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Mixed Hodge complexes and higher extensions of mixed
Hodge modules on algebraic varieties

FLORIAN IVORRA (¥)

ABSTRACT - In [1, 2] A. Beilinson provides a description of the bounded derived
category of polarizable mixed Hodge structures in terms of the more flexible
triangulated category of polarizable mixed Hodge complexes. In this work we
provide a partial generalization of this result to higher dimension.
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1. Introduction

1.1 — Some background

1.1.1 - InP. Deligne’s Hodge theory [5, 8.1], mixed Hodge complexes were
introduced as an auxiliary tool to construct mixed Hodge structures on
cohomology groups of algebraic complex varieties. This tool was refined by
A. Beilinson in [1, 2] where it plays a crucial role in the definition of absolute
Hodge cohomology, a Hodge theoretic precursor of motivic cohomology.
More precisely, A. Beilinson introduces a triangulated category of (polariz-
able) mixed Hodge complexes Dk}//p and shows that the triangulated functor

1.1.1-1) D"(MHS!,) — D%

is an equivalence of categories. Then he explains [1, § 4] that Deligne’s con-
struction provides a mixed Hodge complex R/'(X, Q) which lifts the direct
image Rz, Qy in Betti cohomology, and, using the equivalence (1.1.1 —1), he
defines the absolute (polarizable) Hodge cohomology as the bigraded groups:

H” (X, Q(g)) := Hom (Q(0), RI (X, Q)(@)[p).

D" (MHS?)
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At the time, RI'(X, Q) was a substitute for the direct image =, Q;{ that anot
yet defined theory of Hodge coefficients with a formalism of the six op-
erations would have provided.

1.1.2 — Even with the advent of M. Saito’s theory of mixed Hodge modules
[17, 19], which allows in particular the definition of absolute Hodge
cohomology without mentioning the category of mixed Hodge com-
plexes (1), Beilinson’s equivalence still remains a useful description of the
bounded derived category of polarizable mixed Hodge structures. Indeed
in comparison with complexes of polarizable mixed Hodge structures,
mixed Hodge complexes are far more flexible objects and much easier to
construct, and the equivalence (1.1.1 —1) turns out to be a key ingredient
for constructing realization functors from triangulated categories of
motives to the bounded derived category of polarizable mixed (Q-Hodge
structures MHS%: in both the construction given by A. Huber in [7, 8] for
V. Voevodsky’s geometrical motives or by M. Levine [14, Part 1,V.2.3.10]
for his own triangulated category of motives the target category of the
realization is rather the bounded triangulated category of polarizable
mixed Hodge complexes D,b%p.

1.1.3 — For higher dimensional complex algebraic varieties, categories
of mixed (Q-Hodge complexes were introduced by M. Saito in [20].
More precisely, for every algebraic variety X, he constructs two
triangulated categories Dg/;(X ,Q)s and Dg/(X , Q) together with trian-
gulated functors:

D" (MHM(X, Q)) — D3(X, Q)2

DR_IT

D5,(X,Q)

where MHM(X, Q) is the abelian category of algebraic mixed (Q-Hodge
modules over X. For X = Spec(C) the categories MHM(Spec C, Q) and
MHSIZ) are equivalent, M. Saito shows [20, 2.10] that the functor ¢ in
that case

¢ : D" (MHM(Spec C, Q) — D% (Spec C, Q).,
(") M. Saito’s theory provides a definition of m@}?{ as an object in Db(MHS%)

and one can shows at least for X smooth that its image by the equivalence (1.1.1 —1)
is isomorphic to Beilinson’s RIC(X, Q).
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is an equivalence and in particular Saito’s category of mixed Hodge
complexes is equivalent to D%p. Though their definitions are very sim-
ilar, Saito’s construction is slightly more complicated than Beilinson’s
construction and it is not clear a priori that they yield equivalent results.

1.1.4 — The motivation behind these constructions is the comparison
between Hodge structures provided by the theory of mixed Hodge modules
and Hodge structures provided by the simplicial methods inherited from
Deligne’s original approach [5]. As simplicial constructions do not work in
the framework of mixed Hodge modules, due to the nonexactness of
pullback maps for the perverse t-structure, mixed Hodge complexes
appears to provide a bridge between the theory elaborated by Saito and
other constructions with a simplicial flavor.

1.2 — Statement of the main result

1.2.1 — In this paper, for technical reasons, we will have to work with the
version of the functor ¢ construeted in [9]:

121-1) Db(MHM(X, Q)) _realy, D]L}/(X, Q).

Though the definition of the category of mixed Hodge complexes
Dg/(X , Q). is too crude for (1.2.1 —1) to be essentially surjective for an
arbitrary algebraic variety, if one is interested in a higher dimensional
generalization of Beilinson’s equivalence, the following question arises:

1.2.2 — QUESTION. Let X be a smooth projective algebraic variety. Is the
realization functor (1.2.1 —1) fully faithful ? In other words is the morphism

(1.22-1) Hom_,

provrmex, oy (ZZrJ0) — Homyy

Db x.0, (realx(72), realx (/7))

an isomorphism for any given complexes of mixed Hodge modules .7, ?

1.2.3 — The aim of this work is to provide a partial positive answer to this
question for every smooth projective variety. Remark that the realization
functor (1.2.1 —1) is a Hodge theoretic lifting of the Betti functor realy ¢
constructed in [4, 3.1], i.e. one has a commutative square (up to an invertible
2-isomorphism)
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DP(MHM(X, Q)) > D%, (X, Q)5
1.23-1) forgetfull lforgetful
DP(Perv(X,Q)) T DP(X,Q)
realx @

where DE (X, Q) is the bounded derived category of sheaves of (O-vector
spaces on X" with algebraically constructible cohomology and Perv (X, Q)
is the abelian category of perverse sheaves inside it. As shown by Beilinson
in [3] the functor realy (, is an equivalence of categories. Therefore a pos-
itive answer to 1.2.2 — can be seen both as a higher dimensional general-
isation of the equivalence in [1] and a Hodge theoretic version of the
equivalence in [3].

1.2.4 — Let us now state our main theorem. For this, recall that if X is a
smooth algebraic variety of pure dimension dy, an algebraic mixed Q-Hodge
module. 7 on X is said to be smooth if rat(.Z)[ — dx]is alocal system, where

rat : D°(MHM(X, Q)) — D2(X, Q)

is the composition of realy ¢, and the forgetful functor in (1.2.3 —1). The main
result of this work is the following theorem:

1.2.5 — THEOREM. Let X be a smooth projective algebraic variety and
2,0 be two complexes of mixed Hodge modules on X. If .7 has smooth
cohomology i.e. the mixed Hodge module H'(_%) is smooth for every i € 7,
then the morphism (1.2.2 —1) is an isomorphism.

1.2.6 — Letus denote by MHM(X, Q) the full subcategory of MHM(X, Q)
formed by the smooth mixed Q-Hodge modules and by Dg,(MHM(X, Q))
the full subcategory of D" (MHM(X ,Q)) formed by the complexes with
smooth cohomology. Since MHM(X, Q),, is an abelian subcategory of
MHM(X, Q) stable by extensions, the category ng(MHM(X ,Q)) is a
triangulated subcategory and 1.2.5 — ensures it can be seen via (1.2.1 —1)
as a full triangulated subcategory of Dl}/ X, Q).

1.2.7 — Inthe proof of 1.2.5 — we use essentially the assumption that .7 is
smooth. Since the definition of Dg/;(X , Q) is really crude in comparison
with the definition of the category of mixed Hodge modules, it may be that
one has also to refine the construction of mixed Hodge complexes to get a
positive answer to 1.2.2 in general.
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1.3 — Sketch of proof and content of the paper

1.3.1 — The proof of 1.2.5 — goes by reduction to the zero dimensional case.
As shown by M. Saito, a smooth mixed Hodge module is nothing but an
admissible variation of mixed Hodge structures. Moreover since such a
variation may also be seen as a mixed Hodge complex, to prove 1.2.5 — we
have to check that

Ho V7 ) — Hom (V7 real()))

mD (MHM(X, ()))( D 7 (X,Q)y

is an isomorphism for any admissible variation of mixed Hodge structures
Vandany )" € D° (MHM(X, Q)). The idea of the proof is then very simple:

Step 1 We show that one may assume the variation V to be the trivial one
QW' To do this reduction, we exploit the fact that the tensor category
VMHS(X, Q),q of admissible Varlatlons of mixed Hodge structures is
rigid. Namely we construct both on D° (MHM(X, Q)) and D ;/(X Q) a
structure of module over VMHS(X, Q),,. The rigidity of the tensor cat-
egory VMHS(X, Q),, provides then two isomorphisms

7 H 7\ __ 7/ 7
(1.31-1) Hompyp o (M7, #) =Homyy VY@ L)
r H o 7/ <7
1.3.1-2) Home(MHM(X U))( VLN = Home(MHM(X Q)) SNVY® )

where VY is the dual of V. We check that the realization functor real is a
morphism of modules and the compatibility of the isomorphisms (1.3.1 —1)
and (1.3.1 —2) with real ensures that it is enough to consider the trivial
variation 0% . This step does not use the projectivity assumption and relies
heavily on the notion of noncharacteristic mixed Hodge modules.

Step 2 Let n: X — Spec(C) be the structural morphism. Since 7 is as-
sumed to be projective, we have a direct image functor 7, : Dg/ X,Q)y —
Dk}//(Spec (©), Q) for mixed Hodge complexes and we check that there is
an isomorphism

(OF,.2) =Hom,, . (00),7..2) V/teDYX,0),

H D> (Spee C,0)

MpY x,0),
which is compatible via real with the adjunction isomorphism in the
derived categories of mixed Hodge modules provided by the adjoint
functors n* - .. We are then reduced to the case Spec(C) which was
done in [20, 2.10] or in [1].
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1.3.2 — Let us now briefly run through the content of the paper. In the
second and third sections we provide some complements on &/-modules and
mixed Hodge modules which are needed as preliminaries to the construc-
tions involved in the proof. Though some of them may be well known to
some reader they either do not appear in the literature or the proofs are too
quickly sketched for our need. The proof of the main theorem is done in the
fifth section while the fourth section contains recollections on mixed Hodge
compleces and the last section the necessary though tedious constructions
that are needed in the proof but may be skipped in a first reading.

1.3.3 — In this paper a complex algebraic variety is a separated quasi-
projective reduced scheme of finite type over Spec C. If X is a smooth
complex algebraic variety, we denote by X*" the associated complex
analytic manifold. Given an increasing filtration W and an integer n € 7,
one denotes by W{n} the filtration W{n}, = W;_,.

2. Mixed Hodge modules
2.1 — Side changing functors for filtered &/ -modules

2.1.1 — Let X be a smooth complex algebraic variety or a complex analytic
manifold of pure dimension dy. We denote by &y the ring of differential
operators on X and by F its filtration by the order. Recall that
Dx = Ul Dx, Fo Y x = Ox and Fi,.Z x = 0 for any k < 0. Moreover &y
is a locally free “x-module and F, &y is a locally free ?x-module of finite
rank for any k € Z. A filtered right &/x-module is a pair (.Z, F') where .7
is a right Zy-module and F..7# (k € 7) is an increasing sequence of
additive subgroups of .7 such that Fy. 7 - F,&x C Fo.7%. We say that

e F'is exhaustive if Uy F, # = . 7;
e I is discrete if there exists locally an integer ky € 7 such that
Fy. 7% =0fork < k.

One defines similarly the notion of filtered left &/ x-modules. In the
sequel all filtrations on & x-modules will be assumed to be exhaustive and
discrete. The filtered right &7 y-modules form a quasi-abelian category
MF(Z x) and we have a forgetful functor o : MF(Zx) — M(Zy).

2.1.2 — REMARK. In [17] M. Saito uses right Z/-modules almost exclu-
sively, here it will be convenient to use also left &/-modules. Such a use will
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be indicated by the symbol L e.g. MF(& ©F will denote the category of
filtered left & x-modules.

2.1.3 — Let wy = .Q?g‘ be the invertible 7xy-module of top differential
forms on X. This is a right & x-module via the Lie derivative which may
also be considered as a filtered right & x-module (wy, F') for the filtration #'
defined by Gr* «@0x = 0if k # dx. The category of filtered left & x-modules
and filtered right & y-modules are equivalent via the side changing functor
which associates with a filtered left &/ x-module (.7, F) the filtered right
Z x-module

(b///éa F)T = (V//Z7F) ®/"X (COX7F)

The underlying right & x-module is . #" = .7 ®., wx and the filtration is
given by Fj, /" = Fyay. # @ wx. Let (0§, F) be the inverse of wy
with the filtration F' defined by Grf, ' = 0ifk # dy, then given a filtered
right Z x-module (.7, F')

(AP = @5 F) @, (A,F)

is the associated filtered left < y-module. We have F,. 7=
a)‘;?_l Koy Fk,dxt///é.

2.1.4 — We now add the weight filtration to the picture. Let MF(Zx; W) be
the following category. An object is a triple (.#,F, W) where (.7 ,F) is a
filtered right & x-module and W is a finite increasing filtration of .Z by
sub-Z y-modules. A morphism is simply a morphism of filtered &x-
modules which is compatible with the additional filtration W. The side
changing filtered Zy-module (wx,F’) is then considered as an object
(wx, F,W) in MF(Zx; W) where W is the trivial filtration defined by
GrnWwX =0 if n # dx. The side changing equivalences 2.1.3 extend im-
mediately to equivalences between the categories of W-filtered filtered left
YD x-modules and W-filtered filtered right & x-modules. The extension is
given by

('/%7F7W)T = (%,F,W) ®/’X ((DX,F,W)
for a W-filtered filtered left &/ x-module (., F,W). In other words the
underlying filtered right & x-module is (.7, F)" and the filtration W sat-

isfies Wy, 7" = (Wy,_q,.72)". Similarly if (.7, F, W) is a W-filtered filtered
right & x-module :

2.14-1) (A F W =l FW)®,, (#,FW)
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is the associated W-filtered filtered left &-module. In (2.1.4 —1) the fil-
tration W on w§ * is defined by GrKVnwgg‘l = 0 if n # dy, the behaviour of
the weight filtration is thus given by W,.#* = Wiesay -7 ).

