

We say an element f in M;Z(F 00(N), L) is classical if it lies in the image of
this injection. The main result of this paper is the following

THEOREM 1.1. Let f € M;(F 00(N), L) be a U,-etgenvector with ergen-
value ap,. If vy(a,) <min{ky, ko } — 2, then f is classical.
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Actually, we prove our main Theorem in a slightly more general setting
2.7. Note that our results imply that, in the quadratic inert case, the clas-
sical points are Zariski dense in the eigencurve for overconvergent Hilbert
modular forms of level I'yo(N) constructed in [KLO05] (See Theorem 2.9).

Let’s indicate the ideas of the proof. First, by rigid GAGA and a rigid
version of Koecher principle (Proposition 2.2), we just need to extend f
analytically to the entire rigid space ?),;,. To achieve this, the key point is
to understand the dynamics of the Hecke correspondence U, on ),
(2.9—). Three ingredients from the work of Goren and Kassaei [GK09] will
be important for us. The first one is the stratification on the special fiber Y,
defined by them; the second is their valuation on ?),;, via local parameters;
and the third one is the so-called “Key Lemma” [GK09, 2.8.1], which relates
the partial Hasse invariants with the certain local parameters of Y,.. In this
paper, we will interpret their valuation on ?),;, in terms of partial degrees
(cf. 4.5 —, 4.2). They are natural refinements in the real multiplication case
of the usual degree function, which has been introduced by Fargues [Fal0]
and applied by Pilloni [Pi09] to the analytic continuation of p-adic Siegel
modular forms. Actually, our work originates from an effort to understand
the geometric meaning of Goren-Kassaei’s valuation. Compared with the
totally split case, our difficulty comes from the fact that the p-divisible
group associated with a Hilbert-Blumenthal abelian variety (HBAV) with
RM by Op is a genuine p-divisible group of dimension 2, so its group law
can not be explicitly described by one-variable power series. We overcome
this by using Breuil-Kisin modules to compute the partial degrees of the p-
torsion of a HBAV. This approach is motivated by the recent work of
Hattori [Hal0]. These local computations via Breuil-Kisin modules com-
bined with Goren-Kassaei’s “Key Lemma” will give us enough information
to understand the dynamics of the Hecke correspondence U, except the
case mentioned in Prop. 4.10 and 5.6. In this exceptional case, we have to
study in detail the local moduli of deformations of a superspecial HBAV.
This is achieved in Appendix B by using Zink’s theory on Dieudonné
windows [Zi01]. Finally, we can prove that the form f extends to an ad-
missible open subset of ?),;, that contains the tube over the complement to
the codimension 2 stratum in Goren-Kassaei’s stratification on Y, (Prop.
5.9). By a useful trick invented by Pilloni in [Pi09, §7], this allows us to
conclude that f extends indeed to the entire ?),;, (Prop. 4.9).

This paper is organized as follows. In Section 2, we review the facts that
we need on the Hilbert-Blumenthal modular varieties and state the main
theorem 2.7 and its consequence on the Zariski density of classical points in
the eigencurves for overconvergent Hilbert modular forms. In Section 3, we
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perform the computations mentioned above on the (Or/p)-cyclic subgroups
of a HBAV over a complete discrete valuation ring via Breuil-Kisin modules.
In particular, we give an alternative proof (Thm. 3.10) for the existence of
canonical subgroups in the Hilbert case proven in [GK09]. Section 4 is mainly
dedicated to the review on Goren-Kassaei’s work, and we provide also an-
other proof of their “Key Lemma” using Dieudonné theory (Prop. 4.1).
Section 5 is the heart of this work, and it contains a complete proof of
Theorem 1.1. Finally, we prove our general main theorem 2.7 in Section 6.
The proof of the general case is a combination of the split case treated by
Sasaki [Sal0] and the case in Section 5. We have two appendices. In the first
one, we gather some general results on the extension and gluing of sections
in rigid geometry. In Appendix B, we study the local deformation space of a
superspecial p-divisible group with formal real multiplication by Z,,, where
g > lis aninteger and Z, is the ring of integers of the unramified extension
of Q, of degree g. As a by-product, we see that the local moduli admits some
canonical choices of local parameters 74, ---, 7, such that the p-divisible
groups corresponding to 7; = 0 admits “formal complex multiplication” by
Zyy or Zpy @ Zye according to the parity of g (cf. Remark B12). These p-
divisible groups (or those isogenous to them) seem to deserve more study,
and should be considered as the canonical lifting (or quasi-canonical lifting)
of the superspecial p-divisible group in the formal real multiplication case.
‘We hope that we can return to the problem in the future.

After I finished a preliminary version of this paper and distributed it
among a small circle, Vincent Pilloni showed me a draft of his joint work
[PS11b] with Benoit Stroh, where similar results were obtained in-
dependently. The influence of the works [Ks06], [GK09] and [Pi09] on this
work will be obvious for the reader. I express my hearty gratitude to their
authors. I am especially grateful to Christophe Breuil for his careful
reading of a preliminary version of this paper, and for his valuable sug-
gestions. I also would like to thank Ahmed Abbes, Liang Xiao, Kaiwen Lan
and Tong Liu for helpful discussions during the preparation of this paper.
Finally, I would like to thank the anonymous referee who pointed out two
errors of earlier version of this paper.

1.1 — Notation

Let F be a totally real number field with g = [F" : Q] > 1, O be its ring
of integers, dp the different of F. Let p be a fixed prime number un-
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ramified in F'. For a prime ideal p of Oy, above p, we put x(p) = Or,/p and
denote by |x(p)| = pﬂ’ the cardinality of x(p). Let N > 4 be a fixed integer
coprime to p. Let x be a finite subfield of F, containing all x(p) and a
primitive N-th root of unity, W = W(x) be the ring of Witt vectors with
coefficients in x and Q, = W[1/p]. Let I3 be the set of embeddings of F' into
Q,. For each prime ideal p of Op dividing p, let 3, C B be the subset
consisting of embeddings f such that S '(pW)=p. So we have
B= Hb\p IBp. If o denotes the Frobenius on Q,, then ff+— g o f defines a
natural cyclic action of Frobenius on each [3y.

In general, for a finite set /, we denote by |/| its cardinality.

Let C, be the completion of an algebraic closure of Q,. All the finite
extensions of Q, are understood to be subfields of C,. We denote by v, the
p-adic valuation on C,, and by |- |, : C; — R+ the non-archimedean ab-

b
solute value [x|, = p~©.

2. Hilbert modular varieties, Hilbert modular forms and the statement
of the main theorem

Let S be a scheme. A Hilbert-Blumenthal abelian variety by Op (or a
HBAV for short) over S is an abelian scheme A over S equipped with an
embedding of rings: : Op — Endg(A) such that Lie(4)is an Og @ Op-module
locally free of rank 1. If A isa HBAV over S, the dual of A, denoted by A, has a
canonical structure of HBAV over S. We denote by P(A) the fppf-sheaf over S
of symmetric O -linear homomorphisms of abelian schemes A — AV, and by
P(A)" C P(A) the cone consisting of symmetric polarizations.

We fix a positive integer N > 4 coprime to p. Let ¢ be a fractional ideal
of F prime to p, and ¢* C ¢ be the cone of totally positive elements. Con-
sider the functor

T ALGy—SETS

which associates to each W-algebra R the set of isomorphism classes of
triples (4, 4, yy) where:

e A is a HBAV over Spec(R);

e / is a c-polarization of A, ie., an Op-linear homomorphism
J: ¢ — P(A) sending ¢* to P(A)" such that the induced map of fppf-
sheaves on Spec(R)

Ao, ¢ 225 A @, PA)—AY: a @ a® i) Aw)a)

is an isomorphism.
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e yy is an embedding of abelian fppf-sheaves of Op-modules
[y © dp' —A[N].

It is well known that this functor is representable by a smooth and
quasi-projective scheme X, over Spec(W) of relative dimension g, which we
usually call the c-Hilbert modular variety over W of level 'g(N) [GoO1,
Ch. 4, §3.1]. By a result of Ribet, the fibers of X, are geometrically irre-
ducible [Go01, Ch. 3 §6.3].

2.1 — Definition of Hilbert modular varieties

Let R be a W-algebra, and (A4, 4, wy) be an object in X(R). An isotropic
(OF /p)-cyclic subgroup H of A is a closed subgroup scheme H C Alp]
which is stable under Op, free of rank 1 over Op/p as abelian fppf-sheaf
over Spec(R), and isotropic under the y-Weil pairing

Alpl x Alp] =2 Alp] x AV[p] — p,

induced by a y € P(A)* of degree prime to p. So when A is defined over
a perfect field k of characteristic p, a subgroup H C Alp] is (Or/p)-
cyclic if and only if its Dieudonné module is a free (k ® Or)-module of
rank 1. Let G, be the functor which associates to each W-algebra R the
set of isomorphism classes of 4-tuples (4, 4, wy, H), where (4, 1, yy) is an
object in .77 (R), and H C A[p] is an isotropic (O, /p)-cyclic subgroup of
A. The functor G, is representable by a scheme Y, over Spec(W). We call
Y the c-Hilbert modular variety of level I'qo(N) N I'o(p). The natural
forgetful map (A, A, w, H)— (A, 1,y) defines a morphism of W-schemes
n:Y. — X, which is finite étale of degree J][(p” +1) on the generic
fibers over Q,. blp

Note that, for an object (A, Ay, Yan,H) in Y.(R), the quotient
B=A/H is naturally equipped with a structure of HBAV. Let
f:A — B be the natural isogeny and f* : B — A be the unique isogeny
such that foft=p-lgand flof =p-14. If 1: A ®0, ¢ > AV is the iso-
morphism given by 14 : ¢ — P(A), we define a c-polarization on B by /g =

%(ft)* 0lg:c— PA) — PB), where (f)*:PA)— P(B) is given by

¢—(f1)" o pofl. Finally, since H has order prime to N, the isogeny

f:A — B induces an isomorphism f : A[N]= B[N]. We define YpN as

py @ dpt 25 AINTS BIN]. We get an object (B, g,y y) in X(R).
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Fix a finite set {c1,---, -} of fractional ideals of F' prime to p, which
form a set of representatives for the narrow class group Cl; of F. We put

h+

It
X=][X, and Y=]]Y..
=1

i=1
We call X (resp. Y) the Hilbert modular varieties of level I'g(N) (resp. of
level I'go(N) N To(p)). In the sequel, an object (A/R, 1, wy, H) in Y(R) will

be usually omitted as (A, H), if there is no confusions on the polarization 4
and the level structure .

2.2 — Modular line bundles

Let T be the algebraic group (Resp, zGn) @z W over W, and X(T') be
the group of characters of 7. For any # € B = Emdq(F', Q,), let x; € X(T)
be the character

TR)=R®O0p) - R* =GyR) given by r® a— rpa).

Then (;(ﬁ)/jeﬁ form a basis of X(T)>Z" over Z. For an element
(kp)pen = Z kgp € Z", we denote by 1= H )( " the corresponding char-

acter of T

Let A — X be the universal HBAV over X, and w = B*Qi‘ /X where
e : X — Ais the unit section of A. This is a locally free Ox ® Op-module of
rank 1, and we have
o =P o,

peb

Where @y is the submodule of w 4 x where O acts via y4. For any character
= (kplper € Z we define a line bundle

= Qo
w = W "

peb

By abuse of notation, we denote still by @’; its pull-backs over Y via z*.

DEFINITION 2.1. For a W-algebra R,, we call the elements of
H'(X ® Ry, w) (resp. H(Y ® Ry, ) (geometrlc) Hilbert modular
forms with coefficients in R, of weight k= > kg -p and level I'oo(N)
(resp. of level I'yo(N) N I'o(p)) over Ry. p
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We have the following modular interpretation of (geometric) Hilbert
modular forms a la Katz. For each Ry-algebra R, we consider 5-tuples
(A/R, 2, wy,H, »), where (A/R, 2, wy,H) is an element in Y(R) and w is a
generator of wy p = e Q) /r 3s an R ® Op-module. Then a Hilbert modular
form f of level I'g(IN) N I'y(p) and weight k over R is equivalent to a rule
that assigns to each Ry-algebra R, each 5-tuple (4, 1, wy, H, w) as above, an
element f(A, H,w) € R satisfying the following properties:

o f(A,H,a ) = y:(0) 'f(A,H,0) for a € (R Op)";

e if $: R — R'is ahomomorphism of Ry-algebras and (A, 1, y/y,, H', &)

is the base change to R’ of (A, wy,H,w), then f(A' H o) =
H(f(A H,w)).

We have a similar description of Hilbert modular forms of level I"gy(V)
over Ry, and we leave the details to the reader.

2.3 — Toroidal compactifications

We recall some well known facts on the toroidal compactifications of
Hilbert modular varieties (cf. [Rap78, Ch90, DT04]). Let (¢, ¢*) be a prime-
to-p fractional ideal of Op. A I'gg(N)-cusp C of X, is an equivalence class of
the following data:

(1) Projective Op-modules a and b of rank 1.

(2) An isomorphism of Op-modules b a = c.

(3) An exact sequence of projective Op-modules

0—bdpfal—A—b—0.
(4) An embedding of Op-modules:
ic:a byt /Ne ot = A/NA.

Set Mq = ab = 0%, and M;, = Homzy(M,Z) ~ a b bt = bpla 2
The positivity on ¢ and that on by induce natural positivities on M and M.
For each I'y(N)-cusp C, we choose a rational polyhedral cone decom-
position {c,},;, of M " U{0} that is invariant under the natural action by
Uy such that the quotient {o,},.; /Ufy is finite. Here, Ury C Of
denotes the subgroup of units congruent to 1 modulo N.

We put R = W[qé = ]iVMC ,and Ug = Spec(V}f[qtf &€+ Mc)). Let
U —S,, be the embedding corresponding to g, and S,, = Spf(R,,) denote
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the completion of S,, along Z,, = S,, — U¢. Let Uc —S({a,}) be the toric

embedding given by {g,},c;,, and S({o,}) be the completion of S({a,})
along S({a,}) — Uc. So S({o,}) has an affine open covering by the S@_’s.

. 1
Put Spec(RY) = Spec(R,) xs,, Uc with R} =Ry [¢°:& € - Mc|. We
have a morphism of schemes over Spec(Rgx):

1:0—G,, @a 'd,! = Spec(RIX, : o € al)

given by X,u(B) = ¢*/. By Mumford’s construction, we have a semi-
abelian scheme Tate(a, b) = (G, ® a’lbgl)/z(b) over Spec(R,,) equipped
with a natural action of O, which is a c-polarized abelian scheme over
Spec(Rgx), and degenerates into G, ® a*IDEI over Z,,. As explained in
[KLO05, 1.6.1], the data i¢ : a 'b,'/Na b, — A/NA defines a I'oo(N)-
level structure on Tate(a, b) over Spec(Rgi). Thus, one gets a morphism
Spec(R;,) — X..

By “gluing” the local charts Sga to X, along §g“ xg,, Uc (cf. [Rap78] and
[Ch90]), one gets a toroidal compactification X, — X, and an isomorphism
of formal schemes

X' = [[8Ue.)/ Uy,
C

where X" denotes the completion of X along the boundary X — X. There
exists a semi-abelian scheme A with real multiplication by O over X,
which extends the universal HBAV A over X, and whose restriction to
each S’ox is Tate(a, b). We put X = ][] X,, where (¢, c*) runs through a set

of prime-to-p representatives of the strict ideal class group of F. The
(OX®(9F)X torsor w extends to X; hence, for any ke Z", the line
bundle " extends uniquely to a line bundle on X, which we still denote
by w”.

We define a I'g(N) N Iy(p)-cusp (C,H) on Y to be a I'y(NV)-cusp
C =(a,b,4,7c) as above together with an (Op/p)-cyclic subgroup
H C A/pA. By choosing a rational polyhedral cone decomposition for
each cusp (C,H) compatible with that for X, one generalizes the pre-
vious construction to get an toroidal compactification Y of Y in the same
manner as the Siegel case treated by Stroh [St10a]. Then Y is a proper
smooth scheme over W, which contains Y as an open dense subscheme.
We have a similar description of Y" in terms of local charts. The natural
projection Y — X extends to a morphism Y — X.
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2.4 - Rigid analytic spaces

Let X and ?) be the respectively the formal completions of X and Y
along their special fibers. The formal scheme X represents the functor that
attaches, to each admissible p-adic formal scheme over Spf(W), the set of
polarized HBAV with a I'yo(NV)-level structure; and we have a similar in-
terpretation for ?). Let X,z and ?),;, be the associated rigid analytic spaces
in the sense of Raynaud, Xa“ and Yan be the analytic spaces over Q, as-
sociated with the Q,-schemes Xq and Yq,. Similarly, we have formal
schemes X, 9) for toroidal compactifications, and their associated rigid
analytic spaces Xig, @ﬁg. Then we have natural inclusions of rigid analytic
spaces

%rig - Xari - grigv E‘?rig - YE}T - ?_)rig-

For any extension of valuation fields L /Q,, we use a subscript L to denote
the base challge of arigid space over Q, to L, e.g. Xyig 1, X3 1, = X}, - For
any weight k € Z", by an obvious abuse of notation, we still denote by @
the modular line bundles of weight k on the formal schemes X and 9), and
on rigid spaces fﬁg, @rig.
ProrosiTiON 2.2 [Koecher’s Principle]. For any finite extension L
over Q,, we have a commutative diagram of canonical isomorphisms

HO Y, w )—>HO(YL, )

(S"Drlg,L? ) ﬁ HO(YL yW ) _g> HO(SDrig,LaQE)v

where the horizontal arrows are natural restriction map, and the vertical
arrows are analytification maps.

Proor. The diagram above is clearly commutative. The top horizontal
isomorphism is the classical Koecher principle [Ch90, Thm. 4.331)]. The left
vertical isomorphism follows from rigid GAGA [Ab11, 7.6.11]. The lower
horizontal arrows are clearly injective. To finish the proof, it suffices to
show that the restriction map

H' Qg ") = H'@yipr, o)

is an isomor@ism. Since both_W—formal schemes 9) and ) are admissible,
we have H(),, 7, ©") = H'Q), 0") ®@w L and similarly for H%(®),; 1., ©").
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We are thus reduced to proving the similar statement for formal schemes )
and ?), then further reduced to showing that restriction map

HO(Y Qw W/pTl’QE) - HO(Y Qw W/pn7QE)

is an isomorphism for all » > 1. By the construction of Y, it suffices to
prove that, for every f € H'(Y @w W /p", w*), the g-expansion of f around
each cusp has no poles. This follows from the same computation as in
[Ra74, 4.9]. O

2.5 — Uy-operators

Let {cy,---c;+} be the fixed set of prime-to-p representatives of the
strict ideal class group Clf.. Fix a prime p of F above p. For each ¢;, there
exists unique 1 < j < 1" and a totally positive element &; € F*" such that
;b = (&)c;. Note that &; is only determined up to elements of Uy, the
group of totally positive units in F'; if p is not inert in F, then there is no
canonical choice for such a &;. We fix such a & for each 1 < ¢ < h™.

If A is a HBAV over a W-algebra R, we have a decomposition of finite
and locally free group schemes over R

Alp] = [ Atpl,

plp

where p runs through all the prime ideals of O dividing p, and A[p] is the
subgroup scheme killed by all a € p. Then A[p] is a group scheme of
(Or/p)-vector spaces of dimension 2. We fix a prime ideal p of Op above p,
and put x(p) = Op/p. Let C(p) be the scheme over Q, which represents the
functor that attaches to a Q,-algebra R the set of isomorphism classes of 5-
tuples (A, A, wy,H, H') where:

e (A, 1,yy,H) is an object in Y(R);

e H' C Alp]is a closed (Op/p)-cyclic isotropic subgroup scheme such
that H' N H = {0}.

We will two maps

C(p)
(2.1) / \
Yq. Yq.
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given respectively as follows:

nl(Aa;{a I//NvHaH/) = (A7/la V/NaH)
HZ(Aa/L I//N’HaH/) = (BviBal//B,N7(H, +I{)/}I,)7

where B is the quotient abelian scheme A/H', v y is the induced level
structure on B such that f oyy = yp vy if f : A — B denotes the canonical
quotient isogeny. It remains to describe the polarization Az on B. Assume
that 1 induces an isomorphism 1:A ®e, ¢; >AY for 1<i<h'. Let
& € FF be the element chosen above such that ¢;p = (&;)¢; for a unique
1<j<h*.Letg:B — A®p, ! be the canonical quotient isogeny with
kernel A[p]/H’ C Blp]. It is easy to check that the quasi-isogeny

18¢; 1 v _
B®o, tj —5 B®o, ip o A®o, ¢; <> A L B 90, b — B

is a genuine isogeny, and it gives the desired polarization 1. Here, the last
arrow BY — BY ®0, p~! = BY/B"[p] is the canonical quotient with kernel
Blp].

Since we are in characteristic 0, both 77 and ne are finite étale of de-
gree |k(p)|. Let (A, A, wy,H,H') be the universal object on C(p), and
¢: A— B=A/H be the canonical isogeny. We have a commutative
diagram
®

A A B A
lf fll lh l
Yq, <— C(p) ==C(p) —> Yq,,

where both the left and right squares are cartesian. We have a natural
morphism of (O¢q)y @ Op) ™ -torsors:
* ~ ¢* ~ *
T30 47v0,) = For Q) = Fie( Qo) & M@y,
which induces a natural morphism of line bundles
¢ : n;@’;) — nf@’;)

for any k € Z". For a finite extension L/Q,, we define the Uy-operator on
the space H(Y7,, ©*) as the composite

22) U, :H(Yy, o) 25 HOCW)p, @) 2=
HC),, 7 () 22

‘A(U)‘

H(Yy, 0P,
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where “tr” is induced by the trace map 7.7} (QE) — QE . Explicitly, if L/ /L
is a finite extension such that (A,H) = (A, L, wy,H) € Y(L), and w is a
generator of w, = e*.Q}‘l /1y s an (L ® Op)-module, then we have

23)  (Uy/)AH, w) = N FAH (H' + H)JH  p~'¢ (o),

(D)I et

H'NnH=0
where H' runs over all the Op-subgroups of A[p] of order |«(p)| with
HNH =0,and¢: A/H' — Aisthe canonical isogeny with kernel A[p]/H'.

REMARK 2.3. As pointed by the referee of this paper, our definition of
Uy-operators has the obviously disadvantage that it depends on the choices
of the ¢;’s, which are only canonically determined up to elements of U},
although it is harmless for the proof of our main theorem. This ambiguity
disappears when we restrict to so-called arithmetic Hilbert modular forms,
which are the forms giving rise to Galois representations.

Actually, there is a natural action of U on Y given by [¢] : (4, 2, wy, H) —
A, e Ayy,H). Let Upn C Op be the subgroup of units congruent to 1
modulo N. Then the subgroup U%ﬁ  acts trivially, because the endomorphism
u : A — A induces an isomorphism of tuples (A, A, wy,H) ~ (A,¢- A, wy, H)
if ¢ = w* with u € U% . Thus the action of U} factors through the finite
quotient U /U% . We have also an equivariant action of U}:/ Uz y on o
so that we get a natural action of Uj; /U%  on the H(Y,, ®). The space of
arithmetic Hilbert modular forms is defined to be the invariant subspace of
H(Yy,, ") under U /U% . Then for those forms, the ambiguity coming
from the choices for &;’s will disappear. For more discussion on this issue, see
[KL05, 1.11] and [DT04].

2.6 — Norms

We fix a weight & = Z kg € Z" and a finite extension L/Q,. Let L' /L

B

be a finite extension, and @ = (A, H) € ¥,4,(L) be a rigid point, ie. a
morphism of formal schemes @ : Spf(O;) — ?) such that Q*(U,H) =
(A, H), where (2, ) is the universal formal HBAV together with its uni-
versal isotropic (Of/p)-cyclic subgroup over ).;,. Let o be a generator of
the free (O, ® Op)-module w, = HY%A, o) '4/0, ), and wg be its f-component
for any f € 5. Then

i k,
" = Qpep wﬁ”
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is a basis of the Op,-module Q*(Q];). For any element f e Q*(QE) ®o, L,
we write f = f(A, H, w)o* with f(A, H,w) € L, and define

Il =IfA H, ),

For any admissible open subset V' C 9),, 1, and a section f € H(V, QE), we
define

|1y = sup [f(Q) € Rp U {o0},
QelV]

where |V| denotes the set of rigid points of V. If V is quasi-compact, then
|fly € Rsp by the maximum modulus principle in rigid analysis, and

H(V, QE) is an L-Banach space with the norm | - |;,. If V' is clear from the
context, we usually omit the subscript V from the notation.

