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ABSTRACT - Let R be a finite commutative ring with nonzero identity. The unit graph
of R is the graph obtained by setting all the elements of R to be the vertices and
defining distinct vertices x and y to be adjacent if and only if x + y is a unit ele-
ment of R. In this paper, a classification of finite commutative rings with nonzero
identity in which their unit graphs have domination number less than four is given.
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1. Introduction

Throughout the paper by a graph we mean a finite undirected graph
without loops or multiple edges. Also, all rings are finite commutative with
nonzero identity and all fields are finite. Therefore, in this paper, we re-
strict ourselves to the finite case, although some of the results hold true in
the infinite case. For undefined terms and concepts, the reader is referred
to [12] and [2].

Let G be a graph with vertex set V. A subset D of V is called a dom-
mating set of G if every vertexin V \ Dis adjacent to at least a vertexin D.
In other words, D dominates the vertices outside D. A y-set of G is a
minimum dominating set of G, that is, a dominating set of G whose car-
dinality is minimum. The domination number of G, denoted by (G), is the
cardinality of a y-set of G. The study of domination has long been a topic of
interest both in graph theory and complexity theory. It was first con-
sidered by Ore who introduced the concept of minimum dominating sets of
vertices in a graph. The dominating set problem concerns testing whether
(@) < k for a given graph G and integer k. The problem is a classical NP-
complete decision problem in computational complexity theory (see, for
example, [3]). Therefore, it is believed that there is no efficient algorithm
that finds a smallest dominating set of a given graph. The first volume of
the two-volume book by Haynes, Hedetniemi and Slater [5, 6] provides a
comprehensive introduction to “domination in graphs”.

In this paper, we consider graphs which are generated by rings, known
as unit graphs. We then give a classification of rings in which their unit
graphs have domination number less than four.

2. Preliminaries and the statement of the main result

Let n be a positive integer and 7, be the ring of integers modulo n.
Grimaldi [4] defined a graph G(7,,) based on the elements and units of 7,,.
The vertices of G(7.,) are the elements of '/, and distinct vertices x and y
are defined to be adjacent if and only if & + ¥ is a unit of Z,,. For a positive
integer m, it follows that G(Zz,,) is a p(2m)-regular graph, where ¢ is the
Euler phi function. In case m > 2, G(Zg,,) can be expressed as the union of
¢(2m)/2 Hamiltonian cycles. The odd case is not very easy, but the
structure is clear and the results are similar to the even case. We recall
that a cone over a graph is obtained by taking the categorical product of the
graph and a path with a loop at one end, and then identifying all the ver-
tices whose second coordinate is the other end of the path. When p is an
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odd prime, G(Z,) can be expressed as a cone over a complete partite graph
with (p — 1)/2 partitions of size two. This leads to an explicit formula for
the chromatic polynomial of G(Z,). The paper [4] also concludes with some
properties of the graphs G(Z,~), where p is a prime number and m > 2.

Recently, Ashrafi et al. [1] generalized G(7,,) to G(R), the unit graph of
R, where R is an arbitrary ring and studied the properties of this graph.
Later, more properties of the unit graph of a ring and its applications were
given in [7, 8, 9]. Let us first define this notion.

DEFINITION 2.1. Let R be aring and U(R) be the set of unit elements of
R.The unit graph of R, denoted by G(R), is the graph obtained by setting all
the elements of R to be the vertices and defining distinct vertices x and y to
be adjacent if and only if x + y € U(R).

For a given ring R, if we omit the word “distinct” in the definition of the
unit graph G(R), we obtain the closed unit graph of R which is denoted by
G(R). This graph may have loops and if 2 ¢ U(R), then G(R) = G(R).

The graphs in Fig. 1 are the unit graphs of the rings indicated.

0 0 1 10 11 0
1 2
1 2 3 2 01 00
G(Zg) G(Z4) G(Z2 X Zz) E(Zg)

Fig. 1. — The unit graphs of some specific rings.

It is easy to see that, for given rings R and S, if B = S as rings, then
G(R) = G(S) as graphs. This point is illustrated in Fig. 2, for the unit
graphs of two isomorphic rings 73 x Zg and Zs.

00 0
11 21 5 1
10 20 = 2 4
01 3
G(Z3 X Zg) G(ZG)

Fig. 2. — The unit graphs of two isomorphic rings.
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For a graph G, let V() denote the set of vertices of G. Let G; and G3 be
two vertex-disjoint graphs. The categorical product of G; and G is de-
noted by Gy x Ge. That is, V(G1 x Gg) := V(G1) x V(Gz) and two distinct
vertices (x,y) and (&', y') are adjacent if and only if x is adjacent to 2’ in Gy
and y is adjacent to i’ in Gz. Clearly, for given rings R; and Rz, two distinct
vertices (x,7) and (',7') of G(R;) x G(R3) are adjacent if and only if x is
adjacent to «’ in G(R;) and y is adjacent to ' in G(Rs). This implies that
G(Rl) X G(Rz) = G(R1 X Rz)

In Fig. 3, we illustrate the above point for the direct product of 7y and 73.