2.1.5 — Let .7 be aleft & x-module and DR(.#) be its de Rham complex. If
(#,F) is a filtered left & x-module, then DR(_#) inherits a filtration
defined for n >0 and k € 7/ by

2.15-1) FDR(A)" = Qb @ Fron 7V

and the resulting filtered complex DR(.Z,F) is a complex of filtered
differential operators of order <1. One sets PDR(.#) := DR(.#)[dx].
Recall that the shift functor does not affect the Hodge filtration i.e
FPDR(.%)" = Fy,DR(.2)"" %,

2.1.6 — Let .7 be aright & x-module and Sp(.#) be its Spencer complex.
If (7, F) is a filtered right & x-module, then Sp(.#) inherits a filtration
defined for n <0 and k € Z by

—n
2.1.6-1) FySp(/2)" = Fryntl @0y |\ Ox

and the resulting filtered complex Sp(.7, F) is a complex of filtered dif-
ferential operators of order <1.

2.1.7 — If . is a left Z/-module then there is a functorial isomorphism
Wy Sp(#") = PDR(A);

if (., F) is afiltered left Z7-module then this morphism is compatible with
the filtrations defined in (2.1.5-1), (2.1.6 —1) and is therefore an iso-
morphism of complexes of filtered differential operators of order <1.

2.1.8 — Let (#,F,W) be an object in MF(Zx;W). We denote by
Sp(.7,W) the Spencer complex of .7 endowed with the increasing
filtration induced by W, we have then

G Sp(.2, W) = Sp(Gr™. ).

Assume that X is a smooth algebraic variety and (Z,F) € MF(Zy),
(" F,W) e MF(Zx; W), then one defines

SPan( 7. F) = Sp( /2" Sponlt " FLW) = Sp(1, W)™,

which are (filtered) complexes of sheaves of C-vector spaces on X*".
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2.2 — Mixed Q-Hodge modules

2.2.1 — Let X be a smooth algebraic variety of pure dimension dyx and
R =0Q,C. We denote by Db(X , R) the bounded derived category of the
abelian category of sheaves of R-vector spaces on X?"., Inside DX ,R) one
may consider the strictly full triangulated subcategory DE (X, R) formed by
the complexes K such that H{(K) is algebraically constructible for every
1 € 7. Let us denote by Perv(X, R) the heart of the perverse ¢-structure on
DE (X, R) and by PH' the perverse cohomology functors. By the Riemann-
Hilbert correspondence, the de Rham and Spencer functors

D}, (2x)"

%n

D2 (X,C)

b SPan
Drh (‘@X)

are triangulated equivalences which are exact for the standard ¢-structure
on the left hand-sides and the perverse t-structure on the right hand-side.
In particular, it induces an exact equivalence of abelian categories between
Mod,(Z x) and Perv(X, C).

2.2.2 — REMARK. For convenience we will consider the category
Perv(X,R)" obtained by a shift in the definition of perversity: namely K
lies in Perv(X ,R)L if and only if K[dx] belongs to Perv(X, R). This is for
example the definition of perversity used in [16, 3.3-3]. With this convention
a R-local system V on X lies in Perv (X, R)L, andif. 7Zisin Dlﬁh(@ X)L thenits
de Rham and holomorphic solution complexes

DR (2) RIZ0M g (22", 7 xam)

lie also in Perv (X, Ok,

2.2.3 — Let us recall the definition of the basic category at the bottom
of the notion of algebraic Q-Hodge modules introduced by M. Saito (see
[17, 5.1.1]). Let MF,,(Zx) be the category of filtered right & x-module
(.72, F) which satisfy the following two conditions:
e (7, F)is a coherent filtered & x-module, in other words F' is a good
filtration on .7;
e ./ is a regular holonomic & x-module.

Since for an holonomic right & x-module . 7, the Spencer complex Sp,,,(.7)
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is a perverse sheaf, we have a functor

MF (7 x) % Modu(Zx) —2 Perv (X, C)

and the following definition is meaningful:

2.2.4 — DEFINITION. The category MF,,(Zx, Q) is the fibre 2-product
of the categories MF,,(Z x) and Perv(X, Q) over Perv(X, C):

MFw(Zx, Q) := MF (2 x) Xperyx.0) Perv(X, Q).

An object in MF,,,(Zx) is called a regular holonomic filtered &/ x-module
with a Q-structure.

Let n € 7 be an integer. Via induction on dimension of the support, the
category MH(X, Q, n) of polarizable Hodge modules of weight 7 is defined
as a strictly full subcategory of MF,,(Zx, Q). The precise definition of a
Hodge module of weight » is given in [17, 5.1.6] while the polarizability
condition is defined in [17, 5.2.10].

2.2.5 — REMARK. Note that we do require pure Hodge modules to be
polarizable, this is essential in many respects, the stability of mixed Hodge
complexes by proper direct images being only one example where this
condition is needed.

By definition an object .#Z in MF(Zx,Q) is a 5-uplet
(KQ,K@,K(/,ocf,oc%) where K. := (.#,F) is an object in MF(Zx),
for R =0, C, Kp is an object in Perv(X, R) and oc%, ocj// are isomorphisms

A A

Ko®oC 2L Ko  Spu(2) 22 K.

A morphism w : #Z — #'is a triple (ug, uc, %) of morphisms that com-
mute with the comparison morphisms.

2.2.6 — REMARK. The category MF,,(Zx, Q) is also equivalent to the
category with objects triples .Z = (K,Ko,o ) where Ko := (7, F)
belongs to MF,,(Zx), Ky is an object in Perv(X,Q) and o :
Ky ®0 C — Sp,,(#) is an isomorphism in Perv(X, C). The morphisms
are simply pairs (#¢, %) of morphisms such that

oy © (up ®0 C) = Span(u%) o0 y.

2.2.7 — Asin [17, 5.1.14] one defines MF,, W(Z x, Q) to be the category of
objects in MF,,(Z x, Q) endowed with a finite increasing filtration i.e.

MF,W(Zx, Q) := MFwW(Zx, Q; W) Xpervx,c:w) Perv(X, Q; W)
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where Perv(X, R; W) is the category of R-perverse sheaves with a finite
increasing filtration. By definition the abelian category MHW(X, Q) is the
strictly full subcategory of MF,,W(Z/, Q) formed by the objects .Z such
that

Gr) .2 € MH(X, Q,n);

and by its inductive construction the abelian category of algebraic mixed
Hodge modules MHM(X, Q) is a strictly full subcategory of MHW(X, Q).
Note that the mixed Hodge modules are required to be polarizable.

2.2.8 — When using left Zx-modules instead of right &/ x-modules, it will
be convenient to consider the category

MF (7 x, Q)" i= MF (730" Xpe .y Perv(X, )"

where the de Rham complex DR, of a left & x-module is used instead of
the Spencer complex. One defines similarly the category MF,, W(Z x, Q).
The side changing functors 2.1.3 —, 2.1.4 — and the isomorphisms 2.1.7 —
provide equivalences

(=) =)
MF(&x, Q" = MF(Zx, Q) MFaW(Zx, Q)" = MFW(Zx, Q)
=) )

such that for .#Z € MF,W(Z, Q)L
Gry (L") = (Gr)l_g,-22)".

We therefore define MH(X, Q, n)" to be the subcategory of MF,,(Zx, Q)
formed by the objects .# such that .Z" lies in MH(X, Q,n + dx) and the
category of left mixed Hodge modules MHM(X, Q)" as the subcategory of
MF,,W(Z x, Q)" formed by the .# such that .#" lies in MHM(X, Q).

2.3 — Variations and mixed Hodge modules

2.3.1 — Let X be a smooth algebraic variety and { a variation of mixed
Hodge structures on X. As part of the definition, we have the following data:

e apair (Vo, Wo) where ¥, is a Q-local system (3) on X and W, is a

finite increasing filtration of V', by local subsystems;

() If A is a field a A-local system on a topological space is a locally constant
sheaf of finite dimensional A-vector spaces.
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e a triple (77, V),.7,W) where (7, V) is a flat connexion on X with
regular singularities at infinity, .7 is a finite decreasing filtration of
7" by locally free @x-module of finite rank which satisfies Griffiths’
tranversality:

VT O, 7

and W is a finite increasing filtration of 7" by locally free ©'x-modules
of finite rank which are stable under V:

VW, 7 - QYo W, 7

e an isomorphism of filtered C-local systems

(Vo, Wo) @0 C — (Ker V¥, W)

where the flat sections Ker V2" of the analytic connexion associated
with V are endowed with the filtration induced by W.

All variations considered in this work are assumed to be polarizable (i.e. for
a mixed variation V, all the pure variations ervy are polarizable). The
condition of admissibility was defined in [21, 10], the polarizability being
part of it. The connexion V defines on 7" a structure of left & y-module and
setting F,7" :=.7 7", Griffiths’ transversality condition ensures that

(77, F) is afiltered left & x-module.

2.3.2 — REMARK. For any variation ¥ the ”x-modules Gr. Gr! 7 are
locally free of finite rank and since 7 is an integrable connexion
Char(7") = T X.

2.3.3 — As shown by M. Saito (see [19, 3.27] and the remark after), the
category VMHS(X, Q),, of admissible variations of (-mixed Hodge
structures is equivalent to the category of smooth mixed Hodge modules,
more precisely the equivalence is given by

VMHS(X, Q)ad - MHM(X, @)sm

YV - \&,f]//

where V7 := (7¥)" is the mixed Hodge module obtained by the side
changing functor 2.1.4 from the left mixed Hodge module

7/2 — ((\vQ7 VVQ)7 (]/7 F’7 W), O{.?/i)
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where o~ is the filtered isomorphism in the derived category given by the
filtered quasi-isomorphism

oy s (Vo, W) @0 C — Ker (V™ W) < DRun(77, W),

In particular if V is a pure variation of weight n then 7V lies in
MHX, Q,n)" or equivalently V- belongs to MH(X, Q, n + dy).

3. Noncharacteristic mixed Hodge modules
3.1 — Filtered &/-modules and noncharacteristic inverse image

3.1.1 - Let f: X — Y be either a morphism of smooth complex algebraic
varieties or a morphism of complex analytic manifolds. Let us say that a
“y-module # is @x-tor independent if

B.1.1-1) Tor{ N o) =0 Vi>0.

3.1.2 — DEFINITION. A coherent filtered right &/y-module (.7, F') is said
to be noncharacteristic with respect to f if

e ./ is noncharacteristic with respect to f;
e for any k€7 and 7> 0 the “y-module Gr{ M is @x-tor in-
dependent i.e.

forlffl”(fflGr,f W, 0%) = 0.

3.1.3 — REMARK. This is the condition introduced in [17, 3.5.1]. We may
give a similar definition for filtered left #/y-modules. Being non character-
istic in the sense of 3.1.2 — is then a property stable under the side changing
functors 2.1.3 — i.e. a filtered right &/y-module (.7, F') is noncharacteristic
if and only if its associated filtered left & y-module (.7, F) is.

3.14 — Let f : X — Y Dbe either a morphism of smooth complex algebraic
varieties or a morphism of complex analytic manifolds. Let d = dx — dy be
the relative dimension. As usual, we denote by (Zx_.y,F) and (Zy._ x,F)
the filtered transfer modules (see e.g. [13, 5.1] for the filtered versions). If
(., F) is afiltered left &/ y-module, one sets

[ F) = (D x oy, F) @10, f (A, F).

The underlying @ x-module is @y ®¢-1,, f ~1_7 and the filtration is simply
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given by
Fif) 7 :=1Im(COx ®f4ﬁyf‘1Fk M= [E ).

The definition for filtered right &7 y-modules goes by the side changing
functors, namely if (.7, F') be filtered right & y-module, then one sets (see
[17, 3.5.1])

FAAF) o= UML) @y (Pyx, ).

3.1.5 - If (#,F,W)is a W-filtered filtered left-Z x-module, one sets
[ F W) o= (D x_y,F) @10, [ M FW).
The filtration W is simply given by
Wify 2) = m[ [ Wy, 2) — f 7).

The definition for right & y-modules goes by the side changing functors
214 —.

3.2 — Behaviour of weights in the noncharacteristic case

3.2.1 — Let X be a smooth algebraic variety. The characteristic variety
Char (_#) of a mixed Hodge module .7 on X is the characteristic variety of
the underlying right 7-module. It is a closed subvariety in 7*X. Though it
is an abuse of notation, we will still denote by Char(.#) the associated
closed subset in 7% X?",

3.2.2 — LEMMA. Let . a mixed Hodge module on X. Then in T*X?*"
3.22-1) Char(.Z) = SS(rat(.£))
where SS denotes the microsupport defined by M. Kashiwara and P.
Schapira [12, 5.1.2].

Proor. Let .7 be the left Zx-module associated with the under-
lying right 7-module of .Z and D(.#) be its dual. Since . Z is holonomic
by [12, 11.3.3] and e.g. [6, 2.6.12]:

Char(.#) = Char(.7) = Char(D.#) = SS(R 7 0m ., (D.22)*", (7 xw))
= SS(R:}KOM{/X‘,D (D!//zan7 ,/Zann))
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and the last term is isomorphic to rat(.Z)[ — dx] in DE(X ,Q) (see e.g.
[6, 4.2.1]). Since the microsupport does not change under shift [12, 5.1.3]
we have the equality (3.2.2 —1) as desired. O

3.2.3 — We say that a mixed Hodge module .7Z € MHM(Y, Q) is nonchar-
acteristic with respect to amorphism f : X — Y if and only if for any integer
n € 7 the underlying filtered right & y-module of GrZLV 7/ s noncharacter-
istic with respect to f in the sense of 3.1.2.