2.7 — Hasse invariants

Let R be a x-algebra, and A be a HBAV over R. Let wy r = H'A, Q}LUR),
and Lie(A) be the Lie algebra of A; so we have Lie(4) = Homg(wy g, R).
The Verschiebung homomorphism V4 : A” — A induces a map of R-
modules HW : Lie(4)'"” — Lie(A), where Lie(4)” is the base change of
Lie(A) via the absolute Frobenius endomorphism Fpr:a—a? of R.
Equivalently, we have a canonical map

. (p)

Note that w, is a locally free R ® Op-module of rank 1, and let
wp/r = D ©a/r p Where wy g 4 is the direct summand on which O acts via
eB :

the character - Thus we have a decomposition & = € hy, where
peb

(24) hg - 0ar g — @5410/)13,5*10/3'

The morphism /g thus defines a Hilbert modular form (with full level) of
weight p - 71 o f — p over k, and we call it the -partial Hasse invariant.
The product E = [] hg is thus a Hilbert modular form of weight

peB
(p—1) > poverr, called simply the Hasse invariant. If A isa HBAV over
peB
an algebraically closed field containing r, the Hasse invariant E(A) # 0 if
and only if A is ordinary in the usual sense, i.e., the finite group scheme

A[p] is isomorphic to 1, x (Z/pZYy.
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2.8 — Ordinary locus

Let X, Y,. be the special fibers of X and Y, and X,‘jrd be the locus where
the Hasse invariant 2 does not vanish, or equivalently the open subscheme
of X, parametrizing polarized ordinary HBAV. For a HBAV A over a «-
algebra R, the kernel of the Frobenius homomorphism of A is naturally an
(Op /p)-cyclic isotropic subgroup of A[p]. In other words, the kernel of
Frobenius defines a section s : X, — Y, of the projection n : Y, — X,.. We
put Y4 = s(X°4). In particular, Y°' is isomorphic to X4

Let X and 9™ be respectively the open formal subschemes of ¥ and
?) corresponding to the open subsets X4 C X, and Y C Y, and %O-rd

and @girgd be the associated rigid analytic generic fibers. Then 3€°rd and Jffgd
are respectively quasi-compact admissible open subsets of Xug and ?),ig.
Let (2, 4,wy) be the universal formal HBAV over X. Over the ordinary

locus %Ord, we have an extension of finite flat Op-group schemes
0 — APl — Alp]l — APl — 0,

where 2[p]® is étale of order p?, and A[p}* is of multiplicative type and lifts
the kernel of Frobenius of 2 ®w k. The finite flat subgroup A[pl* is
(Or/p)-cyclic and isotropic for the Weil pairing induced by the polarization
J, and it defines thus an section s°: X9 — 9 lifting the section
s : X4 — Y°rd given by the kernel of Frobenius. In particular, the natural
projections ¢ — X4 and g)ﬁf; — %;?gd are canonical isomorphisms.

DEFINITION 2.4. Let L be a finite extension of Q,.

(i) For k € Z*, an element of HO(%ffgdL, F) is called a p-adic Hilbert

modular form of level 'y (N) and weight k with coefficients in L.
(ii) We say an element f € HO(%;’fg 1, o) is overconvergent if f extends
to a strict neighborhood V' of %rlg 1 in Xyig .. We put

ML(Ioo(N), L) = lim H(V., &)
%
where V runs over the strict neighborhoods of f% oL in Xig 1., and we call it
the space of overconvergent p-adic Hilbert modular forms of level I'gy(V)
and weight k.

REMARK 2.5. By the theory of canonical subgroups (cf. [KLO05, § 3] and
[GK09, Thm. 5.3.1]), the isomorphism of ordinary loci 7 : g)‘”d x4 ox-

rig
tends to a strict neighborhood of Jord in 9),i,. Therefore, the natural notion
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of (overconvergent) p-adic Hilbert modular forms of level I'oo(N) N I'y(p) is
the same as its counterpart of level I"go(N). Hence we can always consider
an element f € M (F 00V, L) as a section of @* over a strict neighborhood
of i 1ng Lt

We refer the reader to [Be96] for the definition of strict neighborhood.
Here we construct an explicit fundamental system of strict neighborhoods

of ae;:fg“L in X,gs by using the Hasse invariant. Let E% be a lift in

HO(X*, )P~V where T=(1,---,1) € Z", of ko-th power of the Hasse
invariant E% for some integer ko > 1. The existence of such a lift follows
from Koecher’s principle and the fact that ' is ample on the minimal
compactification X*. For any rational number 0 < » <1, we denote by

%SgdL(T) the admissible open subset of X,i,;, where |[E*0| > 7%, Since the
Hasse invariant is well-defined modulo p, the subset X,z 7,(r) does not
depend on the choice of the lift Bk if p~1/k < < 1. It is clear that

Xyigr(1) = flld 1» and the X,ig7,(#)’s form a fundamental system of strict
nelghborhoods of %mg 1, in Xyig 1.. Hence, we have

M (oo ), L) = lim HY(X}5g, (), o).

Note that each HO(%ﬁfgd 1.(1), Qk) is a Banach space over L, and the natural
restriction map

HO@E, ), ") — HO@S, 0), o

for 0 < r <+ <1 is compact [KLO05, 2.4.1]. Therefore, M]TE(F 00V),L) is
(compact) direct limit of Banach spaces over L.
By Remark 2.5, we have a natural injective map

H(Yy, ) = H @i, @) — MUTo0(N), L),

where we have used Prop. 2.2 for the first isomorphism. We denote its
image by M;(I"oo(N) N I'o(p), L), and call it the space of classical Hilbert
modular forms.

2.9 — Uy-operators in the rigid setting
For a prime ideal p of O above p, let C(p)™ be the rigid analytification

of the scheme C(p) over Q, considered in 2.5. Then just as C(p), the rigid
space C(p)™ represents an analogous functor in the rigid analytic setting,
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and we still have a universal object (A*™, A, wy, H, H') over C(p). We have
analogous morphisms 71,7z : C(p)*™" — Y§'. We put

C(p)rig = nfl(?)rig) = ngl(g)l“ig)'
The rigid analytic space C(b)y is the locus of C(p)*™ where A™ has good
reduction, it classifies the objects (A, H, H'), where (A, H) is a rigid point of

Drig> and H' C A[p] is a group scheme of (Or /p)-vector space of dimension
1 with H N H' = 0. We have a rigid version of the Hecke correspondence:

C(P)rig
@rig g)rig
given by m(A,H,H') = (A,H) and m(A,H,H) = (A/H',(H + H)/H).

We have also a set theoretical Hecke correspondence between the rigid
points of 2,

(25) UD : ?)rig - ?)rig

Q— ma(n Q).
Here, it is an obvious notation for convenience, because U), is not really a
morphism of rigid analytic spaces. If U and V are admissible open subsets

of 9,4, such that Uy(U) C V, i.e. iy }(U) C 73 '(V). A rigid version of the
formula (2.3) defines the Uy-operator

- . « N N;’tr -
Uy - HV, ") 2 By (V), mie®) £ HO W), o) =2 HOU, o).

ord
rig

spondence Uy, i.e. we have my(n; (V) C Yo

LeEMMA 2.6.  The ordinary locus )., is stable under the Hecke corre-

ProorF. Let L be a finite extension of Q,, (4,H) ¢ @2;;@) be a rigid
point,i.e. Ais a HBAV over Oy, with ordinary reduction, and H C A[p]isthe
multiplicative part. We have to show that (A/H',(H + H')/H’) still lies in

ord gop. any isotropic (Op/p)-subgroup H' C A[p] with H' N H = 0. Actu-

rig

ally, such a H' is necessarily étale over Oj. Therefore, the isogeny
A — A/H'is étale, and the subgroup (H + H’)/H' is the multiplicative part
of the HBAVA/H'. O

This easy Lemma implies immediately that a U,-operator analogous to

the classical case can be defined on the space HO@;?;L, QE) for any weight
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keZ" and any finite extension L of Q.. In order to show that over-
convergent p-adic Hilbert modular forms are stable under Uy, we need to
extend canonically the section s° %f,fg — )Ord to a strict neighborhood of

%%rgd As already mentioned in Remark 2.5, thls is the theory of canonical
subgroups, and it has been developed by many authors (cf. for instance

[KL05] and [GK09]). The main result of this paper is the following

THEOREM 2.7. Let [ be an element of Ml%(l“ 00N),L). Assume that
for every prime ideal b of Op above p, we have [k(p):F,] <2 and
Up(f) = apf with vy(ay) < mlﬁn{kﬂ} [x(p) : Fp], then f is classical, i.e.,
J e Mp(I'oo(N) N Io(p), L.

REMARK 2.8. It is reasonable to expect that the theorem is also true
without the restriction [x(p) : F),] < 2. The main obstacle to this general-
ization is that the geometry of Y in the higher dimensional case is too
complicated, and we don’t well understand the dynamics of the U,-op-
erator.

In the reminder of this section, we suppose p > 3, and indicate some
consequences of our results on eigencurves for overconvergent Hilbert
eigenforms.

2.10 — Applications to Kisin-Lai’s eigencurves

We follow the treatments in [KLO05]. Let L be a finite extension of Q,.,
and R be a Banach algebra over L with a submultiplicative norm | - |, and
Z € Rsuchthat |[Z] < p 7 1. We fixan integer ky > 0 coprime to p such that

the ko-th power of the Hasse invariant lifts to Ef ¢ HY(X, ofo»-DY), For
k € Z", Kisin and Lai defined in [KL05, 4.2.3] the space of overconvergent
Hilbert modular forms over R of level I'o(V) and weight k& + Z to be space

(2.6) k+Z(F00(N) R) =lim H(V, oMo R,

v
where V runs over a fundamental system of quasi-compact strict neigh-
borhoods of 353}"; in X,ig. This space is equipped with an action of the Hecke
operators T, (resp. U,) for each ideal a C Op coprime to pN (resp. not

coprime to pN). We point out that Kisin-Lai’s definition of these operators

involves the lift E’kvot, and if Z = 0, we come back to the definition (2.4). We
denote by T]§+ Z(,uN) the ring of endomorphisms generated by these op-
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erators as a runs over the ideals of Op. Let f € M£+Z(F 0w(N),R). We say f
is an eigenform if it is non-zero and a simultaneous eigenvector of all the
operators in T/TE+Z('“N)‘ We say an eigenform f has finite slope if it is an
eigenform and the eigenvalue of U(,, = [ U, is non-zero, i.e. U,,)(f) # 0.
plp

According to [KL05, 4.2.8], the space M£+Z(F 00(V), R) interpolates the
p-adic overconvergent modular forms of integer weights in the following
sense. Let L' /L be a finite extension, y : R — L’ be a homomorphism of L-
algebras sending Z to (p — 1)kt for some ¢ € Z-(. Then for each Hecke
operator 7' =T, or T' = U,, v induces a commutative diagram

¥ B0’
M%+Z(F00(N)a R) —— ML(go(N), L') ==~ M£+(p_1)k0tI(Foo(N)a L)

I I
ML (Too(N), R) —2—> ME(Too(N), ') ~E2% M1 _(Too(N), L).
k+Z k k+(p—1)kotl

Let S be the set of infinity places and all the finite places of F' dividing
pN, and G g be the Galois group of the maximal algebraic extension of /' in
C which is unramified outside S. Let f be a Hilbert cusp eigenform of level
Too(N) N Ty(p) and weight ke ZB, where the integers kg'’s are all > 2 and
have the same parity. We may suppose that the Fourier coefficients of f at
cusps are contained in Oy C Oc,, where Oy is the normalization of Z, in a
finite extension K¢ of Q. Let Fy = Or/mo, be the residue field of Oy. Then
by the work of many people [Ca86, Ta89, BR93], we know how to associate
to f a 2-dimensional Galois representation (p;, Vy) of Gpgs over K. The
representation p, is characterized by the condition that, for every prime
ideal g ¢ S of Op, trace(p;(Frob,)) coincides with the eigenvalue of T, on f,
where Frob, denotes an arithmetic Frobenius element in Gr g at q.

If Ly C VybeaGpg-stable Oy-lattice of Vy, we put V; = Ly ®0, Fy by the
abuse of notation, and denote by p; the resulting representation of Gr 5 over
Fy. Note that, in general, the isomorphism class of p is only determined by
pr up to semi-simplification. We call such a py p-modular residual rep-
resentation of Gp g, and call the pseudo-representation associated with the
semi-simplification of p; a p-modular pseudo-representation.

Let p be a p-modular pseudo-representation of Gr g over a finite field F.
We denote by R™"(p) the universal deformation ring of p, whose existence
is proved in the same way as [CM98, 5.1.3], and by p"™" the universal
pseudo-representation of Gp g over R"™W(p). Let Z(p) be the rigid analytic
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space over L attached to R™"(p) @w) L, and W be the weight space over
L of Resp, /7.Gn, i.e. the rigid space over L which to an affinoid algebra A
over L assigns the set of continuous A*-valued characters of (Op ®z Z,)".
By the local class field theory, the determinant det(p"™") defines a char—
acter (O @z Z ) — R™V(p),i.e. amap of rigid analytic spaces Z(p) —

Fix a welght k € Z" such that all the kg’s have the same parity. We
denote by W; the subspace of ¥V whose points in a complete subfield
L'cC, containing L, correspond to characters y:(Op ®zZ,)* — L'

20

1
such that there exists 2o € L' with v(zo) > m —1land y = ;- (Nm)™,

where Nm = y; : (Op ® Z,)" — Z; is the natural norm map, and a — (a) is
the canonical projection Z; — (14 pZ,) defined by

Z, ~(Z/pL)" x (1 + pZy).
Then W;; is a one-dimensional rigid closed subspace of WW. We denote by
Xuniv . (OF ® Zp)x _ O(WE)X

the universal character and by Z the 1ﬂ1g1d2 analytic function on W; such
that ;" = 1 (Nrn) We have |Z| <p 7~ 71, and Z establishes an iso-
morphism of rigid spaces over L

~ 2 1
7 - W}—C‘—>DL(O,p 1»71) = {90 e Cp|1)p(.’)0) > ﬁ — 1}

We denote by Z:(p) the inverse image of W; in Z(p). We put
Vi(p) = Z;(p) x Gm L X H AL, and denote by x, the canonical coordinate

on Gy, 1., x4 the coordlnate on the g-th copy of AL for q € S. We denote still
by Z the rigid analytic function on YV:(p) induced by the canonical projec-
tion y,;(/_)) - W, and by the same notation the analytic function on y];(ﬁ)
induced by that on Z;(p).

Kisin and Lai proved in [KLO05, 4.5.4] that there exists a rigid analytic
closed subspace CE(/_’) - y,;(ﬁ) that interpolates p-adic overconvergent
Hilbert eigenforms of finite slope. More precisely, it satisfies the following
properties:

(1) For any closed subfield L' C C, contalnlng L and any ¢ € C; (p)(l/ ),
there exists an eigenform f. € Mﬂ s )(F 00(N), L") of ﬁnlte slope,
such that, if /. 7 denotes the elgenvalue of T € 1IT (up) on f,, we
have /L'C‘U(p) = x,(c), and for all primes q of Op

Ae Ty = trace(p““i"(Frobq)) if ¢S and Ay, = x4(c) if g€ 8.

k+2Z(c)
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(2) For any zy € L’ with v,(z9) > % —1,and c € C; (p)(L’) the asso-

ciation ¢ — {4, c}T EPN induces a bijection between ¢ € Ck(p)(L’ )

o)
with Z(c) = z¢, and systems of TT (,uN)—eigenvalues arising from

the eigenforms of finite slope in M;%+z (Too(N), L).
0
We say a point ¢ € CI;(/_))(L’) is classical, if Z(c) = (p — Dkt for some

integer t € Z~, and the image of f. under the composite map

(Foo(N), L) = MUToo(N), L) M,TH( o T @), L)

(Loo(N) N Lo(p), L).

kZ()

comes from an element of M; (Dot
THEOREM 2.9. Assume p > 3 and [x(b) : F),] <2 for all prime ideal
b C Op above p. Then the classical points are Zariski dense in Cy(p).

ProoF. Let C be an irreducible component of CE(ﬁ). It suffices to prove
that C contains infinitely many classical points. Let 7;(p) : Cz(p) — W; be
the natural projection to the weight space. By the same argument as
[CM98, Thm. B], the morphism 7 (p) is component-wise almost surjective in
the sense that, for every irreducible component of C;(p), the complement of
its image in WV consists of at most a finite number of weights. Therefore,
there exists an admissible affinoid subdomain B C C such that its image
Wy in W; is an affinoid domain containing a closed disk with center

= (p — Dkoty € Wy of radiu p" for certain n € Z-y. By the maximum
modulus principle, there exists a real number « > 0 such that the slopes
vy(ay(c)) < o for any prime p of F dividing p and any ¢ € B(L), where L
denotes the algebraic closure of L in C,. Hence, there are infinitely
many points ¢ € B(L) such that we have Z(c)= (p— Dkot, and
kp+ (p — Dkot > o+ 2 for all f € B. By property (1) of the eigencurve
Ci(p) and Theorem 2.7, such a point ¢ corresponds to classical Hilbert
modular forms of level I'go(N) N I'y(p) and weight k +(p — l)lcgtl O

3. Finite flat group schemes with RM and Breuil-Kisin modules

We recall first the theory of Breuil-Kisin modules for finite flat group
schemes. Let & be a perfect field of characteristic p > 0, W(k) be its ring of
Witt vectors, and K be a finite totally ramified extension of Ky = W(k)[1/p]
of degree e, and Ok be its ring of integers. Fix a uniformizer = of K with
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Eisenstein polynomial E(u), and put © = W(k)[[u]]. We equip © with the
endomorphism ¢ which acts on W(k) via Frobenius and sends « to u”. A
finite torsion Breuil-Kisin module (of height 1) is a finite S-module It
equipped with a ¢-linear endomorphism ¢ : ¢ — I verifying the following
properties:

1) ¢ has p-power torsion.

2) I has projective dimension 1 as ©-module, i.e. there is a two term
resolution of ¢ by finite free S-modules.

3) The cokernel of the linearized map

129 g" M) = S 2z, M2

is killed by E(u).

We denote by Mod<™ the category of finite torsion Breuil-Kisin
modules (of height 1). Note that © is regular local ring of dimension 2, a
finite ©-module has projective dimension 1 if and only if it has depth 1.
Therefore, condition (2) in the definition above is equivalent to saying that
D¢ has no u-torsion. Similarly, a finite free Breuil-Kisin module (of height
1) is a finite free ©-module ¢ equipped with a g-linear endomorphism
@ : P — M such that the third condition above is satisfied. We denote by
Modfé the category of finite free Breuil-Kisin modules (of height 1). By a
Breuil-Kisin module, we mean an object It in either Mod<™ or Mod®
depending on the situation. For a Breuil-Kisin module X, the map
1® ¢ :p*(P) — I is necessarily injective [Ki09a, 1.1.9], and we denote its
image by (1 ® @)p*(05).

The main motivation of studying Breuil-Kisin modules in this paper
is the following theorem due to Kisin [Ki06, 0.5] when p > 3, to Eike
Lau [Lal0, 7.6, 7.7] and Tong Liu [Li10, 1.0.1, 1.0.2] independently when

p=2.

THEOREM 3.1. There is a natural anti-equivalence between the cate-
gory of commutative finite and flat group schemes over Ok of p-power
order and the category Modtg"rs. Similarly, the category of p-divisible
groups is naturally anti-equivalent to the category Modfé.

The following Proposition will be fundamental for our application of
Breuil-Kisin modules to the analytic continuation of Hilbert modular
forms.
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ProposITION 3.2. Let G be a finite and flat group scheme (or a p-
divisible group) over Ok. Let I be the Breuil-Kisin module associated
with G. Then there is a canonical isomorphism of Og-modules

wg = M/A @ p)p" (M),

where wg 18 the module of tnvariant differentials of G.

To prove this proposition, we need Breuil’s filtered S-modules. Let S be
the p-adic completion of the divided power envelop of W(k)[«] with respect
to the principal ideal (£ (u)), ie. S is the completion of subring
W(k)[u,E(u)i /il 21 > 1] of Kolu], and Fil'S ¢ S be the kernel of the nat-
ural surjection S — Ok sending u+— 7. We note that © is naturally a
subring of S, and the endomorphism ¢ on © extends to S. We check easily

that gp(FillS) C pS, and we put p; = %(o lpitg and ¢ = ¢y (E(u)). A filtered S-
module (M, FillM, ¢,) consists of the following data:

1) A finite generated S-module M and a submodule Fil'M with
E(uM c Fil' M.

2) A g-linear morphism ¢, : Fil' M — M such that, for s € Fil'S and

1
x € M, we have ¢, (sx) = Ewl(s)(,ol(E(u)ac), and the image of ¢; gen-
erates M as an S-module.

We denote by MFg the category of filtered S-modules. It has a natural
structure of an exact category. A sequence is short exact if it is short exact
as a sequence of S-modules, and induces a short exact sequence on Fil’s.

Let 9t be an object in Mod2"™ or ModZ. We can associate covariantly
with 9¢ a filtered S-module as follows. We put M) =S @z, M, and
define Fil' M(ON) to be the submodule of M(IN) whose image under the
morphism of S-modules

12

S®g_q,9ﬁ—>S®gﬂR

lies in Fil'S ®z M. The morphism ¢; : FiIPM @) — MOR) is defined to be
the composite

129 1

Fil' M@0 2% Fil'S w2 M 70 S @, M= MED).

By [Lal0, 8.1], (M(SUE),FHIM(%),(/)I) is an object in MFg, and the
functor M — M@N) is exact. By definition of Fill M), we have an
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embedding [Ki09a, 1.1.15]

MER)/FI'M@) 22 S @z M/(FII'S @z M) = M/Ew)IN,
which induces an isomorphism
(3.1) MO /Fil MER) = (1 @ p)p* (D) /E(u)IN.

If I is an object in Modfé, then (1 ® p)p*(M) is free over ©. So the &-
module (1 ® @)p*(M)/E )N has projective dimension 1, hence depth 1. It
follows that M(?)/ Fill M) and (1 ® )p* (M) /E )M are actually finite
free Og-modules.

LeMMA 3.3, Let I be an object in Mod2™ or Mod2: as above. We have a
canonical 1somorphism
Fil' M0 /Fil'SM@R) ~ D /(1 @ p)p*(MN).

Proor. The following construction was indicated to me by Tong Liu.
Consider the map 1® ¢ : ¢*(M) — WM. Motivated by the definition of
MDD, we put

Fil'g*() = {x € o (M) | 1 @ p)(x) € Eu)MN}.
Thus 1 ® ¢ induces an isomorphism
(3:2) " () /Fil'p* () = (1 @ p)p™ () /E@)IN.
We denote by
o}  Fil'p" (D) — M

the natural map given by x— (1 ® ¢)(x)/E(u). Then qof induces an iso-
morphism

(3.3) Fil'p* (00)/Ew)p” () = M /(1 @ p)g* (M)

On the other hand, the natural inclusion ©<— S induces an inclusion
1: (D) — M(N). We check easily that z(Fill(p*(ﬂﬁ)) c Fil' M), and we
have a commutative diagram of exact sequences

0 —— Fil'g*(M)/ E(u)¢* (M) —— ¢ (IM)/E(u) " (M) —— " (M) /Fil'* (M) — 0

l I I

0 — Fil* M(9M) /Fil SM(IM) —= M (ON) /FilL SM (M) — M(IM)/Fil' M(9M) — 0,

where the vertical arrows are induced by 2 The middle vertical arrow is
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easily seen to be an isomorphism, and so is the right vertical map because of
(3.1) and (3.2). It follows that the left vertical one is also an isomorphism. In
view of (3.3), the lemma follows. O

ProoOF OF PropP 3.2. Let M = M) be the filtered S-module asso-
ciated with G. By Lemma 3.3, it suffices to prove that we have a canonical
isomorphism

wg = Fil' M/Fil'SM.

