Pure injective and *-pure injective LCA groups

PETER LOTH

ABSTRACT - A proper short exact sequence $0 \to A \to B \to C \to 0$ in the category $\mathfrak L$ of locally compact abelian (LCA) groups is called *-pure if the induced sequence $0 \to A[n] \to B[n] \to C[n] \to 0$ is proper exact for all positive integers n. An LCA group is called *-pure injective in $\mathfrak L$ if it has the injective property relative to all *-pure sequences in $\mathfrak L$. In this paper, we give a complete description of the *-pure injectives in $\mathfrak L$. They coincide with the injectives in $\mathfrak L$ and therefore with the pure injectives in $\mathfrak L$. Dually, we determine the topologically pure projectives in $\mathfrak L$.

Mathematics Subject Classification (2010). 20K35, 22B05, 20K25, 20K40, 20K45.

Keywords. Locally compact abelian groups, pure injectives, *-pure injectives, to-pologically pure projectives.

1. Introduction

All groups considered in this paper are Hausdorff abelian topological groups and they will be written additively. For a group G and a positive integer n, let $nG = \{nx : x \in G\}$ and $G[n] = \{x \in G : nx = 0\}$. Let $\mathfrak L$ denote the category of locally compact abelian groups with continuous homomorphisms as morphisms. In [15], Moskowitz developed a homological theory in the category $\mathfrak L$ and studied the functors Hom, $\mathfrak L$, Tor and Ext on certain subcategories of $\mathfrak L$. Later Fulp and Griffith ([9], [10]) extended Moskowitz's construction of the functor Ext to the category $\mathfrak L$. Following Fulp and Griffith ([9]), we call a morphism *proper* if it is open onto its image. An exact sequence

$$G_1 \stackrel{\phi_1}{\longrightarrow} G_2 \stackrel{\phi_2}{\longrightarrow} \dots \stackrel{\phi_n}{\longrightarrow} G_n$$

(*) Indirizzo dell'A.: Department of Mathematics, Sacred Heart University, 5151 Park Avenue, Fairfield, Connecticut 06825, USA.

E-mail: lothp@sacredheart.edu

in $\mathfrak L$ is called *proper exact* if each morphism ϕ_i is proper. A proper short exact sequence $E:0\to A\to B\to C\to 0$ in $\mathfrak L$ is called an *extension of A by* C (in $\mathfrak L$) and $\operatorname{Ext}(C,A)$ denotes the group of extensions of A by C (see [9]). Then the extension E is pure if and only if the induced sequence

$$E_n: 0 \to A[n] \to B[n] \to C[n] \to 0$$

is exact for all positive integers n (see [6, Theorem 29.1]). The elements represented by pure extensions of A by C form a subgroup of $\operatorname{Ext}(C,A)$ which is denoted by $\operatorname{Pext}(C,A)$. If each sequence E_n is proper exact, we call the extension E *-pure.

The concept of purity plays an important role in abelian group theory (see for instance [6]). In [7], Fulp studied pure extensions in the category \mathfrak{L} . As it was pointed out by Armacost [1], much of the paper is based on [7, Proposition 2] (stating that the dual of a pure extension is pure) which is unfortunately not valid for all groups in \mathfrak{L} .

In this paper, we continue our study of *-pure extensions started in [13] and give a complete description of the *-pure injectives in the category of locally compact abelian groups. Let $\mathfrak E$ denote the class of all groups X in $\mathfrak L$ such that X is connected or X is a torsion-free group which is either discrete or a topological torsion group (for the definition, see Section 2). Then a group G in $\mathfrak L$ has the property that every *-pure extension of G by a group in $\mathfrak E$ splits if and only if G has the form $R \oplus T$ where R is a vector group and T is a toral group (Theorem 3.7). Consequently, the *-pure injectives in $\mathfrak L$ coincide not only with the injectives in $\mathfrak L$ but also with the pure injectives in $\mathfrak L$ (see Theorem 4.1 and Corollary 4.2). Recall that a proper exact sequence $0 \to A \to B \to C \to 0$ in $\mathfrak L$ is said to be topologically pure if for each positive integer n, the induced sequence

$$0 \to \overline{nA} \to \overline{nB} \to \overline{nC} \to 0$$

is proper exact (see [13]). Using Pontrjagin duality, we obtain the following result: A group in $\mathfrak L$ is topologically pure projective if and only if it has the form $R \oplus F$ where R is a vector group and F is a free group (see Corollary 4.3).