00 0
0 0 11 21 5 1
. , X ~ 10 2 =~ 2 4
1
01 3
E(Zg) E(Zg) G(Zg X ZQ) G(Zﬁ)

Fig. 3. — The categorical product of two closed unit graphs.

We are now in a position to state the main result of this paper.

THEOREM 2.2.  Let R be a ring. Then the following statements hold true
for the unit graph G(R):

1) Y(GR)) =11if and only if R is a field.

) Y(GR)) =2 if and only if either R is a local ring which is not a
field, R is isomorphic to the product of two fields such that only one
of them has characteristic 2, or R = 7o x I, where I is a field.

3) Y(G(R)) = 3 if and only if R is not isomorphic to the product of two
fields such that only one of them has characteristic 2, and
R =~ Ry X Ry, where for 1 =1,2, R; is a local ring with maximal
ideal m; in such a way that R;/m; 2 7.

The rest of the paper is organized as follows. In Section 3, we deal with
unit graphs associated with products of fields. By the results of this sec-
tion, we give a proof for parts (1) and (2) of Theorem 2.2. In Section 4, we
deal with unit graphs associated with products of local rings. The results of
this section lead to a proof for part (3) of Theorem 2.2. In both sections, we
state and prove some lemmas that will be used in the proof of Theorem 2.2.
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Furthermore, for the convenience of the reader, we state without proof a
few known results in the form of propositions which will be used in the
proofs. We also recall some definitions and notations concerning graphs for
later use.

3. Unit graphs associated with products of fields

We start this section by unit graphs associated with fields. The fol-
lowing lemma gives us the domination number of such graphs.

LEMMA 3.1.  Let ¥ be a field. Then y(G(IF)) = 1.

Proor. Since IFis afield, every nonzero element of I is a unit element of
I. That is, for every « € '\ {0}, =« + 0 € U(I) and so « is adjacent to 0.
Hence, every nonzero element of F' is adjacent to 0 and so D = {0} is a
dominating set of G(I¥) with, of course, minimum cardinality. Therefore, we
conclude that y(G(I) = 1. O

The degrees of all vertices of a unit graph is given by the following
proposition. We recall that for a graph G and for a vertex x of G, the degree
of x, denoted by deg(x), is the number of edges of G incident with .

ProrostTion 3.2 ([1], Proposition 2.4). Let R be a ring. Then the
following statements hold true for the unit graph G(R):

Q) If2 ¢ U(R), then deg(x) = |U(R)| for every x € R.
Q) If 2 UR), then deg(x)=|UR)| —1 for every x <€ UR) and
deg(x) = |U(R)| for every x € R\ U(R).

We are now ready to prove part (1) of Theorem 2.2, that is:

THEOREM 3.3. Let R be a ring. Then y(G(R)) = 1 if and only if R is a
field.

Proor. (=): Let y(G(R)) = 1 and consider D = {x} as a y-set of G(R).
We claim that deg(x) = |U(R)|. In order to prove the claim, we first suppose
that © = 0. In this case, * ¢ U(R) and so by Proposition 3.2, we have
deg(x) = |U(R)|. Second, we suppose that x # 0. Note that we have x = —x;
otherwise, since D = {x} is a dominating set of G(R), —x is adjacent to x and
so —x +a = 0 € U(R), which is a contradiction. Hence, 2x = 0, which to-
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gether with « # 0, imply that 2 ¢ U(R). Now, by Proposition 3.2(1), we
conclude that deg(x) = |U(R)|. Therefore, the claim holds true. On the
other hand, since D = {x} is a dominating set of G(R), every element of
R\ {x} is adjacent to x and so deg(x) = |R| — 1. Therefore, |U(R)| =
|R| — 1, which implies that R is a field.

(«<=): This implication, by Lemma 3.1, is obvious. O

We now state and prove some results that will be needed in the proof of
part (2) of Theorem 2.2. In Lemmas 3.4 and 3.6, we give a lower bound for
the domination number of two classes of unit graphs associated with pro-
ducts of two fields. Lemma 3.5 is useful for this purpose.

LEmMA 3.4. Let Iy and Iy be two fields in which both of them
have characteristic 2 and none of them 1is isomorphic to Ze. Then
PG(Fy x F2)) > 3.

PrOOF. Suppose, in contrary, that y(G(I'; x I2)) < 2. Therefore, the
unit graph G(IF; x IY3) has a dominating set in the form of D =
{(1,22), (x3,4)}, Where x1,23 € Iy, a2,24 € Fo and (xy1,x2) # (3, 24).
Hence, we have either x; # a3 or xg # 4.

Case 1: Suppose that x; # x3. The assumption Char(lF';) = Char(fy) =2
implies that

(21, 24) + (21, 22) = (0,24 + 22) ¢ U(I'; x I'2) and
(1, 24) + (23, 4) = (1 + x3,0) ¢ U1 x ).