If G is a p-divisible group, this follows from [BBM82, 3.3.5] or [Lal0, 8.1]
and the fact that M is the evaluation of the Dieudonné crystal of G at the
PD-thickening Spec(Ox) < Spec(S). If G is finite flat group scheme over
Ok, then G can be embedded as a closed subgroup scheme into a p-divisible
group Gy over Og [BBMS82, 3.1.1]; we put G; = G¢/G. We denote respec-
tively by My and M; the filtered S-modules associated with Gy and Gj.
Since all the constructions are functorial in G, the exact sequence of groups
0 — G — Gy — G — 0induces a commutative diagram of exact sequences
of Og-modules

0 waG, wWaG, wa 0

I |- |

0 —— Fil' M, /Fil' SM; —— Fil' M, /Fil' SMy — Fil' M/Fil' SM —— 0.

Since the left two vertical arrows are isomorphisms, it follows that so is the
right one. O

3.1 = Zys-groups

Let g > 0be an integer, Qs be the unramified extension of Q,, of degree
9, Zy be its ring of integers. We assume k contains F,,. We identify
Emdz, (Z,s, O), the set of embeddings of Z,s into O, with Z/gZ, and the
natural action of Frobenius on Emdyz, (Z,s, Ok) is identified with i+ ¢ + 1.

For an (O ® Z,s)-module M, we have a canonical splitting M = @ M;,
ieZ/9Z
where Z,s acts on M; via the i-th embedding. If N is a finite torsion Ok-

d
module, we choose an isomorphism N ~ @ Ok /(a;) with a; € Ok, and de-
fine the degree of N to be =1

d
degW) = > ,(a).
i=1
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A Zp-group over O is a commutative finite and flat group scheme over
Ok endowed with an action of Z,,. Fargues [Fal0O] defined the degree
function of a finite flat group scheme over Og. We give a refinement of this
function for Z,s-groups over Ok.

DEFINITION 3.4. Let G be a Zys-group over Ok, and wg = @ wg,;be
its module of invariant differential forms. We put i€Z/gZ

degl(G) = deg(wG,i)a

and we call it the i-th degree of G.

Hence, the degree function of Fargues is deg(G) = > deg;(G). If
icZgL
0— G1 — G — G2 — 0 is an exact sequence of Z,s-groups over Ok, we

have an exact sequence of Og ® Z,s-modules
0— wg, — wg — wg, — 0;

hence we have deg;(G) = deg;(G1) + deg;(G2) for any i € Z/fZ.

Recall that a scheme of 1-dimensional Fs-vector spaces over Ok is a
Z,s-group G over Ok such that G(K) is an F,,-vector space of dimension 1,
where K is an algebraic closure of K. According to Raynaud’s classification
of such finite flat group schemes [Ra74, 1.5.1], we have an isomorphism of
schemes

(3.4) G ~ Spec(Ok[T; : i € Z)gZ/(T" | — a;T)icz/9z)

for some a; € Og with 0 < v,(a;) < 1. Using this isomorphism, we have
deg;(G) = vy(a;) for © € Z/gZ. This following Lemma is a refinement of
[Fa10, Cor. 3].

LEMMA 3.5. Let ¢: H — G be a homomorphism of schemes of 1-di-
mensional Fps-vector spaces over R that induces an isomorphism on the
generic fibers. Then for any 1 € Z/9Z, we have

g-1 g-1
> pldeg; (G) > p deg; ;(H).

J=0 =0
Moreover, all the equalities hold if and only if ¢ is an isomorphism.
PrOOF.  Let (a;)icz/gz (resp. (b;)icz/4z) be respectively the elements in

Ok appearing in an isomorphism as (3.4) for G (resp. for H). We have
deg;(G) = vy(a;) and deg;(H) = v,(b;). The existence of ¢ implies that there
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exist u; € Ok for all © € Z/gZ such that a;u; = biuﬂl [Ra74, 1.5.1]. Hence,
we have

. -
g-1 P g1 P
(o) 1
Li\p, ) pi
=0 N =0 i

The lemma follows immediately from the fact that v,(u;) > 0, and that ¢ is
an isomorphism if and only if v,(u;) = 0 for all © € Z/gZ. O

We describe the Z,s-groups over Ok in terms of Breuil-Kisin modules.
A Z,o-Breuil-Kisin module is an object 0t in Mod%™ together with an
action of Z,, commuting with ¢. Equivalently, a Z,,-Breuil-Kisin module %t
is an (& ® Zys)-module M = @;cz/,70; satisfying the following properties:

1) each J; is killed by some power of p;

2) each ¢; has projective dimension 1, i.e. J¢; has a two term resolution
by finite free ©-modules;

3) there is a p-linear endomorphism ¢ : V¢ — V¢ such that p(¢;) € D4
and the cokernel of the linearization 1 ® ¢ : ¢*(0;) — ;4 is killed
by E(u).

We denote by Mod'é’rgng the category of Z,s-Breuil-Kisin modules, and

the morphisms in Modggng are homomorphisms of (© ® Z,s)-modules

commuting with ¢. Let 3¢ be an object of Modggng. We define the i-th
degree of I as

deg;(M) = %leng <mi/(1 ® (0)(0*(%1'1))7

Here, “leng” denotes the length, and the factor % will be justified in Lemma
3.6.If 0 — ¥ — MW — N — 01is an exact sequence in Modggng, it follows
from an easy diagram chasing that

deg; (M) = deg;(¥) + deg;(I)

for any i € Z/gZ.
From Theorem 3.1, it follows easily that the category of Z,s-groups over

Ok 1s anti-equivalent to the category Modt,:fgznq.

LEMMA 3.6.  Let G be Zpys-group over Ok, and I be its corresponding
Z,s-Breuil-Kisin module. Then we have deg;(G) = deg;(M) for i € Z/gZ.

PrROOF. Since the isomorphism in Prop. 3.2 is canonical, it necessa-
rily commutes with Z,,-actions. We have an isomorphism of (Og & Z,)-
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modules
wg = P wei=M/A e M) = @ MNi/A@ " (M;y).
i€Z/9gZ 1€Z/gZ
The lemma follows immediately. O

DEFINITION 3.7. Letn > 1be aninteger, G be a truncated Barsotti-Tate
group of level n over Ok equipped with an action of Z,,. We say G has
Sormal veal multiplication (or just RM for short) by Z,, if G has dimension
¢ and height 2¢g and wg is a free (Og/p" ® Z,s)-module of rank 1; in par-
ticular, we have deg;(G) = n for i € Z/gZ.

By [Ki06, 2.3.6], an object I of Modtgg@sng correpsonds to a truncated
Barsotti-Tate group of level n over Ok with RM by Z,, if and only if

(a) M is a free (©/p" ® Z,s)-module of rank 2g;
() V/(1 @ p)p*(N?) is a free (Ox/p" & Z,s)-module of rank g.

Let M = @jcz/gzM; be such a Z,-Breuil-Kisin module. For each
1 € Z/9Z, we have a filtration of free Ok /p"-modules

0 — 1 ®pe" 1)/ E@Wt; — DG /E@)NG; — D/A @ o™ (V1) — 0.

We say a basis (;, &)icz,/gz of M over & /p" is adapted if 6; € (1® p)g*(V;_1)
and the image of ¢; generates M;/(1 ® p)W;_; over Ok /p". Then under

such an adapted basis, there exists {gl Zl} € GL2(S/p") such that
1 (]

a; bi
(3.5) 9(0i-1,&i-1) = (0;, &) [E(u)ci E(u)di} '

3.2 — Hodge height

Let G be a truncated Barsotti-Tate group of level 1 over Og with RM by
Z,s, and G1 = G ®o, Ok /p be its reduction modulo p. The Lie algebra of
the Cartier dual of Gy, denoted by Lie(GY), is a free (O /p ® Z,s)-module
of rank 1. Let

LieGY) = @ Lie(GY);

icZ/gZ
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be the decomposition according to the action of Z,s. The Frobenius
homomorphism Fg, : G — G(lp ) induces a Frobenius linear endomorphism

HW : Lie(Gy) — Lie(Gy)

with HW : Lie(G{);_; C Lie(G});. We choose a basis ¢; for each Lie(Gy);
over Og/p, and write HW(J;_;) =t;0;. Let v, : Og/p — [0,1] be the
truncated p-adic valuation. We define the i-th partial Hodge height of G to
be wi(G) = v,(¢;) € [0,1]. It is clear that the definition does not depend on
the choice of the basis J;. Note that G is ordinary if and only if w;(G) = 0 for
alli € Z/gZ.

LeEMMA 3.8.  Let G be as above, and Dt be its corresponding Brewil-Kisin
module. We choose an adapted basis of I so that ¢ is represented by ma-

trices of the form (3.5). Then we have w;(G) = gmin{e, v, (@)}, where @; is

the image of a; in ©; = k[[ull, and v, denotes the u-adic valuation.

ProoF. Let M = M(@X) be the filtered S-module associated with G.
By [Lal0, 8.1], there is a canonical isomorphism of (Og/p)-modules
Lie(GY) ~ M/ Fil' M. Combining with (3.1), we have an isomorphism

Lie(GY) ~ (1 ® )" (M) /Eu)IN,

where the second term is considered as an Og/p-module via the iso-
morphism &;/E(u)S; ~ Ok /p given by u+— 7. Since everything is func-
torial in G, this is actually an isomorphism of (Ok /p ® Z,s)-modules. Since
the endomorphisms HW on Lie(GY) and ¢ on (1 @ ¢)p*(W¢) /E(u) are both
induced by Frobenius homomorphism of G; [Ki09b, 1.1.2], one checks
easily that HW and ¢ coincide with each other via the canonical iso-
morphism above. The Lemma follows immediately. O

Let G be a truncated Barsotti-Tate group of level 1 over O with RM by
Z,,. We say a finite flat closed subgroup scheme H C G is Zys-cyclic or Fy,-
cyclic, if H(K) is a one-dimensional F,,-subspace of G(K).

LEmMA 3.9.  IfH,H' are two distinct Z,.-cyclic subgroups of G, then for
all i € Z/gZ, we have

g1 p? —1
pr(degifj(H) + deg;_;(H") < 1
7=0

Proor. The Lemma follows from 3.5 applied to the homomorphism
H—G—- G/H. O
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The following theorem is a slightly generalized version of [GK09, Thm.
5.4.3]. The proof is motivated by [Hal0, 3.4].

THEOREM 3.10. Let G be a truncated Barsotti-Tate group of level 1 with
RM by Z,s, and denote w; = w;(G). Assume that w; + pw;_1 < p for all
1€ Z/gZ. Then there exists a Zps-cyclic subgroup C C G such that
deg;(C) =1 — w;; moreover, C is the unique Zps-cyclic subgroup of G
satisfying

deg;(C) + pdeg; _{(C) >1 for any i€ Z/gZ.

Proor. Let M= €& IM; be the Breuil-Kisin module associated
i€Z/gZ
with G. We choose an adpated basis (J;,;)icz/gz of ¢ so that ¢ is re-
presented by matrices (3.5). Note that w;.; + pw; < p implies that w; < 1;
so by Lemma 3.8, we have v, (a;) = ew;. By Lemma 3.6, we have to show that
there exists a quotient 3t = @;cz,/zt; of W such that deg;(It) = 1 — w; and
it is the unique quotient satisfying deg;(Jt) + pdeg; () > 1 fori € Z/gZ.
We prove first the existence of Yi. We construct a direct summand

L= P L of M such that ¥; is the submodule of N¢; generated by
i€Z]gZ

’7'2(5'78‘)[ o ]7
v (S e w,,)zi

where z; € &1 is some element to be determined. If we require that € is an
sub-oject of i, there should exists a certain A; € ©; such that p(y;_;) =
A;n;. Using the equation (3.5), we get

(3.6) {ai + oI =4

u®(c; +uPI D2l ) =tz A,
Since v,(a;) = ew;, there exists a unit a; € S such that a;a; = u°i. Then
we have z; = ¢;(z;_1), where

C’i + uep(lfwi—l)dizp
Q; + ueP—Pwisi—wpzp

9i(2) =

Note that 1 —w;_{ >0 and p — pw;_1 — w; > 0 by assumption. We get
therefore

2i=0i°00i-1° - 0¢ig1(z;).

By iteration, it is easy to see that the equation admits a unique solution in
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©; for z;. This well defines the sub-oject ¥ C . From
ew; = vyu(a;) < ep(l —w;_1) < vu(biuem*wi*l)zfil)
by assumption, we deduce that deg;() = %vu(Ai) = w;. We can take It to
be N/
For the uniqueness of N, we assume that N’ is a quotient of M with
deg; (M) + pdeg;(N') > 1 for i € Z/gZ. We have to show that 9t = N'.
Since deg;,; () <1, we have deg;(N’) > 0, i.e. N;/(1 @ p)p*(N;_ ;) # 0.

Let &' be the kernel of 0t — 9'. We have for each i € Z/gZ an exact se-
quence of Ok /p-modules

0— /A2 e () — MNi/1@p)e" i) — N /A e N_;) — 0.
Because /(1 ® p)p* (1) ~ S1/u’S; - ¢;, we see that N is generated
by the image of ¢ in 9. Hence there exists x; € ©; such that
i, =0; +xe; € L. We put 7 = %1)%(96‘1'). As (¥ ;) C &, there exists
A € ©; such that p(y;_;) = Aln;. We have

vu(A) = edeg;(¥) = e(1 — deg;(N)),

where the second equality comes from the additivity of the degree function
and the fact that deg;(t) = 1. Therefore, we get

(3.7)  vu(A) + puy(AL ) =e(p + 1 — deg;(N) — pdeg;_1(N)) < ep.

On the other hand, using (3.5) as above, we have equations

(38) a; + bixﬁl = Ag

(39) u’(c; + dﬁczl!:l) = 96114;

We claim that r; > 1 — w; for any ¢ € Z/gZ. Admitting this claim for the
moment, we can write ; = u®="’z/. Then the z}’s will satisfy the equa-
tions (3.6). But we have seen that (3.6) admits a unique solution z; for each
i € Z/gZ. So we have 2, = z;, and hence ¢ = &'. It remains to prove the

claim. We deduce first from (3.9) that v,(A}) > e(1 — 7;). In view of (3.7),
we get

(3.10) ri+prig>1 forallieZ/gZ.
If ; < 1 — w; for some i € Z/gZ, we have v,(A}) > e(1 — r;) > ew;. Because

of (3.8), we have
ew; = v (a;) = v (bl ) > epri_y.
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So we have 1 — r; > w; > pr;_1, i.e. ; + pr;_1 < 1, which contradicts with
(3.10). This completes the proof. O

REMARK 3.11. The subgroup C C G given by the theorem is called the
canonical subgroup of G. By the same argument as in [GK09, Thm. 5.4.2],
it is not hard to see that the subgroup C verifies the “Frobenius lifting
property”: If we denote w = éx%%(Z{wi} <1, then C ®¢, (Og/p'~"Ok) co-

incides with the kernel of Frobenius of G @0, (O /p*~"Ok), where p'=*
denotes any element in Ok with p-adic valuation 1 — w.

Let I be a subset of Z/gZ, I° be its complement, and || be the car-
dinality. We denote by o(I) the image of I under the action of Frobenius
0:2/9Z — Z/gZ given by i— 1+ 1. Let G be a truncated Barsotti-Tate
group of level 1 with RM by Z,, over Og. We say that a Z,,-cyclic subgroup
H of G is special of type I if deg;(H) =1 for i € I and deg;(H) = 0 for
relf.

ProposiTION 3.12.  Let the notation be as above.
(a) Assume that G admits a special subgroup H of type I.

(1) The group H is necessarily a truncated Barsotti-Tate group of level 1
of height g and dimension || over Og. Moreover, we have wi(G) = 1
fori e a(l) NI and w;(G) = 0 fori € (e() N 1)U (eI N I°).

(2) If H' be another Zyq-cyclic subgroup of G distinct from H, then we

have
deg,(H') < — (1 _L) foralliel
S =0 pol '
In particular, if I # (), then G admits at most one special subgroup
of type 1.

®) If G admits another special subgroup H' of type I' with H + H,
then either I = I' =0, or I' = I° and the natural map H x H — G
s an isomorphism of finite flat group schemes over Ok. In the
second case, if H" is a Zyq-cyclic subgroup of G distinct from H and
H', then we have

1 1 1 .
) < _
deg;(H") < b1 (1 pgil) forall i € Z/gZ.

(b) Conversely, assume that o(I°) C I, w;(G) =1 for i€ old)NI,
wi(G) =0 for 1 € s) NI, and wi(G) > 0 for i € (). Then G admits a
special subgroup of type I.
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Proor. (a) First, by Raynaud’s explicit classification (3.4), a group
scheme H of Fjs-vector spaces of dimension 1 over Ok is a truncated
Barsotti-Tate group of level 1 if and only if deg;(H) € {0,1} for all
1€ Z/gZ. Let M = Djcy,,z0; be the Breuil-Kisin module associated to G,
and (d;,¢) be an adapted basis of I; so that (1 ® e (N;_1) =
©16; © E)S1¢;. Let & = @jeg)yz%; be the Breuil-Kisin submodule of )t
attached to the quotient G/H, and It = Mi/¥ be associated to H. By
Lemma 3.6, we have deg;()) = deg;(H) =1fori e, i.e.

Wi/A @) (1) = V4 /(A @ e (D7) + &) ~ Sy /u’;.

Since ¥; is a direct summand of J;, there exists x; € ©; such that
L = S1(0; + ulx;e;). Up to replacing d; by J; + u’x;e;, we may assume that
L = ©49; for ¢ € I. Similarly, since deg;(It) = deg;(H) =0 for i € I, we
see that

M =&+ A @ e)e* G 1).

Up to modifying ¢;, we may assume that &; = ©;¢; if ¢ € I°. The following
facts follow easily from the condition that p(¥;_1) C ;.

o If ieIna(l), there exists a; € ©; such that ¢(d;_1) = a;0;. As
deg;(Q) =1 — deg;(H) = 0, we have a; € S;. In particular, we have
w;(G) = 0 by 3.8.

o If i € I°No(), there exists ¢; € ©; such that ¢(5;_;) = u’c;e;. In
particular, w;(G) = 1 by 3.8.

o If 1 €l°Na(l°, there exists d; € S; such that ¢(g_1) = ud;e;.
As (1@ (W;_1) = ©10; + Eu)Sq1¢;, we see that if ¢(0;,_1) =
a;0; +u’c;e;, then a; is a unit in &;. In particular, w;(G) = 0.

This prove statement (1).
For (2), it follows from Lemma 3.9 that

P’ -1
p—1

P71+ deg;(H") = p?~'(deg;(H) + deg;(H")) < foriel,

whence statement (2). For (3), we note first (2) implies I’ C I¢, or equiva-
lently I C I'*. We have to show that if I' £ 1° then I =1 =0. Let
ielenl® If i —1werein I C I, then ¢ € o(I) N I¢ and (1) would imply
that w;(G) = 1. But we have also 7 € o(I") N 1'%, so (1) applied to H' implies
that w;(G) = 0. This is a contradiction, hence ¢ — 1 € I°. In the same way,
we have ¢ — 1 € I, Repeating this argument with 7 replaced by 7 — 1, we
see that Z/gZ =1°NI*, ie. I =1'=0. Note that the natural map
f:H x H — @ is an isomorphism over the generic fibers. If I’ = ¢, then
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deg(H) + deg(H') = deg(G). Therefore, f is an isomorphism by [Fal0,
Cor. 3]. The second part of (3) follows directly from (2).

(b) We may assume ¢ is given by the matrices (3.5) such that [a?- bi ]

Ci di
is invertible for ¢ € Z/gZ. Under the assumption of statement (b), Lemma
3.8 implies that a; € ©; for i€o()NI, and hence b;¢; € S if
1€ ()N I°)Ua(®. Up to modifying the basis vectors, we may assume
0; = p(0;_1)if i € a(l) NI, and 6; = p(e;_1) if i € (c(I) N I°) U a(I€). Then the
matrices of ¢ can be simplified as

1 b

9(0i-1,8i-1) = (51:,(%){0 uedi] if i ea)NI;

w(éi_l,ei_o:(ai,ai)[ o 1} it i € (D) N I) U o)
uc; 0

We write a; = u’a; if i € o(/) N I°. The existence of H is equivalent to
the existence of a Breuil-Kisin submodule & = @;cz,,z¥; of M such
that deg;(&) =0 if ¢ € I, and deg;(&) =1 if ¢ € I°. By the discussion in
(a), we may assume ¥; = (J; + u’x;¢;)S; for i € I and &; = (g + 2;0;,)S
for ¢ € I°, where the x;’s are some elements in &; to be determined
later.

o If 1eco()NI, then ¢’(5i71 + ufx;_1ei-1) = A + uepacfflbi)(si +
w’P el die;. The condition ¢(2;_1) C &; implies that

wuPyl -
xr; = Fi(xi—l) = HT%
i—

e If 1 € () NI then a similar computation shows that

1 _
w; = Fi(e; 1) = g(ue(p Val | +a).
1

e If 1 € o(I°) C I, we have

2 e
x; = Fi(o;_q) = ——1
i z( 1 1) 1 +aix§11
By iteration, we have x; = F;oF;_yo---oF; . (x;) for all i € Z/gZ.
Since all the functions F; are contracting for the u-adic topology on &4,
there exists a unique solution for every x;. This proves the existence of &,
whence the special subgroup H of type I. O
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REMARK 3.13. Note that the condition in 3.12(b) is stronger than the
converse of 3.12(a)(1): we made the extra assumption that (/) C 1.1 don’t
know whether statement 3.12(b) still holds without this assumption.

An interesting special case of the Proposition is the following

COROLLARY 3.14. Assume g is even. Let G be a truncated Barsotti-
Tate group of level 1 with RM by Z,s over Og with wi(G) > 0 fori € Z/gZ.
Put I, CZ/gZ be the subset consisting of elements 1 =0mod2, and
I_ =1I. Then G admits a unique special subgroup H (resp. H_) of type
I, (resp. I_) if and only if w;(G) =1 forall i € I_ (resp. foralli € 1,). In
particular, G admits both special subgroups H. and H_ of type I and I
if and only if wy(G) =1 for all i € Z/gZ.

REMARK 3.15. In appendix B, we will give a family version of Cor. 3.14
over the deformation space of a superspecial p-divisible group with RM by
Z,y (cf. Prop. B13 and Remark B14).

Now we focus on the case g = 2, and we identify Z/2Z ~ {1,2}. The
following Proposition refines the preceding corollary in the case g = 2.

PROPOSITION 3.16. Let G be truncated Barsotti-Tate group of level 1
over Ok with RM by Z,.. Assume that wy = w1(G) and we = w2(G) are both
> 0. Let i € Z/2Z.

(a) We have w; =1 if and only if there exists a unique special sub-
group H C G of type {t + 1}, t.e. we have deg;(H]) = 0 and deg; (H) = 1.

(b) If w; =1 and }% <wi1 <1, then there exists a unique Z-
cyclic subgroup H' C G disjoint from the H n (a) such that
deg;(H') =1 — p(1 — w;;1) and degi+1(Hl) =1— w1

Proor. We may assume that ¢ = 1 to simplify the notation. Statement
(a) is a special case of the preceding corollary. If w; = ws = 1, then (b)
follows also from the preceding proposition. In the sequels, we assume that

f_ T < we < 1. Let ¢ = Ny @ Wy be the Breuil-Kisin module

attached to G. Let (d;,¢);—12 be an adapted basis of ¢ so that
(1 @ p)p*(W;_1) is free over ©; with basis J; and u;. Let £ C I be the
Breuil-Kisin module corresponding to the quotient G/H given in (a). By
Lemma 3.6, we have deg; (%) = 1 — deg;(H) = 1 and deg,() = 0. As in the

w; = 1and
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proof of the preceding proposition, we may assume ¢; = Sie; and

Ly = ©909. Then we have
a2 1 0 1
©(d1,¢€1) = (02, &2) @(02,2) = (1, 81) ;
ucy 0 ufc; 0

with v,(az) = ews and ¢y, c2 € S7'. To prove the existence of H, it suffices
to construct a Breuil-Kisin submodule § = §; @ & of ¢ such that
deg; (&) = p(1 — we) and degy(§) = we.