The group of real numbers with the usual topology is denoted by \mathbb{R} , \mathbb{Z} is the group of integers, \mathbb{Q} is the group of rationals taken discrete and \mathbb{T} denotes the quotient \mathbb{R}/\mathbb{Z} . By $\mathbb{Z}(p^{\infty})$ we mean the quasicyclic group and F_p is the additive group of the p-adic number field with the usual topology. For any groups G and H in \mathbb{Q} , let Hom(G,H) denote the group of all continuous homomorphisms from G to H. The identity component of G is given by G_0 and the union of all compact subgroups of G is denoted by G(G). Notice that G(G) is a closed subgroup of G (cf. [4, Proposition 3.3.6]).

The Pontrjagin dual of G is

$$\widehat{G} = \operatorname{Hom}(G, \mathbb{T}),$$

endowed with the compact-open topology. All isomorphisms are understood to be topological isomorphisms and all considered direct sums are topological direct sums. We mostly follow the standard notation in [6] for abelian groups and [1] for locally compact abelian groups. For background information on abelian topological groups and Pontrjagin duality, we refer the reader to the books [4] and [12].

2. Preliminaries

A group G in $\mathfrak L$ is called *injective* in $\mathfrak L$ if for every proper exact sequence $0 \to A \to B \to C \to 0$ in $\mathfrak L$ and every $\alpha \in \operatorname{Hom}(A,G)$ there is a $\beta \in \operatorname{Hom}(B,G)$ such that the diagram

is commutative. Dually, G is called *projective in* $\mathfrak L$ if for every proper exact sequence $0 \to A \to B \to C \to 0$ in $\mathfrak L$ and every $\gamma \in \operatorname{Hom}(G,C)$ there is a $\delta \in \operatorname{Hom}(G,B)$ such that the diagram

is commutative. Dixmier [3] and later Moskowitz [15] independently characterized the injectives in \mathfrak{L} :

Theorem 2.1 ([3], [15]). The following are equivalent for a group G in \mathfrak{L} :

- (1) G is injective in \mathfrak{L} ;
- (2) $G \cong \mathbb{R}^n \oplus \mathbb{T}^m$ where n is a nonnegative integer and m is a cardinal.

Using Pontrjagin duality, Moskowitz [15] proved the following:

Theorem 2.2 ([15]). The following are equivalent for a group G in \mathfrak{L} :

- (1) G is projective in \mathfrak{L} ;
- (2) $G \cong \mathbb{R}^n \oplus \bigoplus_{\mathfrak{m}} \mathbb{Z}$ where n is a nonnegative integer and \mathfrak{m} is a cardinal.

Using the notion of proper morphisms, Fulp and Griffith [9] developed the (discrete) group-valued extension functor Ext for the category \mathfrak{L} , generalizing both the functor Ext as defined in (discrete) abelian group theory and the functor Ext studied by Moskowitz [15]. We would like to point out the unfortunate fact that, at the same time, another use of the term "proper" exists; it is used by some authors in topology as a synonym for stably closed (what Engelking [5] calls "perfect"). The following basic properties will be useful:

PROPOSITION 2.3 ([9]). If G is a discrete group, then $\operatorname{Ext}(\mathbb{T},G)\cong G$. Hence the range of Ext is all of the discrete groups.