3.2.4 — PROPOSITION. Letf : X — Y be a morphism of smooth algebraic
complex varieties and .22 € MHM(Y, Q). Assume that .7 is noncharacter-
istic with respect to f. Then we have an isomorphism

T~ (U )~ d)
n MHM(X, Q).

Proor. Let .Z; and .#, be two objects in Db(MHM(Y, Q)). The six
operations formalism provides a natural morphism in Db(MHM(X ,Q))

Pl @F My — [y @ M),
In particular taking .7, = Qy and ., = ./ we get a morphism
324 -1) flofef s —fu
which gives the classical morphism (e.g. [12, 3.1.11])
(324 -2) firat(Qy) @ f*rat(.#) — f'rat(#)

once ratis applied. By 3.2.2 — rat(_#) is noncharacteristic with respect tof in
the sense of [12, 5.4.12] and therefore [12, 5.4.13] ensures that (3.2.4 —2)
is an isomorphism. Since rat is a conservative functor this implies that
(3.2.4 —1) is also an isomorphism. Since Y are smooth, we have an iso-
morphism 7}, Q7 ~ Q7(dy)[2dy] and similarly for X, therefore f'Qy is
isomorphic to Qf{ (d)[2d]. Hence (3.2.4 —1) provides an isomorphism

fra@d)ed) ~f'.z

and it is enough to apply the cohomological functor H? to get the
proposition. O

3.2.5 — COROLLARY. Under the assumption of 3.2.4 —, if /4 is a pure
Hodge module of weight n then J7°f* % is pure Hodge module of
weight n + d.
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Proor. Indeed if .# any mixed Hodge module in MHM(Y, Q) then we
know [19, 2.26] that

Grfv(.%’jf*ﬂ) =0fori—j>mn (resp. Grgv(.%’jf!ﬂ) =0fori—j<mn)

if Grfvﬁ =0 for ¢ > n (resp. ¢ < n). Hence the purity assumption im-
plies ) on the one hand that

GrV (7 f* 7)) =0 for i >n+d
and on the other hand that
Gr)' (7 ~Uf' ) (—d)) =0 for i n +d.
The corollary follows then from 3.2.4 —. O

3.3 — A remark on Cauchy-Kovalevskaya-Kashiwara theorem

33.1 — Let f:X — Y be a morphism of complex manifolds. We let
d : dy — dy be the relative dimension. Let ./,./" in D2, (Zy). Consider
the canonical morphism in Db(X ,©)

can(f, 7,.1°) . f TR Home, (M, N7) — RAHome (LfE LN

(see e.g. [6, p. 106] for its definition), which provides in particular the fol-
lowing morphisms

(3.3.1-1) can(f,.%,Cy) : f 'R Home, (A, Oy) — RIomo  (Lfs #,0%)
(3.3.1-2) can(f, Oy, ) : f R FHome ,(Oy, /) — RIFomy (Ox, LfE 7).
Assume that . 7 is noncharacteristic with respect to f. Then (3.3.1 —1) is an
isomorphism. This result is the generalization of the Cauchy-Kovalevskaya
theorem proven by M. Kashiwara in [11] (see also e.g. [6, Theorem 4.3.2]).
Using duality, it follows that (3.3.1 —2) is also an isomorphism. However this

is a morphism in the derived category. In the sequel, see Section 6, we

rather need a genuine morphism of complexes that represents it. We pro-
vide now its definition.

3.3.2 — For this let us remark that, given a left & y-module .7, there exists
a functorial morphism of complexes of Cy-modules

(332-1) f°, : fIDR(#Z) — DR(f: %)

(®) The Tate twist is defined in [19, 2.17.7].
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which for .7 = 'y coincides with the canonical morphism f~1Q; — Q.
The n-th component of (3.3.2 —1) is the morphism of sheaves

" 1Dy @ [ — Dy @
defined for a local section w € Qy and a local section m € .7 by
) wem) =Ffoodem).

3.3.3 — REMARK. This formula defines a morphism of complexes. Indeed
by the Leibniz formula it is enough to consider the case where wis a function
in @y and we may further assume w = 1. We may further assume that we
have a coordinate system (y1,...,¥s) on Y and a coordinate system
(x1,...,2,) on X. We have then for a local section m € .7

o,V em) =f, (Z dy; ® &,jm) = Z frdy; @ 1 ® 9,m)

j=1 j=1
S
= Z Z Ou, fida; ® (1® 9,,m) = Z dr; ® (Z O f;® 3.1;_7-”’0)
J=1 i= j=1
= Z dav; ® (Z O f; ® az,jm> = dei ® 9, (1 ©m)
i=1 j=1 i=1

= Vi (£, @ m).

3.3.4 — Recall that given a left &/ x-module .7, one has a canonical iso-
morphism of complexes DR(.Z) = Zom ,(Sp(Zx), 7). Since Sp(Zx) is a
resolution of @y by locally free & x-module, this isomorphism provides a
natural isomorphism

co(.72) : DR(#) — RFZome (Ox, 7)
in D"(X, O).
3.3.56 — LEMMA. Let .7 be a coherent left & y-module. If .7 is non-

characteristic with respect to f, then the morphism (3.3.2 —1) represents the
morphism @)

can(f, Oy, %) : f IR Homao Oy, #) — RAHomay (Ox, LfE 7).

In particular (3.3.2 —1) is a quasi-isomorphism.

(" Reeall that if . 7 is noncharacteristic coherent & y-module, then L, f2 7 s
concentrated in degree 0 and thus L.f} .7 = f} 7.
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3.3.6 — REMARK. The filtered inverse image of a differential complex of
order <1 is given by the tensor product

Foi( 2, F) o= @y, F) &g, f (A, F).
In particular the filtration on the inverse image is given by

Fi(foige-7)" = Z Im(Q @p10y [ Fiip 22
ptqg=n

and the canonical morphism of DG-algebras f 10} — Qy induces therefore
a morphism
Ioy i f AP — S 2.

Another way to interpret the morphism (3.3.2 —1) is to remark that one has
a canonical isomorphism of complexes

f5irDR(Z) := Qx @10 f'DR(.#) = DR(f} 7).

With this description of the de Rham complex of the inverse image,
(3.3.2 —1) is then nothing but the morphism induced by the usual morphism
f719'17 — Q.

3.3.7 — REMARK. The morphism (3.3.2 —1) is functorial in . 7, but it is
also compatible with the composition of morphisms. More precisely, if

wixly
are morphisms of smooth complex algebraic varieties, then
(f9), = g};. o9\
for any left Zy-module . 7.

If .7 is aright & y-module, using the isomorphism given in 2.1.7 —, we
get a morphism of complexes of Cy-modules

(3.3.7-1) £, f Spy (. /)[d] — Sp(fi. %)

which is functorial in . 7. Moreover 3.3.7 — translates into the following
equality

33.7-2) (9, = 9}; wolg i le
for a sequence of morphisms W 4 x ER Y of smooth algebraic varieties. In

(3.3.7—2) the integer e is the relative dimension e = dy — dx of the
morphism g.
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3.4 — Noncharacteristic inverse image

34.1 - Let #=(#,F),Ku,0_) be an object in MF,,(Zy, Q) and
f:X — Y a morphism of smooth complex algebraic varieties of relative
dimension d. Assume that .Z is noncharacteristic with respect to f.

3.4.2 — REMARK. By 3.2.2 — the perverse sheaf K, is noncharacteristic
with respect to f, in the sense of Kashiwara-Schapira. Hence

fKold] = f'Kol - d]

is a perverse sheaf on X*". Moreover f; (.7, F) is a regular holonomic fil-
tered right & x-module i.e. belongs to MF,,(Zx).

The morphism (3.3.7 —1) defined at the level of the complexes provides
an isomorphism %z in Perv(X, C):

(3.3.7 -1)
—

S TSP (A)[d] SPan(F54).
Tf_laﬁ[d]
(f " Kqld]) ®¢ C == f~"'(Kq ®q C)[d]

R /A

Therefore, we have a well defined object
[otl = (f7 (4, F).f Kold) g )

in MF,(Zx, Q). The construction is functorial for noncharacteristic ob-
jects in MF(Zy, Q).

3.4.3 — ProprOSITION. Let .7 € MH(Y,Q,n) be a Hodge module of
weight n and f:X —Y a morphism of smooth complex algebraic
varieties. Assume that 7 s noncharacteristic for f. Then, its nonchar-
acteristic inverse tmage ;. /% is a Hodge module on X of weight n + d.

3.4.4 — Let us start now the recollections on vanishing cycles which are
necessary to write down the proof of 3.4.3 —. In order to rely more easily
on [15] we will use the convention in loc.cit., in particular we will use left
Z-modules and left perverse sheaves as in 2.2.2—. Let X be a smooth
algebraic complex variety and H be a smooth hypersurface in X defined
by a global equation g € I'(X, ). Denote by i:H<— X the closed
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immersion. Consider the following diagram

—~—— X

(Xan) ——C*

|

p (Xan)x Cx

|,

Hal’l i Xal’l 9 C
where C* denote the universal cover of the punctured complex plane
C*:=C\{0}. Let R=0Q,C and K € D?(X,R), one has a distinguished
triangle in Ds(H, R)

K — W K) — dy(K) L

where ¥, (K) := i ' Rp.p~1K is the nearby cycles complex and ®,(K) is the
vanishing cycles complex. If K is a left perverse sheaf on X**, then both
¥,(K) and @,(K) are left perverse sheaves on H*".

3.4.5 — Let .7 be a left algebraic & x-module. Assume that . 7 is regular
holonomic. Then by [15, 4.4-2] .7 is specializable along H and we denote by
V the canonical V-filtration of . 7 defined by the relative order with respect
to H. The nearby and vanishing cycles &7 y-modules of . 7 are defined as

V()= P Gy (Dl

—1<a<0
)= P Gy (Dl
—1<a<0

They are regular holonomic &/ g-modules [15, 4.7-5] and one has an iso-
morphism (functorial in . 7) [15, 5.3-2] of left perverse sheaves on H*®

(3.4.5-1) can; , : Wy (DRxw (72*)) — DRy (¥ y(2)™)

and a similar isomorphism can? , for the vanishing cycles. If (.7, F) is a
regular holonomic filtered left & x-module which is quasi-unipotent and
regular along H in the sense of [17, 3.2.1], then the filtered nearby and
vanishing cycles functors are endowed with the filtration induced (°) by F
and belong to MF,,(Z ).

(®) For filtered right & x-module, the vanishing cycles are defined similarly
in [17, 5.1.3.3] but endowed by the filtration induced by #{1}. The definition for
filtered left &7-modules considered here is compatible with M. Saito’s definition
via the side-changing functors 2.1.3 —.
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34.6 — Let #Z € MFw(Zx, Q)" such that the underlying filtered left & x-
module is quasi-unipotent and regular along H, then the isomorphism
(3.4.5 —1) provide an object in MF,.,(Z g, Q¥

V(L) = Wy A F), Wy (K), d" D) oD = W o (can, )"

and one defines similarly @,(_#). By [15, 5.3-2] we have a commutative
diagram in the category Perv(H=, ()"

can(i,0x , M)
0 0
i YDR xon (M) s DR pran (i* A0 DR pan (L. %)
DRHan (Sp;t‘_ﬂ)

can

Wy (DRxon (/%)) 2% DR fran (U, () ™)

&

&, (DR xon (™)) —2E DR gran (B g (A )™)

0 0

such that the vertical sequences are short exact sequences. The morphisms
1" — Lag. 72 and sp, ,, are given (functorially in .77) in the derived
category by the morphisms of complexes [15, 4.4-4,4.6-4]

U, (M) 0—— P Gl (A)g—0
—1<a<0
Tspg,/ﬂ T
. v - v
iAo 0 Grl\ Mg —— Grg Mg —0
l j lld
Li% A : 0—>Gry M|y —>—>GtY . M|u 0

where the middle term Gr”,. 7|, lies in degree 0. If (.7, F) is non-
characteristic with respect to 7, then (.7, F') is quasi-unipotent and regular
along H [17, 3.5.6] and we have Gr! (.7, F) = 0 as soon as o ¢ {—1,-2,...}.
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This implies that @,.7 = 0 and that N = 0 on ¥ (.#). We have therefore
an isomorphism MF . (Z g, Q)

(34.6-1) i M =W ()

and the nilpotent monodromy operator N on ¥,(_#) vanishes. Using the
side changing functors we get a similar result for right 7-modules.

3.4.7 — Assume now that _Z is a pure Hodge module of weight n on X (we
use now the convention in [17] and thus in particular right &-modules).
Let _
g: XL X x Al oAl

be the factorization of ¢ by its graph. By [17, 3.2.4,3.2.5] we have a canonical
isomorphism
(3.47-1) W () = W (M)
where y (/) := V;(ig. /) is the nearby cycles functor as defined by M.
Saito [17, 5.1.3.3]. Since N is trivial on t//g(ﬁ ), the associated monodromy
filtration M is trivial and therefore the inductive construction of the cate-
gory of pure Hodge modules [17, 5.1.6.2] implies that

_ , ) ifi=n-1

Gr?/[{"’ I}Wg(ﬁ) — Gr?{n+1t//g(%) _ {Ulg(_/) mHr1=mn
0 otherwise

is a pure Hodge module of weight ¢ on X. Then, it follows from (3.4.7 —1),
(3.4.6 —1) and [17, 5.1.9] that 7. .Z is a pure Hodge module of weight n — 1
on H as desired.