Hence, (11, x4) is not adjacent to the elements of D. Therefore, (x1,x4) € D
and so (x1,x4) = (@1, 22) or (r1,x4) = (x3,24). Now, &1 # xg implies that
the second equality does not hold and so the first one holds. Therefore,
we have x4 = a2 and so D = {(xy,x2), (x3,22)}. Let a € '} be given. Then
Char(Fy) = 2 implies that

(@, 22) + (1, x2) = (@ + 21,0) ¢ U(Fy x Fy) and
(@, x2) + (3, 22) = (@ + 3,0) ¢ U(Fy x Fy).

Hence, (a, x2) is not adjacent to the elements of D. Therefore, (a,x2) € D
and so (a,x2) = (x1,x2) or (a,x2) = (x3,a2). This implies that a = x; or
a = x3. Since a € Iy is arbitrary, we conclude that 'y = {x;,a3} = 7o,
which is a contradiction.
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Case 2: Suppose that xs # x4. By a similar argument as in Case 1, this
case leads to Iy = {xg, x4} = 7y, which is again a contradiction.

Therefore, we conclude that y(G(IF; x Fy)) > 3, as required. O

LeEmMA 3.5.  Let 'y and Ty be two fields. If Char(l'y) # 2 and a € Ty,
then D1 = {(a,0),(—a,0)} is not a dominating set of the unit graph
G(I'; x Fg). If Char(ly) # 2 and b € ¥y, then D2 = {(0,b),(0,—b)} is not
a dominating set of the unit graph G(I'; x I9).

Proor. We prove the first part. The proof of the second part is similar.
Suppose, in contrary, that D; = {(a,0), (— a,0)} is a dominating set of the
unit graph G(I'; x [2). Since Char(l';) # 2, |'1| > 3 and so we may choose
x € Iy for which x # @ and x # — a. Now, we have

(,0)+ (a,0) = (x +a,0) ¢ U(I'; x I'z) and
(@,0)+(—a,0) = (@ —a,0) ¢ Ul x Fy).

Hence, (x,0) is not adjacent to the elements of D;. Therefore, (x,0) € D,

and so (x,0) = (@,0) or (x,0) = (— a,0). Hence, x = a or x = — a, which
contradicts x # a and x # — a. Therefore, Dy is not a dominating set of the
unit graph G(IF; x [Fg). O

LEmMMA 3.6. Let Iy and Fe be two fields in which none of them has
characteristic 2. Then y(G(FF; x Fg)) > 3.

ProoF. Suppose, in contrary, that y(G(F; x ) < 2. Therefore, the
unit graph G(I'; x Fe) has a dominating set in the form of D =
{(21, 22), (3,4)}, Where wxy1,23 € [y, ®g,204 € Uz and (xq,x2) # (3, 24).
Note that

(=21, —x4) + (01, 22) = (0, — 24 + 22) ¢ U(I'; x I2) and
(=1, —xg) + (x3,24) = (— 21 +3,0) & Uy x [g).

Hence, (— 1, — x4) is not adjacent to the elements of D. Therefore,
(—a1,—xg) €D and so (—x1,—x4) = (01,22) or (—x1, —xg) = (3,%4).
Also,

(— 3, —a2) + (1,%2) = (— a3 +21,0) ¢ U(I'; x I'z) and

(— 3, —a2) + (x3,04) = (0, — a2 + a4) ¢ Uy x ['y).



180 S. Kiani - H. R. Maimani - M. R. Pournaki - S. Yassemi

Hence, (— a3, —x2) is not adjacent to the elements of D. Therefore,
(—a3,—x2) €D and so (— 3, —x2) = (x1,22) or (—x3,—x2) = (T3,%4).
Hence, one of the following four possibilities occurs:

(D) (=1, —ag) = (01, 22) and (— a3, —&2) = (1, 22),
(2) ( — &1, 7'%'4) - (903,.%'4) and ( — X3, 7'%.2) = (%37‘%4)7
(3) ( — &1, —-%'4) = (903,904) and ( — X3, _xZ) = ('%'17'%2),01'

4) (—wx1,—xqg) = (@1, 22) and (— a3, —x2) = (3, T4).

The first two cases lead to x; = X2 = x5 = x4 = 0, which contradicts
(21, 22) # (13, 24). The third case leads to x1 = — a3 := a and x2 = a4 = 0.
Therefore, D = {(a,0),(— @,0)}, which contradicts Lemma 3.5. The
fourth case leads to x; =x3 =0 and xs = —ax4 := b. Therefore, D =
{(0,0),(0, — b)}, which again contradicts Lemma 3.5. Therefore, we con-
clude that y(G(I'; x Fy)) > 3, as required. O

In Lemma 3.12, we prove that the domination number of unit graphs
associated with products of three fields is equal to four. The following
results are useful for this purpose.

We recall that a bipartite graph is one whose vertex set is partitioned
into two (not necessarily nonempty) disjoint subsets, called partite sets,
in such a way that the two end vertices for each edge lie in distinct
partite sets.

ProrosiTION 3.7 ([1], Theorem 3.5). Let R be a ring and m be a
maximal ideal of R such that |R/m| = 2. Then the unit graph G(R) is a
bipartite graph with partite sets Vi = mand Vo = R\ m.