THEOREM 2.4 ([9]). Let G be a group in \mathfrak{L} . If $\{H_i : i \in I\}$ is a collection of groups in \mathfrak{L} such that H_i is compact for almost all i, then $\operatorname{Ext}(G, \prod_{i \in I} H_i) \cong \prod_{i \in I} \operatorname{Ext}(G, H_i)$.

In [9], Fulp and Griffith proved that the Hom-Ext sequences are exact except possibly at the right end. Then, in [10], they showed that Ext is right-exact; in fact, it was shown that $\operatorname{Ext}^n = 0$ for all $n \geq 2$.

THEOREM 2.5 ([9],[10]). Let G be a group in $\mathfrak L$ and let $0 \to A \to B \to C \to 0$ be a proper exact sequence in $\mathfrak L$. Then the following induced sequences are exact:

$$(1) \quad 0 \to \operatorname{Hom}(G,A) \to \operatorname{Hom}(G,B) \to \operatorname{Hom}(G,C) \to \operatorname{Ext}(G,A) \to \operatorname{Ext}(G,B) \to \operatorname{Ext}(G,C) \to 0.$$

(2)
$$0 \to \operatorname{Hom}(C,G) \to \operatorname{Hom}(B,G) \to \operatorname{Hom}(A,G) \to \operatorname{Ext}(C,G) \to \operatorname{Ext}(B,G) \to \operatorname{Ext}(A,G) \to 0.$$

Using the right-exactness of Ext, Fulp and Griffith were able to improve Theorem 2.1:

Theorem 2.6 ([10]). The following are equivalent for a group G in \mathfrak{L} :

- (1) $G \cong \mathbb{R}^n \oplus \mathbb{T}^{\mathfrak{m}}$ where n is a nonnegative integer and \mathfrak{m} is a cardinal.
- (2) $\operatorname{Ext}(C,G) = 0$ for all connected groups C in \mathfrak{L} .

A group G in $\mathfrak L$ is called a topological torsion group if $\lim_{n\to\infty} n! x=0$ for all $x\in G$. Robertson [16] established several characterizations of topological torsion groups including the following:

THEOREM 2.7 ([16]). A group G in \mathfrak{L} is a topological torsion group if and only if both G and \widehat{G} are totally disconnected.

Now let $\{G_i : i \in I\}$ be a collection of groups in \mathfrak{L} and let H_i be a compact open subgroup of G_i for every $i \in I$. Then the *local direct product* of the groups G_i with respect to the subgroups H_i is defined to be the group

$$G = \left\{ (x_i) \in \prod_{i \in I} G_i : x_i \in H_i \text{ for almost all } i
ight\}$$

and is topologized so that it contains $\prod_{i \in I} H_i$ (with its compact product topology) as an open subgroup (cf. [12, (6.16)]). The group G is in $\mathfrak L$ and is denoted by $LP_{i \in I}(G_i, H_i)$. Braconnier [2] and Vilenkin [18] proved independently that every topological torsion group G can be decomposed into a local direct product of its p-components

$$G_p = \left\{ x \in G : \lim_{n \to \infty} p^n x = 0 \right\}$$

belonging to different primes p:

Theorem 2.8 ([2], [18]). Let G be a topological torsion group and let H be any compact open subgroup of G. Then G_p is a closed subgroup of G for every prime p and G is isomorphic to the local direct product $LP_{p\in\mathbf{P}}(G_p,H_p)$.

Let p be a prime and G a group in \mathfrak{L} . Then G is called a *topological* p-group if $G = G_p$. If G contains a dense divisible subgroup, then G is said to be *densely divisible* (see [16]). The next result will be needed:

PROPOSITION 2.9 ([1]). Let G be a nontrivial topological p-group. If G is densely divisible, then G contains a closed subgroup D such that $D \cong F_p$ or $D \cong \mathbb{Z}(p^{\infty})$.