ProOF oF 3.4.3 —. Let

X% xxy

N

be the factorization of f via its graph. By [17, 3.5.4], it is enough to check
the result for 7 and ir. For n the result is a consequence of [19, 3.21] (see
also [19, 3.28]) since one has an isomorphism

7o M = OF[Ax]R .4

and Q% [dx] is a pure Hodge module of weight dx. Let us now prove the
result for any closed immersion ¢ : X < Y by induction on the codimension
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of X in Y. Since locally on X we may factor 2 as a composition of immersions
of codimension one between smooth closed subschemes, by [17, 3.5.4] and
the fact that the conditions which define Hodge modules are of local nature
[17,5.1.7], we are reduced to the case of a smooth closed hypersurface which
was considered above. |

348 — Let #Z=(7,F,W),(Ku, W), ) be an object in MF,,W(Zy,Q)
and f : X — Y a morphism of smooth complex algebraic varieties of relative
dimension d. Assume that ./ is noncharacteristic with respect to f. The
morphism (3.3.7—1) defined at the level of the complexes provides an
isomorphism LT in Perv(X, C):

D (A, WY S (5 (o, W)
Tf_la/t{d}
(f 1 (Ko, Wo){d}) ®q C === f~"(Kq ®q C){d}

where (K, W){d} := (K,W{d})I[d] and W{d}, := Wj_4. Therefore, we
have a well defined object

f(* /7% = (f/* (*—///éaF7 W)>f_1(KQ,a W(Q){d}7 O(f/* ﬁ)

in MF,,wW(Zx, Q). As before, the construction is functorial for non-
characteristic objects in MF,,W(Zy, Q). A proof similar to the one of
3.4.3 — yields the following:

3.4.9 — ProroSITION. Let .22 € MHM(Y, Q) be a mixed Hodge module
andf : X — Y amorphism of smooth complex algebraic varieties. Assume
that ./ 1is noncharacteristic for f. Then, its noncharacteristic inverse
unage ;.  is a mixed Hodge module on X.

3.4.10 — REMARK. If .Z is noncharacteristic then we have an iso-
morphism in the derived category Db(MHM(X , Q)

fr = 21d)

where f*_7 is the pullback functor constructed in [19, 4.4].
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4. Mixed Hodge Z-complexes
4.1 — Categories of diagrams

4.1.1 - If R is one of the symbols Q,C or & we let . Zr be an additive
category. We assume to be given on the homotopy category K°(7z) a
null system Np and one denotes by Op the associated multiplicative
system.

4.1.2 — We also assume to be given a full DG-subcategory Cg of (. Zg). As
usual one denotes by

Cr=2"Cr Kp:=HCg

the associated category and the homotopy category, which are respectively
full subcategories of cP (#g)and KP (.Zr). We assume that the objects of Cp
enjoy the following stability conditions:

e ifa: A — A’is a morphism in Cb(,/yR) which belongs to Op, then A
belongs to Cg if and only if A’ belongs to Cg;

e if a: A — A’ is a morphism in Cp then its mapping cone is also an
object in Cg, in particular if A € Cg then A[1] € Cg.

These conditions ensure that Kp is a strictly full triangulated subcategory
of Kb(./ZR) and that Dg := KR[Q}?] is also strictly full triangulated sub-
category of Kb(&,%R)[Qél] We also assume given two DG-functors

®p : Cgp — C R=0,

such that ®r(Qr) C Or and ®r(Mc(a)) = Mc(Pg(a)) for a € [A,A’]. In
particular we have induced functors

@R : KR — K(f ¢H : DR — DL

which are triangulated.

4.1.3 — DEFINITION. A diagram of the form

oA Ac A
4.13-1) A= N
Ag A

2

consists then of the following data:
e for R = Q,C,Z an object Ap in Cg;
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e two morphism in C¢
o dp(Ap) — Ac  R=0,7
which belongs to Q.

4.1.4 — The complex of morphisms between two diagrams A and A’ is
defined by

ao € [Ag,ALT"
ac € [[A(:,A/C]]"
ay € [[Af/,A/(/]]n
ho € [dpAg), AT !
ho € [[CDQ/(Ay),Aiw]]%i1

[A,AT" =< a=(ao,ac,a0, ho,ho) :

where the differential is given by

5CLQ
%a oo
ac -
sl av | = 90y
A A
ho ac ooy —og o Polan) — dho
he

ac oo — o o d,(a,) — hy
We get a DG-category C. o and we denote by
Coo=2"Cop Koo =HCuo
the associated categories. A morphism ¢ = (aq, ac, o, ho, he) in Co o is
thus a 5-uplet such that up is a morphism of complexes and &,k are

graded morphisms of degree —1 whose differentials are equal to the defect
in commutativity of the squares

of of
Oo(Af) — AL = @y (Af)
‘PQ(“@)T ‘ICT T‘I’@(a@)-
o 4

4.1.5 — By the definition of the mapping cone, the forgetful functors



36 Florian Ivorra

K@)Q
VN
Ko K¢ Ko

are triangulated. Let No o be the set of diagrams A which have their
components A in Ng. Then N4 ¢ is a null system in the triangulated
category K o and the associated multiplicative system Q. ¢, consists of
the morphisms a : A — A" in K., (, such that ag belongs to Qg. The trian-
gulated category Do (, is defined as the localization of K., ¢, with respect to
the multiplicative system Q. o:

Do o =Ko o[Q1,].

4.2 — Pure Q-Hodge complexes

421 - Let R =Q,C, one denotes by C:(X,R)]O the DG-category of
complexes of sheaves of R-vector spaces K on X" such that
e K is bounded below;

e the cohomology groups H'(K) are algebraically constructible for all
1 € 7, and nonzero for finitely many 7’s.

4.2.2 — Recall that CEhF(,CZ‘ x, Q) is the category of diagrams of the shape
(see [9, 3.1.4] for details)

e Ke a
Kq (A, F)

where for B = Q, C, Kp is an object in C (X*", R)® while (. 7 ,F')is an object
in C]I?hF(iZ x). The comparison morphisms are quasi-isomorphisms:

02 do(Ko) =Ko ®0®C — Ko a2 : o (/) = Spu (. #) — K.

423 - The triangulated -category Dl‘th(fZ x,Q), obtained from
CEhF(,—@ x,Q) as in 4.1.5 —, has a natural t-structure [9, 3.2.2] and we
denote by PH' the associated cohomological functors. Given an integer
w € 7, the category D]}/(X ,Q,w)., of pure Hodge &/-complexes of weight
w1is defined as the strictly full subcategory of Dll?hF(% x, Q) formed by the
objects .7 that satisfy the following two conditions:

e (weight w condition) for every ¢ € 7, pﬂi(ﬁ) is a pure Q-Hodge
module of weight 7 + w, i.e. lies in MH(X, 7 + w);
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e (decomposability condition) there exists an isomorphism in
Db, F(Zx; Q)
A = PPH (- il.
€7,

4.3 — Mixed Q-Hodge complexes

4.3.1 — Given an increasing filtration W and an integer n € Z, recall that
W{n} is the filtration W{n}, = W;_,. For R = Q,C one denotes by
CH(X,R; W)’ the category of complexes of sheaves of R-vector spaces on
X*" endowed with a biregular increasing filtration W and satisfying some
boundedness conditions. Let Cj(X ,R;W)b be the full subcategory of it
formed by the complexes (K, W) such that

Grl'K € CJ(X,R).
We set C*(X; W)% := CI(X, R; W)°.
4.3.2 — Consider now the subcategory C5,F(Zx; W) of the category of
complexes Cb(MF(% x; W)) formed by the complexes such that ®)
GrlVK., e C5F(Zx)
for any n € Z. We set C*(X; W)E', = CEhF‘(IZX; w).

433 — Let R =Q,C, & and ug : (Kg, Wg) — (Lg, Wg) be a morphism in
the category C*(X; W)'I"g, the mixed cone of ug is defined by
W.Mc(ug) s = Wg Ly @ We, 1Kyt

with the usual differential of a mapping cone. In particular if (Lg, Wg) =0
we get the (mixed) shift functor defined by

4.33-1) (K, Wp){1} := (Kg[1], Wg{1}).

434 — Let CI]?hF(E// x, Q; W) be the category of diagrams of the shape

> (K¢, We) "
434-1) M = P T
(K@,W@) (K@aW@) = (%aFaW)

(®) For any n € 7, we denote by W, K. and GrZVKy the right & x-modules
W,,.7 and Gr)'. 7 endowed with the filtration induced by F.
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where (K, Wg) is an object in C*(X; W)'j?2 for R=0Q,C and (K,,W,) :=
(7, F,W) is an object in Cl?hF(@ x; W). The comparison morphisms
0 (Ko, Wo) @ C — (Ko, We) a2 s Spun( 4, W) — (K, Wee)

are filtered quasi-isomorphisms with respect to the weight filtration.

4.3.5 — The category of mixed Hodge complexes is built on a less stringent
homotopy relation that the one for general diagrams. A morphism % in
C]l?hF(!f!/I x,Q; W) is homotopic to zero iff there exists a 5-uplet v :=
o, ve, v, ko, ko) where

vg : (Kg,Wg) — (Kp, Wp{-1})
are morphism of degree —1 in C*(X; W)lj3 and
kg : Or(Kr, Wg) — (K, We{—-1})

is a morphism of degree —2 in C*(X; W)E\ such that

51}(“‘)
Vo
Ve 5?}(‘
ol Vo | = Ny =U.
H A n
ko veoay — oy o Pu(vg) — ko
k A A
o Veou, —d, © D, (vy) — ke

holds.

4.3.6 — Let us denote by KEhFW(EZX, Q) the category obtained from the
diagram category CEhF(;@ x, Q; W) by killing the morphisms homotopic to
zero in this sense. If one defines distinguished triangles in this category
using this mixed cone and the shift functor (4.3.3 —1), we get a triangulated
structure.

By construction we have a well defined functors

(4.3.6-1) Grl : K5, FW(Zx, Q) — D), F(Zx, Q).

The category K% (X, )., of mixed (Q-Hodge &7-complexes is the full sub-
category of KEhFW(@'X, Q) formed by the diagrams .Z such that

Gr)| ./ € Dy (X,0,n).,

for any integer n € Z.
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Let Mc(u) 5 be the mixed cone of a morphism u : .#Z — .#'. Then by
definition we have a decomposition as a direct sum of complexes

Grl (Mc(w) ) = GrY (2" & Gr)Y (.2)[1]

Since both direct summands are pure Hodge complexes of weight #, this
shows that the mixed cone of a morphism of mixed Hodge complexes is still
a mixed Hodge complex. A Betti quasi-isomorphism in K% (X, Q). is a
morphism u such that ug is a quasi-isomorphism. The set Q5 of Betti
quasi-isomorphisms forms a multiplicative system in K% (X, Q). and the
category of mixed Hodge &/-complexes is defined as the localization:

D% (X, Q). := K% (X, Q),[Q 1.

4.3.7 — Recall that the realization functor of [9, 5.3]
real : D"(MHM(X, Q) — D% (X, Q).,

is obtained via two functors (see [9, 5.3.1-2] for details)

le

CP(MHW(X,Q))

where Sk}/(X, Q). denotes the category of stupid mixed Q-Hodge &-
complexes as defined in [9, 5.3.1]

4.3.8 — It will be convenient in the sequel to consider also the triangulated
category D% (X , Q)f; of left mixed Hodge complexes obtained by a similar
construction using left &/-modules instead of right Z-modules and the
analytic de Rham functor DR, for glueing instead of the analytic Spencer
complex. The side changing functors induce an equivalence of triangulated
categories between Dg//(X ,Q), and Dk}/(X , Q){j,

4.3.9 — With an admissible variation of mixed Hodge structures V on X we
can associate a left mixed Hodge &/-complex

L, DRan (7, W)

439-1) V.= / \

(VvaQ) (7/7F? W)
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1% ope
where o denotes the composition:

(Ve, We) 25 (kerVa, W) < DRuu(77, W),

The associated right mixed Hodge complex is

v SPan (Y, W)"

439-2) V¥.= (’%’ w

(VQ’W@){dX} (V, F, W)T

v

where one uses the isomorphism of filtered complexes
Span(y/'a W)T = DRan(Q]/'y W){dX}

to define o%. The diagram (4.3.9 —2) is a mixed Hodge &/-complex since for
alln € 7\ {0}

pﬂZ(GrZLVX/\/) -0

and pﬂo(Gr,vZV V) is the pure Hodge module of weight 7 associated with
the pure variation Gr,VZV_de. Therefore, the two conditions in 4.2.2 — are
satisfied.

4.3.10 — For technical reasons, we will have to consider the category
Dl}/(X , )7, of mixed O-Hodge &/-complexes of length »>1. Let us fix
now our convention. If >0 we denote by Ex, the functor

Ex:=Ex: D%(X,0Q), — DX, Q).

as defined in [9, 4.2.2]. Similarly, for »>1, one denotes by Co the functor
Co == Co]_; : DY (X, Q), — DR (X, )"

as defined in [9, 4.2.2].

5. Proof of the main theorem

The proof of the main theorem uses an external product and a non-
characteristic pullback for mixed Q-Hodge complexes. As the construction
of these operations and the verification of their properties are not difficult
but nonetheless quite technical, we will postpone the details until the next
section.
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Let X and Y be two smooth complex algebraic varieties and .Z, ./~
be mixed Q-Hodge complexes on X and Y. We denote by .Z X ./ the
external product of .#Z and ./~ which is a mixed Q-Hodge complex on
X xY (see 6.5.9). If ./~ is noncharacteristic with respect to a
morphism f:X — Y, then we denote by f} .# the pullback of ./~
defined in 6.3 —.