We assume that §; and Sty are respectively generated over &; by

& =01 +u TPy and & = Gy + u T Py,

and we will prove that there exist y1,72 € ©; such that § becomes the
required Breuil-Kisin submodule of 9t. We have

P& = (ag + uPAPA=mDy6y 4+ ulcoes,
{ p(&) = uPI YL Sy 4 uleer.

In order for p(&;) € K and p(&,) € &1, we should have

(3.11) (g + uPOPA—0Dy Py — g2,

(3.12) nyh = e

As v,(az) = ews, there exists Gz € ©; such that az = u®2d,. It follows

from the equality (3.11) that

(3.13) Yo = e

dy + ue<p2_l)(w2_1%)yf ’
In view of (3.12), we get

C R _ _ Db 2
2

Since wy > % by assumption, it is easy to see that the above equation

admits a unique solution for y; € S, and so ys € S is uniquely de-
termined by (3.13). With these solutions for %; and y2, we see that

{ o(E) = u(as + ue(pZ,l)(wr,%)yif)éz
p(&) = urhmybs,

Therefore, we have deg; (&) = p(1 — w2) and dggQ(R) = We.
For the uniqueness of H', we assume that H' is a Z:-cyclic subgroup
scheme of G with deg;(H') =1— p(1 — ws) and degy,(H') =1 — wy. Let
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XY= N/ S be the quotient module of 9 corresponding to H'. By the defi-
nition of degree, we have

deg(31 /(1@ p)p"(Fp) = deg (M /(K1 + (1 ® p)g" (M) = 1— p(1 —w3) > 0.

Since Wiy /(1 @ p)p*(Wz) is generated by the image of ¢ and 551 is free of
rank 1 over ©;, we see by Nakayama that fsl = &1, where g, denotes the
image of & in ‘fsl.}n the same way, we see that J, = ©18. Consider the
image J; of d; in ;. As 61 € ¢p*(Iy), so we have

31 c (p*(%2) _ ue(l—p(l—wZ))glgl’

i.e. there exists 7; € ©; such that & = 61 + u®l-P1-)j 0 € &;. In the
same way, there exists J» € s such that & = d + w12, € §5. Then it
follows that &, and & generate respectively §t; and S, and 71, yo satisfy
the same equations as y; and y; hence we must have y; = y1 and ¥ = y2

as these equations admit a unique solution. This implies S = & and hence
H =H. O

ProposiTION 3.17. Let G be a truncated Barsotti-Tate group of
level 1 over Ox with RM by Z,.. Assume that wy =wi(G) >0 and
Wo = 'Miz(G) =0.

() If there exists a Z,-cyclic closed subgroup scheme H C G with
deg;(H) = 0 and deg,(H) > %, then we have wy = 1.
(b) Conversely, if w1 =1, then any Z,y-cyclic subgroup H C G has

deg,(H) =0 and 1/p < degy(H) < 1. More precisely, we have the follow-
mg two possibilities:

p+1
<
i1 < degy(H) <1,

and all the other p? cyclic subgroups H' C G satisfy% < degy(H') < ;902—:_11
and

1) There is exactly one such subgroup H with

1
degy(H') = ﬁ(l +p — degy(H)).
p+1
2

2) All the (p* +1) Z,;-cyclic subgroups H C G has degy(H) = T

ProoF. The proof'is similar to the preceding Lemma. Note that w; > 0
implies that G has no multiplicatitve part. Up to replacing K by a finite
extension, we may assume that p divides e and all the Z-cyclic closed
subgroup schemes of G are defined over Og. Let It = iy & NVis be the
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Breuil-Kisin module of G. Choose an adapted basis (d;, ;) of ¢;, we have

a b
ulc;  ufd; |

a2 bo

p(01,¢1) = (52782)[ ], 9(02, &2) = (51,81)[

ucy  uds
We have v,(az) = ews = 0 and v,(a;) > 0 by assumption, hence by, c; € &'
Up to replacing dz by ¢(d1) and J1 by ¢(e2), we may assume

) & I C l ) I I O

with dz, ¢ € ©;.Let H C Gbea Z,-cyclic subgroup. Let 9t = Jt; @ iz be
the quotient of Mt corresponding to H, and ¥ = ¥; ® ¥ be the kernel
corresponding to G/H. 1

(a) First, we suppose that deg,(H) =0 and deg,(H) > 5 According

to Lemma 3.8, we have to prove that v,(a;) > e. We have deg,;(N) =
deg,(H) =0 and deg,(I) = degy(H) > 1/p by 3.6. In particular, the
©1-module

N2 /A @ @)p* (1) = Vi /(1 & )" (M) + ¥2)

is non-zero. As Wiz /(1 ® p)p* (D) = (S1/u’Sy)gz, we see by Nakayama
that the image of & generates Jis. There exists thus ye € ©; such that
7y = 02 + Y262 is a basis of ¥y over &y. An easy computation shows
that v, (y2) = edegy(N) > ¢/p. Similarly, from deg; () =0, we deduce
that the image of ¢(e2) = J; generates 9i;. Therefore, there is y; € ©;
such that 7, = ¢ + 101 forms a basis of ¥;. We have

(3.14) o) = (Y] + b2)ds + u’daes,
. o) = (a1 + y§)51 + ufcrée.
Since ¢(1,) € ¥ = ©1n, we see that

(3.15) a1 + ph = yu‘er.

Since v,(y2) > e/p, we have v, (a;) > e.

(b) Now we suppose wi(G) = 1. By 3.8, we can write a; = ua) with
@ € ©;. We claim first that ¥; contains no element of the form d; + x1¢;
with x; € uS;. Indeed, if this were not the case, we would have

0?01 + 2181) = w’[(1 + x{’zbg)a’l +uP VA1) +u’(d + x’l’zbé’)cm €.
Since ¥ is free of rank 1 over ©;, we should have

(1 + a8 B)er = [ + a2 W)a) + P~ V).
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This is impossible, since the left hand side is a unit in ©; but x; € u©;.
This proves the claim.
To prove deg,(H) = 0, we suppose conversely that deg;(H) > 0. Then

N1 /A @ ™M) = Ny /(A @ p)g*(Mz) + &) # 0.

Since N1 /p* (Miy) is generated by the image of ¢, we see that the image of
&1 1s a basis of 911. As J1 = p(e2) € ¢p*(Wz), we see that there exists ¥y € &4
such that n; = J; + x16; € ¥4. But #; must be a basis of ¥;, since ¥; is a
direct summand of ¥;. It follows from deg;(9) = deg,(H) >0 that
vy (1) > 0. By the claim above, this is absurd.

Next we show that deg,(H) > 0. Otherwise, we would have deg,(31) =
deg,(H) =0, i.e.

N2 /A @ @)p*(N1) = Vo /(1 © )" (Wiy) + Lp) = 0.

Since (1 ® p)p* (M) = S152 & S1E(u)ez, we see easily that Ly contains an
element of the form e + w202 with x5 € ©;. Then we have

ahucy

p(ez + 2202) = (1 + uexgall) <51 + W

81) S 21.

This contradicts with the claim mentioned above.

In summary, we have proved that deg;(H) = deg;(9t)=0 and
degy(H) = degy(I) > 0. The same arguments as in part (a) show that
there exist y1,y2 € ©; such that 7, = ¢ + y101 and 7, = d2 + Y262 form a
basis of ¥; and . Thus the same equations (3.14) and (3.15) are satisfied.

It follows that v, (y2) > %min{vu(al), e} = %, hence deg,(H) > 1/p. Recall

that we have assumed ple. Let’s write 2 = u*/Pz,. We get from (3.15) that
1, 5
Y1 = a(a1 +25).

On the other hand, we deduce from (3.14) and ¢(1;) € & that
Yoy + b2) = uds. Substituting y; and y., we get finally

2 (baeh + (@))ez = Lud P dy.

It is clear that the p? 4 1 roots of zs correspond to the (p? + 1) Z,:-cyclic
closed subgroup schemes of , and by our hypothesis on K, all the roots
of z2 are in &;. If H is the closed subgroup corresponding to a root zs,
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then we have
degy(H) = deg,(I) =1 — deg, (V)

1 1 1
= min{l,—vu(yz)} = min{l,— +—vu(z2)}.
e p e

We put o = v,(bac] + (a))’)/e and recall that ¢;,dz € ;. By considering
the Newton polygon of the equation of 2z, we deduce that

o ifu < p(g — 1), there is exactly one root ze with v,(z2) = e(l — l — oc)
p*+1 ¢ p
and all the other p? roots of zz with v,(22) = poc;
. p(p—1) 2 . p—1
fo> 11 th 1 f f =—e——5—.
o if o > PN , all the p* + 1 roots of 2o satisfy v,(z2) 6p(p2+1)

Now the proposition follows easily from the correspondence between
the Z.-cyclic subgroups of G and the roots of zs. O

4. Goren-Kassaei’s stratification and canonical subgroups

We will use freely the notation in 1.1. Recall briefly the Dieudonné
theory for HBAV. Let R be a x-algebra, A be a HBAV over R equipped
with a prime-to-p polarization. In [BBM82, Ch. 3], the authors defined the
(contravariant) Dieudonné crystal associated with the finite and locally
free group scheme A[p] over R. We denote by D(A[p]) the evaluation of
this crystal on the trivial divided power immersion Spec(R)— Spec(R).
This is a locally free (R ® Op)-module of rank 2 equipped with two natural
morphisms of (B ® Op)-modules

F:DAPD'Y — DA[p) and V : DAIp]) — DARD?,

called respectively the Frobenius and the Verschiebung, where (_)? de-
notes the base change by the absolute Frobenius endomorhism F'z : a— a”
on R. We have a decomposition

D(A[p)) = @ D(Alp])5,

BeB
where each D(A[p]); is a locally free R-module of rank 2 and O acts on it
via yg. For each f € B, we have an exact sequence of R-modules

-5 D) - DAP)),. —— DAR)F — .
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Let w4,z be the modules of invariant differentials of A relative to R, and
Lie(A) be the Lie algebra of A. They are both locally free (R ® Op)-mod-
ules of rank 1, and we have similar decompositions:

war =P oars and  LieA) = (P Lie(A);.
BB BB

For each f € B, we have the ~-component of the Hodge filtration
(4.1) 0 — wa/pp — DWAIp]y — Lie(A)s — 0.

Here, the quotient is canonically Lie(A4");, but we have identified Lie(4)s
with Lie(A")s using the polarization on A. Since the Frobenius induces the
zero map on differential forms, we have a commutative diagram

= -

where HWj is the f-component of the usual Hasse-Witt map. Note that i3
is injective, since it is the case if R is a perfect field and the diagram
commutes with any base change. The morphism HW; is just the dual map
of the partial Hasse invariant /; defined in (2.4). This fact will be used later
to compute partial Hasse invariants.

4.1 — Goren-Oort stratification

We recall Goren-Oort’s stratification of X, defined in [GO00]. Let A be a
HBAV over a field containing x. We put

7(A) = {B € B| hy(A) = 0},

where f3(A) is the partial Hasse invariant of A (2.4). For any subset t C B,
let Z be the closed subsubset of X, where /4 vanishes for any f € 7,i.e., we

have
Z.={x e X, |t C 14y},

where A, is the fiber of the universal HBAV at x. It is clear that Z, C Z,
for any subsets 7 D 7. We put

We=Z\ | Zv = {r € X | 14,) =1}

[k
#
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Goren and Oort showed that {W.} - form a stratification of X, and
each stratum W, is smooth and equidimensional of dimension g — |1,
where |t| denotes the cardinality of z. We note that Wy = X4, and
Wy is the set of superspecial points of X, i.e., the points where the
p-divisible group of the corresponding HBAV is isomorphic to a
product of g copies of the p-divisible group of a supersingular elliptic

curves.

4.2 — Goren-Kassaei stratification

Goren and Kassaei defined a similar stratification on Y, in [GKO09]. If S
is a subset of 3, we denote by ¢~1(S) the subset of B formed by ¢! o f for
B eS8, by a(S) the subset formed by oo f for f € S, and by S¢ the com-
plement B\S. We say a pair (p,7) of subsets of B is admissible if
n D o (¢°) or equivalently ¢ O (5°). For an admissible pair (¢, ), we have
decompositions

n=o (¢ HI and ¢ = o()f°) HO'(I)

with I = yn o 1(p).

Admissible pairs of subsets of B arise naturally from the points of Y,.
Let &k be a perfect field containing x, (A,H) be a k-point of Y,,
f:A— B =A/H be the natural isogeny, and

D(f) - DBIp) — DAIp])

be the morphism induced on contravariant Dieudonné modules. For a k
vector space M, we identify M with MP) = M ®, k by x+— 2 ® 1; so we
regard the Frobenius F on the Dieudonné modules as o-linear maps, and
the Verschiebung as ¢~ !-linear. We have a commutative diagram of exact
sequences

- > D(B[p))sos ——> D(B[p])s ——D(Blp])oos ——>---
lmmm lnmﬂ lwnoﬁ
o~ D(Ap]) sop ——> D(Alp])s ——> D(A[p])sos ——> - - .
Since H = Ker(f) is a (Op/p)-cyclic subgroup scheme, Im(D(f)s) C

D(A[p])s is a one-dimensional vector space over k. Note that there are two
special k-lines in D(A[p])s, namely (KerF)z = (ImV); and (ImF); =
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(KerV)g, where (_)s means the fi-component. We put
oA, H) = {p € B|Im(D(f))p = KerV); = (ImF)p}
nAH) ={f € B|ImD(f)s = KerF); = ImV)s}.

The pair (p(A, H), n(A, H)) is then admissible [GK09, 2.3.3]. If we denote by
ft: B — A the unique isogeny with f o f* = p-1g and f! of = p - 14, then
we have [GKO09, 2.3.2]

(4.3) A, H) = {p € B|Lie(f)51,5 = 0},
WA, H) = {B € B | Lie(f"); = 0},
1A H) = (A, H) o (oA, H) = {f € B | Lie(f)s = Lie(f"); = 0}.

We call the elements of I(A,H) the critical indexes. If x = (A, H,)

is an arbitrary point of Y,, we define respectively ¢(xr) and 5(x) as

oA, @ k,H, @ k) where k is a perfect extension of the residue field x(x).

It is easy to see that the definition is independent of the choice of k.
For an admissible pair (¢, ), we put

Zog=1{x € Y| @) 2 p,n@) D n}.

The subset Z, ), is closed in Y, [GKO09, 2.5.1]. Let (¢',#) and (p, ) be two
admissible pairs. We write (¢',7) D (p,n) if ¢' D ¢ and # O n. We have
Z{/J’,n’ g Z(N] if (¢/7 7/,) 2 ((ﬂ, 77) We pUt

Wou = Zya\ U Zya
') 2.

Goren and Kasseai show that [GK09, 2.5.2]:

e each W, , is non-empty and its Zariski closure is Z,, ,;
e the collection {W,,} with (¢,7) admissible forms a stratification

of Y,;
e each stratum W, , is smooth and equi-dimensional of dimension
29 — lol = Inl.

Note that there are 3Y strata in this stratification of Y,. The relation
between the stratifications on X, and Y, recalled above are given as
follows. For an admissible pair (¢, 77), we have [GK09, 2.6.16]

n(Wgo,n) = U Wr;
(pnmcCr
Clp\pUG\pT°
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in particular, for any point = (4,H) € W, ,, we have (pN#) C 1(4) C
[(p\m) U (n\p)]".

4.3 — Local coordinates

Let P be a closed point of X, @X,p be the local ring of X aAt P with the
maximal ideal mp, and wy p be the pull-back of w, to Spec(Ox p/p). We
choose a basis eg of wy p for each f € B. Then the partlal Hasse invariant
hy wpp — co( )1 o, where a)( “lopp denotes the base change by the abso-
lute Frobemus is given by

hﬁ(eﬁ) = tﬁe(p)loﬁ

for some t/; € Ox, p/p- Note that t/; € mp if and only if f§ € ©(P), where mp
denotes the maximal ideal of Oy r/p. By Kodaira-Spencer isomorphism,
the elements {ts : f € ©(P)} form part of a system of regular parameters of
the regular local ring Ox,_p/p. Let ty € OXP be a lift of t,g Then if x € Wy,
we have OX p = Ww@P)I[{ts: p € B}

Let Q be a closed point of Y, @y (@ be the completion of the local ring of
Y at @ with the maximal ideal mq. We denote by (Ag, Hg) the base change
of the universal object on Y to Spec(Oy. @), and by f: Ag — Bg = Ag/Hq
the canonical quotient, and by f*: By — Ag the unique isogeny with
flof=p- 14, and f oft=p- 15,. Let W, p and g, be respectively the
f-components of the invariants differentials of Ay and Bg. They are both
free (A’)y’Q—modules of rank 1; we choose generators e; € w,,; and
&g € wp, . For each ff € B, there are elements x4, € (ADY,Q such that

(4.4) ¥ ep) = wpep and [ (ep) = ypep.

We have xy5 = p because of f* o f* = p, and a4, ys € mg if and only if §
is critical, i.e. f € I(Q) = o 1 (p(Q)) N #(Q). Actually, Stamm [St97] showed
that we have an isomorphism

45) Oyg~ W@)I{xsys: € IQ),
{2, 17 € B=I@)}/{apys —p: € I@}).

The following proposition, proved in [GK09, 2.8.1] and referred as “Key
Lemma” there, will play an important role in the proof of our main results.
We give here another proof using Dieudonné theory.
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ProposITION 4.1 [Goren-Kassaei]. Let AQ be aAclosed point of Y,
P=n@Q), peco@nNnQ C(P), and n*: Oxp — Oygq be the natural
mduced morphism.

(@) Ifoop €@ and o1 o f € n(Q), we have
7 (tg) = wwp + vy’;,loﬁ mod p,

where w,v are some units m @yﬁQ.
() If 6o f € p(Q) and 7' o B¢ n(Q), we have
' (tp) = uxp modp

Sfor some unit u € @va.
() If oo B¢ (@) and o7 o B € n(Q), we have
() = vy(’;loﬁ mod p

for some unit v € (7)ny.
() If 0 o f¢ 9(Q) and o~ o B¢ n(Q), we have 7*(tg) = 0 mod p.

Proor. It suffices to prove the corresponding equalities in R =
(AQY,Q /p= @YK,Q- By abuse of notation, we still denote by ¢4, x5 and ¥4 their
image in R. Let (A4, H) be the universal HBAV over Spec(R), f : A — B =
A/H and f' : B — Abe the canonical isogenies, (Ay, Ho), fo : Ay — By and
feBy — Ay be the corresponding fibers at the closed point. We have the
Dieudonné modules D(A[p]) = @,ex D(A[p]), and DBIp]) = @,exDBIp),,
and a commutative diagram of exact sequences

(4.6)
e D(E[p])07107 D(f)y-10, D(X[p])07107 m D(B[p])ofloy ...
A A
. D(f)~ — D(fY), _
- ——>D(B[p])y ————————D(Ap]), D(B[p])y —— -

for each y € B. Let {¢,,d,} and {¢,, J,} be respectively a basis of D(?l[p]);,
and D(E[p])}, such that the cotangent modules Ok and wg /g Are gener-
ated respectively by e, and ¢,. So we have F(e,) = 0 and F'(¢,) = 0. By (4.4),
we may assume

(4.7 D(fe,) =, & and D(f)e) =1y, e,

For an element z in D(A[p]) (or D(B[p])), we denote by z, its image in
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D(Ao[pD) (or DBolpD). If y € 7(Q), then we have
Ker D(f3), = ImD(fy), = (ImV), = x(Q)e, 0.
Up to modifying J,, we may assume D(fy)(d,0) =e¢,0 and even

D(f)6,) = e, + U,d, for some U, € mpg. If y € a7 1(p(Q)), it follows from
(4.3) that

Ker D(fy), = ImD(f(f)y = (ImV), = x(Q)e,,.
Hence, we may assume [)( f(f)(d;,,o) =¢,0 and therefore D(f t)(dy) =
& + V.0, for some V, € mp. If y € I(Q) = n(Q) N o 1 (p(Q)), i.e., y is critical,
we deduce from D(f) o D(f*) = 0 that
D(f)(e,) = =V,D(f)©0,) = =V, (e, + U,d,)
D(f)ey) = —U,D(f)d,) = —Uyle, + V,,).

In view of (4.7), we have U, = —x, and V, = —y,. In summary, if y is
critical, we have
(4.8) D(f)S,) = e, —a,d, and D(f)d,) =&, —y,0,.

Let f € B be in the statement of the proposition. Assume that

{ F(da-—loﬁ) = —uep + t/gd[;

(4.9)
F(érloﬂ) = —veg + Sﬁé/;

for some u,v,ts,sp in B. By the remark below (4.2), tg,s; compute the
partial Hasse invariants of A and B respectively. Note that t; € nig since
p € (@) Ny(Q) C 1(Q) by assumption. Hence « has to be a unit in R, be-
cause (ImF); is a direct summand of D(Z[p])ﬁ. Similarly, at least one of v
and sy is invertible in R. We distinguish the four cases in the statement:

Case (a). In this case, both f and 6! o § are critical, hence the formula
(4.8) applies to y = B, o f. It results from (4.9) that
DUDYE, o) = (— uay + ty)eg — tyypdy
{ DUYEGy10p) = (—vyg + sples — s papdp.
On the other hand, it follows from the commutative diagram (4.6) that
w0 { DUOF g 10p) = FOE Ny 10) =~ v + 5pp)
DNEG 1) = FOFNO,10p)) =~ (— uep + tpdp).
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Comparing the coefficients of ¢z and ez, we get

tp =uxptvyl,
g =Yg +ual
We see that s € mg, and it follows that v is a unit in R as remarked above.
This completes the proof in case (a).
Case (b). In this case, f is critical. The fact ¢~ o f¢ 7(Q) implies that
Iml[)(fo)aflo/; 75 (ImV)afloﬁ = K(Q)eaqoﬁ.

Therefore, up to modifying d, 1.4, we may assume d, 1,3 € ImD(f) =
Ker D(f?). Since F' commutes with D(f?), we have

0= FID(F)dy 10)) = DE, 1)) = DN~ uey + tydy).

Now the equality ¢3 = wuay follows from (4.8) applied to y = f.

Case (c¢). In this case, 07! o is critical. The assumption o o ¢ p(Q)
implies that

KerD(fy)s # (ImV)y = Qe

It follows that D(fo)(epo) = ypepo # 0, ie. yp is invertible and xp =
py;" = 0in R. Therefore, Ker D(f*); = ImD(f); = Reg. Up to modifying
op, we may assume D(f' t)(d/,») = 0p. As in case (a), it follows from (4.9) that

{ DUDEy1p) = D~ ey + tydg) =ty
DUOFG, 1) = DU~ veg + 5505) = —vyge.

Using the fact that F commutes with D(f) and D(f?) and that ¢! is
critical, we get the same formula (4.10) as in case (a). Comparing the
coefficients, we obtain

v=—uyy'al

V. and tﬁ:—yf_,loﬂs/;.

To complete the proof in case (c), we note that v € mg, hence sz is in-
vertible in R.

Case (d). The same argument as in case (b) shows that ¢ = uxg (we
didn’t use the fact that f is critical to get this). Now the same argument as
in case (c) shows that xg = 0. O
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4.4 - Valuations on Xig

We recall the valuations on the rigid spaces Xz and )., defined by
Goren-Kassaei [GK09, 4.2]. Let C,, be the completion of an algebraic clo-
sure of Q,, and v, be the valuation on C, normalized by v,(p) = 1. We
define

v(x) = min{v,(x),1}.

Let L be a finite extension of Q,., Oy, be its ring of integers, and P be an L-
valued rigid point of X, i.e. P corresponds to a polarized HBAV A with
I'oo(N)-level structure over Oy,. For any f € B, let 3 be alocal lift of the -
partial Hasse invariant around P. We define the f-th partial Hodge height
of P (or of A) to be

(4.11) wy(P) = wy(A) = v(t4(P)).