LEmMMA 3.8.  Let Iy, Iy and I'g be three fields such that one is isomorphic
to 72, one is not isomorphic to 72 and the latter one has characteristic 2.
Then y(G(Fl x [fg x 1‘4{3)) >4

Proor. Without loss of generality, we may assume that I 2 Zs,
Char(IFg) = 2 and Fg = Zs. Since '} x Iy x [F3is a ring with maximal ideal
Iy x Fg x {0} such that |(I'; x Fa x 5)/(Fy x ¥ x {0})| = 2, Proposition
3.7 implies that the unit graph G(I'; x e x IFg) is bipartite with partite
sets Vi = '] x g x {0} and Vi = [y x Iy x {1}. This implies that |V;| =
|V2‘ = |F1 X Fg‘

Assume now, in contrary, that (G(IF'; x I'g x I'3)) < 3 and consider D
with |D| = 3 as a dominating set of G(IF; x Fy x F3). Note that |F| > 3,
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therefore |[I'; x 3] > 6 and so |Vi| = |Vz| > 6. Now, |D| =3 implies
that D cannot completely lie either in V; or Vo. Hence, D N'V; # () and
D NV, # (. This implies that either |[D N Vy| =1 or |D N V3| = 1. Without
loss of generality, suppose |D NV;| =1 1is the case. Since DNV; CV; =
Iy x Fg x {0}, we may consider DNV; = {(x,y,0)} with € [; and
y € Fy. Since |F7| > 3, we may choose three distinct elements x1, x and x3
of ;. Therefore, (x1,¥,1), (x2,%,1) and (x3,%,1) are three distinct ele-
ments of V,. But Char(Is) = 2 implies that for ¢ = 1,2, 3,

(xi7?/7 1) + (907?/;0) = (xi +.’)C,0, 1) ¢ U(Fl X FZ X FS)

and so (x;,y%,1) is not adjacent to (x,y,0). Hence, for i=1,2 3,
(x;,9,1) € D and so |D| > 4, which is a contradiction. This shows that
y(G(Fl X Fg X Fg)) Z 4, O

We need the following result from [11] for later use. Note that in [11],
the author has used a different notion of product. But it causes no problem
here as loops have no influence on the domination number. Here, K; de-
notes the graph with one vertex and no edges.

ProposiTION 3.9 ([11], Theorem 3.1 and Proposition 4.1). Let G and H
be two graphs. Then y(G x H) > y(G) + y(H) — 1. Moreover, if the equality
holds and y(G) = 1, then G = K1 and H is an edgeless graph.

LEmMa 3.10. Let R be a ring and ¥ be a field. Then y(GR x I)) >
2GR)).

Proor. By using Proposition 3.9, we conclude that
7(GR) x G(I)) > y(G(R)) + y(G(I)) — 1.

Note that, again by Proposition 3.9, if the equality holds, then since, by
Lemma 3.1, y(G(F)) = p(G(F)) = 1, we obtain that G(F') = K;, which is a
contradiction. Therefore, the equality does not hold, that is,

P(GR) % G(I)) > 7(GR)) + y(G(F)) — 1 = WG(R)).
Now, since for every ring S, 7(G(S)) = p(G(S)), we conclude that

HGR x ) = y(GR) x G(I)) > 7(G(R)) = y(G(R)),

as required. |
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LEMMA 3.11.  Let I'1, Fo and IF3 be three fields. Ifa € 'y, b € Fy and ¢ € I3
are nonzero elements, then D = {(0,0,0), (—a,—b,0), (a,0,—c), (0,b,¢)}
is a dominating set of the unit graph G(F; x Fg x F3).

Proor. A given element in (I'; x [ x I3) \ D has one of the following
forms, where « € ', ¥y € 'y and z € '3 are nonzero elements: either
(2¢,0,0),(0,9,0),(0,0,2), (x,y,0) withax # —aory # —b, (x,0,z) withx £ a
orz# —c¢, (0,y,2) withy £ borz #c,or (x,y,2).

For («x,0,0), we have

(,0,0) +(0,b,¢) = (x,b,c) € U(l'; x Iz x I'g)

and so (x, 0, 0) is adjacent to (0, b, ¢). By a similar argument, we obtain that
(0,%,0) is adjacent to (a, 0, — ¢) and (0,0, z) is adjacent to ( — a, — b, 0).
For (x,y,0) with « # — a or y # — b, we have either

(907?/70)"_(0/70,_6): (OC+G/,?/,—C) S U(Fl X FZ X F3) or
@,9,0)+(0,b,¢) = (x,y + b,c) € U("; x g x Fy).

This implies that (x,y,0) with  # — a or y # — bis adjacent to (a,0, — c) or
(0,0, ¢). By a similar argument, we obtain that (x,0,z) withax £ aorz # —c
is adjacent to (—a,—0,0) or (0,b,c). Also, (0,y,z) with y # b or z # ¢ is
adjacent to (— a,—0,0) or (a,0, —c).