5.1 — Module structure over a tensor category

5.1.1 - Let (C,®, 1) be a monoidal category and M a category. A module
structure on M is the data of triple (¥ , «, 1) where

CxM—=M; (2, 2)—2® . %
is a bifunctor,
wr iy YO M) = (R Y)® N
is an isomorphism functorialin 2", %/ € C, #Z e Mand p_,, : 1 ® # — ./

is an isomorphism functorial in .7 € M. These data are assumed to satisfy
the following coherence conditions:

e (pentagonal identity) the pentagon

oW RL)® M)
XWX M)) (2@ F L)) e M
Dcsr,fy,y@.ﬂl lajg},z@//{

(Z@¥)® (2L ® M) (ZX)Z)® M

XXQWY %, M

is commutative where o ;- > is the associativity constraint in C.
e the triangles

le(Zed) >0 2)e.a Zeoled) (X el)e.d

A M > @M
M l%@a M l”

2 @M @M

are commutative where / ;- and p ,- are the unit isomorphisms in C.
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5.1.2 — A morphism of modules (M,®) — (N,®) is a pair (F,Y) where
F : M — N is a functor and

Yo n: 2 ®FA)—FL® Z)
is an isomorphism functorial in.2" € C and . € M such that
(512 -1)
oW oF) Ly o F @ o ) 2L @ (W e )
lf"%‘ﬁyﬂm

(X @0%)®F(A)

lF(a%,@,ﬂ)
F(Z @%)® #)

YToow, u

(5.12-2)
1@ F(#) 2% F1e.2)

N lF(,u‘%)
'F(A)
F(A)

are commutative.

5.1.3 — Let (C, ®, 1) be amonoidal category. Given an object.%"in C, a dual
is triple (¢, ev, coev) where 7/ is an object in C and

ev: 4y —1 coev: |l — /@2

are morphisms in C such that the compositions

(5.1.3 —1)

7" ren 192 7
raa| o]
5&”@(@@%) L2V X

(5.1.3 -2)
@)Y =W (X DY)
CO@VWT e l@/@
v 1o Y @1 v

Ao
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are the identity. Let now (M, %)) be a module over (C,®, 1) and . Z,.J " be
objects in M. If (%7, ev, coev) is a dual of .2" in C then the morphism

Y, Homm(2'® 7Z,.17) — Homm(Z, 7/ ")
which maps ¢ : 2°®) .# — ./ to the composition

O YR LY® M //#y@([@%)@y/@w

is an isomorphism. Indeed since (5.1.3 —1) and (5.1.3 —2) are the identity,
the morphism

Oy 2,0 - Homu(#, 7® .17 — Homp(2'® 24,.17)

2, @7 L7,

which maps y : .7 — /% ./ to the composition

FACL" /y/ . ev®.IT

2® .25 2@y® ) L wen®s 2 ae. L

is inverse to y ,- , ;-

5.1.4 — REMARK. Let (M, ® ) and (N, ® ) be two modules over (C, ®, 1).
If (F,7): (M,®) — (N, ® ) is a morphism of modules, then it follows from
the functoriality of the maps Y, , and basic coherence diagrams
(5.1.2-1), (5.1.2 -2) that

V&, N

Homm (2 @ A, .N) Homm (A, % ® N)

I I

Homy(F(2 @ #),F(N)) Homn (F(#Z),F(# ® A))

l—oT.‘x,/ﬂ Tﬂy,wo—T

Homn (2 ® F(#),F(N)) — 228D Homg(F(4), 7 ® F(AN))

is a commutative diagram.

5.2 — Tensor product with variations

5.2.1 — Let X be a smooth complex algebraic variety and V an admissible
variation of mixed Hodge structures on X. By 2.3.2 — the &, x-module
7" .7 is noncharacteristic with respect to 4y. Moreover for any filtered
right Z-module (.7, F', W) endowed with an increasing filtration W by & x-
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submodules, we have

arferf w2 = @ (Gfen)7)m (el ~),
Ny +ne=n
ky ko =k

and thus 2.3.2 — implies that

Tori(GryGr) (7' R.Z),0x) =0 Vi>0.
522 — Let .# € D%(X, Q). a mixed Hodge complex. Then V"' K 7 is
noncharacteristic with respect to the diagonal immersion Ay : X — X x X

in the sense 0f 6.1.4 —. Indeed since X is an exact bifunctor for the perverse
t-structure on DEhF(!% x,Q), it follows that one has an isomorphism

PH'[Gr)f (v ) .0)] = PH

P GrvMH= (Grlﬁ)]
N1+n2=n

P PH |Gy RG]

Nn1+ng=mn
= @ Grnle’” XIPH' [Grnwzﬁ}
n1+n2="n

and 5.2.1 — implies that V' ) _# is noncharacteristic with respect to the
diagonal immersion Ay. Therefore we may define

V@ M = Ux), (V" ®.A)

which is a mixed Hodge complex on X. This construction is functorial both in
7 and V and we thus get a bifunctor

(22-1) @ : VMHS(X, ),y x D%(X, )., — D% (X, Q).

5.2.3 — PROPOSITION. The bifunctor (5.2.2 —1) endows Dk}/;(X , Q) with
a module structure over the tensor category VMHS (X, QQ),4.

ProoF. Let us use the following notation:

Q=X X, X

X x (X xX) (X xX)x X X xX

/L J\ ﬁxldl \
X Spec(C) x X X2 X

Ap:=(IdxA)oA Ag:=(AxId)oA
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If Win VMHS(X, Q),4 is another variation, the associativity isomorphism
ay .« is defined as the composition:

A Id><A

Ve (We.4) 228 A (VJ“” X (W x//z)) L2l Ay ((y’f‘ W) &4)

Vo w) .2 LEYRORY (v 8 W)*) 8 .0) <22UA5 (VR W)Y R L) .

The unit isomorphism is defined as the composition:

A" (o(m, V)" KId)
%

—1
('xx,ﬂxldl
(.—1

ANpr ol —" > .

Using the results proved in 6.2 —, 6.3 — and 6.4 —, it is easy to check that
these isomorphisms satisfy the relations listed in 5.1.1 —. |

5.2.4 - Let .Z amixed Hodge module on X. By 5.2.1 —, we know that the
mixed Hodge module VX .# is noncharacteristic with respect to Ay.
Hence using the pullback defined in 3.4.8 —, we may consider given a
complex of mixed Hodge modules .7 € Db(MHM(X ,Q)), the complex of
mixed Hodge modules:

U, (VTR = U (VR — ) (VR —
As for mixed Hodge complexes, one then defines:
V@ = Uy, (V7 R .2)
and get a bifunctor
(524-1) VMHS(X,Q),, x D’(MHM(X, Q)) — D’ (MHM(X, Q).

The following lemma is not difficult to check:

5.2.5 — LEMMA. The bifunctor (5.2.4 —1) endows Db(MHM(X , Q) with
a module structure over the monoidal category VMHS(X, Q), .

Remark that the same construction works if the category MHW(X, Q)
replaces MHM(X, Q).
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5.2.6 — REMARK. By 3.4.10 —, for a mixed Hodge module .Z in
MHM(X, Q), we have an isomorphism
V@ M~ AV R - dx] = (V" @ )]~ dx]

where ® denotes the tensor product in Db(MHM(X ,Q)) as defined in [19]
and [18].

5.3 — Comparison and further reduction

5.3.1 — PROPOSITION. The functor
realy : D'(MHM(X, ) — D% (X, Q).,

1s compatible with the VMHS (X, Q), 4-module structures defined in 5.2.4 —
and 5.2.2 —.

5.3.2 — Remark that V(¥ Q;{ = V7 via the isomorphism (6.1.6 —1) and
realy(V”) = V7. Hence, it follows from 5.3.1 — and 5.1.4— that, for every
A in D° (MHM(X, Q)), one has a commutative square

L V.ol .« :J
Home(MHM(X,Q)) (y%7¢) - Home(MHM(X,Q)) (Qf7yv ® ﬁ)
\Lrealx real x
Hompy (x.0)5 (y}f: realx ﬁ) Hompy (x q), (Q¥ . realx (V' ® 4))
k T{‘?../VO_T
V,0% real x ,
= Hompy (x ), (Q¥,VY ®realx.4)

and the rigidity of the tensor category VMHS(X,Q),; ensures by
5.1.3 — that the horizontal arrows are isomorphisms of O-vector spaces.
We therefore reduce the proof of 1.2.5— to the case /" =0Q% and
./ € D"(MHM(X, Q).

5.3.3 — The simplest way to prove 5.3.1 — is to check that the category
Sk},/(X , Q) of stupid mixed Hodge complexes has a VMHS(X, Q),,-module
structure which is comgatible with both the module structures defined on
Cb(MHM(X ,Q)) and D7 (X, Q). via the functor G and the functor C.

5.3.4 — Let us first construect this module structure. Let _.Z and .Z' be two
stupid mixed Hodge complexes respectively on X and Y. One defines an



Mixed Hodge complexes and higher extensions etc. 47

intermediate diagrams on the product X x Y by

(K¢, We, Ge) Be ( K@>WC7GC

W®Laﬁ/ a( Loz
MR M=

(Kg, Wo. Go) g (K, W, Go) (A, F,W,G) Bg (A", F,W,G)

It follows from the construction that one has an isomorphism

GroGr) (#ZR .0l = @ P GriGr) ()] ¥ GrEGr, (2)iz]

i1+ip=1 N1+Nng=n

in Dth(J /x, Q). Since GrgGrW( /)[11] is a pure Hodge module of weight
ny; on X and GrléGrW( )[i2] is a pure Hodge module of weight 7 on Y,
the_ algebraic analog of [19, 3.21] (see also [19, 3.28]) ensures that
GrlGGrZLV (AR #N1] is a pure Hodge module of weight n. This shows
that the external product of two stupid mixed Hodge complexes is also a
stupid mixed Hodge complex and one gets therefore a bifunctor

(X, ), x S8V, 0), — SE(X x ¥,0),.

5.3.5 — Consider now a morphism f : X — Y of smooth algebraic varieties
and a stupid hodge diagram .7 on Y. Assume that . Z is noncharacteristic
with respect to f. One then defines a mixed intermediate diagram

f7 (Kc,We,Ge){dy  Sp(fa (A4, WG))

fhot = odla 7 N T

f_l(KvaQvGQ){d} f lsp(%,VV’G){d} fﬁ(%aFvvva)
and set
[t = Co(f} 2).
From the definition we have
GriGr) (ff. ) = fL(GriGrl . 2)
in D}, F(Zx, Q). We have
P (GriGrl (7 .0) = 12 (PH GGl 2).

Since by assumption pﬂkGréGr};V_d% is a pure Hodge module of weight
n — d for k = i and vanishes for k # 1, it follows immediately from 3.4.3 —
that .7 is a stupid mixed Hodge complex.
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5.3.6 — Now let V be an admissible variation of mixed Hodge structures on
X and .Z be a stupid mixed Hodge complex on X. It follows from 2.3.2 —
that the stupid mixed Hodge complex VK ./ is non characteristic with
respect to 4y and we may therefore define

V@ L = Uy) (V7 R .2)

where the pullback (4x);. is defined asin 6.3 —. This definesa VMHS(X, Q),4-

module structure on Sb%(X ,Q), the proof being the same as for mixed
Hodge complexes. The next proposition is then a direct consequences of the
definitions and implies 5.3.1 —.

5.3.7 — PROPOSITION. The functors

S%(Xv Q)_@

|

CP(MHW (X, Q))

C

are compatible with the VMHS(X, Q),4-module structures defined in
524—536—and52.2—.

5.4 — Adjunction formula

5.4.1 — As preliminary to the construction of an adjunction for projections
between the inverse image functor and the direct image functor for mixed
(Q-Hodge &7-complexes, let us consider the following situation:

Li=Ax xIdy : X x Y =X xXxY

V is an admissible variation of mixed Hodge structures on X, and . lies in
Dk}//(X x Y, Q). We have then a functorial morphism

VPR M — iigo(VT R )
which induces on the rational component the unit
Voldy] R Ko — i1 (Voldy] B Ko)
of the adjunction ¢! +- 7,. Here by definition i}, := i} {—d}. Hence by

definition iy is compatible via application of the Betti functor with the

image inverse i 1.
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5.4.2 — Let us explain the construction of this morphism. Let .Z be an
object in Dg/;(X, Q) as defined in [9, 4.3.3], and assume that .Z is
noncharacteristic. Consider the diagram:

f~H(Ke, We) (f (A, F,W))2m

fl&c%: Tla / \c fa /11015 w

f (KQv W@) f (% W o f]giﬁ(%a F? W)

and fL % : ch 2{dy. If 47 is a mixed Hodge Z-complex, then
f( Sp(/”) is isomorphie, functorially in./”, to Sp( f/ /). Assume moreover
that f is proper. By definition of the pushforward we have

Fof 7N (K, We) - fulfisig (A, FW)™)

fofidl = T NG T, T

Jef™ (KvaQ) Jef~ (j/’ W) o f*f]giff(//lvFv W)

and we have therefore a morphism .Z — f. fIEIC /¢ which is functorialin .Z,
which provides the desired morphism via the equivalence in [9, 4.3.3].

5.4.3 — Consider a projection p: X xY — Y where X,Y are smooth
algebraic varieties and X is proper. Let us check that the functor

p":DY(Y, Q) — DH(X x ¥, Q)
M- QYR N
is left adjoint to the direct image functor
p.: DH(X x ¥, Q) — D3(Y, Q).