It is easy to see that the definition does not depend on the lift ¢5. We have
wy(P) > 0 if and only if § € ©(P), where P € Y, is the specialization of P.
Therefore P € ?ﬁf.irgd if and only if wy(P) = 0 for all f € B. Let p be a prime
ideal of Op dividing p, and Op, ~ prp be the completion of O of its lo-
calization at p. Note that 5, C Bis identified with the set of embeddings of
OF, into Oy, Then the finite flat group scheme A[p]is a truncated Barsotti-
Tate group of level 1 with RM by Op, over O, in the sense of 3.7, and the f-
th partial Hodge height of A coincides with that of A[p] defined in 3.2.

4.5 - Partial degrees

Let L be as above, G be a finite flat group scheme over O;, equipped
with an action of Op, and wg be the invariant differential module of G.
Similarly as 3.4, we define, for each f € BB, the f-degree of G to be

degy(G) = deg(wg,p),

where wg g is the direct summand of wg on which O acts via y4. The “total”
degree of G defined in [Fal0] is thus

deg(G) = Z degy(G).

peb

Let @ = (A, H) be an L-valued rigid point of ?),;,. We put vy(Q) = (vs(@))per
with

(4.12) 3(Q) = degy(H).
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This definition is slightly different from that in [GK09, 4.2], and their re-
lationship is given by the following

PRrOPOSITION 4.2. Let Q = (A, H) € Drig be a rigid point defined over a
finite extension L/Q,, and Q € Y, be its specialization. Then our defini-
tion of vp(Q) is 1 minus that of Goren-Kassaer, i.e., we have

0 if e n@\I(@),
(@) = S vypQ) if fel@),
1 if BEN@Q),

wheve yg is the local parameter around Q introduced in (4.4).

Proor. Let f:A—B=A/H be the canonical isogeny, and
ft: B — Abe the isogeny with kernel A[p]/H. We have exact sequences of
invariant differential modules:

I i
0 — wp — wy— wyg — 0, 0 — wqg — wp— wapyu — 0.

So by the definitions of xg, s, we have

degy(Alpl/H) = deg(wp g/f" wap) = v,(y(Q)),
degy(H) = deg(wap/f*wpp) = vp(yp(Q)).
Thus the case where f € I(Q) follows immediately. If f € n(@Q)\I(Q), we
have Lie( fé)/” # 0, where fé denotes the special fiber of f. It follows that
f§ + wpg — wapis surjective, hence vy(Q) = degy(H) = 0. If f¢ n(Q), then
we have f € #%(Q) C o~ p(@)), i.e., Lie( fi)ﬁ #0 by (4.3). This means
ffﬁ* s wpp — wpyg is surjective, hence we have degﬁ(A[p]/H) =0and

vp(Q) = degy(H) = degy(Alp]) — deg(Alpl/H) = 1.
O

It follows from this Proposition that @ € ?)%rgd if and only if v4(Q) = 1 for
all f € B. Following [GKO09, 5.3], we define an admissible open subset of
Xyig or of ?),4, by

Uy = {P € Xvig | wp(P) + pw,1,5(P) < p,Vp € By},
(413) Vp = {Q € g)rig | U[;(Q) +pvtfloﬁ((e) > lvvﬂ € Bp}v

(4.14) Wy ={Q € Drig | Q) + pvo15(Q) <1,V € By }.
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THEOREM 4.3 (Goren-Kassaei). (a) For every prime ideal p of Or above
p, we have 1 (Uy) = Vy UW),,.

(b) Let L be a finite extension of Q,, and P € Uy(L) be rigid point
corresponding to a HBAV A over Oy, For every rigid point Q = (A, H) of
V, above P, the p-component H[p] of H is the canowical subgroup of A[p]
given by Theorem 3.10.

This theorem is essentially [loc. cit. 7.1.3], and statement (b) is also a
direct consequence of Theorem 3.10. Let @ = (A, H) be arigid point of ?),;,,
and H[p] be the subgroup killed by p C Op, sothat H = [ H[p]. Following
[loc. cit. 5.4.1], we say H (or Q) is plp

canonical at p if Q € Vy;

anti-canonical at p if @ € Wy;

canonical if it is canonical at all primes p above p;
anti-canonical if it is anti-canonical at p at all primes p above p;
too singular at p is it is neither canonical nor anti-canonical at p.

We put
Z/[can = ﬂupa Vcan = mvm
plp blp
(4.15) W = [ Wen () vp}
0#SS{plp} - pesS pES

Then Uean and Ve, are respectively strict neighborhoods of ﬁi’: and {l)ﬁi’g.
The following theorem is a consequence of Theorem 4.3.

THEOREM 4.4 [GK09, 5.3.1, 5.3.7). With the notation above, we have
T WUean) = Vean UW, and the restriction ”|Vcan Vean — Uean 1S an 180-
morphism, i.e., there exists a section s' : Uean — Vean extending the section
0 %fq?g — @f{g defined in 2.8.

We call Vean (resp. Uean) the canonical locus of ?),;, (resp. Xiig). The
following Proposition describes the dynamics of Hecke correspondence
over the canonical and anti-canonical locus.

ProposiTION 4.5 (Goren-Kassaei). Let p be a prime ideal of Op
dividing p, U, be the set theoretic Hecke correspondence (2.5) on g)ﬁg,
and Q = (A, H) € )4, be a rigid point.
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(a) Assume that Q 1is canonical at p. Then for every (Op/p)-cyclic
subgroup H' of Alp] distinct from H[pl, we have

deg/;(H/) = %(1 — vgoﬂ(Q)) for e Bp;

or equivalently all @ € Uy(Q) are canonical at p, and we have
-1 1
Vﬂ(Ql) = pT + p?Vgoﬂ(Q) fO’V ﬂ S :Bp
(b) Assume Q s anti-canonical at p. Let C C A[p] be its canonical

subgroup. For any (Op /p)-cyclic subgroup H' C Alp] distinct from H[p],
we have

1—pry)Q if H = C;

v5(Q) i H #C

forall p € By. Equivalently, if @1 = (A/H',(H + H")/H') € U,(Q), we have
PVo1op(Q) if H' =C;

1-w@ if H # C.

In particular, if H' # C, @ is canonical at p.

deg/j(H’) = {

vp(Q1) = {

This is essentially contained in [GK09, 5.4.3]. For the convenience of the
reader, we reproduce its proof here.

Proor. The equivalence between the statement on H’ and that on
Q1 € Uy(Q) follows from the fact that
(@) = degy(A[p]/H') = 1 — degy(H"),

since degﬁ(A[p]) = 1for all § € B,.
(a) Since @ is canonical at p, we have 1 —vg(Q) < pv,-1,4(Q) for all
p € By. It follows thus from Prop. 4.1 and 4.2 that

wp(A) = v(wp@) =1 — vp(@),

where xp is the local parameters on Y introduced in 4.3. The sub-
group H' must be anti-canonical at p by Theorem 4.3, i.e., we have
pdeg,14(H') < 1— degy(H') for f € By. It follows from 4.1 that

wp(A) =p deg(,,loﬂ(H’).

1 1
Hence dega,loﬁ(H’) = 25(1 —3(Q)), i.e. degﬂ(H’) = 5(1 — Voop(Q)).
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(b) We proceed in the same way as in (a). Since @ is anti-canonical
at p, we have wp(4) = pvgfloﬁ(Q) for feBy. If H =C, we have
wp(A) =1 — degﬂ(H’). Thus the equality

degy(H') =1 — pry154(Q)

follows immediately. If H' # C, then H’ is anti-canonical at p by Theorem
4.3, so we have wy(A) = pdeg,14(H") for € By. We deduce immediately
that degy(H") = v5(Q). O

Recall that for any weight ke Z® and any admissible open subset
U C ?),ig, we have defined in 2.6 |f|;; for the space f € H(U,»"). Note
that if U is not quasi-compact, it is possible that |f|; = co. We have the
following basic estimation of norms under Hecke correspondence.

LemMA 4.6. Let Q = (A, H) be a rigid point of ¥, defined over a
finite extension K of Q,, and w be a basis of the free (Ox @ Op)-module
oYy Let p be a prime ideal of Op dzmdmg p, H' C Alp] be a (Or/p)-
cyclic closed group disjoint from H, and 45 A/H — A be the canonical
1sogeny with kernel Alp]l/H'. Let V be an admissible open subset con-
taining the rigid point @ = (A/H',(H + H")/H'). If f is a section of o"
over V such that |f |y is finite, we have

@) = |fA/H (H + H)/H p & w)| < p 2o 5T )

Proor. Let o' be a basis of wy o, 88 (O ® Op)-module, where

A’ = A/H'. Then it is easy to see that p‘lg%*w = aw' for some a € (K @ F)*
with [y4(a)] = pie&#) for all € B. Note that degy(H') =0 if f¢ B,.
Therefore, we have

s @ ol = |( TL @ ) s @ i)/ o)

BB
,Z ky degp(H') 7 / T o)
—p BBy |f(A/H',(H+H")/H' )|

< p Lo, OB o)

From the formula 2.3, we deduce immediately that

COROLLARY 4.7. Let f be a section of QE defined over an admissible
open subset V of ?),i; with | f'|y; finite, and p be a prime ideal of O above p
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with fy = [k() : Fpl Let Q =(A,H) be a rigid point of ?)ﬂg such that
Up(Q) C V. Assume that kg, = }jn_igl{k,;}, and there exists ¢ > 0 such that
€By
> degyg(H") > ¢ for any (Of/p)-cyclic subgroups of H' C Alp] different
BEBy
ﬁEm[n H. Then we have

|Up(HQ)] < pl~Fnc|f .

Proor. By the the definition of U,(f) (2.3) and the preceding Lemma,
we have

\Up(H)@)] <p" sup |f(A/H',(H +H"/H')|
H'CA[p]

H'NH=0

- . kp degy(H'

<ph sup fp SOy g
H'cA[p]

H'NH=0

The corollary follows from the fact that

> kydegy(H') > ky, > degy(H') > cky,.
peBy peBy
O
Now we prove the first result on analytic continuation of p-adic Hilbert
modular forms.

PRrROPOSITION 4.8. Let f be an overconvergent p-adic Hilbert modular
Sform of weight k € Z°. Assume that Jor all prime p|p, we have Uy(f) = ap f
with ay € C; . Then f extends uniquely to a section of @* over Ve, such
that Uy(f) = ay f remains true for all p|p. Moreover, |f |, = sup [f(Q)
is finite. QEVean

Proor. For any rational number 0 < » < p and any prime ideal p of Or
dividing p, we put
Vean(P;7) = {Q € Vean | V/f(Q) +pvrloﬂ(Q) >p+1—rforall fc By}
Vean(r) = m Vean (7).

blp

Note that V.., (7) is a quasi-compact admissible open subset of Ve,,, and
{Vean()},_ ¢+ form a fundamental system of strict neighborhoods of @fll;
Using Prop. 4.5(a), it is easy to check that Uy(Vean(;7)) C Vean(; /D),
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and hence

<H Up) Vean(r)) C Vcan(y/p)-
blp
We may assume that f is defined over some Ve.,(19). Let n > 1 be the

minimal integer such that p"»y > p, then we have ( 11U n) (Vean) € Vean(10).
1 plp

Therefore, (H 0 Ug) f is a well-defined section of w” over Ve, extend-

p Oy

ing f. It is clear that the (extended) form f still satisfy the functional
equations Uy(f) = ap f. The finiteness of |f|,, follows immediately from
Corollary 4.7. O

The following useful Proposition is motivated by [Pi09, § 7].

ProposiTION 4.9. Let Z be any closed scheme of Y, with
codimy, (Z2) > 2, and 1Y, — Z[ be the rigid analytic tube in @ﬁg of the open
subset Y. — Z. Then for any finite extension L/Q, and any weight
k € Z°, the natural restriction map

H'Q)yig 1, @) — HQY, — 211, )

18 an isomorphism. Moreover, for any f€ H O@ﬁg.u QE), we have | f |%EL <
|f |]Y,‘7Z[L'

Proor. We will just work in the case L = Q, to simplify the notation,
as the general case can be treated in the same way. Let @ be a closed point of
Y,, and 6YK,Q be the completion of the local ring of Y,. at @. Then with the
notation in (4.5), we have

Oy, = k@Il 5 : B € 1@} {z, 17 € B—I@MN/ (w5 : f € L@

We see that @YQ is Cohen-Macaulay, in particular it satisfy the condition
So. Since Y, is excellent by [EGAIV, 7.8.3(ii)], it follows from [loc. cit.
7.8.3(v)] that Oy_q also Cohen-Macaulay. Now the Proposition follows di-
rectly from Corollary A8 and Remark A9. d

The following proposition is an analogue of [Pi09, 2.4] in the Hilbert
case.

ProposiTION 4.10. Let b be a prime ideal of Op dividing p, f, =

[x(0) : Fpl m > 1 be an integer, Uy, : yig — Vg be the set theoretic Hecke
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correspondence (2.5). Let L be a finite extension of Q,, Q = (A, H) be an
L-valued rigid point of 9y, and Q, = (A, H,) € ULQ) defined over a
finite extension of L. Assume that the p-divisible group A[p*>] is not
ordinary. Then we have vg(Q,) = vs(Q) for f¢ By, and

fl fl
(4.16) D @) =Y PV iep(@)
1=0 1=0

for € By. The equalities above hold for all f € By if and only if the fol-
lowing properties are verified:

(a) The subgroup scheme H[p]is atruncated Barsotti-Tate group of level
1. Moreover, there exists a subset I, G By such that vg(Q) = 1 for f € I, and
vp(@) =0 for pe I =By — I, wg(A) = 0 for f € (a(ly) N 1y) U (eI} NI}),
and wg(A) =1 for f € (a(ly) NI7) U (a(5) N 1p).

(b) There exists a truncated Barsotti-Tate subgroup G, C A[p™] of
level n defined over Oy, stable under the action of Op, such that the nat-

wral maps
Gy x H[p] — Alp"]

18 a closed embedding.
(c) We have Q,, = (A/G,,H) € @rig, where we have considered H as a
subgroup via (b). In particular, @, can be defined over L.
(d) Let Q, € U;,"(Q) distinct from Q, = (A/Gy, H). If p > 3, we have
p—2 1

vp(Q;,) > » 1 +p9—1(p m_— for any B € By;

m particular, @), is canonical at p.

Proor. We have a canonical decomposition of p-divisible groups
Alp™] = [[Ala™1.
alp

Since the Hecke correspondence U, concerns only the p-component, the
natural isogeny A — A’ induces an isomorphism of finite flat group schemes

H[q1= H'[q]

for g # p, hence 4(Q") = 4(Q) if f¢ By. There exists a finite extension
L'/L, and a sequence Q =@, Q1, ..., Qu € ¥, defined over L' such
that @, € Up(@Qn—1) for 1 <m <mn. Assume Q,, = (4,,,H,,) and A,, ~
Ay—1/D,, for some closed subgroup D,, C A,,_1[p] with D,, distinct from
H,, 1forl1 <m <n(Hy= H). We have a sequence of homomorphisms of
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group schemes of 1-dimensional (O /p)-vector spaces over Oy, :
Hlp] — Hilp] — Hs[p] — -+ — Hy[p]

which are generically isomorphisms. The first part of the proposition fol-
lows from Lemma 3.5.

For the second part, the “if” direction is trivial. Assume now the
equalities in (4.16) hold for all § € B,. Lemma 3.5 implies that the natural
morphism H[p] — H,[p]is an isomorphism, hence so is H[p] — H,,[p] for
1 <m <mn. It follows that the exact sequence 0 — D,, — A,,_1[p] —
H,,[p] — 0 splits for 1 < m < n, ie.

(417) Ay1lv]l = Hylpl x Dy, = H[p] X Dy,.

As direct summands of a Barsotti-Tate group of level 1, both H[p] and D,,
are truncated Barsotti-Tate groups of level 1. Moreover, since wgp =
oup) ® wp, and wypy is a free Of ® (Op/p)-module, we have v4(Q) =
degy(H) € {0,1} for § € By. Therefore, there exists a subset I, C I3, such
that H[p] (resp. D1) is a special subgroup of A[p] of type Iy (resp. of type I})
in the sense of Prop. 3.12. The hypothesis that A[p>] is not ordinary im-
plies that I, # IB,. Condition (a) follows immediately from 3.12(a).

To simplify notation, we denote simply by H and A their base change to
Oy,. To prove (b) and (c), we construct inductively a sequence of closed
subgroup schemes G,, C A[p™] for 1 <m < n such that G,, C G, ;1 and
A, =A/Gy,. We put G; = Dy, and assume that m > 2 and G,,_; has been
constructed. We have a left exact sequence

0 — Gpa(L) — A" (L) — Ay alp™ 11D,

where L is an algebraic closure of L. We define G,, to be the scheme
theoretic closure in A[p™ 1] of the inverse image of D,,(L) C A,,_1[p](L).
Since the image of A[p] in A,[p] is H,[p] ~ H[p], we have G,,D)N
A[PI(L) = Gy(L) ~ Op/p. Tt follows that G,,(L)~ Op/p™ for any 1 <
m < n. Now we show G, is a truncated Barsotti-Tate group of level #, i.e.
the natural map G,,11/G1 — Gy, induced by the multiplication by p is an
isomorphism for any m. It is clearly an isomorphism on the generic fibers,
so we just need to prove that deg(G,,.1) = deg(G,) + deg(G,,) by [Fal0,
Cor. 3]. This results from the splitting (4.17):

deg(Gpyy1) — deg(Gy,) = deg(A,,[b]) — deg(H)
= deg(A[p]) — deg(H)
= deg(Gy).
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In this same way, the natural map G, x H[p] — A[p"] is clearly a closed
embedding over the generie fibers, and it is an isomorphism over Oy, be-
cause the degree of G,, x H[p] equals that of its image. This proves (b) and
(e) except for the rationality of G, over Oy. Actually, D,, is the unique
special subgroup of A, 1[p] of type I{ # 0 by 3.12(a). In particular Dy, is
defined over Oy,. By induction, all A,, = A,,_1/D,, for 0 < m < n are de-
fined over Oy, so is G,,.

For condition (d), note that there exists a sequence of rigid points
Q,=Q,Q},---,Q, such that @,, € Uy(Q), ;) for 1 <m <mn. Let r<n
be the minimal integer such that Q. #@Q,. We have Q.=
(A,_1/H',(H+ H')/H') for some (Op/p)-cyclic subgroup H' C A, 1[p]
distinet from H and D,. Note that H[p] and D, are respectively
special subgroups of A, ;[p] of type I, and Ig. It follows from
3.12(a)(3) that

_2+ 1 .
-1 prlip-1’

Q) =1~ degy(H) >

in particular, v4(Q;) + pv,1,4(Q;) > 1 for f € By if p > 3. By definition, Q.
is canonical at p. This finishes the proof if » = n. If » < n, Prop. 4.5(a)
implies that

v p—-1 1 / p—2 1
vﬁ(Qm) - » —"_pvﬂoﬁ(mel) > p— 1 +pg71(p -1
for any r <m <mn and f € By. O

COROLLARY 4.11. Let I, C By be a subset, and I}, be its complement in
By. Let Q@ = (A, H) be a rigid point of ?),ig with vg(Q) =1 for p € I, and
vp(Q) = 0 for f € If. Assume that a(ly,) C I},. Then there exists a rigid point
Q1 € Up(Q) such that vg(Q1) = vp(Q) for all B, i.e. the equivalent conditions
wm the Proposition are satisfied for n =1, if and only if wp(A) =1 for
B € ally) NI

Proor. From 4.10(a), the condition that ws(4) =1 for f o(If)) N1y
is clearly necessary. We note that H[p] is a special subgroup of A[p] of
type I,,. It follows from Prop. 3.12(a) that wg(4) =0 for f € a(I;’;) nIiIe,
and wg(4) =1 for f € a(ly) ﬂlg =oa(ly). If wg(A) =1 for f € a(Ig) N1y,
then 3.12(b) implies that there exists a special subgroup D; C A[p] of
type Ij. The point @ = (A/Dy,(H + D1)/D;) satisfies the required
property. t
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5. Proof of Theorem 1.1: Case of 2.7 when g = 2

In this section, we assume g = 2, and p is inert in F' so that Op/p ~ F .
We identify 5 = Emdq(, Q,) with Z/2Z = {1,2}.

5.1 — Stratifications on X, and Y

We will study in detail the stratification on X,. and Y, defined in the
previous section. To simplify the notation, we drop the symbol “{_}" in
the subscript, when there is only one element in the set. For example, we
denote Wiy, and Wy, 11y simply by Wy and Wy ;. There are 4 strata in X,:
Wy, Wi, We and Wy. The 2-dimensional stratum Wj is the ordinary locus,
W1 and W5 are the loci where the fibers of the universal HBAV are su-
persingular and with a-number equal to 1, and Wy is the discrete set
consisting of superspecial points. There are 9 strata in the Goren-Kassaei
stratification of Y,. Here is a list of the strata according to their di-
mensions:

e 2-dimensional: W];;.@, W(Z)A’]-';, W171, szz.

o 1l-dimensional: Wﬁ[%’l, W[g,z, Wl{l% W[g,z.

o (-dimensional: Wj[glj[%.

We have a(Wgyy) =nWyp)=Wsg, n(Wg;)=nW;p)=W; for
i€ Z/2Z, n(Wy ) =Wy, and finally n(W;;) = W; UWyg. In particular,
the projection 7 is not quasi-finite on the strata Wi; and Wss. For
1 € Z/27, we put

Wf‘ti = Wi,i n ﬂil(Wi), W:j = Wi,i N Tcil(Wa).
We call
(5.1) YY = W‘f"g1 U W;f’z

the supergeneral locus, and
VP = (W) = Wi UWSS U Wi,

the superspecial locus.
Let k be an algebraically closed field containing F .. For a finite group
scheme G over k, we denote by g its module of invariant differentials. If G
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is equipped with an action of O, ~Z,, we have a decomposition
wg = w1 © we 2, where O acts on wg g, via y4.

In [Pi09, 4.1], Pilloni classified the commutative finite group schemes of
order p? over k. There are only 4 isomorphism classes: o, x o, G2, O‘ZZ and
o. Here, on = Ker (F™ : Gq — G) is the kernel of n-th iterated Frobenius
of the additive group for n = 1,2, oczz is the Cartier dual of «,2, and o is the
p-torsion of a supersingular elliptic curve over k. The groups «, x a, and «
are isomorphic to their Cartier dual. These groups can be characterized by
the dimension of their invariant differential modules and those of their
duals:

dimy(@s, ) =2 dimy(w,) = 1

dimk (6095772 ) - 1 dimk (C()[X\/2 ) = 2 .
P

LemMA 5.1.  Let P be a k-valued point of the stratum Wy C X, and A be
the corresponding HBAV. Then we have 1 (P)peq ~ P}C with two dis-
tinguished points corresponding to

H=Ker(Fy:A—AP) and H=EKer(V,,:4—AP").

In the first distinguished case, we have H ~ oczz ond (A, H) € Wy y; in the
second distinguished case, we have (A,H) € Wy y; otherwise, we have
H~ o and (A,H) € Wi1. Moreover, we have dimi(wgz) =1 in all the
cases, and
y 0 if H~oor o
m(erz.1) = 1 if H~ 06;2-
Proor. Up to isomorphisms, the contravariant Dieudonné module of
A[p] can be described as D(A[p]) = D(A[p]); @ D(A[p]), with DA[p]); =
ke; @ kd;, and the Frobenius and Verschiebung are given by

0 1 01
F(e,dy) = (62,d2)[ ], Fez,ds) = (@1,d1){ },

0 i 00

Vier,d1) = (e2,dz) [0 0 0

0 1 —tl/p 1

} ; Vies,dp) = (617d1)[ 5 ;
where to € k* is the value of the partial Hasse invariant kg at A with re-
spect to certain basis. Giving an (Or/p)-cyclic subgroup H C A[p] corre-
sponds to giving a k-line [, = D(A[p] /H)/;i c D(AI[p)); for each i =1,2
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satisfying
F(L;) C iy and V(L) C L.

It is easy to see that the only choice for IL; is ke; = (KerF); = (KerV),,
and the choices for o are k(aes + bles + tads)) with (a:b) € P,lc. If
(@:0)=(1:0), we have o =ImV), and H = Ker (V1)) =~ 0. If
(@:b)=(0:1), we have Ly = (ImF), and H = Ker(Fy) ~ ocgz. Otherwise,
Lg is neither (Im V), nor (ImF'),, we have H ~ o. The “moreover” part of
the Lemma follows from the fact that D(H); = D(Alp));/ L. O

LeEMMA 5.2.  Let P be a k-point of Wy, C X,., and A be the corresponding
HBAYV.