Finally, for (x,, z), we have

(@,y,2)+(0,0,0) = (x,y,2) € Uy x g x [g)

and so (x,¥,2) is adjacent to (0,0, 0).
Therefore, D is a dominating set of the unit graph G(I'y x Fe x Ifg). O

Lemma 3.12. Let Iy, e and V3 be three fields. Then
HG(Fy x Fy x [F3)) = 4.

Proor. We first show that (G(I'; x Iy x I3)) > 4. In order to do this,
note that there are two possibilities: either at least two of Iy, I3 and I3, say
1 and IFe, have characteristic 2, or at least two of 'y, Fe and I3, say again Iy
and Fy, do not have characteristic 2.

First, assume that Char(t;) =2 and Char(Fy) = 2. Now, one of the
following cases may occur:

Case 1: Both of 'y and Iy are isomorphic to 7Zs. In this case, if
F3 = 79, then it is easy to see that p(G(F; x g x I3)) = 4. If g 2¢ Zs,
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then we have I'; = Zy, Char(l'y) = 2 and I3 22 Zs, and so by Lemma 3.8,
NGy x 'y x Ig)) > 4.

Case 2: One of ] or [y is isomorphic to Zg and the other one is not, say
'y =2 7o and Iy 2¢ 7. In this case, if '3 =2 Zs, then we have Char(I;) = 2,
IFo 22 72 and I3 =2 7, and so by Lemma 3.8, (G(I'; x Iy x I¥3)) > 4. If
'y 2¢ 7o, then we have [} = 7o, Char(Fy) = 2 and I3 2¢ 7, and so again by
Lemma 3.8, (G(I'; x Fy x ) > 4.

Case 3: None of I"; and Iy is isomorphic to Zg. In this case, by
using Lemmas 3.10 and 3.4, we obtain that p(G(I'; x Iy x Ig)) >
wWG(F1 x Fy)) >3 and so y(G(F; x Fe x F3)) > 4.

Second, assume that Char(lF;) # 2 and Char(Fy) # 2. In this case, by
using Lemmas 3.10 and 3.6, we obtain that »(G(I; x [y x F3)) >
WGy x F2)) > 3 and so p(G(F; x [Fe x I3)) > 4.

All in all, we have proven that p(G(F; x '3 x I3)) > 4 and in view of
Lemma 3.11, we conclude that y(G(I'; x Fg x IFg)) = 4, as required. O

In Lemma 3.16, we give a lower bound for the domination number of
unit graphs associated with rings which are products of more than two local
rings. The following results are useful for this purpose.

LemMA 3.13. Let [y,..., 5, be fields. If n >3, then y(G(I'y x - -+ x I¥),)) >
n+ 1

Proor. We prove the lemma by induction on n. By Lemma 3.12,
the inequality is true for » = 3 and we assume that it is true for n — 1. Now,
by using Lemma 3.10 and the induction hypothesis, we obtain that
WG(Fy x - x Fp)) > p(GFy x -+ - x Fp_1)) >0 and so p(G(Fy x - x ) >
n+ 1. O

LEMMA 3.14.  Let R be a ring. Then y(G(R/J(R))) < /(G(R)), where J(R)
denotes the Jacobson radical of R.

Proor. Let y(G(R)) =n and consider D = {x1,...,2,} as a y-set of
G(R). Among x; + J(R), ..., x, + J(R), choose distinct ones and call them
xy, +J(R),. .., x; +J(R). Note that {x;,..., 2, } C{x1,...,%,} and, in
particular, k£ < n. We now claim that D' = {x;, +J(R),...,x;, + J(R)}isa
dominating set of the unit graph G(R/J(R)). In order to prove the claim, let
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y+J(R) € (R/J(R)) \ D' be given. Therefore,y € R \ D and so there exists
2y € D such that y is adjacent to x, in G(R), that is, y + x, € U(R). This
implies that (y +J(R)) + (x, + J(R)) € UR/J(R)) and so y+ J(R) is
adjacent to x; 4+ J(R) in G(R/J(R)). But, x; + J(R) = ®;; + J(R) for some
1 <j <k. Hence, y + J(R) is adjacent to x;; +J(R) in G(R/J(R)) and so
the claim holds true. Therefore, we have Y(G(R/J(R)) <|D'|=k <n=
/G(R)). O

We note that Lemma 3.14 remains valid for every arbitrary proper
ideal of R, but in this paper we shall apply it in the above form.

REMARK 3.15. It is known that every finite commutative ring is iso-
morphic to a direct product of local rings (see [10, Page 95]). Thus for a
given ring R, we may write R = Ry x --- x R, where for every 1 < i < m,
R; is a local ring with maximal ideal m;. It is easy to see that

{Ryx xRy xmy xRy x--xR,|1<i<n}

isthe set of all maximal ideals of Ry x - -- x R,, and thus we conclude that the
Jacobson radical of R is isomorphic to J(Ry x -+ X Ry,) = 11y X - -+ X 11,.
Also, note that the functionf : Ry x --- X B, — (B1/my) X - -+ X (R, /my,),
given by f(ry,...,r,) = Oy +my,..., 7, +11,), is an epimorphism with
kerf = my x --- x 11, and thus we have

R Rl Xoee XRn Rl Rn
~ E_X.X

JR) “myx---xn, uy my,

LEmMA 3.16. Let R be a ring and in view of Remark 3.15, write
R=~=R; x--- xR, where for every 1 <1 <mn, R; is a local ring. If n > 3,
then y(G(R)) > n + 1.