5.4.4 — We denote by

= <y
(544 -1) real(p..#) =, p.real(.Z) preal(.#) — real(p' /)

the comparison isomorphisms. Let p, ¢ be two proper morphisms we have
an isomorphism

200

X p.q y -
(5.4.4 —2) (P )R (@) ) —— (pX QLR A)
and an isomorphism

(544 -3) ciL :real(#Z XK .)7) — real(.#Z) Kreal() )
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5.4.5 — REMARK. The isomorphisms (5.4.4 —1), (5.4.4 —2) and (5.4.4 —3) are
compatible, more precisely the diagram

veal(pyl B g N ) — T veal((p X q). (L B.A))
lcg l MEN
Px ot qxe N Cx
real(py.) R real(q,.A") (p x q)sreal (A K N)

R e
grealﬁ,realﬁ

pereal () K greal () 2 (p x q)«(real () K real(A))

X

o7 ﬁ)_1 for the projection p.

is commutative. Moreover c*, = (c
5.4.6 — Denote by 7 the structural morphism of X. We have a natural
morphism

1: 07 - 7,0%

in Db(MHS%) [19, 4.4.2] which corresponds to the unit in the (polarizable)
absolute Hodge cohomology ring H’,»(X, Q(x)) constructed in [1, §5].
Applying the realization functor to this morphism, we get a morphism

Q7
07 D, peal(n, 07) S nreal(Q) = 1,07

in Dl}/(Spec (C), Q). . This provides a morphism

given by
. Sy o
=07 R 2 YR N pp .

54.7 — LEMMA. Let ) € Dk}/(X x Y,0Q),. We have a commutative
diagram

o .

ape . P "
PelV == P PV — DuGoni N

Paqraqi N

Pxay
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Proor. It follows immediately from the definition and the properties of
the isomorphism (5.4.4 —2) that one has a commutative diagram:

X X ,
p*i %nldﬂ'*(@f X p*i %Id Dx (@{ X p*ﬂ)

pu(mQE WA ) —— pugoidi N = pequsdi N .
p*(gw,m*)

54.8 — LEMMA. Let ./ be in Db(MHM(Y, ©)). The square

real(a_z)

real(A) >real(p.p*A)

Qreal(utt) l
p*c*ﬂ

p«p*real(M ) —— p.real(p* A )

s commutative.

Proor. Using the definition and 5.4.5 — we get the following commu-
tative diagram

o .
real(1XId) real (X 3,°7)

real() real(Q” R #) ——real(m,. Q¥ K 4) ——— real(p.p* M)
lc?*:»}?ﬂ lcf*%
real(m,Q%) K real(#) pureal(p* A )
real(1)XId » -
X ®Id O
Q7 Wreal() — > mQx K real(ﬁg?@m pip*real()
,Id
and the lemma follows from the equality c¢*,, = (Cg B //)—1' 0
— X2

54.9 — REMARK. Let 0:Y <X x Y be a section of the projection p.
Then for any ./ € Dl},/(Y, )., the composition

A pp I PP L = Gep' S
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. . . . b . o . .

is an isomorphism in D (Y, Q). since its image under rat is an iso-
. . b

morphism in D.(Y, Q).

5.4.10 — Consider the commutative diagram where i = Ax x Idy

XxY — 5 XxXxYV 2 o Xxxy

X xY Y.

Then, given ./ € Dl}/(Y, ), we have a morphism b, : p*p..J) " — I~
defined by

. Mg, - .. . . o~ .
PPt — @i ) — quiiineqi ) = inedi S A

where the first isomorphism is given by (5.4.4 —2) and the last by the in-
verse of the isomorphism in 5.4.9 —.

54.11 — LEMMA. Let .Z in D%(Y, Q). and 4" in DY (X x Y, Q)., The
morphisms

bppopary  pbyoay
are respectively the identity of p* . and p../) .

Proor. The equality p.b_ - o a,. ;- = Id follows from the definition and
5.4.7 — which ensure that we have a commutative diagram

et

%

p*th*(ffi I p*qui*ifyc(ﬁi

\ o

PP P Ny ;a*qz*qi‘i —— DuQsls i @i N ——>paA .

Aps N

by

Then one has a commutative diagram
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P ay . Nia, )
ja/4 - pp* M = 2. (Q¥ RQ¥ R .4)
Knld Tl(ﬂzgmld qg,&g&ld)i
Mg, 7, 1d

‘Zﬂ-wId‘ZId
\LHZHd / l/

TN RQY R *(Q¥ RQ¥ R .4)

}

/A

where 7 and ¢ are the isomorphisms that permute the factors. O

If follows from this that we have an isomorphism

adj : Hompp o o (p"t2,.07) — Hompp o ) (A2, pa]0)

which maps an element ¢ in the left hand side to adj(0) = p.0oca_s.

5.5 — End of the proof

5.5.1 — LEMMA. The square

adj
Homps vam(x xv,0)) (p* A, N) s Hompo (mum(y,0)) (M, psN)

irealx XY lrealy

HomDr}f(XXyﬂQ)@(real(p*%),real(i)) HomDr}K,(yﬁQ)@(real( M), real(p.A))

i—ocjﬂ lc;io

Hompy_(xxy,q), (P*real (), real ()] > Hompy(y.q),, (real(2), p.real (7))
18 commutative.

Proor. This follows immediately from 5.4.8 —, which implies that the
diagram
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real(adj(0))

real(a_y real(p. 0
real(Z) —(%)real(p*p*ﬁj (—p>) real(pyA")

lareal(/ﬂ) lcg*ﬁ lc;/v

peprreal(L) —— p.real(p”. ) —— = p.real(A)

p«(real(f)oc’, )

is commutative in Dg/(Y, Q) for any morphism 0§ € Hom(p*.Z,./)”) in the
bounded derived category of mixed Hodge modules. One of the morphism is
real(adj(0)) while the other is adj(real() o ¢’). O

PrOOFOF 1.2.5 —. As proved by A. Beilinson in [1], the functor realgyec

is fullyfaithful. The theorem is thus a consequence of 5.5.1— and 5.3.2—
applied to Y = Spec(C) with .7 = Q” the trivial mixed Hodge structure.
|

6. Basic operations on mixed Q-Hodge Z-complexes

In this section we define the two basic operations on mixed Q-Hodge
complexes and prove their properties. Verification are simple but tedious.
There are two main difficulties: pullbacks of diagrams necessitate to play
the accordion with them and one has to check that these two operations do
yield mixed Hodge complexes (this is where one need for example the
behaviour of weights in the noncharacteristic case see 6.1.3 —).

6.1 — Noncharacteristic pullback I : general construction

6.1.1 — Letf : X — Y be amorphism of smooth complex algebraic varieties
and

a Ke ot
Kq (A, F)

be an object in Dl?hF(EZ y, Q). We will say that .Z is noncharacteristic with
respect to f, or that the pullback f . is defined, when the following two
conditions are satisfied:
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e PHY(_#) is noncharacteristic with respect to f for any integer i € 7;

° Grf /" is Ox-tor independent for any integer k,i € 7, i.e. satisfies
(3.1.1-).

6.1.2 — If these conditions are satisfied, we then define an extended
diagram of length one:

o, B ey SPnlIe )
ot =| T SR T N
ST Kold] 7S () 1d] o, F)

where f°, is the morphism (3.3.7—1). We know by 3.3.5— that this
morphism is a quasi-isomorphism, hence the four comparison maps are
quasi-isomorphisms of complexes of sheaves of C-vector spaces on X?",
and we therefore get a pure diagram f/’i 2 of length one. We then define
the inverse image by

[}t = Co(f} ).

6.1.3 — PROPOSITION. If . Z € Dl}/(Y, Q,n). 1s a pure Hodge & -com-
plex of weight n such that f 7 is defined, then

fr /€ DYX, 0,0+ d)
1s a pure Hodge &/-complex of weight n + d.

Proor. Since .Z is a pure Hodge &7-complex of weight n, there exists
an isomorphism in DEhF(@ v, Q)

25 @ PH - i)

€7

and pﬂi(ﬁ) lies in MH(Y, Q,n + 7). By definition these perverse coho-
mology groups are all noncharacteristic with respect to f, hence we get an
isomorphism

613 1) £t 5@ P .

€7,

It follows from 3.4.3 — that f} PHI(Z) is a Hodge module of weight
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7 + 1 + d. Given an integer k € 7, we have therefore

HE (2 9) — P
613-2)  PHE ) 20 @y PHE(fPHI ) = £ PHE )

€7,

which is a Hodge module of weight n + d + k. Now (6.1.3 —1) and (6.1.3 —2)
imply that f} . Z satisfies the decomposability condition and the weight n +d
condition. Hence f .7 is a pure Hodge &/-complex of weight » + d. O

6.1.4 — Consider now a mixed diagram .#Z. We will say that .Z is
noncharacteristic with respect to f or that f’.# is defined if the
GrY_/’s are noncharacteristic in the sense of 6.1.1—. One then defines
an extended mixed diagram of length one

f (K(C7WC {d} Sp"m(fﬁ(% W))

f};/ﬂ = f_l(y‘gl{d/ N o {(1}/7 \Id

fH (Ko, Wo){d} J=1Spon (A, W){d} fo(at . F W)
and defines the inverse image by
[t = Co(f:. .4).

We can define similarly a pullback for noncharacteristic mixed Hodge &/-
complexes of higher length. We have a canonical isomorphism

(6.1.4 1) Gr)) (ff 20) = fEGr)) 4 .20)

If #Z is a mixed Hodge &/-complex, then by assumption GrK 42/ is a pure
Hodge &7-complex of weight n — d. It follows from 6.1.3 — that (6.1.4 —1) is
a pure Hodge Z/-complex of weight n and therefore f,| ./ is a mixed
Hodge &-complex.

6.1.5 — REMARK. The pullback functor £ is not well defined on the
triangulated category D ;/(Y Q),. More precisely if .# and ./~ are
noncharacteristic mixed Hodge complexes and w : . — ./ is a morph-
ism in K?}/(Y, ), then the morphism f" » is well defined whereas it is
not defined a priori if % is only a morphism in Dg/,(Y, Q). Indeed a mixed
Hodge complex Betti quasi-isomorphic to a noncharacteristic mixed
Hodge complex is not necessarily noncharacteristic. However we will
use in the sequel the following remark: if » is obtained via a chain of
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morphisms in K% (Y, Q).,

Betti gis Betti gis

%2* "'<—/// — e 7

in which all the mixed Hodge complexes involved are noncharacteristic then
7 wis a well defined morphism in D% (X, 0).,.

6.1.6 — Let V be an admissible variation of mixed Hodge structure on Y.
We denote by f*V the pullback of V along f which is an admissible variation
of mixed Hodge structures on X. By definition we have

DRan f@’(qi/ W)) DR(m(f%(qf/,W))
Ex [)f(f*Y)] = o l/ \ / Id
=1 Vg, Wo) DRan(f5(7, W) (¥, F,W)
while
FTIDRa (¥, W) an (F5(V, W)
15 (V) = e TN f/ \
f~H Vg, Wo) FIDRan (7, W) (¥, F,W)

Since f3.of! % = océ* we have thus a canonical isomorphism of left

mixed Hodge complexes on X given by the naive morphism of left Hodge
complexes:

BV = (Ad £, £7,1d,1d) < £ (7)) — Bx[7(f*9)].
Passing to (right) mixed Hodge complexes we get an isomorphism
£ 7) - Ex[(f 7]
which we still denote by f(f, V). By adjunction we get an isomorphism
(6.1.6 —1) olf s ) (V) = ("

of mixed Hodge complexes.

6.2 — Noncharacteristic pullback 11 : 2-functoriality

6.2.1 — Remark that functoriality is too stringent a condition to hold for
mixed Q-Hodge /- complexes. However a weak functoriality holds and we
will now check that the pullback constructed in 6.1 — is 2-functorial with
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respect to morphisms of varieties. In other work we will construct a
comparison isomorphism in Dk}/(W, Q)

(621 -1) A
& e Jole 22

for any sequence W L x ER Y of morphisms of smooth algebraic varieties
and any mixed Hodge complex .Z such that ./ is noncharacteristic with
respect to f and f*.Z is noncharacteristic with respect to g, and then
check that these comparison isomorphisms satisfy the required coherency
properties:

6.2.2 — PROPOSITION. Let W 2 X Ly Zbea sequence of morph-
1sms of smooth algebraic varieties. The square

+ Fon (L) +p+
(hf9)ot (f9)ohet

6.2.2-1) c;hf(ﬁ)l lcgff(hgﬁ)

+ h +% + +h+./l
9@( f)ﬁ——>ggc;h,(4) gﬁf{j’ o

is commutative for any mixed Hodge complex .72 such that %, h}. 7,
Thi A and gl fE R are defined.

The rest of the section is devoted to these easy though tedious ver-
ifications.