(a) The reduced fiber nY(P)eq consists of two copies of P,lc, denoted
respectively by P,lc_l and P}QZ, mtersecting transversally at a single point Q.

(b) We have n1(P)peg N W;; = ]P}M-\{Q} for i € Z)2Z, and 7w (P)req N
Wer = {Q}.

(e) For a point (A,H) € 7Y (P),eq, we have (A, H) € P,lc_i if and only if
H ~ qand wg; # 0, and we have (A, H) = Q, if and only ifH = Ker(Fy) =
KeF(VA(l/p)) >~ oy X Op-

The proof of this lemma is quite similar to the previous one, and will be
left to the reader as an exercise.

5.2 -

Consider the valuation vy = (v1,v2) : 2)n-g —[0,1] x [0,1] defined in
4.12. Let sp : 9,y — Y be the specialization map. If Z C Y is a locally
closed subset, we denote by 1Z[ = sp~1(Z) the tube of Z in @ﬁg. By Prop.
4.2, we have, for ¢ € Z/2Z, that

Qe Weyl & w@ =@0Q,1);

Qe Wyl & w@) =(0,0);

Qe Wil ©0<1(@ <1 and v(@Q =1;
Qe Wil ©v@ =0 and vi1(Q) =1;

Qe Wisl (@ =0 and 0<v1(Q) <1;
Qe Wipl < 0<nm(@),2@Q <1

In summary, the 4 vertices of the square [0,1] x [0, 1] correspond to the
strata of dimension 2, the 4 edges correspond to the 1-dimensional strata,
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and the interior corresponds to the unique stratum of dimension 0. We
have the following graph:

v2(Q) 4

1 (1.1

VC&H

o =

1 (@)

Q=

Here, the two line segments with end points {(0,1),(1/p,0)} and

{(0,1/p), (1,0)} are respectively pvi(Q) + v2(Q) = 1 and v1(Q) + pv2(Q) = 1.
1 1

They intersect at the point (]o 151
strictly below these two lines, and the canonical locus Ve, is strictly above
them. Note that Ve, contains JWpy gl and [Wy;[ for ¢ € Z/2Z.

Let Uj : Dyig — dyig be the set theoretic Hecke correspondence (2.5).
We want to understand the dynamics of U, on the too-singular locus.

). The anti-canonical locus W is

PROPOSITION 5.3.  Let Q = (A, H) € )., be a rigid point, 1 € Z/2Z.
(@) IfQ € ]Wfﬁ[, then we have
1
vi Q) =1 and v;1(Q1)=1- »

Sfor all Q1 € Uy(Q). In particular, the orbit Uy(Q) is contained in the ca-
nonical locus Vean.

b)) If @ € IW;zl wzth 11 <vi1(Q) < 1, we have vg.(Q1) =1 and
vip1(@1) =1 _%_ﬁ(l le(Q)) for all Q1 € Uy(Q). In particular, the
orbit U,(Q) is contained in Vean.

© I/ Q€ Wisl with 5 < va@ < 51
point Qs € U@ with v(@)) = 1 and via @) = 1 (1:1(Q - %) and the
all the other (p®>—1) points Q) € Uy(Q) satisfy vl(Q’ )=1 and
virn(@) =1—v1(Q). In pcmficulcw if (@) > ~,  we have

Up(Q) C Vean; and if vit1(Q) = —, then there is a unique pomt Q1 € Upy@

Then there is a unique

contained in 1W;;l, and the other points of Uy(Q) are all in Vean.
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Proor. If Q1 = (A/H',Alpl/H’) is the rigid point corresponding to a
(OF /p)-cyclic closed subgroup scheme H’ of A[p], then we have

(5.2) vi(@Q1) = deg;(Alpl/H") =1 — deg;(H").

Now the Proposition is a direct consequence of Prop. 3.17. O

To describe the dynamies of U, on ]ij[ for i € Z/2Z, we need the
following

PrOPOSITION 5.4.  Let K be a finite extension of Q,., and Q = (A, H) be
a K-valued rigid point of WL Then we have w;(A) =1, 0 < w;,1(A) <1,
and all the (Op/p)-cyclic closed subgroup schemes H' of Alp] different
from H satisfy

(5.3) deg;(H') + pdeg; (H) = 1.
Moreover,
@ if0<wg < s ﬁ T all the p* (O /p)-cyclic subgroups H' C Alp]
different from H satisfy
wis1(A4) 1_win@).

deg;(H') = and  deg; ,(H') = » ;

P2
(b) if ;% < wi1(A) < 1, there is a unique (Op /p)-cyclic subgroup H,
different from H with
deg;(Hy) =1 —p(1 —w;1(A) and deg; (Hy) =1 —w;1(A),
and all the other p? — 1 subgroups H' satisfy deg,;(H') = degy(H') = ]ﬁ.

Proor. The fact that w;(4) =1 follows from Prop. 4.1(d) or Prop.
3.16(a), and that w;, 1(A) > 0 follows from the definition of W[ . Let H' be
an (Op /p)-cyclic subgroup of A[p] different from H, and put @ = (A, H').
Lemma 5.2 implies that ' lies eitherin IWEL orin JW: . [ orin JWy gl
Since Prop. 3.16(a) implies that H is the unique (O /p)-cyclic subgroup of
Alp] in ]W;?_;[, the first case is excluded. If @ ¢ ]ij_u 1, we have
deg; (H') =0 and deg;(H') =1; in particular, (5.3) holds for H'. If
Q' € IWggl,then Prop. 4.1(a) implies that there exists units u,v € Ok such

that
1 = w;(A) = min{1,v,(ux;(Q) + vy, (@)},

where x;,%;,1 are the local parameters defined in 4.3. Since
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0 < vy (@), vp(wi11(Q)) < 1, we see that 1—v,(y;(Q) = v,(@;(Q)) =
vp(yf +1(Q’)), i.e. v,(y:(@)) + pvp(yi11(Q")) = 1. We deduce (5.3) from Prop.
4.2. It remains to prove the “Moreover” part of the Proposition. Applying
Prop. 4.1(a) to the (7 + 1)-th partial Hasse invariant, we see that there exist
units r, s € Og with

wi1(A) = min{1, v, (re;11(Q") + syt (@)}
It follows from Prop. 4.2 and (5.3) that
, , 1 deg;(H)
vp(i41(Q")) =1 — deg; (H) =1 — E‘FT’
v, Q) = pdeg;(H').
We have three cases:

o If0 < deg;(H) < ﬁ we have v,(;11(Q") > v,(y!(@"). Therefore,

we have
p

wi1(A) = v, (@) = pdeg;(H') < —— ESE

ie. deg;(H) :w—”l( )

and deg; (H) = —(1 — deg;(H")) = 1o
1o ! g
p2 i+1 .

we have v,(2;,1(@)) = v,y ;(Q)) = L, and
p p+1

p+1
o If deg;,(H') > 10——1&- 1,We have v, (2;+1(Q") < vp(% (@)). Hence, we have
1  deo.(H’
wi1(A) = vp(@;1(@Q)) =1 — p + %,

ie. deg;(H') =1—p(1 —w;y1(A)) and deg;,;(H) =1 — w;.1(4).

+1

1
o If degi(H) =,
consequently w;,1(A4) > pﬁ and deg; (H') =

From this list, statement (a) is clear. For (b), we have seen that if

and

ﬁ i < w;;1(A) <1, the possible values for deg;(H’) are i 1
1 p(1 — w;11(A)). On the other hand, Prop. 3.16(b) implies that there is
exactly one H{, with deg;(H{) =1 — p(1 — w;;1(A)) (note that this is even

true when le(A) = 1). Hence statement (b) follows. O

COROLLARY 5.5. Let Q = (A, H) be a rigid point of ]ij[ . Then all the
points Q1 € Up(Q) satisfy

(5.4) Vi(@1) + pvi1(Q) = p
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More precisely, we have two cases:
@ If0 <w;1(A) < ﬁ, then we have

w;1(A)
vi(Q1) »

1 1
and vi1(@) =1- 5 + ﬁwiﬂ(A)
Sfor all Q1 € Up(Q). In particular, we have U,(Q) C Vean.

(b) If Z% < wip1(A) < 1, there is a unique point Q1 € U,(Q) with

vi(@1) = p(1 —w;i1(4)) and  vi1(Q1) = wir1(A),
and all the other points Q) € U,(Q) satisfy v(Q)) = v(Q)) = Z% In
particular, we have U,(Q) C Vean except when w;1(A) = 1; in the excep-
tional case, there is exactly one @ € U,(Q) contained in W[, and all
the other Q1’s are contained 1 Veay.

Proor. Let H' be a Z-cyclic subgroup of A[p] disjoint from H corre-
sponding to Q1 = (A/H',Alpl/H’). We have v;(Q;) = deg;(Alpl/H’) =
1 — deg;(H") by the definition (4.12). The Corollary follows immediately from
the Proposition. O

53 -

We can interpret the results above geometrically as follows. For
1 € Z/27 and any rational number ¢ with 0 < & <1, we put

Ui(e) = {P € Xyig | wi(P) = 1, w; 11(P) > &}.

Then every rigid point in U;(e) has necessarily superspecial reduction.
Similarly, we put

Vile) ={Q € Wil | win1(Q) > &}

They are respectively quasi-compact admissible open subsets of X.i; and
Drig- Prop. 5.4 implies that the natural projection 7 : )4, — Xuig induces an
isomorphism

7y © Vile) — Uie).

Let P € Wy, i.e. a superspecial point of X,., and (AQ“—D be the completion of

the local ring of X at P. We choose local lifts 15 tpy € @.%P of the partial
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Hasse invariants. Then we have an isomorphism (4.3)
Oy 5 = WPtz t5,]].
Let D5 be thei 2-dimensional rigid open unit disk associated with the formal
scheme Spf((’)x"p). Then we have
D; (&) = Uie) N Dy = {P € Dy | ,(t5,(P) > 1,v,(t5,,,(P) > &},
and Uj(e) is a disjoint union of the closed polydisks Dlg‘i(a) for all P € W,

Composed with the isomorphism =ly,, we see that t7,,t5, for each
superspecial point P establish an isomorphism '

(5.5) Vie > [ Dae.
FEW[;
4

Now suppose 1 <e <1 Let 1y : C(plig — yig be the first projec-

tion of the Hecke correspondence 2.9. Then 77 *(V;(¢)) is a disjoint union of
two rigid analytic spaces

71 (Vi) = CPXiglvio [T COiglyrcor

where C(p)iigh,i(g) corresponds to the unique (Op/p)-cyclic subgroup
H{, C Alp] disjoint from H given by Prop. 5.4(b), and C(p)ijig|Vi(8) corre-
sponds to the remaining (Op/p)-cyclic subgroups. Correspondingly,
we have a decomposition of set theoretic Hecke correspondences
Up = U, 11U} from V;;(e) to 2,44, given by

Ur@Q = (@) '(@Q) and  UHQ) = ma((x) ' (@Q)).

By Corollary 5.5, we have U} (Q) C Vean, U (Q) C Vean for Q € Vi(e) — Vi(D),
and U;(Q) C Wyl for @ € Vi(1). We have a diagram

C(P)iglvice)
w7 \
Vz(e) fyriga

where 7] is an isomorphism of rigid analytic spaces. Hence, the corre-
spondence U; comes from a genuine morphism of rigid analytic spaces:

Ty =m0 @)™ Vile) = VU IWy1[ U IWaal .

Note that 75,(Vi(1)) C IW;,[, and 75,(Vi(e) — Vi(1)) € Veun for z% <e<l,
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Let @ = (A, H) be a rigid point of V;(¢) over a finite extension L/Q,, and
Hj, C A[p] be the unique (Op/p)-cyclic subgroup distinct from H given by
Prop. 5.4(b). Let f be a section of w* defined over a neighborhood of
Q' = (A/H|,Alpl/H}). Then U;(f) is defined at @), and we have

(5.6) US()A, H, ) = % fA/HY, Alp)/Hy, p~'¢ o),

where  is a basis of wy /0, as a (O ® Op)-module, and g% tA/Hy — Als
the canonical isogeny with kernel A[p]/Hj. Similarly, we can define a
section U;( 1) of 0* over V;(¢) whenever f is defined over V.

54 —

Fix a rational number ¢ with % < ¢ < 1. We slightly change our

notation by putting V;1(e) = Vi(e), Vi1 = Vi(1). For any integer n > 2, we
define inductively

‘/i,n('g) = (n‘iz)_l(vi,nfl(g))y and Vi,n = (niz)_l(Vi,nfl)
We have natural inclusions
Vi) D Vi1 DVia(e) DVia DD V(&) DVipyy D -+

By composing 7, with itself n-times, we get a morphism of rigid analytic
spaces
(139)" : Vip — Wil

LEMMA 5.6. Let K be a finite extension of Q,, and = (A, H) be a K-
valued vigid point of W ,l.

(a) For any integer n > 1, we have Q € Vi, if and only if there exists a
unique (O /p")-cyclic truncated Barsotti-Tate closed subgroup G, C Alp"]
of level n such that the natural morphism

G, x H — A[p"]
is a closed embedding. In that case, we have (75,)" (Q) = (A/Gy, H), i.e. the
set (U;)”(Q) consists of the unique rigid point @, = (A/G,, H), where we
have identified H with its image in A/G,.

(b) For any integer n > 2, we have Q € V;,(e) if and only if the point
Qu1 = (A/anlaH) € Vi.,l(g)-

Proor. This lemma is a consequence of Prop. 4.10. O
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The following technical Lemma will play an important role in the se-
quel, and it relies largely on the results proven in Appendix B.

LEMMAB.7.  Let & be an algebraic closure of k, P be a superspecial closed
point of X,., D5(1) C Vi1 be the corresponding closed polydisc by (5.5). Then
there exist local parameters t5 ., t5 , of D5(1) defined over W{xI[1/p] such
that we have, for any n > 2,

D5(1) N Vi) = {Q € D) | vp(tp;,, @) > 1 — 1+ ¢}
D) N Vi, = {Q € D51 | 0(tp,,, (@) > 1}
In particular, V;,(e) is a strict neighborhood of V;,,.

Proor. We may assume ¢ =1 € Z/2Z to simplify the notation. We
consider first the case n = 2. Let A be the HBAV corresponding to P. We
will consider A as a HBAV over x. Let G = A[p™] be the associated p-
divisible group. In the terminology of Appendix B2, G is a superspecial p-
divisible group with RM by Z,.. By Serre-Tate’s theory on the deformations
of abelian varieties, the completion of the local ring (’) Y. P~ W(n)[[tp vt o1l
is canonically identified with the universal deformation ring R““‘V of G— We
take local lifts of partial Hasse invariants t5 P1= =T1,tp, =Tz in (’) v p 88 in

B2. The subdisc D5(1) is the rigid subspace D(1,1) defmed in B14 of the
rigid generic fiber of the deformation space of G. Let K be a finite ex-
tension of W()[1/p] with ring of integers Ok, @ = (A, H) be a K-valued
rigid point of D5(1). We denote by (A, H, Hj)) the unique point above @ in
C(p)ng, and by Q1 (A/H|),Alpl/Hj) the unique rigid point in U; 9(Q) By
Remark B14, the subgroup H, Hj, are respectively just the pull—back to
O via Q of the subgroup H'', H! obtained in B13. Now Prop. B13(b)
implies that ptPI(Q) and 15,(Q)/p lifts the partial Hasse invariants of
(A/H) ®o, OK/p, in particular, we have w;(Q;) =1 and w»(Q;) =
max{1, vp(tPQ(Q)/p)} By definition, we have @ € V5;(¢) if and only if
Q1 € Vi,(9), ie. Vp(t5 (@) > 1 + . Similarly, we have @ € Vy; if and only
it @1 € V1. This proves this Lemma for n = 2. The general case follows
by an easy induction on n. O

LEMMA 5.8. Let k = (ky, ko) € Z% with ky > ks, and f be a section ofw’;
over Vean such that |f ly,,, 18 finite.

(a) For any integer n > 1, the form g, = %(U;)"( f) 1s a well-defined
section of w* over V;,,(e) — V;,.. We have »

‘gnm.n(n)_Wn < pfn(kz*vp(ap)72)+(lfs)(p*l)kz|f|

can
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(b) For any integer n > 1, the form h, = %(U;)"_I(U;(f)) s a well-
defined section of w* over Vin(e). We have P

|hn|v © < pfn(kz7vp(ap)72)+(pfl)kz/(p+1)|f|V
inl€) —

Proor. (a) By definition, we have
(n§2)7Z(Vi,77/(3) - Vi,n) C ﬁiz(‘/i‘l(e) - Vi,l) C Vean,

where the second inclusion used Corollary 5.5(b). Therefore, g, is well-
defined over V; ,,(¢) — Vi ,,. To finish the proof of (a), it suffices to show that

—(ky—2— 1- —1)ks
|91|Vi,1(1:)7V1-,1 <p (k2 Vp(ap)+(1—e)(p—1) Z|f|vm;

—(ky—2—
‘gn’|Vi,n(3)_V' S p ( ’ vp(ap))Lgn_l|Vi,¢1—1(8)_Vi,ﬂ—l fOI' " 2 2

in

Let @ = (4,H) be a rigid point of V;,(e) — V;,, over a finite extension
L/Q,, H| be the unique (O /p)-cyclic subgroup of A[p] given by 5.4(b), and
@ be a basis of wy 0, as a (O, ® Or)-module. Consider first the case n = 1.
By (5.6) and Lemma 4.6, we have

1 u
914, H )| = | 5 =f A/ Hy, Alp)/ Hy, p'¢' o)
P

< p2+vp(ap)f(k1 deg, (H{)+kz degy(HY)) | f |V

can

< p2+v,)(a,,)fk2(degl(H{,H degy(H))) |f |V

can

By Prop. 5.4(b), we have
deg; (Hp) + degy(Hp) > 1 — (p — 1)(1 — ).

from which the desired estimation for [g:y, -y, follows. For n > 2, we
have similarly

2 —k. H| o (H,
lgn(A,H, »)| < p o)~ degy (Hy) - degs( 0>)‘gn*l|Vi;n—1(£)*Vi:n—l’

and the estimation follows from the fact that deg,(H{) + deg,(H[) = 1.
(b) Since we have

U (Vi) © US(Via(®) € Vean,

we see that £, is well defined over V; ,,(¢). To prove the estimation for £, it
suffices to show that

—(ko— -2 —1)k; 1 2 —2k 1
|h1|Vf,1(a) <p (k2 —vp(ap)—2)+(p—Dk2/(p+ )|f|v =p +vp(ap)—2ks /(p+ >|f|v ’

can can

Raly, o < 00O By aly, Ly forn > 2.
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The estimation for n > 2 is exactly the same as in (a). For the case n = 1,
we can conclude in the same way by using the fact that, if Q=
(A,H) € Vi1(¢), then all the subgroups H' C Alp] with H' # H corre-
sponding to U;; have deg(H') = deg,(H) + degy(H) =2/(p +1). O

Now we prove Theorem 1.1, i.e Theorem 2.7 in the case g =2 and p
inert in F. Since the scalar extension by a finite extension L/Q, is not
essential, we may assume L = Q,. in Theorem 1.1. We have the following

PRrROPOSITION 5.9. Let f be an overconvergent p-adic Hilbert modular
form of level I'og(N) N I'y(p) and weight k = (ky, k) € 72 with k1 > ks, and
Uy(f) = a,f for some a, € C;. We put V = Wyl U Waal U Vean, and

Vi = H Vzﬂ,l = {Q = (A,H) S ]W111 U Wzﬁz[ | w1(A) = we(A) = 1}.

€222

(@) The form f extends uniquely to a section of QE over V — V1 such
that Uy(f) = apf remains true, |f1,,_y, is finite and

(5.7) flyoy, < max{1, p? @ R/Py £

can

_(b) Assume that vy(ap) < k2 — 2. Then f extends further to a section of
w® over 1Y, — Wg sl U Vean. Moreover, we have U,(f) = a,f and

2 0 D
(58) |f|]Y,C—W|5_‘[5[UV03n S p Jrq}I(al)|‘f‘vca\n'

Before proving this Proposition, we note that Theorem 1.1 follows im-
mediately from Prop. 4.9 and 2.2.

PRrooOF. (a) By Prop. , the form f can be uniquely extended to a section
of ®" over the canonical locus Vean, and | f ly,,, 1s finite. We first define the
candidate extension of f in a strict neighborhood of

Wi UWaa[ =V = H (Wil = Vi)

i€Z/2L

in V — V1, and show that it coincides with the old f over the overlap with
Vean- Let 0 < ¢ < 1/2 be a rational number. We put for ¢ € Z/2Z

]Wi,i[z = {Q = (A,H) € ?)rig | 0< Vi(Q) <g, Vi+1(Q) =1,0< wi+1(A) < 1~}

This is a strict neighborhood of |W; ;[ — V;1in V — V;. Then the admissible
open subsets {Vean, IW11l;, IW22[;} form an admissible open covering of
VY — V. By Prop. 5.3(a) and 5.5, the image of |W;;[; under the Hecke
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1
correspondence U, is contained in Ve.n. Hence, the form F; = — U,(f) is
well-defined on ]Wv, i[7, and we have @p

F | mVum f‘]Wi.i[ngcan )
In particular, the sections {f,F1,F2} glue together to a section, still de-
noted by f, of @* over V—Vj. By our construction, it is clear that
U,(f) = a,f still holds. To prove (5.7), it suffices to show that for ¢ € Z/2Z

2 -l
|f|]Wi.i[—Vm = sup <p ) =5 |f|Vcan'

QelW;,;[-Viy
By 3.17 and 54, for any Q = (A, H) € |W;,[ — V;;1 and (Or/p)-cyclic sub-
group H' C Alp] with H' N H =0, we have deg;(H') + degy(H") > ks /p.
By our construction of f, the required estimation above follows from Cor.
4.7. This finishes the proof of (a).

1
o Un(N@

P

(b) The proof will be divided into 3 steps. At each step, we will always
denote by f the extension obtained in the previous step.

Step 1. Extension to V. We fix a rational number ¢ with % <e<l1
as in 5.4. We have to show that, for i € Z/2Z, there exists a section
F 6 HO(W‘J(E),Q}C) Such that F|V'1(F)*V‘1 —f|V 1(?) Vll and
(5.9) Py, o < pPHe 7 £,

Vean

We prove first that, for any integer n > 2, there exists a form F), €
H'(Viy(e) = Vi, @) With Fy |y o v =f Visw-viy- Weput G1 = fly. -,
and

n—1

Gn _ Z o (Ué m— on

m=1 "D

Ub n— 1(f)

for any integer n > 2. We note that G,, is a well-defined section of a)q over
Vin-1(e) — Vi,. Indeed, the first n — 1 terms are even well defined over
Vin-1(e) by 5.8(b). To justify the last term, we note that

U Vi (® = Vi) € Us(Via (@) — Vi) C Vean U AWl — Vi) CV = V.