3. Splitting *-pure extensions

For groups A and C in \mathfrak{L} , let *Pext(C,A) denote the set of elements $E \in \operatorname{Ext}(C,A)$ such that E is equivalent to some *-pure extension of A by C. Then *Pext(C,A) $\subseteq \operatorname{Pext}(C,A)$ and *Pext(C,A) = 0 if and only if every *-pure extension of A by C splits (cf. [13]).

Lemma 3.1. Let A and C be groups in \mathfrak{L} . Then:

- (1) If C is torsion-free, then *Pext(C, A) = Ext(C, A).
- (2) If $A = H \oplus K$ for some groups H and K in \mathfrak{L} and *Pext(C, A) = 0, then *Pext(C, H) = 0.

PROOF. (1) Suppose $E:0\to A\stackrel{\phi}{\longrightarrow} B\to C\to 0$ is an extension in $\mathfrak L$ where C is torsion-free. Then E is pure and C[n]=0 for every positive integer n. Since ϕ is proper and injective, each map $\phi|_{A[n]}:A[n]\to B[n]$ is proper. It follows that each sequence $0\to A[n]\to B[n]\to C[n]\to 0$ is proper exact, hence E is *-pure.

(2) Let
$$E: 0 \to H \xrightarrow{\psi} B \to C \to 0$$
 be a *-pure sequence. Then

$$E': 0 \to H \oplus K \to B \oplus K \to C \to 0$$

is an extension in $\mathfrak L$ and $0 \to H[n] \oplus K[n] \to B[n] \oplus K[n] \to C[n] \to 0$ is proper exact for all positive integers n. If the sequence E' splits, then $\psi(H) \oplus K$ is a direct summand of $B \oplus K$. But then $\psi(H)$ is a direct summand of B (see the proof of [1, Lemma 9.11]), hence the sequence E splits.

The proof of [13, Theorem 4.3(1)] shows the following:

PROPOSITION 3.2. If a group G in $\mathfrak L$ satisfies *Pext(C,G)=0 for all connected groups C in $\mathfrak L$, then there is a closed subgroup H of G such that $G=G_0\oplus H$ and $G_0\cong \mathbb R^n\times \mathbb T^m$ for some nonnegative integer n and cardinal m.

Let $E:0\to A\stackrel{\phi}{\longrightarrow} B\to C\to 0$ be a proper exact sequence in $\mathfrak L$ and $\alpha\in \operatorname{Hom}(A,G)$ where G is a group in $\mathfrak L$. Then there is a standard pushout diagram for α and ϕ

(cf. [9, Proposition 2.5]). Recall that $X = (G \oplus B)/N$ where $N = \{(-\alpha(a), \phi(a)) : a \in A\}$ is a closed subgroup of $G \oplus B$, $\phi' : g \mapsto (g, 0) + N$ and $\pi' : (g, b) + N \mapsto \pi(b)$. Further, αE is a proper exact sequence in $\mathfrak L$ (see [9, p. 350]). The next result will be useful:

LEMMA 3.3. Let $E: 0 \to A \xrightarrow{\phi} B \xrightarrow{\pi} C \to 0$ be a proper exact sequence in $\mathfrak L$ such that A is divisible and B[n] is σ -compact for all positive integers n. Suppose that G is a group in $\mathfrak L$ and $\alpha \in \operatorname{Hom}(A,G)$. Then both E and αE are *-pure.

PROOF. Let n be a positive integer. The exact sequence E is pure because A is divisible, therefore the induced sequence

$$E_n:0 o A[n]\stackrel{\phi|_{A[n]}}{=} B[n]\stackrel{\pi|_{B[n]}}{=} C[n] o 0$$

is exact. The map $\phi|_{A[n]}$ is proper and since B[n] is σ -compact, $\pi|_{B[n]}$ is proper by the open mapping theorem (see [12, (5.29)]), hence E_n is proper exact. Therefore, E is *-pure. The maps α and ϕ have a standard pushout diagram