6.2.3 — Let >0 be an integer. As preliminaries to the construction of
(6.2.1 —1) let us remark that we have at our disposal two isomorphisms
respectively in D% (X , Q)7 and D% (X ,Q)LfE

623 -1) of,10): [} A — Bx[f} ]
(6.2.3 —2) Wf, L0) : fLBx[ ] — Ex[f2 ]

for any given mixed Hodge complex .7 of length » on Y which is non
characteristic with respect to f. The first isomorphism is provided unit of
the adjunction Co - Ex. To write down the second one it is simpler to
work with left mixed Hodge complexes. To go back to (right) mixed
Hodge complexes one simply uses the side changing functors. We will
assume 7 = 0 otherwise we would have to write diagrams which wouldn’t
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fit into the page. The construction is nonetheless the same for bigger 7.
By definition

N (Ke, We) f~H(Ke, We) DRan(f& (2, W))
S I AVATZAN
Y(Ke,We) f'DRan(4, W) fo(,F,W)
while
Y(Kc,We)  DRan(f5(#,W)) DRan(f5(4,W))

w:w\/\/\

YKo, Wo) f'DRan (4, W) DRan(fi (A, W) fi(M,F, W)

Hence we have two naive morphisms of left mixed Hodge complexes of
length 2

FiEx) M2 g m ML wx[fE z)

given by
u(f,.22) = Ad,1d, f o2, f a2 1d, 1d, Id)
o(f,.2) = (1d,1d,1d, f°,, £, 1d,1d)
where I'(f,.#) is by definition the left mixed Hodge complex of length 2
Y Ke,We)  fT'DRan(A, W) DRan(fi (4, W))

VAN

F N Kg, Wo) f ' DRan (A, W) f'DRan( M, W) fio(Ml,F,W)

=
?ﬁ
§

Sk

The morphism y(f,.#) is defined by y(f, .2) := v(f, 2)u(f, ﬂ)fl. In the
sequel we will use the isomorphisms (6.2.3 —1) and (6.2.3 —2) only for mixed
Hodge complexes of length <1.

6.2.4 — Let us fix a sequence W Lx Ly of morphisms of smooth
algebraic varieties and a mixed Hodge complex .Z of length r such that
./ and f,} .7 are noncharacteristic. Since the contraction functor doesn’t
change the Z7-component the last condition simply means that f/ 18
noncharacteristic. To get (6.2.1 —1), it is enough to construct an isomorph-
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ismin D 7/(W Q.)W’2

)
(6.2.4 ~1) Ex[(fp). L] — g, 1} 2.

Indeed (6.2.1 —1) will then be obtained from (6.2.4 —1) as follows: the
functor Ex being an equivalence, the composition

P N N X () 19,1 10
Ex(()h 2] g ff ot 2 g Bx(f ) R B f )
defines an isomorphism in D 7/(W Q)’"+1
(6.2.4-2) (f)e L — gLf L

and (6.2.1 —1) is the image of this isomorphism by the contraction functor
Co. Hence it remains to define (6.2.4 —1). Here again we assume r = 0 for
size reasons and work with left mixed Hodge complexes. Let us denote by s
the composition fg. By definition

Y(Ke, We) DRan (85 (4, W)) DRan(s%(
R /\ Ve /\
s (Ko, Wo) 8 'DRan (A, W) DRan(sk (A, W) s (M, F,W)
while
Y(Kc, We) 9 DRan (f (A, W) DRan (s (4, W))
A 1a/ \ /f” \ 95‘;}/!/4 \
YK, Wg) s 'DRan(#,W) g 'DRun(f5 (A, W) s (M, F, W)

The isomorphism (6.2.4 —1) is then defined as the inverse of the naive
morphism of mixed Hodge complexes of length 2

(Id, Id, Id gf ///,gf 2 14,1d) : b f2 . — Ex[st. /).

6.2.5 — REMARK. By functoriality of the unit morphism, the square

U0t o [(fo)btt)

(6.2.4 Q)l lEx[c;f(//z)]
9 fs %WEX (96 f6]
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is commutative. Unfolding the definition, it follows that the diagram

6.2.5-1)

(:27 (A) Ex[e(fg,.)]
g foutl <~ x| (fg) byt | Z"

Ex™ [(f9) 4]
gpe(f.A) lEx«1242) LEx°2k;J<ﬁzﬂ

G bx [f4tl] ———= x| g £ .4

Ex®? (g fha
Y(g.f5) [gﬁfﬁ_]

_—
Ex[e(g,f )]

is also commutative.

The next lemma is easily checked:

6.2.6 — LEMMA. Let ./ be a mixed Hodge complex of length v such
that " and [ are non characteristic. Then the square

C:,f(ﬁ)

EX[(hﬁ%ﬁZ} gl
EX[(fg)“gy]l jg”gf%g
ch J(A)
Bx |(f9)l ] — A
is commutative for any morphism w : 4% — A~ in K% (Y, Q).,.

If one takes the time to write down explicitly the mixed Hodge com-
plexes involved, the next lemma is an obvious consequence of 3.3.7 —:

6.2.7 — LEMMA. The diagram
Bx | (f9)}Ex.d] Bx” | (Fg)}petl |

(627 —1) lcg’f(EX%) Ex[cu_ (//[)]

Ex[v(fg,.4)]

: :
() (9:f&:4)
ob fEEx 2T g [f%%}79_0>

Bx |gf [t |
18 commutative.

For the convenience of the reader we expand (6.2.7 —1) in Figure 1 (DR
stands there for the analytic de Rham complex).

6.2.8 — Let us now prove 6.2.2 —. We fix a sequence of morphisms of
smooth algebraic varieties

wixLyltz
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and a mixed Hodge complex .7 satisfying the assumptions of the propo-
sition. To keep notation short we set s = fg, t = hf and r = hfg. Once again
it suffices to write down explicitly the mixed Hodge complexes involved as
done in Figure 2 to see that 3.3.7 — immediately implies:

6.2.9 — LEMMA. The diagram

)

Bx? (0 fg)lyut | Ex [ (f9)) .t |

Bx[e ()] o5 (Woutl)
6.2.9-1) Ex [gﬁﬁ(hf)”ﬁﬁ} G bl
v(g.(n1) )™
gbx ()] 20

s commutative.

ProOOF OF 6.2.2 —. We just have to reduce the assertion to 6.2.9 —. For
this remark that the results previously proved ensure that we have the
commutative diagram depicted in Figure 3. Hence it follows from 6.2.9 —
(see the subdiagram d5) that the image of the square (6.2.2 —1) by the
functor Ex® is commutative. Since the extension functor Ex is an
equivalence, the proposition follows. We list below the results used to
ensure the commutativity of the diagram in Figure 3:

Commutativity of (6.2.5 —1)
Funectoriality in .7 of y(f,.2)

di1 Functoriality in . Z of e(f, Z)
6.2.7—
6.2.6 —

6.3 — Noncharacteristic pullback I11: a cheap trick

6.3.1 — Let f: X — Y be an isomorphism and .Z be a mixed Hodge
complex on Y. Since the map f”, is then a filtered isomorphism we
may consider instead of the mixed Hodge complex of length one
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defined in 6.1.4 —, the mixed Hodge complex

(K(C,W(C {d} 1
. gt S N gl
f~H (Ko, Wo){d} fo(d , F,W)

or equivalently if we have a left mixed Hodge complex to begin with :

f—l 4/ K(C7W fﬂ -1
[ =

/- (K@7W@) fo( A F,W)
The naive morphism 0(f,.#) := (1d,1d, f~ 1%/ e [f//] ,1d) (here
we used left mixed Hodge complexes) provides an 1som0rphlsm
Of,.L0) £} 4 — BX(f 2
and we let
S\ L) [ — [
be its adjoint 7.e.:

O(f, 20) = BX[S(f, L0)] 0 & f . A0),

Let us now fix a sequence of isomorphisms W % x Ly and a mixed
Hodge complex .7Z in KF’;/(Y, Q). The next lemma is an immediate
consequence of 3.3.7— (see Figure 5 in which DR stands there for the
analytic de Rham complex).

6.3.2 — LEMMA. The diagram

:| (:g_f(///) §

EX[ vl
(fg)ﬁ— q”% O== 9\((1]‘5,4)

g Ex ([l o Ex gl
Ex(0(fg..4)] Vg, tl) (@Bl fo-) | Bxlo 00740
Bx |gf 5. Ex (g5 Ex (/5.4
/
wot ExlO(0.f5 D) . =
Ex [(fg)ﬁﬂ] Ex [gﬁfﬁﬁ]

s commutative
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6.3.3 — LEMMA. The diagram

et ()
+ g, f —+ r+
(f9) ot 950 M) gﬁfﬁ%%%)
633-1 ;0 Yy g%f%'%
' A o)
(fo)putl S g ol

1S commutative.

Proor. We check only the commutativity of the inner square of
(6.3.3 —1), the proof for the other square is similar. Using (6.2.5 —1) and
the functoriality in ./~ of the morphisms y(g,./") and &(g, /"), 6.3.2 —
provides the following commutative diagram:

9L0(f.)
abe(f.tl) 9% Bx[0(f,0)] N
g%fé. e g(ﬁEX [f ] R gﬁEX [fot)
o () +(9.5F /ﬂ)l (9,1 byt
" n ggﬂ(f A )
Ex [(fa)%.4] Bx gt £t ] o [ 1.
Ex[e(fg,.4)] Ex[e(g.ff-2) l Ex|[=(g,f§40)]
Ex°2 M (_El 2[gha (s, ///)]
Ex** [(f9)& *lobrbat Ex°? (g} fot]
Ex2[9(g.1540)]
Ex[0(fg,4)] ) ) Ex[g(g fﬁ///)]
Ex* [(f9) 4] Ex** g5 fo .

Hence the image of the square (6.3.3 —1) by the functor Ex*? is a commu-
tative. Since Ex is an equivalence, it implies the lemma. O

6.3.4 — A nice feature of 2-functors is that they are lax enough to be
redefined when needed. We now redefine the noncharacteristic image
inverse. Let f : X — Y be a morphism of smooth algebraic varieties and a
noncharacteristic mixed Hodge complex .Z. We finally set

fz .2 if f is an isomorphism;

PN
fr.7  otherwise.
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LetW % X ER Y be a sequence of morphisms of smooth algebraic varieties.
The definition of the comparison isomorphisms

(A
fop 22 g pr

now depends on whether the morphisms g, f and gf are isomorphisms or
not:

CASES DEFINITION OF ¢, ¢(.7)
Case 1 | All of them are isomorphisms. c; f(ﬁ) =1d
CASE 2 | None of them are isomorphisms. c; f(ﬁ)

3a: s gf | ¢F () 0 S(gf.. 1)

CASE 3 iny one .Of them is an | gp,. 1p5 ¢ X, 1,0 ) ocy ()
isomorphism -

Be:It'sf | gt I f, . 4) 0 c;f(%)

It is easy to check that the analog of 6.2.2 — holds. One only has to check
the commutativity of the analog of (6.2.2 —1) in all the possible cases. For
example in the case gf, h and gf h are isomorphisms while g, f, f are not, it
follows from the definition, 6.2.2 — and 6.3.3 — that

(97 1)yt ——— (g 1)t 22 (g s iyt ——— g )iyt
VO(gf hiptl)
Igfhotl)~ 1l (9 bhotl
g, rn(A) () Vgf)5o(h,a)~?
(gme“—> (9f) bhbtt )
ch (L)Y Vei s (hhutt)
95 (Rt 96 (FRptl —— gb ol
9ot ()T o ()
9o f oWl ——= g, [Nl

9pctn(L)

is commutative. The other cases are handled similarly.
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6.4 — Noncharacteristic pullback IV: variations

6.4.1 — LEMMA. Let V be an admissible variation of mixed Hodge
structures on Y. Then the square

o () g ()

igge(f&)
(6.4.1-1) o(f9,Y) 9—(; ((f*Y)%)
L@(g,f*Y)
(f) V) =—=(g" S V"

s commutative.

Proor. It is easy to check from 3.3.7— and the definitions that the
diagram

gL B(£Y)
R ——

} e +(7%)

Bx [(f9), 7V g 1% (V) gy Bx [ (1Y)

lw(g,”(f*m)
Ex[3(f9.1)] EX[Q%%Yf*Yﬂ

|ExBos )
Ex?? [ ((f9)"V)] Bx [ (g V)]

is commutative. Now consider the diagram depicted in Figure 4. By defi-
nition of the morphism (6.1.6 —1) the squares d2 and d6 are commutative.
The functoriality in. /" of the morphism y(g,./ ) ensures the commutativity
of d3. Similarly the commutativity of the square d5 follows from the funec-
toriality in ./ of the morphism &(g,./ ). The square d1 is commutative by
(6.2.5 —1). Hence the square d4 is commutative, which means that the image
by of the square (6.4.1 —1) by the functor Ex°? is commutative. Since the
extension functor Ex is an equivalence, the lemma follows. O

6.5 — Euxternal products

6.5.1 — Let X and Y be either two smooth complex algebraic varieties or
two complex analytic manifolds. We denote by

xZxxyLy
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the two projections. Let .# be an <”x-module and ./ be an ©y-modules,
their external product is defined as the 7y, y-module

M- N = Oxuy @picyoqioy @A Qc g .

This functor is an exact functor with respect to .7 and ./, If .Z is a left
Zx-module and ./ is a left & y-modules, then .7 X ../ has a natural
structure of left &y, y-module. Indeed, since Y x.y = YxX Py, one
may also described .7 X »./J" as the tensor product

MR N = Dxuy @pryogio, O MR q L)

With this structure of left -module, with have for the de Rham complexes,
an isomorphism of complexes

(6.5.1-1) DR(.#)R-DR(/) = DR(ZK.J")

If 7 and .J" are right &-modules, then one may define their external
product via the side changing operations, since wy.y = wy X-wy we see
that one simply gets

MR N = RGN @iy agiey Oxxy

=@ ) ®pivyagioy Dxxy-
We have an isomorphism of complexes
6.5.1-2) Spx (/) B Spy( 1) = Spy,y (£ Be 1)

which is compatible with (6.5.1 —1) via the isomorphisms defined in 2.1.7 —.
If X and Y are smooth algebraic complex varieties, then one has a canonical
isomorphism

(6.5.1-3) (MR NV = 2" R N

Using the total complex associated with a bicomplex, we can extend the
definition of the external product to bounded complexes of right &7-modules
and one still has the isomorphisms (6.5.1 —2) for bounded complexes of right
Z7-modules.