The same argument as in Lemma 5.8 shows that

— =1y —2—
<p (n—=1)(kp—2 v,g(a,g))|f|vivl < |f‘V—V17
Vi.n—l(e)_Vi.n

1 s\n—
‘Ww,;) '
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where the last step uses the assumption ks > 2 +v,(a,). On the other
hand, (5.8)(b) implies that the first » — 1 terms in definition of G, are
bounded by

— ez —2—vy () +ha(p—1)/(p+1 _ o 24up(a,)—5k
1;7122%(71 m(key vp(ap))+he(p—1)/(p+ )}|f|Vean =p Upllp) 5T 2|f‘vcan'

Therefore, for any n > 1, we have

2 2 ]
Guly,, -, < max{p o) Ny 1 vy,

< max{1,p* @RIy £,

where we have used (5.7) in the last step. Using the functional equation
U,(f) = a,f, it is easy to check that
Gnh}i,n,—l(g)_Vi,n—l = anl |I/1',)7,—1(€)_Vi,n—l :

Since {Vim-1(6) = Vim}ocp<, form an admissible open covering of
Vii(e) — Vi, we see that the forms {Gn}ocpmen 8lue together to a section
F,, of o over Vi ;(e) — V;,, whose restriction to Vii(e) — Vi1 coincides with
f. By the estimation above for G, we get

can

(5.10) \Foly, v, <max{l,p* @ k/ry g,

To obtain a form ' over Vi ;(¢), we define
~ 1 -
F, = 2;1 @w;)m Uy

over V;,(¢). Then it follows from Lemma 5.8(a) that

< p—n(kz—7)1;(%)—2)-4-(1—8)(P—Dkz|f|v
Vi@ Vi

|F7l _F’:l|Vi_n(5)7Vi.n =

can

1o
G

Since v,(ap) + 2 < kg, the estimation above tends to 0 as » tends to oo.
Note that Lemma 5.8(b) implies that

|Fa/1|V,-_,,(x) < p2+vp(ap)*ﬁkz |f |Vcan < max{l, p2+7)p(ap)*}1;k2}|f ‘Vcan'

Applying the gluing lemma A10 to Uy = V; 1(¢), we get a unique section F' of
ok over Vi1(e) whose restriction to V; () — V;,, coincides with F,. More-

over, in view of the estimations for |Fy|y. _y. —and |F} |, ), lemma A10
also implies that |F|y, ., is bounded by max{l,pzw"(""’)_z%kﬂ fly,, }- This
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extends the form f to V. Combining (5.7), we obtain
(5.11) |Fly < max{1,p* @ kY £,

Step 2: Extension to V U [W; [ U W5 g[. For an interval 1 € (0,1] and
1€ Z/2Z, we put
Wigslr ={Q € IW,;s[U ]W,Z‘(f[ | (@) =0,vi1(Q) € I},
W, slr = Wi slr UIWasl;.

By Prop. 5.3, the image of ]W*,ili[(%J] under the Hecke correspondence U, is

contained in Veun. The form alUp( f) is thus well defined over W, p[1 ),
P B
and it extends naturally f. For any rigid point @ = (4, H) in ]W*,B[(%’l],

Prop. 3.17 implies that

deg(H') = deg,(H') + deg,(H") 2%

for any (Or/p)-cyclic subgroup H' C A[p] with H N H' = 0. Therefore, it
follows from Cor. 4.7 that

1
= sup | —(W,N@Q] < p* W EIf,

eWosly,, %

(6.12) 1w, .

1
@1l

Next, we extend f to the remaining part of W;s[U [Wag[. Let

1 . .
&y = _p+L for any integer n > 0. The quasi-compact open subsets

CpUpE D)
{IW, sl1e,, 11 }u>1 form an admissible open covering of JW, ul(,,. Note

1
that &9 > —, and that W, g[}, ., ,j for n > 2 is contained in the anti-canon-

ical locus (4.15)

W ={Q € Vsig [vi(Q) +pvi1(Q) >1 VieZ/2Z.}
By Prop. 5.3 and 4.5, the U, sends ]JW, gl », into

VU W, gl 11 = Vean U W11l U IWa ol U IW, sl 11,

where the form f has been defined, and it sends W, gl,,, .1 into
W, slie, e, for m > 1. Therefore, we can define inductively a form f,

. 1 1
on W, glp, ., ) by putting fi = a_Up(f) and fy11 = a_Up(fn) for n > 1.
» »
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It is easy to see that

:f|]W*.[s[1

)
(ﬁ.eol

f1|]W*.[s[1

(ﬁ.sol

and the forms {f,}., coincide with each other over the overlaps of their
definition domains. This proves that f extends to a section of w" over
VU W, zlo1. By 4.5(b) and (3.17), for any rigid point Q =(4,H)
W, sliey 200 €very (Op/p)-cyclic subgroup H' C A[p] with H' N H = 0 has
degree

deg(H'") = deg(H") + degy(H') > &.

It results from Cor. 4.7 that

(5.13) lf |]W*_H[ Sup

QEIW, el 1

2 —erks
<p +vp(ap)—e Z|f‘Vu]Ww[[,;o_u

< pProv@)—ake max (1, p2+v”(a’))7%k2}|f [Vean?

lepegl

1
a—(Upf)(Q)’

P

where we have used (5.11) and (5.12) in the last inequality.

Step 3. It remains to extend f to JW, z[. We denote by C(p),ig|y, the
inverse image of the anti-canonical locus W by 71 : C(p)ig — ¥yig- Prop.
4.5(b) implies that we have a decomposition of rigid analytic spaces

C(p)riglw = C(p)f-ig H C(p)gig'

Here, for every rigid point @ = (4, H) € W, n; H(@Q) N C(}o)ﬁig consists of the
single point (A, H,C), where C C A[p] is the canonical subgroup; and
i Q)N C(]o)ifig corresponds to the other p? — 1 anti-canonical subgroups.
Correspondingly, we have a decomposition of Hecke correspondences

Uy=U,+Uj. Foreg, = as above, we put

b1
p(p*+1)
Wy le, = Wy sl U IW, slog,1-
They are strict neighborhoods of JW [ in 1Y, — Wy s[. By Prop. 4.5, we
have
U;(]Wﬁ),flﬂ[{:n) - ]WQ),jIS[z:n,l fOI‘ n Z 17
and Ug(]W@;B[Sn) C Vean. We define a section of @’; on W gl by

n 1
= U)" U

m=1"P
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By Prop. 4.5, for any rigid point @ = (A, H) € W, z[.,, the canonical sub-
group C C Alp] has degree
deg(C) = deg;(C) + degy(C) > 2 — pe, > 1.
We deduce from 4.6 that, for m > 1 and @ € ]W&;;[Fﬁ,

)ml(Ug)(f)(Q)‘ < p2+1)p(ap)—(k1 deg; (C)+ks deg,(C))

ey 2(U“)(f)‘

m qm—1
WW.[%[@,Tkl
< p2+”p<“v>—’“2<2—"”"> o U U“)(f)‘
]WVJ H[Fn 1
Since 2 + v,(a,) — k22 — pey) < 2 +vp(ay) — k2 <0, we get
1 _
(5.14) ’W(Uz)’” 1(U;;)(f)‘ < pFro G pe) T —= U Z(U“)(f)’
p Wil Wi sle,
— (U Z(U“)(f)’
]WV] Ble, 1
1
Moreover, it follows trivially from 4.6 that | — U;( 1) < pPronay) If Iy, -
Hence, we get @p Wople,
1 _
(5.15) |9n\]Ww 0, < 1r<na§ o (U;)m le(f) Ua(f)‘
ay Wy [m Wy gl

< PP fly-

Using f = — U »(f), we see that g, — f = %(U;)"(f). A similar argument

as in (5.14) shows that for any n > 1 !

|f gn| = a

*f [;Hlml

()

W, sl

wi1n]

e (f)

2+vp(ap)—kz(2—pen
<p vp(ap)—k2(2—pe,) nl

W, il .

n—11

n(2+vp(ay))—kz (2”*7’ Zr 1 8’">

S p |f |]W*. B[[nl el

As 2 +v,(ap) < ke, we check easily for any n > 1 that

S (p+Dp 1
TL(Z Jrl)p((lp)) — kz (2% p;&> < *k27’b +k2m <1 ﬁ) < 0.
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Therefore, we get |/ — gulyw, [, <Ifhw and

[ey41.2n] * h [e1.¢9]

lf = 9nlw —0 asn— .

* ls [e)41.en]

From (5.13), it follows that
|f - gn|]W

wBliey 1001

<P fl,,.

In view of (5.15), we deduce that ||y < p*r@|f,  for every

bl yen) =

n > 1. Combining with the estimations (5.11), (5.12) and (5.13), we see that

2+, (a,
L oowston < P27 f

Now the assumptions of Lemma Al0 are satisfied for Xx = ?),;, with
Up=1Y, — WP;,'B[, U, = ]Ww,‘[%[sn forn >1,V, = Uyy1, Fy :f|]Yrc*Wh,H[*‘/n’
F), =g, and C = p*"(@)| fly,,- We deduce that there exists a unique
section f of w" over 1Y, — Wi g[, hence also over 1Y, — Wi 5[ U Vean, which
extends f and is bounded by p?**@)|f|,, . This completes the proof. [

6. The general case of Theorem 2.7

In this section, we indicate how to generalize the arguments in the
preceding section to prove Theorem 2.7 in the general case.

We denote by 2 the set of all prime ideals of O above p, and we assume
[k(p) : Fp] <2forall p € 2. Let 21 C 2 be the subset consisting of primes
of degree 1, and Xy C X be the subset of primes of degree 2. Since Theo-
rem 2.7 in the case X' = X was treated by Sasaki [Sal0], we always sup-
pose that Xy # (). We have a partition

B= (p]e_l Bp) 11 (q]e_l Bq>.

For p € 21, we denote by f8, the unique element of By, and v, the corre-

sponding valuation of ?),4, (4.12); for q € X3, we denote by By = {1,842}

and vq1,Vq2 be the corresponding two valuations. Let I=[0,1] and
= [0, 1]2. We have a valuation map

> 2
VY = ((Vp)pezla(Vq,la Vq,Z)quZ) : ?)rig — I x J72.

In general, if Q is a subset of I*! x J*2, we put

ng('Q) {Q € g)mg | V")(Q) € ‘Q}
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Let {Sy : b € 2} be a collection of non-empty subsets of either I or J. If
all the S, are closed and connected in the usual real topology, the corre-

sponding rigid subspace ?)rig( I Sp) is a quasi-compact admissible open
pex

subset of 9),;,. For example, if = (1,1,---,1) € I* x J*2, then 9),;,(1) is

the ordinary locus {Z)l‘ffgd. Hence, if ] S, is a neighborhood of 1 in

pex
I*! x J*2, then ?)rig( I Sp) is a striet neighborhood of the ordinary locus
Yo in Yy pex

rig rig-e

LEmMA 6.1.  Let 1 =1[0,1], and Jo be the boundary of [0, 1]2, L.e. the
union of its four closed edges. Then ?)rig(lZ txJ éz) 1s the tube over an open
subset of Y,. whose complement has codimension 2.

Proor. We consider Goren-Kassaei’s stratification {W,,} on Y, de-
fined in (4.2), where (¢, ) runs through all the admissible pairs of subsets of
B. For each p € 2, we put ¢, =N By and 7, =N By. Then we have
¢ = 11 », and n = [] #n,. Similarly, for each prime p, the pair (p,,7,) of

ex ex

p
subsets of B, can be called admissible in the sense that ¢, D a(1), where 7
denotes the complementary subset 5, — 7,,and ¢ : B, — B, is the action of
the Frobenius. In particular, we have

|@u] + [y = [Bp| = [x(p) : Fyl.

Now, let Z be the union of all the strata W, , such that there exists at least
onep € Xz with (¢, n,) = (By, By). By [GKO09, 2.5.2] (or cf. 4.2), Z is closed in
Y\, and each stratum W, , in Z has dimension

20— lol — Il =29 = oyl + Imsh < g -2,
peX

i.e. Z has codimension 2 in Y,.. Now one checks easily that Sg)rig(lZl X Jéz)
identifies with the tube over Y, — Z. This proves the Lemma. O

We fix a prime p € 27 of degree 1. We describe the Hecke correspon-
dence U, on ?),;,. Let L be a finite extension of Q,, and P be a L-valued
rigid point of X,i; corresponding to a HBAV over Oy,. We denote by w,(A)
the partial Hodge height of A (4.11) corresponding to the unique element of
1By, and A[p>] be the p-component of A[p>°]. This is a p-divisible group of
dimension 1 and height 2, since p has degree 1. Thus for any (O /p)-cyclic
isotropic subgroup H of A[p], its b component H[p] is just a subgroup of
order p in the p-divisible groups A[p>°]. The possibilities for such sub-
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groups are well analyzed by Katz and Lubin [Ka73], and widely used in the
work of [Bu03], [Ks06] and [Sal0]. We summarize the results in our lan-
guage as follows.

LEMMA 6.2 [Lubin-Katz]. Let p € X1 as above, Q = (A, H) be an L-val-
ued rigid point of ¥),i,. Then we have the following possibilities:

1 . . . .
(a) Assume 1 < (@) <1, e Q is canonical at p in the sense of

Theorem 4.3. Then we have wy(A) =1 — v, (Q) < %, and all the sub-

groups H' C A[p] of order p different from H[p] has deg(H') = %(1 — (@)

Or equivalently, all the points Q1 € Up(Q) satisfy 1 —vy(Q1) = %(1 — (@),
e
-1

(@) = TJF (@) > —— + 1

(b) Assume vy(Q) =
p
wy(4) > PR

PR i.e. Q 1s too-singular at p. Then we have

and all the subgroups H' C Alp] of order p different from H

has deg(H') :%, or equivalently, we have v;(Q1) :% for all
Q1 € Up(@Q). p
1
< -
() If 0 < vp(Q) <p+1,

Theorem 4.3. Then we have wy(A) = pvp(Q) < Z% There exists a unique

subgroup C C Alp] of order p different from H with deg(C) =1 — pvp(Q),
and the other subgroups H' C A[p] has deg(H') = v,(Q). Equivalently,

there exists a unique point Q1 € Uy(Q) with vy(Q1) = pvp(Q) < l% and

all the other p — 1 points Q) € Up(Q) satisfy vp(Q)) =1 — ,(Q) > —— +

i.e. Q 1s anti-canonical at p in the sense of

1

Proor. Indeed, all these results are direct consequences of [Ka73,
3.10.7]. Statement (a) and (c) are also special cases of Prop. 4.5. O

We have the following proposition on the analytic continuation of a
U,-eigenform form, due to essentially Kassaei [Ks06].

PROPOSITION 6.3. Let p € X1 as above, and [] Sy C I*' x J*2 be a
qgex

closed and connected neighborhood of 1. Let keZ" ky € Z be its p-th
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component, and f be a section of QE over ?Jrig< I Sq). Assume that f is a
o qgex
Uy-eigenform of weight k with eigenvalue a, # 0.

(@) The form f extends uniquely to an eigenform of U, with eigenvalue
ay over g (I>0 x [I Sq), where 1.g = (0,1] is considered as a subset of

the p-th copy of L o

(b) If vy(ay) < ky — 1, then f extends uniquely to an eigenform of U,

with eigenvalue ay over ?),ig (I x I1 Sq).
q7#p

Proor. The arguments are the same as in [Ks06, 4.1] and [Sal0]. We
include a proof here for completeness.

(a) For any integer n > 0, we put ¢, = By assumption, S,

P Hp+1)
is a neighborhood of 1 € I =[0,1]. We may assume thus [1 —ey] C S,

for some integer N > 0. By Lemma 6.2(a) and (b), the image of

Dhrig ([1 — &, 11 x J] Sq) under the correspondence U, is contained in
a#p
1
g)ﬁg ([1 — &1, 1 x I Sq). Therefore, the form a—NUéV is well defined
a#b b
1
over ?),ig ([1 —e&, 11 x J] Sq). Note that 1 — & = ¢ = ——. This gives
a#b p+1
the unique extension of f over ?),;, ([81, 11 x 1 Sq>. By Lemma 6.2(c),
we have a7p

Up (Sg)rig([gn—o—la 1] x qu)) C ?)rig([gm 1] x HSq)~

9#b q7#p

1
Using the functional equation f = — U, (f), we can extend inductively f to

p
Dhrig ([an, 11 x 1 Sq) for any n > 1. As the quasi-compact admissible open
a#b
subsets of {@rig ([en, 11 x [1 Sq) > 1} form an admissible covering of
a#b
Drig (I>0 x 1] Sq), this finishes the proof of (a).
a#p

(b) We proceed in the same way as in Step 3 of Prop. 5.9. We put

, 1

Vanti = rig ( {0, —} x I1 Sq) . Thisis the analogue of the anti-canonical
P+l g

locus in our situation. Denote by C(p),ig |y, . theinverseimage of Vi viathe

first projection of Hecke correspondence 7 : C(P)ig — ¥yip (2.5). By
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Lemma 6.2(c), we have a decomposition
= 0 [ )t

where C(p)ﬁig corresponds to the canonical subgroup C C A[p]above apoint
Q= A,H) € Vi via 7y, and C(p)ﬁig corresponds to the remaining sub-
groups. Consequently, we have a similar decomposition for the Uj-op-
erator Uy, = Ug + Ug. By Lemma 6.2(c), we have

Uf) (@rig <[0, &nl X qu>> - @rig <[075n1] X HSQ) for any n > 2,

C(p)rig‘va

nti

q#p a7#b
U%%4MMXH&»C%JMMXH&)
a#p a#p

Hence, the section

n
1 m— a
gn = Z@w;) LU

m=1

iswell defined over ?)ﬁg ([O7 en1l < I1 S q> forn > 2. By 6.2(c), for any rigid
a#p

point @ =(A,H) e @rig ([0, enr1]x I Sq) , the canonical subgroup C C A[p]
has degree azp

(6.1) deg(C) =1 —pn(@) > 1 —peyi1 =1 —¢y.

Using Lemma 4.6, we deduce that for 2 <m <n

1 c\"mM— a
) ()

Drig (1060111 I[..5 )

1wy

m—1
y

S p1+7)p (ap)*kp(lfsn)

g)r’ig ([Oasn]x HQ#D S\Y)

(=140, (@) )+ >

. &
i=n-m+2 "t

<p

1 a
o U3

EJ):-ig ([Os“:ﬂ—wwz] X Hq#v Sﬂ)

Moreover, it follows trivially from 4.6 that

< p1+v”(a")|f‘, )
g)rig ([O-ﬁn—nHZ]XHq#v Sq) .?Jn'g ([1:0,1]><Hq7£p Sq)

1 a
o U3
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n o0
Combining these two estimations above and using >~ & <> &=
we get finally i=n—m+2 i

1 B A4y (ay)—kp)+hy ( 14+
7((])S)WL lUg(f) < pm +vplay »)+FKy ( +1)271) |f I?) - ([{ 1]><H s )
Drig ([()-,87a+1]><1_[ﬂ%n Sn) e w

for all 1 < m < n. Thanks to the assumption k, > 1 + v,(ay), the estimation
above tends to 0 as m — oo, so there exists a constant M > 0 independent
of n such that

) < = (7reym—lrra ]
(6.2) l9nly,. (0nin T, 50) =525, | g (U) Us(f) o (0[] )<M
T N+ q#p

On the other hand, via the functional equation U,(f) = a, f, it is easy to
see that

1 .
f =g = U,
p
By (6.1) and a similar argument as in Lemma 4.6, we get
|f N g% |g)rig ([6)1+21811+1]>< 1_[”7&p Sﬂ)

< p1+vp(au)fkp(lfﬂn)

F(U;)”*l(f)

2)mg ([‘c?Hl ‘P”]XH q#b “)
n(1+vy(ap)—ky)+ky Z

< o |
sp ! |f|?)ﬁg([82781]XHq#uS“)

As Z & < 1 we see that |f — g, ) tends to 0 when

g)ng( S17+2 8'"+1]><H1#p q
n — oo. By (6 2), up to modifying the constant M, we may assume that

Py (s TT,,50) <M 2nd even 1Fly (o, ) <M Now ap-
plying Lemma A10 to Up = rig (1 I Sy), U = Duig (10,121 x T1 o),

a#b az7p
Vo = Unst, Fuo = fly,_v,» Fly = gu, We get a Uy-eigenform f defined over
Dsig (1 1 sq) extending . O
q#p

Let p € 23, and By = {f,1,B,2}. Here, the subscripts 1,2 should be
considered as elements in Z/2Z, so that if 7 is one of them then 7 + 1 de-
notes the other. We indicate how to generalize the results of Section 5 to
our situation. We start with generalizing the 9 strata (5.1) of Y,.. As in the
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proof of Lemma 6.1, we say a pair (p,,,7,) of subsets of By, is admissible if
Py O By — 1) If (p,n) is an admissible pair of subsets of B, then
(p N By, n N By) is an admissible pair of subsets of [5,, and we denote it by
(@, m)y. For an admissible pair (¢,,7,) of subsets of By, we put

W(ﬂp My = U W%ﬂ’

(@, =(py.1,)

where W, , is the usual Goren-Kassaei stratum defined in 4.2. We have a
similar list of strata in Y, as in 5.1.

e (-codimensional: Wy, Wy g, W/}D_l,ﬂm, W/;D_2 Bos-
e 1l-codimensional: Wy, 5.\, We, 5., Wg . 5,, Wp, . 5,
e 2-codimensional: Wi, g, .

The graph in 5.2 generalizes to our case, so that under the valuations
(vp1, vp.2) the loci of codimension 0, 1 and 2 correspond respectively to the
four vertices, the four edges and the interior of the square J = [0,1]%. For
i € Z/2Z7, we can define similarly the supergeneral locus W;‘? g W, 5,
to be the region where the a-number of the universal p-divisible group
A[p*>] equals to one, and the superspecial locus W;;Z . to be the area
where the universal p-divisisible group .A[p>] is superspecial. Now, Pro-
positions 5.3, 5.4 and 5.5 generalize word by word to the tubes ]W/f,i ) ﬁp.,-,[ and
]ngjhﬁw[, because all the proofs have only used the properties on the p-
divisible group A[p>].

To state the generalization of Prop 5.9, we introduce

S — {(xy,22) € [0,11% | @y + prg > 1 and a2 + py > 1}

So the Ilocus canonical at p in (4.13) is also denoted by
Vp = (7 x J2 00 gean),

PROPOSITION 6.4. Let [[ Sy C I*' x J*2 be a closed and conmnected
. qex L
neighborhood of 1. Fix a prime ideal p € X as above. Let k € Z*, and f be

a Uy-eigenform defined over )., ( 11 Sq) with eigenvalue ay. Assume that
qex
vp(ay) < min{ky1,kpo} — 2. Then f extends uniquely to a Uy-eigenform

over ?)rig( [T Sqx(SyuSeu JD)) where Jg s the boundary of J =0, 1]2.
q#b

Proor. First, the same argument as in Prop. 4.8 applied to the U,-
operator shows that f extends to @rig< 118 x(SpU Sca“)>. Since Prop. 5.3
q#p
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and 5.5 generalize naturally to our case, we just need to copy the proof of
Prop. 5.9 word by word. The only place that needs more justification is Step
2 of 5.9, where we used Lemma 5.7. We can define similarly the quasi-
compact open subsets V;, and V;,(¢) as in 5.4. In general, their global
structures maybe be complicated. However, what we really need from 5.7 is
the fact that V;,,(¢) is a strict neighborhood of V; ,,. This is certainly true in
the general case, because the universal p-divisible group A[p>] is exactly
the same as in Lemma 5.7, and the generalized V,, and V,,, are cut out by
certain special local lifts of the partial Hasse invariants at p in the same
way. O

Proor or THM. 2.7. Let f be an overconvergent eigenform as in the
statement of 2.7. We choose a closed and connected neighborhood
[Tpes Sy C I* x J** of 1 where f is defined. Applying successively Prop.
6.3 and 6.4 for all p € X, we get an eigenform f defined over ?)ﬁg(lz txJ éz).
Now Theorem 2.7 follows immediately from Lemma 6.1, Prop. 4.9 and
Prop. 2.2. O

Appendix A. Some results on the extension of sections in rigid
geometry

The purpose of this appendix to summarize some general results on the
extension or gluing of sections in rigid geometry. The basic ideas of the
proofs are already contained in the work of Kassaei [Ks06] and Pilloni
[Pi09].

Let Ok be a complete discrete valuation ring with uniformizer r,
k = Og/(n), and K be the fraction field of Ok. We say a topological Ok-
algebra A is admissible if it is topologically of finite type and flat over Ok,
i.e. A is a n-torsion free quotient algebra of the usual Tate algebra of
convergent power series in several variables over Ok. An admissible for-
mal scheme over Ok is a quasi-compact and separated formal scheme over
Spf(Og) which is locally the formal spectrum of an admissible Ok-algebra.
An affine formal scheme Spf(A) is admissible over O if and only if A is an
admissible topological Ok-algebra.