Proor. Foreveryl <1 < mn,let nm; be the maximal ideal of R;. By using
Remark 3.15, we conclude that R/J(R) = F; x --- x ,,, where for every
1 <1 < n, It; is the field R;/m;. Now, by using Lemmas 3.14 and 3.13, we
conclude that y(G(R)) > y(GR/J(R))) = p(G(F; x --- x ) >n+1, as
required. O

The following three lemmas are needed for the proof of part (2) of
Theorem 2.2.

LEmMA 3.17.  Let R be a local ring with maximal ideal m and let x € R.
If x¢m, then x € UR). If x€m, then x+1¢€ UR). In particular,
D = {0,1} is a dominating set of the unit graph G(R).
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Proor. First, let « ¢ m. If & ¢ U(R), then (x) is a proper ideal of R and
since R is local, (x) C m. Hence, ¥ € m, which contradicts x ¢ m. There-
fore, x € U(R).

Second, let « € m. Then x + 1 ¢ m; otherwise, we obtain that 1 € m,
which is a contradiction. Now, by the previous case, x + 1 € U(R).

In particular, for a given a € R, if a ¢ m, then it is adjacent to 0 and if
a € m, then it is adjacent to 1. Therefore, D = {0,1} is a dominating set
of G(R). O

We recall that for a graph G and for a given vertex x € V(G), the
neighbor set of x is the set N(x) := {v € V(G) | v is adjacent to x}.

Lemma 3.18. Let Iy and Fs be two fields with Char(l;) =2 and
Char(l'y) # 2. If b € Iy is nonzero, then D = {(0,—b),(1,b0)} is a dom-
mating set of the unit graph G(IFy x Fy).

Proor. Since Char(l'y) =2, we may conclude that 2(1,1) = (0,2) ¢
U(Fy x Fg). Therefore, Proposition 3.2(1) implies that the degree of
every element of G(I'; x Iy) is equal to |U(I'; x Fg)| = |U(F)||U(Fy)| =
(1] = D(|Fg| — 1). In particular, we conclude that

IN©, = D) = [N(1L,0)] = (|F1| = D(|F2| — 1.

Also, for a given element (x,y) € 'y x [y, it is adjacent to both of (0, — b)
and (1, b) if and only if

(@, y) +(0,—b) = (x,y — b) € U(I"; x Fy) and
@y +0Q,0)=@+1,y+0b) € Ul x Iy),
if and only if « # 0, — 1 and y # b, — b. Therefore,
N@O,—b)NN1,b) = {(x,y) € 'y x Fa | x #0,—1 and y # b, — b}.
Since Char(l'y) # 2 and b € I¥5 is nonzero, we obtain that
INO, =) "N, b)| = (|F'1| = 2)(|I'| — 2).
Now, the inclusion-exclusion principle implies that

IN(O,—D)UN@,b)| =|N©O,—b)|+|N1,b)|— |N®O,—b)NN(Q,b)|
= 2(|F'| = D(|Fe| = 1) — (|I1] = 2)(| 2| — 2)
= [ [|Fg| — 2
—Fy x Fg| — 2.
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Since

0,—b)+(1,b) = (1,0) ¢ U(I"y x Iy),
(0, — b) and (1, b) are not adjacent and so (0, — b), (1,b) £ N(0, — b) UN(1, b).
This implies that N(0,—b) UN(,b) = ("1 x Fg) \ D. Therefore, every
element of (I'; x I9) \ D is adjacent to at least an element of D, which im-
plies that D is a dominating set of G(I'; x I's). O

LEmMMA 3.19.  Let IV be a field. Then D = {(0,0),(1,0)} is a dominating
set of the unit graph G(Zg x ).

ProOF. A given element in (Zg x ) \ D has one of the following forms,
where y1, Y2 € I¥ are nonzero elements: either (0,y1) or (1,¥2). Since

0,y1)+ 1,00 =1, y1) € U(Z2 x ) and
(1,92) +(0,0) = (1, y2) € U(Zz x IY),

(0,%7) is adjacent to (1,0) and (1, y2) is adjacent to (0,0). Therefore, D is a
dominating set of G(Zs x ). O

We are now ready to prove part (2) of Theorem 2.2, that is:

THEOREM 3.20. Let R be a ring. Then y(G(R)) = 2if and only if either R
1s a local ring which is not a field, R is isomorphic to the product of two

fields such that only one of them has characteristic 2, or R =2 7, x F, where
" is a field.