6.5.2 — Now assume that X and Y are smooth algebraic complexes
varieties. If (#,F) and (/" F) are filtered right &-modules. Then
R,/ has a natural filtration, it is the underlying &/-module of the
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filtered & x,y-module
(AR F) = (p (A, F) @0 N F) @ty ogiry Oxuy

= N AF)@c ¢ I F)@pioyogioy Pxxy, F).
Hence the filtration satisfies

F( /R N )= Fi A Qe F A" Gri(ZRe N )=EP Grf. # 8, G} 1"
i+j=k i+j=k

If .7 and . /)" are coherent filtered &/-module then sois (Z,F) X (/" F).

653 — Let A=Q,C.IfK ¢ DX(X,A) and L € D(Y, A) then
KR L=p'K®sq 'L

lies in D]S (X x Y,A) and the bifunctor — K4 — is t-exact for the perverse
t-structures. One has a canonical isomorphism

6.5.3—1) (KR, L) @6 C =K oo ORI 20 C)
for K € D2(X, Q) and L € D2(Y, Q).

6.5.4 — Let X and Y be two smooth complex algebraic varieties. Let .7 and
/' be two objects in MF,,(Zx, Q) and MF,,(Zy, Q) respectively. One
defines the external product .7 X _#' as follows:

e the underlying filtered right & x.y-module is (%, F)R (.7, F);

e for A =0Q,C the underlying A-perverse sheaf on X" x Y is
Ky R K,

e the comparison isomorphisms are given by

MR

A HRA
%0 =o0g Kcxg

7 =a;, Moo

A
Z

via the isomorphism (6.5.3 —1) in the first case, and (6.5.1 —3),
(6.5.1 —2) in the second case.

This provides an object .Z X . #' in MF ., (Z x <y, Q).
6.5.5 — Consider now two pure diagrams

ot Ke N o K(/? !
a=| NE | N
Kq Kq’@ (A F

(M, F) )
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on X and Y respectively. Then, we have a diagram on the product X x Y-

o Ke We K¢

MR = el g Eed

KQ&QKQ (M, F) R (M, F)
via the isomorphisms (6.5.3 —1), (6.5.1 —3) and (6.5.1 —2).

6.5.6 — REMARK. The functor X is t-exact with respect to the perverse
t-structure on diagram and compatible with the construction in 6.5.4 —.

6.5.7 — LEMMA. If . //GD;/(X ), n)e and - €D7/(Y ), M), are
two pure Hodge &/-complexes of weight n and m respectively, then

AR €DYX XY, 0,n+m)
ie #ZR . J " is a pure Hodge &/ -complex of weight n + m.
Proor. By assumption there exists two isomorphism ¢, y
25 @PHWI-1 2L @ PR
€7 JEL
and pﬂi(%) (resp. pﬂj ()7)) is a pure Hodge modules on X (resp. Y) of
weight 7 + n (resp. j + m). Hence we have an isomorphism
657-1 280 @ CHHRPHIU) i -]
ijez.

By the algebraic analog of [19, 3.21] (see also [19, 3.28]), pﬂi(ﬁ X pﬂj )
is a pure Hodge module of weight #n + m + 7 +j on X x Y. Hence applying
pﬂk on both sides of (6.5.7 —1), it follows that

PHU (R4 =~ @ PHI() RPH (1)

i<k

is a pure Hodge module of weight % + m + k. This shows that . Z X ./ is a
pure Hodge &7-complex of weight n + m as desired. O

6.5.8 — Now consider two mixed diagrams .# and .#Z' on X and Y as
in (4.3.4—1). The external product of .Z and .#' is defined as the
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mixed diagram

(Kc, We) Be (K¢, W)

@ a:ﬂl ag, | &U’/
MR M =

(Ko, Wo) B (Kb, W) (M, FW) Ry (M, F,W)

It follows from the construction that one has an isomorphism

(6.5.8-1) Gry (/£ R .2 = @ G (L)RGr) (£

i+j=n

of pure diagrams. The following lemma is an immediate consequence of
6.5.7 — and the isomorphism (6.5.8 —1):

659 — LEMMA. If .7 € DY(X, Q) and 4~ € DY(Y, Q). are two
mixed Hodge & -complexes, then

AR eDYX x Y,0),

ie #Z XK. )" is also a mixed Hodge &/ -complex.
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73

Mixed Hodge complexes and higher extensions ete.

—¢'¢'9 Jo jooid ‘g emSIg

Y omne (7 2190] ¢ xa [7¢ug19] goxa 7o

2
(7 926)2] poxa [rwe] [ Qulro)] oxa
[9427%] gova o] (9o

(70 205) )

ﬁ§w“ﬂi go*d

("L

949 95 942195 79495 xm
Tm%anm [72ugs]=a n%wmgﬂmﬁmm +1% _MwﬁTm:vx"onﬁm +17 ] co

(7 gugs]xas)e [2p] (7 Quus)r

bmm ﬁ%:bxxm%m
e A

(1) 5 @ m
] s ] 2] sau %o

go*d
[

¢ 9
[ 9=5]xa =945

(FQwxa)! P

‘ [7Qude] goxa =——~
T§v:ﬂo%&moxm [(74u)? Yo goxa




Florian Ivorra

74

(B, 46)d]xa H

— T'F°9 JO Joolq ¥ 2InSIq

[(@.50) e goxa

[@es8) L] oxa

(R4 d6)0] zoxa

(&) 96|xa
[ (

(@ah) o)1

(@ holxas

(@) e 28] coxa

(@52 96] soxa

(R e 4e8) L

(B0 §500)2]xa

(@) pe] ao

&G0

[F20$595] coxa

H [(R64)0] g oxm

S

[(520) v

(@ e 04)]xa

(A6 £)dxa



S
B
= N
= /%
L7
R
N1 S
AN S
5
=~ 48
E//T
§j >
gm
g —~
Tm\z;
s B
=/
g
~ =3
TNE
K
7
3
<
= N
= /%
§. e
S 2
:\:
2 0
=)z
§ [a}
§\§'
o &
5/
¢ 2
TNE
C¢
T

Mixed Hodge complexes and higher extensions ete.

=
K
A
= /%
e N Q
= N /*m
& &~
= X 2 g
S g =\ 2
e BN
< *Q
DA =
1 = ~ =
z \ 3 2 4a
Ny g / T
< N 2
. ©
>/ 8 s
Eﬁ | Q =
e = NG
- 3] o S
T\ ¢ 3
B} é; ’;S
5 % -1
=/ s/ A8
8} @ N |
S N ¥ € 2
i = =4
| -
. s AN
< K =1
o 2
— I 7 'gl‘
¥ i S - ©
=Q *Q B S
=" = Y = ° = =7
= Y 4 Y 3 Y| -
s =0 ﬁS a Y &
> >
= 3 A
N
*Q
N
~ 2
y =
= é
=o ’Ei
° —
o N
L ©
= S
N R g,
=0 - 4
3 < .
v = N
s 1 +Q
= 3
j =
= 3
®
=

S
o
ha)
3
N
m

DR(s*ﬁ(.xﬂ, w))

7

DR(s*ﬁ(/ﬂ, w))

Sgl(Kc, We)

7N 7/ N\ /7 \

s H(Kg, W) sTL(Kc, W) sTH(Ke, W) s (4, F, W)

S (M, W)

AN

AN
DR(s% (., W))

A N

s~ (Kg, Wg) ¢ TIDR(f (a, W)

75

Figure 5. Proof of 6.3.2 —



76 Florian Ivorra

REFERENCES

[1] A. A. BEILINSON, Notes on absolute Hodge cohomology, Applications of
algebraic K-theory to algebraic geometry and number theory, Part I, II
(Boulder, Colo., 1983), Contemp. Math., vol. 55, Amer. Math. Soc., Providence,
RI, 1986, pp. 35—68. MR MR862628 (87m:14019)

[2] A. A. BEILINSON, Correction to: “Notes on absolute Hodge cohomology’
[applications of algebraic K-theory to algebraic geometry and number theory,
part i, 1@ (Boulder, Colo., 1983), 35-68, Amer. Math. Soc., Providence, R.1.,
1986; MR0862628 (87m:14019)], K-theory, arithmetic and geometry (Moscow,
1984-1986), Lecture Notes in Math., vol. 1289, Springer, Berlin, 1987, pp. 25—
26. MR MR923132 (892a:14023)

[3] A. A. BEILINSON, On the derived category of perverse sheaves, K-theory,
arithmetic and geometry (Moscow, 1984—-1986), Lecture Notes in Math., vol.
1289, Springer, Berlin, 1987, pp. 27-41. MR MR923133 (89b:14027)

[4] A. A. BEILINSON, J. BERNSTEIN, and P. DELIGNE, Faisceaux pervers, Analy-
sis and topology on singular spaces, I (Luminy, 1981), Astérisque, vol. 100, Soc.
Math. France, Paris, 1982, pp. 5-171. MRMR751966 (86¢:32015)

[5] PIERRE DELIGNE, Théorie de Hodge. I11, Inst. Hautes Etudes Sci. Publ. Math.
(1974), no. 44, 5-77. MR 0498552 (58 #16653b)

[6] RyosH1 HorTta, KivosHI TAKEUCHI, and TOSHIYUKI TANISAKI, D-modules,
perverse sheaves, and representation theory, Progress in Mathematics, vol.
236, Birkhiuser Boston Inc., Boston, MA, 2008, Translated from the 1995
Japanese edition by Takeuchi. MR 2357361 (2008k:32022)

[7] ANNETTE HUBER, Realization of Voevodsky’s motives, J. Algebraic Geom. 9
(2000), no. 4, 755—-799. MR MR1775312 (2002d:14029)

[8] ANNETTE HUBER, Corrigendum to: “Realization of Voevodsky’s motives” [J.
Algebraic Geom. 9 (2000), no. 4, 755-799], J. Algebraic Geom. 13 (2004), no. 1,
195-207. MR MR2008720 (2004h:14030)

[9] FLORIAN IVORRA, Mixed Hodge complexes on algebraic varieties and t-
structure, Journal of Algebra 433 (2015) 107-167.

[10] MASAKT KASHIWARA, A study of variation of mixed Hodge structure, Publ.
Res. Inst. Math. Sci. 22 (1986), no. 5, 991-1024. MR MR866665 (89i:32050)

[11] Masakt KASHIWARA, Algebraic study of systems of partial differential equa-
tions, Mém. Soc. Math. France (N.S.) (1995), no. 63, xiv+72. MR 1384226
(97£:32012)

[12] MAsAKI KASHIWARA and PIERRE SCHAPIRA, Sheaves on manifolds, Grundleh-
ren der Mathematischen Wissenschaften [Fundamental Principles of Mathe-
matical Sciences], vol. 292, Springer-Verlag, Berlin, 1994, With a chapter in
French by Christian Houzel, Corrected reprint of the 1990 original. MR
1299726 (95g:58222)

[13] G. LAUMON, Sur la catégorie dérivée des D-modules filtrés, Algebraic geo-
metry (Tokyo/Kyoto, 1982), Lecture Notes in Math., vol. 1016, Springer,
Berlin, 1983, pp. 151-237. MR MR726427 (85d:32022)

[14] MARC LEVINE, Mixed motives, Mathematical Surveys and Monographs,
vol. 57, American Mathematical Society, Providence, RI, 1998. MR 99i:14025

[15] PHILIPPE MAISONOBE and ZOGHMAN MEBKHOUT, Le théoreme de comparaison
pour les cycles évanescents, Eléments de la théorie des systémes différentiels

”



Mixed Hodge complexes and higher extensions etc. i

géométriques, Sémin. Congr., vol. 8, Soc. Math. France, Paris, 2004, pp. 311—
389. MR 2077650 (2005k:32032)

[16] ZOoGHMAN MEBKHOUT, Le théoreme de positivité, le théoreme de comparaison
et le théoreme d’existence de Riemann, Eléments de la théorie des systémes
différentiels géométriques, Sémin. Congr., vol. 8, Soc. Math. France, Paris,
2004, pp. 165-310. MR 2077649 (2005h:32020)

[17] MorIHIKO SAITO, Modules de Hodge polarisables, Publ. Res. Inst. Math. Sci.
24 (1988), no. 6, 849-995 (1989). MR MR1000123 (90k:32038)

[18] MoORIHIKO SAITO, Extension of mixed Hodge modules, Compositio Math. 74
(1990), no. 2, 209-234. MR MR1047741 (91f:32046)

[19] MoRIHIKO SAITO, Mixed Hodge modules, Publ. Res. Inst. Math. Sci. 26 (1990),
no. 2, 221-333. MR MR1047415 (91m:14014)

[20] MoRIHIKO SAITO, Mixed Hodge complexes on algebraic varieties, Math. Ann.
316 (2000), no. 2, 283-331. MR MR1741272 (2002h:14012)

[21] JOSEPH STEENBRINK and STEVEN ZUCKER, Variation of mixed Hodge struc-
ture. I, Invent. Math. 80 (1985), no. 3, 489-542. MR MR791673 (87h:32050a)

Manoscritto pervenuto in redazione il 23 giugno 2013.







<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 15%)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (Euroscale Coated v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.5
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends false
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Impact
    /LucidaConsole
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 1200
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages true
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1800
  /MonoImageDepth 8
  /MonoImageDownsampleThreshold 2.66667
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /ENU (Use these settings to create PDF documents suitable for reliable viewing and printing of business documents. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /NOR <>
    /SVE <>
    /KOR <FEFFc5c5bb34c6a90020bb38c11cb97c0020ac80d1a0d558ace00020c778c1c4d558b2940020b3700020c801d569d55c00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c9002540875284e8e55464e1a65876863ff0c53ef4ee553ef9760573067e5770b548c6253537030028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
    /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef69069752865bc6aa28996548c521753705546696d65874ef63002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
    /ITA <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