Let X be an admissible formal scheme over Og. According to Raynaud,
we can associate to X a quasi-compact rigid analytic space Xx over K,
called the rigid generic fiber of X. Similarly, to each coherent sheaf .7 over
X, we can attach a coherent rigid analytic sheaf .7 over Xx. We denote by
Xy the special fiber of X, and we have a natural specialization map
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sp : Xg — Xo of topological spaces (cf. [Be96] Chap. 1). If Uy is a locally
closed subset of Xy, we put JUy[ = sp~1(Uy), and call it the tube over Uy in
Xg. If U C X is the open formal subscheme with special fiber U, then we
have 1Uy[ = Ukg.

LemMA A5 (cf. [Pi09], Lemme 7.1). Let X = Spf(A) be an admissible
affine formal scheme over Ok, Uy C Xy be an open subset of its special
fiber, .7 be a coherent Ox-module flat over Ok, and .7y = .7 /n.7. If the
restriction map H'(Xy, 70) — H(Uy, 7) is an isomorphism, then the
restriction map

H'Xk, 7x) — HQUol, .7 )

s also an isomorphism.
Proor. Let U be the formal open subscheme of X corresponding to Uj.

The the exact sequence 0 — .7 -2 .7 — .7y — 0 of sheaves on X induces
a commutative diagram

HY(X,Z) H(Xo, %o)

| -

H(U, %) —— H(U, %)/nH°(U, #)— H°(Uy, %),

where the horizontal maps are natural reductions, and the vertical arrows
are restrictions. Since the right vertical arrow is an isomorphism and
H'U,.7) has no n-torsion, an easy diagram chase shows that  is injective.
On the other hand, since H'(U,.7)/nH"(U,.7) is a finite over A/znA,
Nakayama lemma implies that H(U, .7) is a finite A-module, and the
image of 1 generates H(U, .7). Hence, the restriction map 1 is an iso-
morphism. The Lemma follows immediately by inverting 7. O

LEMMA A6. Let X be an admissible formal scheme over Ok, Uy C X, be
an open dense subscheme of the special fiber, and .7 be a coherent Ox-
module flat over Og. Then the restriction map

H'Xg, 7x) — H'QUol, 7k)
1s ingjective.
Proor. Let U C X be the open formal subscheme corresponding to

Uy. Since X is quasi-compact and separated, we have a natural iso-
morphism H'Xx, 7 k) ~ H'(X,.7) ®o, K; and similar statement holds
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with X replaced by U. Hence, it suffices to prove that the restriction
map H'(X,.7) — H(U,.7) is injective. Let X = |J V; be a finite open

el
covering of X by affine admissible formal schémes over Og. Since
H'(X,.7) — [[H(V;,.7) is injective, we are reduced to proving that
1€l
H(V;, 7) — H(U NV;,.7) is injective for all i € I. The density of Uy
implies that

HYV;, 7) ©o, k = H(Vig, 7 /n7) — H'Uy N Vig, 7 /n.7)

is injective. Let f € H'(V;,.7) such that f| urv. = 0. Then there exists
fi € H'(V;, #) with f = nfi. Since .7 has no r-torsion, we deduce that
Jilyny, = 0. Repeating this process, we see that = 0, because HV;,.7)
is n-adically separated.

In general, if X, is a locally noetherian scheme and .7 is a coherent
sheaf on X, we denote by depthy (7;) the depth of .77, as an Ox, .-
module for any x € Xp.

ProrosiTION A7. Let X be an admaissible formal scheme over Ok,
Yo C Xy be a closed subscheme, .7 be a coherent Ox-module on X flat over
Ok, To=.7 [n7. Assume that for any x € Yy, we have depthy, (.7 .) > 2.
Then the restriction map

1 H'Xg, 7x) — H'(0Xy — Yol, 7 )

s an isomorphism.

Proor. First, we have dim(Oy, ;) > depthXO(.7 00) > 2 for all x € Y
by [Ma&6, Thm. 17.2], i.e. Y has at least codimension 2 in Xj. In particular,
Xy — Yy is dense in Xj. The morphism :is therefore injective by Lemma A6.
Let X = | U; be a finite covering of X by affine open admissible formal

el
subschemes. By [SGA2, II 3.], the natural map H°(U,y, 7o) —
HO(UZ-,O — Yy, .79) is an isomorphism. It results from Lemma A5 that

H'U;g, 7x) — H'QU;o — Yol, 7k)

is an isomorphism for all i € I. Let f € H°(JXy — Yo[, 7 k), and f; be its
restriction to JU; o — Yo[. By the previous discussion, f; extends naturally
to U; k. We have to show that the fi|U7__KﬁUj_K :]3'|U7-,.K0UJ-,K for 7,7 € 1. As
Uio NUjo — Yo is dense in Ui N Ujo and fily, v, vor = fiho,gnw,-vir We

conclude by Lemma A®6. O
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Recall that we say a noetherian local ring A satisfy the condition S, if
depth(4) > min{2, dim(A)}. For instance, all the normal rings or Cohen-
Macaulay noetherian local rings satisfy the condition Ss.

COROLLARY A8. Let X be an admissible formal scheme over Ok, and
I be an Ox-module locally free of finite type. Let Yy C Xy be a closed
subscheme of codimension > 2 such that for any x € Yy, the local ring
Ox, » satisfy the condition Ss. Then the restriction map

H' Xy, 7x) — H'(0Xy — Yol, 7)

1S an 1somorphism.

PRrOOF. The condition Sz implies that depthy (.7 ;) = depthy, (Ox, ) > 2
for x € Y;. The Corollary follows immediately form the Proposition. O

Let |-|: K — R>¢ be a non-archimedean absolute value on K with
valuation ring Og. We fix an algebraic closure K of K. Note that | - | ex-
tends uniquely to K. If L is a finite extension of K, we always consider L as
a subfield of K by choosing a K-embedding, and we denote by Oy, the ring
of integers in L. The following treatment on norms follows [Pi09, 5.3].

Let X be an admissible formal scheme over Ok, and .7 be an Ox-
module locally free of finite type. Let « be a rigid point of Xx with values in
a finite extension /K. Then x comes from a morphism & : Spf(Oy,) — X of
formal schemes over Oy. Let (¢;);c; be a basis for the finite free O7,-module
&*(7). We have a natural identification x*(7k) =2*(¥) ®o, K. For
f=> aie; € x*(Fk) with a; € L, we put |f| = nilgix{|a2~|}. It is easy to

il
checke that this definition does not depend on the choice of the basis (¢;);;.
Let U C Xg be an admissible open subset, and f € H'(U,.7 k). We put

|fly = sup [x*(f)|. Note that it is possible that |f|; = +o0 if U is not
xeUEK)
quasi—cgrenpact. If U is quasi-compact and reduced, it follows from the

maximality principle that |f| < + o0, and we have |f| =0 if and only if
f = 0. Therefore, in this case, H(U, .7 ) is a Banach space over K.

REMARK A9. In Corollary A8, if f is a section of .7k over 1Xy — Y[
with | f |}y, _y,; < C for some C > 0, then it is easy to see from the proof that
its natural extension to Xk still satisty |f[y, <C.

This following lemma is a variant of [Ks06, Lemma 2.3], and the proof is
of also quite similar.
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LEmMMA A10. Let X be an admissible formal scheme over Ok such that
its rigid generic fiber Xg is smooth, and .7 be an Ox-module locally free of
finite type. Let Uy be a quasi-compact admissible open subset of Xx, and

U>U >UyD---DU, D
UoVioVeDd---DV,D---

be two infinite sequences of quasi-compact admissible open subsets such
that U, is a strict neighborhood of V,. Assume that no connected com-
ponent of Uy is contained in ( V,. Let F, € H(Uy—V,, .7, rig) and

n>1

F! ¢ H"U,, 7, vig) satisfying the following condition.

(a) Fn|UO—Vn,1 =F, 1forn>2

(b) |Fy —F, |y, v, tends to 0 as n — oo

(¢c) there exists a constant C > 0 such that |Fy|y, vy, , |F|y, < C forall
2 .

)

—

n

Then there exists a unique section F € H'(Uy, 7x) such that
F‘UO_I/’”, == an (M’Ld |F|U0 S C-

Proor. By assumption, each connected component of Uy has a non-
empty intersection with Uy — V,, for n sufficiently large. The uniqueness of
F with F|; . = Fy follows from the principle of analytic continuation in
rigid geometry [Be96, 0.1.13]. We note also that the estimation |F|;;, < C'is
trivial. It remains to prove the existence of /. This is a local problem for the
Grothendieck topology on Xg. By choosing a finite open affinoid covering of
Xk over which .7  is trivial, we reduce to the case where U is affinoid and
Tk = Ox,. Let @XK be the subsheaf of Oy, consisting of sections with
norm at most 1. Up to renormalization, we may assume that I, F, are
sections of Oy, and

\Fy—F |y _y, < Inl".

Consider the quotient sheaf ~@XK /7" Ox,. Then F,, F', glue together to a
section G,, € H'(Xk, Ox, /7" Ox,) for each n > 1. Note that the exact se-
quences

0— @XK X—nﬂ> @XK — @Xi/ﬂn@XK — 0
induce an exact sequence of cohomology groups

0 — H'(Uy, Ox,) — lim H'(Uy, Ox, /" Ox,) — H' Uy, Ox).
n
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By a result of Bartenwerfer [Ba78, Thm. 2] (which uses the smoothness of
Xk), there exis‘@ ¢ € Og with ¢ # 0 such that cH' (U, Ox,) = 0. Therefore,
the sections {¢G,;n > 1} come from a certain G € H(U,, Ox,). Then we

can take F' = g

Appendix B. Zink’s theory on Dieudonné windows and canonical
local coordinates at superspecial points

In this appendix, we prove some results needed in Lemma 5.7. We fix a
prime number p > 0.

Recall first the definition of windows in [Zi01] and the extension to p-
adic complete rings in [Ki09b]. Let R be a p-adically complete and sepa-
rated ring. A frame for R, denoted by (S, J, ) or simply by S, is a surjective
ring homomorphism S — R with kernel J, where

(1) S is a p-adic ring flat over Z,, equipped with an endomorphism ¢
lifting the Frobenius on S/pS.

(2) J is an ideal equipped with divided powers compatible the natural
divided power structure on pS.

For a frame (S, /, ¢) for R, a Dieudonné S-window over R is a finitely
generated projective S-module M together with the following data:

(1) a submodule Fil' M containing JM such that M/ Fil'! M is a pro-
jective R-module;

(2) a g-linear map ¢ : M — M such that p(Fil'M) C pM and M is
generated over S by ¢(M) and gp/p(FillM).

It is easy to see from (2) that 1 ® ¢ is injective and pM C (1 ® ¢)(p* M).
So there exists a unique morphism y : M — ¢*(M) of S-modules such that

the composite M Y, o (M) 1o M is the multiplication by p. We say a
Dieudonné S-window (M, FillM, @) is an S-window if the image of

(071,—1*(1//) 0.0 (ﬂ*(l//) oy : M N (017*(/\/1)

is contained in (p,J)¢p"* M for sufficiently large n.

B.1

Let R be a p-adic complete and separated ring. A divided power sur-
jection over R is a surjective ring homomorphism S’ — R’ with kernel J,
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where R’ is a R-algebra and J’ is equipped with a divided power structure
and consists of elements topologically nilpotent in the p-adic topology. Let
G be a p-divisible group over R, and put Gy = G ®g (R /p). By [BBMS82], we
can associate contravariantly with G a erystal D(G) over the big crystalline
site of R. That is, to each divided power surjection S' — R’ over R, we
associate a finite locally free S’-module D(G)(S" — R’), such that for a
morphism of divided power surjections over R

Sl S/I

L

R/ R//

we have D(G)(S” — R") = 8" @g D(G)(S" — R').

Now let (S,J,p) be a frame for R. We put M(G) = D(G)(S — R).
By [BBMS&2], we have a canonical isomorphism of S-modules M(G) =
D(Go)(S — R/p). Since the crystal D(G) commute with base change, we
deduce from the morphism of divided power surjections

S—* .5

l |

Frob /p
R/p . R/p

a canonical isomorphism
DGYS — R/p) = S @,5 D(Go)S — R/p) = ¢* M(G).

Therefore, the Frobenius homomorphism Fg, : Go — Gép ) and the Ver-
schiebung Vg, : G — Gy induce respectively homomorphisms of S-
modules

1@¢: " M(G) - M(G) and y: M(G) — ¢* M(G).

We have (1 ® ¢) oy = p since Vg, o Fg, = pg,- Note that R @5 M(G) =

DGR 1, R) by the base change property of the crystal D(G). Let wg

denote the module of invariant differentials of G relative to R, and Lie(G")
be the Lie algebra of the dual of G. By [BBMS&2], we have a Hodge filtration

0 — wg — R ®5 M(G) — Lie(G") — 0.

We define Fil' M(G) to be the inverse image of w; in M(G). Then we claim
that (p(Fﬂl./\/l(G)) C pM(G) and M(G) is generated by ¢(M(G)) and
(o/p(Fill./\/l(G)). Indeed, if R is an algebraically closed field k of char-
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acteristic p and S = W(k), this is well known in the classical Dieudonné
theory. Since the formation of the crystal M(G) commutes with arbitrary
base change, the general case of claim follows from this special case.
Therefore, we get a Dieudonné S-window (M(G), FillM(G), p). Since y is
induced by Vj,, it is easy to see that (M(G), FillM(G), @) is an S-window,
i.e. the extra nilpotent condition on y is verified, if and only if G has no
multiplicative part.

THEOREM B11 ([Zi01], Thm. 4). Assume R is excellent. Then the con-
travariant functor
G — (M(G), Fil' M(G), p)

constructed above induces an anti-equivalence between the category of
p-divisible groups over R without multiplicative part and the category
of S-windows over R.

We point out that, since we have used contravariant Dieudonné theory,
the p-divisible group corresponding to an S-window (M, Fil' M, ¢) in our
sense is the dual of the p-divisible group associated with (M, Fil' M, ¢) in
the sense of Zink.

Let k be an algebraically closed field of characteristic p, and W = W (k).
Let g > 2 be an integer, F), be the finite field with p? elements, Z,, =
W(F ). We identify the set of embeddings of Z,, into W (k) with Z/gZ. Let
R be a W-algebra. We say a p-divisible group G over R has formal real
maltiplication (or simply RM) by Z,, if G has dimension g and height 2g,
and is equipped with action of Z,, such that Lie(G) is a locally free
R ®3z, Zys-module of rank 1.

Let (S,J, ¢) be aframe for R, and G be a p-divisible group with RM by Z,,,
over R. The action of Z,, on G induces a natural action of Z,, on the Dieu-
donné S-window (M(G), FillM(G), @) such that M(G) becomes alocally free
S ®z, Z,,-module of rank 2. Hence, we have canonical decompositions

MG = P M@; and FI'M@G) = P Fil' M@,
i€Z/gZ icZ/gZ

and p(M(G);_1) C M(G);. Note that we have canonical isomorphisms of
free R ®z, Zps-modules of rank 1:

B3) wg= P we; > Fil' M@G)/IM@G) = @ FI'MG),;/TM@G);,
1€Z/gZ i€L/gZ

(B4) Lie(GY)= @ Lie(G"); = M(G)/FiI' M(@) = @) M(G);/Fil' M(G);.

i€Z/gZ i€Z/gZ
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Assume now R has characteristic p. Then for each i € Z/gZ, we have a
commutative diagram of p-semi-linear maps

M(G)i—1 ——= M(G);

| |

Lie(GY)io1 %4 Lio(GV);,
where the vertical arrows are natural quotient maps and HW¢ ; is the i-th
component of the usual Hasse-Witt map on Lie(GV). If f; is a basis of
Lie(G"); over R for i € Z/gZ, there exists t; € R such that HW¢ ;(fi_1) =
tifi- We call ¢; the i-th partial Hasse invariant of G (for the basis (f;)1<i<y).

B.2 p-divisible groups with real multiplication

Let Gy be a superspecial p-divisible group with RM by Z,, over k. That is,
Gy isisomorphic to the p-divisible group of a product of supersingular elliptic
curves of k. Then by [GO00, 5.5.4], such a Gy is unique up to isomorphism,
and the (contravariant) Dieudonné module M(Go) = @jcz/;zM(Go); of Gy
can be explicitly described as follows: Each M(Gy); is a free W-module of
rank 2 with basis e;, f;, and the Frobenius is given by

0 1
p(ei_1,fi-1) = (ei, f}) [ ] )
p 0

In particular, in the Hodge filtration 0 — wg, — M(Go) @w k —
Lie(Gy) — 0, ag, is generated by the image of (e;)icz/yz, and Lie(Gy)
is generated by the image of (f)icz/z-

By [GOO00, 2.3.4], the formal scheme which classifies that the deforma-
tions of Gy as p-divisible groups with RM by Z,, is given by Spf(R"*"") with
R™Y = WI[[Ty, -, T,]]. We equip R™ with an endomorphism ¢ which acts
on W via Frobenius and sends T; to Tf . Then (R"™V, 0, ) becomes a frame
of R™V itself. Let (M™, Fil' M"™", ») be the Dieudonné R"™"-window of
the universal deformation G*™ over R"™. By [loc. cit.] and the relation
between displays and Dieudonné windows, the universal R™"-window has
the following description: In the canonical decomposition

univ univ
MY = B MM,

1€Z/gZ

each M‘imi" is a free R™V-module of rank 2 with basis e;, f;, and we have
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Fillj\/l;-,lniv — R™V . ¢;. The Frobenius map on M"™ is given by

0 1
(BG) (/7(92‘—1» fi*l) = (eia fl) |:p Tz:| )
and the morphism y : M™ — ¢*(M™V) is thus given by
-T; 1
(B7) e, £;) = (p'e;q, (0*f1',—1)|: » ' 0} :

Note that the image of f; in Lie(Gu“iV)y forms a basis. Therefore by (B5),
the i-th partial Hasse invariant of G"™ @ gusw (R™ /p) is just the image of
T; in R™ /p.

REMARK B12. Let Gy be the base change of GV to W via the map
T; — 0. The p-divisible group Gy has many interesting properties, and can
be considered as the canonical lifting of G to W. For example, if ¢ is odd,
then Gy has an action by Z, extending the RM by Z,,. If g is even, then Go
has a decomposition Gy = H + Xspeeew) H—, where H | and H_ are p-divi-
sible groups of dimension g/2 and height g. Moreover, there are natural
actions of Z,, on H and H_ satisfying the properties of “formal complex
multiplication” by Z,,.

Assume that ¢ is even. For any integer m,n >1, let R, , =
W{t1,---,ty} be the p-adic completion of the polynomial ring W[ty, - - -, %,],
by : R™Y — R, be the homomorphism of W-algebras given by

p™t; for ¢ odd,
T;— )
p"t; for 7 even.

Similarly to R™", we equip R,,,, with the endomorphism ¢ that acts as
Frobenius on W and ¢(t;) = t!’. This makes (R, ,,0,¢) a frame for R,
itself. Let G™" be the base change of G™ to R,, . Since 1, ,, is compatible
with Frobenius, the Dieudonné R,,,-window (M™" Fil! M™" ¢"") as-
sociated to G™" is just the base change of (M™, Fil'! M ) via 1,,,,,. For
i € Z/9gZ, et e;,f; denote the image of e;, f; in M™" by an obvious abuse of
notation. We have Fil! M"" = &,y JgzRm.ne; and

1
""" (eg;_1,T2;_1) = (eg;, f2;) [p p”tzz]

M,Nn . ) — N ] 0 1
9 (921,,f21,)—(ezz+17f21+1){p Pt |
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The following proposition can be considered as a relative version of
3.16(a) in a more general setting.

ProrosiTION B13. (a) There exists two finite and flat closed group
schemes H'"" C G™"[p™] and H™" C G"™"[p"] stable under the action of
Z,, and such that we have

0 for i odd Ry /"Ry foriodd
(BS) me.n ~ . a)Hm.n ~ : : .
+i Ryn/p"" Ry forieven, —i 0 for i even.

(b) Let (L™ Fil' £ ¢.) (resp. (L™, Fil'L™", ¢_)) be the Dieudonné
Ry n-window over R™" associated with the quotient G™"/H'™" (resp.
G™" [H™™"). Then they are actually R, ,-windows, and L"" (resp. L™" ) is
noturally identified with the free Ry, ,-submodule of M™" generated by
(e2;1,p"fa; 1, p" €, £2;) (resp. by (p"ezi1,f2; 1, €9, p"f3)) for 1 <1 < g/2
with the induced Fil* and g-structures. In particular, we have

0 1
0. (egi1,p"f2i1) = (p" ey, fZi){ } ;
p P

m+nt2,
)

0 1
0., (p"egi, £2;) = (egi1,p" F2i11) { } ;
D toiy

0 1
p_(p esi1,f2i_1) = (e, p"fs;) { ] ;
p o

0 1
o_(eg;,p"fs;) = (p"ezii1,f2i41) |:]0 P :| '

Proor. Let £"" denote the submodule of M"™" described in (b). We have

FﬂlﬁTﬂ = Fﬂl./\/lm’n N ET’% = @ (Rm,n ~e2i1 D Rm,n 'pmeZi)-
1<i<g/2
From the formulas of ¢, on L"" given above, it is easy to see that
o, Fillﬁf"l, ¢,) is indeed a R™"-window. We have to prove that it is
indeed a R,, ,-window. From the formulas of ¢, it is easy to see that the
morphism v, : L' — ¢* L' is given by

. . —pmngy 1
v, (p"ey, fo) = (9 egi_1, 0" p" f2;_1) [p z ol

' —to; 1
l//+(ezz‘+1apmf2i+1)=(<p*e2i,ga*pmf2i)[ ;”1 0}
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Now it is direct to check that the image of the morphism
P )00 ) o, L L

is indeed contained in pgozg*ﬁf’"’. This proves (L, Fillﬁ’f’", ¢.) is indeed
a R™"-window, and it thus corresponds to a quotient of G"" by a certain
kernel H'"" by Zink’s theorem B11. Similar arguments apply to
L£m* Fi'L™" ¢ ) and H™". This proves statement (b). By our con-
struction, the p-divisible group G™" /H'"" is clearly equipped with RM by
Z,,. Therefore, the finite flat closed subgroup scheme H'["" of G™" is
stable under Z,,. From the exact sequence of groups over R"™"

0— H—'rf,n — G, Gm,n/HTn N O,

we get an exact sequence of B"" ®z, Zp-modules

0 — me‘n/HKL'n — WaGmn — w[—[:’”’ — 0

In view of the relations (B3), we have a canonical isomorphism of
R™" @7 Zy-modules
o = FI'M™ JFILT" = @ Ry /p™ - €3,
1<i<g/2
from which (B8) for wgpra results immediately. Similarly arguments work
fOI' O)Hf;n,ﬂ. D

REMARK Bl14. (a) Let Spf(R““i")ﬁg and Spf(R,, g be the associated
rigid generic fibers of the corresponding formal schemes [Be96, 0.2]. Then
Spf(R‘mi")rig is isomorphic to the open unit polydisc D of dimension g with
parameters T4, --,Ty. Via the morphism of rigid spaces induced by 1,
Spf (R )hig 1s identified with the closed sub-dise

D(m,n) = {x € D | v,(To;i_1(®)) > m,v,(T2) > n for 1 < 1 < g/2}.

The associated rigid p-divisible group Gg" is just the restriction of G;li“giv to
D(m,n).

(b) Let us relate the results of the Proposition above to the results in
Section 3 proven via Breuil-Kisin modules. Let K be a finite extension of
WI1/p] with ring of integers Ok. Let « be a K-valued rigid point of D(1,1),
i.e. © comes from a morphism of formal schemes Spf(Ox) — Spf(R™Y)
factoring through Spf(R; ;). We denote by G,,H, ., H_, respectively the
pullbacks of GV!, H il and HY! over Ok via x. We have

0 if 7 is odd, 1 if 7is odd,

deg;(H ;) =
egi(H+a) { 1 if iis even; 0 if 7 is even.

deg,(H_,) = {
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On the other hand, G,[p]is clearly a truncated Barsotti-Tate group of level
1 with RM by Z,s over O defined in 3.7 with partial Hodge heights
wi(G) =1 for all i € Z/gZ. Then the closed subgroup schemes H, ,,H_,
are just the group schemes H, and H_ obtained by applying Cor. 3.14 to
G.[p]. Now Prop. B13(b) allows us to compute the partial Hasse invariants
of the quotients (G,/H ) ®o, Ok /p and (G,/H_ ;) @0, Ok /p.
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