and αE is proper exact. Since E is pure, the sequence αE is pure ([11, Lemma 26]), hence the induced sequence $(\alpha E)_n: 0 \to G[n] \to X[n] \to C[n] \to 0$ is exact. We need to show that $(\alpha E)_n$ is proper exact. Notice that the continuous surjective homomorphism $\varphi = \pi'|_{X[n]}: X[n] \to C[n]$ is open if and only if the induced map $\overline{\varphi}: X[n]/\ker \varphi \to C[n]$ is an isomorphism in $\mathfrak L$ (cf. [12, p. 41]). The group $N = \{(-\alpha(a), \phi(a)): a \in A\}$ is divisible and therefore pure in $G \oplus B$, hence $X[n] = ((G \oplus B)/N)[n] = (G[n] \oplus B[n] + N)/N$. Notice that both $G[n] \oplus B[n] + N$ and $G[n] \oplus 0 + N$ are locally compact since X[n] and $\ker \varphi = (G[n] \oplus 0 + N)/N$ are locally compact ([12, (5.25)]). The group $X[n]/\ker \varphi$ is equal to

$$\frac{(G[n]\oplus B[n]+N)/N}{(G[n]\oplus 0+N)/N}\cong \frac{G[n]\oplus B[n]+N}{G[n]\oplus 0+N}=\frac{(0\oplus B[n])+(G[n]\oplus 0+N)}{G[n]\oplus 0+N}$$

(cf. [12, (5.35)]) and by the second isomorphism theorem in \mathfrak{L} (see [9, Theorem 3.3]), the latter group is isomorphic to

$$\frac{0 \oplus B[n]}{(0 \oplus B[n]) \cap (G[n] \oplus 0 + N)} = \frac{0 \oplus B[n]}{0 \oplus \phi(A[n])} \cong C[n]$$

since B[n] is σ -compact. Thus we have an isomorphism from $X[n]/\ker \varphi$ to C[n] given by $((g,b)+N)+\ker \varphi \mapsto \pi(b)$ $(g\in G[n],b\in B[n])$. Since this map coincides with $\overline{\varphi}$ it follows that $\varphi:X[n]\to C[n]$ is open. Therefore, αE is *-pure.

PROPOSITION 3.4. Let G be a totally disconnected group in $\mathfrak L$ such that $\operatorname{Ext}(\widehat{\mathbb Q},G)=0$. Then G is a topological torsion group.

PROOF. By Theorem 2.7, it suffices to show that \widehat{G} is totally disconnected. To prove this, we argue as in the proof of [14, Theorem 2.7 (ii) \Rightarrow (iii)]. First, notice that the quotient G/B(G) is discrete (cf. [12, (9.26)(a)]) and torsion-free, and that (\mathbb{Q}/\mathbb{Z}) is compact since \mathbb{Q}/\mathbb{Z} is discrete ([12, (23.17)]). The proper exact sequence $0 \to B(G) \to G \to G/B(G) \to 0$ gives rise to the exact sequence $0 = \operatorname{Ext}(\widehat{\mathbb{Q}}, G) \to \operatorname{Ext}(\widehat{\mathbb{Q}}, G/B(G)) \to 0$. But then exactness of the sequence

$$0 = \operatorname{Hom}((\mathbb{Q}/\mathbb{Z})\widehat{\ \ }, G/B(G)) \to \operatorname{Ext}(\widehat{\mathbb{Z}}, G/B(G)) \to \operatorname{Ext}(\widehat{\mathbb{Q}}, G/B(G)) = 0$$

yields $G/B(G) \cong \operatorname{Ext}(\widehat{\mathbb{Z}}, G/B(G)) = 0$ by Proposition 2.3, thus G coincides with B(G). Since \widehat{G}_0 is the annihilator of B(G) in \widehat{G} (cf. [12, (24.17)]), it follows that \widehat{G} is totally disconnected.