Proor. (=): Let y(G(R)) = 2. By Remark 3.15, we may write R =
Ry x -+ x Ry, whereforeveryl <1 <n, R;isalocal ring. If » > 3, then by
using Lemma 3.16, we conclude that 2 = p(G(R)) > n + 1 > 4, which is a
contradiction. Therefore, n < 2 and so either R =2 R, or R =2 Ry x Ry. In
the first case, R is a local ring which, by Lemma 3.1, is not a field. In the
second case, by using Proposition 3.9 and the fact that for every ring S,
?(G(S)) = »(G(S)), we may conclude that

2 =yG®)
= (G(Ry x Ry))
=p(G(Ry) x G(Ry))

> 9(G(Ry) + 7(G(R2)) — 1
= /(G(R1) + y(G(R)) — 1.
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Since for ¢ = 1,2, we have p(G(R;)) > 1, we obtain that
2 <Y(G(Ry) + y(G(Rg)) < 3,

which implies that either y(G(R1))+ y(G(R2)) =2 or y(G(R1)) + (G(R3)) = 3.
If (G(R1)) + y(G(R2)) = 3 is the case, then one of its terms is equal to
one and the other one is equal to two. For example, say y(G(R;)) = 2
and y(G(R3)) = 1. Therefore, by Theorem 3.3, we conclude that Ry := Iy
is a field and so R = R; x [Fe. Now, by Lemma 3.10, 2 = »(G(R)) =
WG(Ry x Fg)) > y(G(R1)) = 2, which is a contradiction and so this case
does not hold. Therefore, we have (G(R;)) + y(G(R2)) = 2. This implies
that y(G(R1)) = y(G(R3)) = 1. Therefore, by Theorem 3.3, we conclude that
R :=F; and Ry := Iy are fields and also R = ['; x IFo. Now, in view of
Lemmas 3.4 and 3.6, either R is isomorphic to the product of two fields
such that only one of them has characteristic 2, or R = 7 x F, where I is
a field.

(«): Let R be one of the rings in the statement of the theorem. It is
easy to see that R is not a field and so by Theorem 3.3, we conclude that
WG(R)) # 1. Now, Lemmas 3.17, 3.18 and 3.19 imply that R has a dom-
inating set with two elements and so y(G(R)) = 2. O

4. Unit graphs associated with products of local rings

We now state and prove some results that will be needed in the proof of
part (3) of Theorem 2.2.

We start by introducing the notion of a total dominating set. Let G be a
graph with vertex set V. A subset D of V is called a total dominating set of
G if every vertexin V is adjacent to at least a vertex in D. In other words, D
dominates not only vertices outside D but also vertices in D. A y;-set of G is
a minimum total dominating set of G, that is, a total dominating set of G
whose cardinality is minimum. The total domination number of G, denoted
by 7,(G), is the cardinality of a y;-set of G. It is obvious that (G) < y,(G).

In Lemma 4.4, we give the domination number and the total dom-
ination number of a class of unit graphs associated with products of two
local rings. The following lemmas are useful for this purpose.

LemmMa 4.1.  Let R be a local ring with maximal ideal m such that
|[R/m| =2 and let S be a local ring. Then y(GR x S)) < 4.
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PrOOF. Since R x S is a ring with maximal ideal m x S such that
|(R x S)/(m x S)| = 2, Proposition 3.7 implies that the unit graph G(R x S)
is bipartite with partite sets Vi = m x Sand Vo = (R\ m) x S.

We now claim that D = {(0,0), (0,1),(1,0),(1,1)} is a total dominating set
of G(R x S). In order to prove the claim, note that for every (a,b) € R x S,
we have either (a,b) € Vi =m x S or (a,b) € Vo = (R \ m) x S. We now
apply Lemma 3.17 to get the following observations. Let n be the maximal
ideal of S. In the first case, that is, (a,b) € m x S, if b ¢ n, then

(a,0) +1,0) =(a+1,0) e UR x S)
and so (a, b) is adjacent to (1,0); and if b € n, then
(a,))+1,1)=(a+1,0+1)c UR x S)

and so (a,b) is adjacent to (1,1). In the second case, that is, (a,b) €
(R\m) x S,if b ¢n, then

(@,0) +(0,0) = (a,b) € UR x S)
and so (a, b) is adjacent to (0,0); and if b € n, then
(a,b) +(0,1) = (a,b+1) € UR x S)

and so (a, b) is adjacent to (0,1). Therefore, the claim holds true and so
72 (G(R x S)) < 4, as required. 0

LEmma 4.2. Let R be a local ring with maximal ideal m such that
|R/m| =2 and let S be a local ring. If R is not a field, then y(G(R x S)) =
7GR x 8)) = 4.

ProoF. Since R x S is a ring with maximal ideal m x S such that
(R xS)/(m x S)| =2, Proposition 3.7 implies that the unit graph
G(R x S) is bipartite with partite sets Vi = m x Sand Vo = (R\ m) x S.
Note that |[R/m| =2 implies that |m|=|R\ m| =|R|/2 and so |V;| =
Vel = (IR[/2)IS].