The following lemma will be needed:

LEMMA 3.5 [14, Lemma 2.6]. Suppose that G is a group in $\mathfrak L$ possessing a compact open subgroup. Then G is densely divisible if and only if G/C is divisible for every compact open subgroup C of G.

PROPOSITION 3.6. Suppose that G is a topological torsion group such that $\operatorname{Ext}(X,G)=0$ for every torsion-free group X in $\mathfrak L$ which is either discrete or a topological torsion group. Then G is densely divisible.

PROOF. Our proof is similar to the second part of the proof of [8, Theorem 7]. Let C be a compact open subgroup of G and set A = G/C. Then for any torsion-free group X in $\mathfrak L$ which is discrete or a topological torsion group, exactness of the sequence

$$0 = \operatorname{Ext}(X, G) \to \operatorname{Ext}(X, A) \to 0$$

yields $\operatorname{Ext}(X,A)=0$. Recall that a discrete group H is said to be *cotorsion* if $\operatorname{Ext}(J,H)=0$ for every discrete torsion-free group J (see [6, page 232]). Then the group A is cotorsion. Since A is also torsion, we have $A=B\oplus D$ for some bounded group B and divisible group D (see [6, Corollary 54.4]). A bounded group is a direct sum of cyclic groups ([6, Theorem 17.2]), so if $B\neq 0$, then B contains a direct summand $B'\cong \mathbb{Z}/p^n\mathbb{Z}$ for some prime p and positive integer p. By [13, Example 2.4], there is a non-splitting

proper exact sequence

$$0 \rightarrow B' \rightarrow K \rightarrow L \rightarrow 0$$

in $\mathfrak L$ where L is torsion-free and $\widehat L$ is a p-group, hence $\widehat L$ is a topological torsion group. By Theorem 2.7, L is a topological torsion group and we have $\operatorname{Ext}(L,A)=0$. But then Theorem 2.4 shows that $\operatorname{Ext}(L,B')=0$ which is impossible. Therefore B=0 and it follows from Lemma 3.5 that G is densely divisible. \square

Let $\mathfrak C$ denote the class of groups X in $\mathfrak L$ such that X is connected or X is a torsion-free group which is either discrete or a topological torsion group. Then the groups G in $\mathfrak L$ having the property that every *-pure extension of G by a group in $\mathfrak C$ splits can be characterized as follows:

THEOREM 3.7. A group G in $\mathfrak L$ satisfies *Pext(X,G)=0 for all groups X in $\mathfrak L$ if and only if $G\cong\mathbb R^n\times\mathbb T^m$ for some nonnegative integer n and cardinal m.

PROOF. Sufficiency follows from Theorem 2.1. Conversely, suppose $^*\mathrm{Pext}(X,G)=0$ for all groups X in $\mathfrak C$. By Proposition 3.2, we have $G=G_0\oplus H$ where $G_0\cong\mathbb R^n\times\mathbb T^m$ for some nonnegative integer n and cardinal $\mathfrak m$. Due to Lemma 3.1(ii), $^*\mathrm{Pext}(X,H)=0$ for all groups X in $\mathfrak C$. Then by Lemma 3.1(i), Proposition 3.4 and Proposition 3.6, H is a densely divisible topological torsion group. By Theorem 2.8, H can be identified with a local direct product of its p-components

$$H_p = \left\{ x \in H : \lim_{n \to \infty} p^n x = 0 \right\}$$

belonging to different primes p. Assume $H \neq 0$. Then there exists a prime p such that $H_p \neq 0$. Since the projection map $H \to H_p$ is continuous, H_p is densely divisible, so by Proposition 2.9 it contains a closed subgroup D such that $D \cong F_p$ or $D \cong \mathbb{Z}(p^\infty)$. In either case, D is a divisible σ -compact group in \mathfrak{L} ([12, (10.5)]). For the inclusion map $\alpha: D \to H$ and a connected group X in \mathfrak{L} , consider the exact sequence

$$0 = \operatorname{Hom}(X, H/D) \to \operatorname{Ext}(X, D) \xrightarrow{\alpha_*} \operatorname{Ext}(X, H).$$

To show that $\operatorname{Ext}(X,D)=0$, let $E:0\to D\stackrel{\phi}{\longrightarrow} F\to X\to 0\in\operatorname{Ext}(X,D)$. The group $F/\phi(D)\cong X$ is σ -compact since it is connected ([12, (9.14)]) and $\phi(D)$ is σ -compact, hence F is σ -compact ([17, Theorem 6.10(c)]) and it follows that every group F[n] is σ -compact. By Lemma 3.3, $\alpha_*(E)=\alpha E$

is a *-pure extension, so it splits. Since α_* is injective, E splits as well and we obtain $\operatorname{Ext}(X,D)=0$. But then Theorem 2.6 shows that D is connected, a contradiction. Consequently, H=0 and we have $G\cong\mathbb{R}^n\times\mathbb{T}^m$, as desired.

4. Injective and projective properties

A group G in $\mathfrak L$ is called *pure injective in* $\mathfrak L$ if it has the injective property relative to all pure extensions in $\mathfrak L$, that is, if for every pure proper exact sequence $0 \to A \to B \to C \to 0$ in $\mathfrak L$ and every $\alpha \in \operatorname{Hom}(A,G)$ there is a $\beta \in \operatorname{Hom}(B,G)$ such that the diagram

is commutative. Similarly, we call a group in $\mathfrak{L}*-pure$ *injective* in \mathfrak{L} if it has the injective property relative to all *-pure extensions. Then we have:

Theorem 4.1. The following are equivalent for a group G in \mathfrak{L} :

- (1) G is *-pure injective in \mathfrak{L} ;
- (2) *Pext(X, G) = 0 for all groups X in \mathfrak{L} ;
- (3) $G \cong \mathbb{R}^n \oplus \mathbb{T}^m$ where n is a nonnegative integer and m is a cardinal.

PROOF. Suppose that G is *-pure injective in \mathfrak{L} . Then every *-pure extension $0 \to G \to B \to X \to 0$ splits because there is a commutative diagram

Consequently, (1) implies (2). By Theorem 3.7, (2) implies (3). The groups of the form $\mathbb{R}^n \times \mathbb{T}^m$ are injective in \mathfrak{L} (Theorem 2.1), hence (3) implies (1). \square

By the theorem above, the *-pure injectives in $\mathfrak L$ are exactly the injectives in $\mathfrak L$. As an immediate consequence, we obtain a complete description of the pure injectives in $\mathfrak L$. This extends [14, Theorem 2.7] and shows that the result on discrete and compact injectives in $\mathfrak L$ as stated in [7, Proposition 8] is incorrect.

COROLLARY 4.2. The following are equivalent for a group G in \mathfrak{L} :

- (1) G is pure injective in \mathfrak{L} ;
- (2) Pext(X, G) = 0 for all groups X in \mathfrak{Q} ;
- (3) $G \cong \mathbb{R}^n \oplus \mathbb{T}^m$ where n is a nonnegative integer and m is a cardinal.

Recall that a proper exact sequence $E: 0 \to A \to B \to C \to 0$ in $\mathfrak L$ is said to be *topologically pure* if the induced sequence

$$0 o \overline{nA} o \overline{nB} o \overline{nC} o 0$$

is proper exact for all positive integers n (see [13]). Pontrjagin duality shows that the sequence E is topologically pure if and only if its dual sequence

 $0 \to \widehat{C} \to \widehat{B} \to \widehat{A} \to 0$

is *-pure (see [13, Corollary 2.6]). We call a group G in $\mathfrak L$ topologically pure projective in $\mathfrak L$ if it has the projective property relative to all topologically pure extensions, in other words, if for every topologically pure exact sequence $0 \to A \to B \to C \to 0$ and every $\gamma \in \operatorname{Hom}(G,C)$ there is a $\delta \in \operatorname{Hom}(G,B)$ such that the diagram

is commutative. Then dualization of Theorem 4.1 yields the following result which extends [13, Theorem 4.4(3)]:

COROLLARY 4.3. The following are equivalent for a group G in \mathfrak{L} :

- (1) G is topologically pure projective in \mathfrak{L} ;
- (2) every topologically pure sequence $0 \rightarrow A \rightarrow B \rightarrow G \rightarrow 0$ splits;
- (3) $G \cong \mathbb{R}^n \oplus \bigoplus_{\mathfrak{m}} \mathbb{Z}$ where n is a nonnegative integer and \mathfrak{m} is a cardinal.

Acknowledgments. The author would like to thank the referee for the valuable comments and suggestions which helped to improve this paper.

REFERENCES

- D. L. Armacost, The Structure of Locally Compact Abelian Groups, Marcel Dekker Inc., New York, 1981.
- [2] J. Braconnier, Sur les groupes topologiques localement compacts, J. Math. Pures Appl., N.S. 27 (1948), pp. 1–85.

- [3] J. DIXMIER, Quelques propriétés des groupes abéliens localement compacts, Bull. Sci. Math. (2) 81 (1957), pp. 38–48.
- [4] D. N. DIKRANJAN, I. R. PRODANOV and L. N. STOYANOV, Topological Groups: Dualities and Minimal Group Topologies, Marcel Dekker Inc., New York, Basel, 1989.
- [5] R. D. ENGELKING, General Topology, revised and completed edition, Heldermann Verlag, Berlin, 1989.
- [6] L. Fuchs, Infinite Abelian Groups, Vol. I, Academic Press, New York, 1970.
- [7] R. O. Fulp, Homological study of purity in locally compact groups, Proc. London Math. Soc. 21 (1970), pp. 501-512.
- [8] R. O. Fulp, Splitting locally compact abelian groups, Michigan Math. J. 19 (1972), pp. 47–55.
- [9] R. O. Fulp and P. Griffith, Extensions of locally compact abelian groups I, Trans. Amer. Math. Soc. 154 (1971), pp. 341–356.
- [10] R. O. Fulp and P. Griffith, Extensions of locally compact abelian groups II, Trans. Amer. Math. Soc. 154 (1971), pp. 357–363.
- [11] P. A. GRIFFITH, Infinite Abelian Group Theory, The University of Chicago Press, Chicago and London (1970).
- [12] E. HEWITT and K. Ross, Abstract Harmonic Analysis, Vol. I, second edition, Springer Verlag, Berlin, 1979.
- [13] P. LOTH, Topologically pure extensions, in: Abelian Groups, Rings and Modules, Proceedings of the AGRAM 2000 Conference in Perth, Western Australia, July 9-15, 2000, Contemp. Math. 273, Amer. Math. Soc. (2001), pp. 191–201.
- [14] P. LOTH, Pure extensions of locally compact abelian groups, Rend. Sem. Mat. Univ. Padova 116 (2006), pp. 31–40.
- [15] M. Moskowitz, Homological algebra in locally compact abelian groups, Trans. Amer. Math. Soc. 127 (1967), pp. 361–404.
- [16] L. C. Robertson, Connectivity, divisibility and torsion, Trans. Amer. Math. Soc. 128 (1967), pp. 482–505.
- [17] M. STROPPEL, Locally Compact Groups, EMS Textbooks in Mathematics, Eur. Math. Soc., Zürich, 2006.
- [18] N. VILENKIN, Direct decompositions of topological groups I, Mat. Sb., N. S. 19 (61) (1946), pp. 85–154. [English translation from the Russian by E. Hewitt in A.M.S. Translations, Series 1, Volume 23, Providence, Rhode Island (1950).]

Manoscritto pervenuto in redazione il 9 agosto 2013.