Assume now, in contrary, that y(G(R x S)) < 3 and consider D with
|D| = 3 as a dominating set of G(R x S). Since R is not a field, || > 4. Also,
S is a ring and so |S| > 2. Therefore, |V;i| = |V2| = (|R]/2)|S| > 4. Now,
|D| = 3 implies that D cannot completely lie either in V; or V,. Hence,
DNnVi#0 and DNVy # (. This implies that either [DNVi|=1 or
|D N V3| = 1. Without loss of generality, suppose |D N Vi| =1 is the case.
Since DNV; CV; = m x S, we may consider D N'V; = {(x,y)} withx € m
and y € S. Since |R \ m| = |R|/2 > 2, we may choose distinct elements x;
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and 2 of R\ m. Therefore, (x1, —y) and (x2, — y) are distinct elements of
(R\m) xS ="V, Also, (x,y) € Vi implies that (x,y) # (x1,—y) and
(x,y) # (22, —y). Note that, if (x;, —y) ¢ D, then (x;, —y) is adjacent to
(a,7) and so

(@1, —y) + (@, y) = (®1 +2,0) € UR x S),

which is impossible. Therefore, (x;, —y) € D. A similar argument shows
that (x2,—y) € D. Hence, D = {(x,y), (x1,—¥), (x2,—y)}. Since |m|=
|R|/2 > 2, we may choose a € m\ {x}. Now, (a,y) e mxS=1V; and
(a,y) # (x,y) imply that (a,y) ¢ D. Since (a,y) € V1, it cannot be adjacent
to (x, ) and so it is either adjacent to (xy, — y) or (x2, — ). Therefore, we
have either

(a,y) + (@1, —y) = (@ +x1,0) € UR x S) or
(a,y) + (@2, —y) = (@ +x2,0) € UR x S),

which both of them are contradictions. This shows that y(G(R x S)) > 4.
Now, by Lemma 4.1, we have 4 < »(G(R x S)) < y,(G(R x S)) < 4 and
s0 Y(G(R x S)) = y(G(R x S)) = 4, as required. O

LEmMMAa 4.3. Let S be a local ring which is not a field. Then
WG(Zg x 8)) = p(G(Zg x S)) = 4.

Proor. Let m be the maximal ideal of S. There are two possibilities:
either |S/m| = 2or |S/m| > 3. If |S/m| = 2is the case, then by Lemma 4.2,
we conclude that y(G(Zg x S)) = y,(G(Za x S)) = 4, asrequired. Therefore,
we suppose that [S/m| > 3. Since 7z x S is a ring with maximal ideal
{0} x Ssuch that |(Zg x S)/({0} x S)| = 2, Proposition 3.7 implies that the
unit graph G(7s x S) is bipartite with partite sets V3 = {0} x S and
Vo = {1} x S. This implies that |V;| = |V2| = |S].

We now claim that y(G(Zg x S)) > 4. In order to prove the claim, in
contrary, suppose that y(G(7z2 x S)) < 3 and consider D with |[D| =3 as a
dominating set of G(Zg x S). Since S is not a field, |m| > 2. Therefore,
|S/m| > 3 implies that |S| > 3|m| > 6 and so |Vi]| = |Va| = |S| > 6. Now,
|D| = 3 implies that D cannot completely lie either in V; or V,. Hence,
DNVi#0 and DNV #(. This implies that either |[DNVi| =1 or
|D N V| = 1. Without loss of generality, suppose |D N V1| =1 is the case.
Therefore, |D N V2| = 2 and so we may consider D = {(0,%1), (1,¥2), 1,¥3)},
where y1,y2,y3 € S with y2 # y3. Let y € S\ {y2, y3} be given. Therefore,
(1,%) ¢ D and so it is adjacent to an element of D. Since (1,%), (1,%2) and
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(1, y3) are elements of Vs, (1, ) is not adjacent to (1, 2) and (1, y3), therefore
itis adjacent to (0, y1). Hence, for every y € S\ {y2,y3}, (1,¥) is adjacent to
(0,%1), which implies that deg(0,%1) > |S| — 2. On the other hand, by Pro-
position 3.2 and Lemma 3.17,

deg(0,y1) < |U(Zz x S)| = [UZ|US)| = [UES)| = |S] - [m]| < |S] - 2.

Therefore,

which implies that deg(0,y1) = |S| —2 and |m|=2. Now, deg(0,y;) =
|S| — 2 implies that (0, ;) is not adjacent to (1,y;) for i = 2,3. That is, for
1=2,3,

0,y + @, y) = A,y +y) §U(Z2 xS)

and so i1 + ¥; € U(S). This means that, by Lemma 3.17, for i = 2, 3, we have
y1 + y; € m. Therefore, by using y2 # y3 and || = 2, we may conclude that
m = {y1 + y2,y1 + y3}. Without loss of generality, we may suppose that
Y1 + y2 = 0 and therefore D = {(0,y1),(1, —y1),(1,y3)}. Since 1 + y3 € m,
we conclude that —y3 — y; € m and so —y3 — y1 ¢ U(S). Therefore,

0, —y3) +0,y1) = (0, —ys +y1) £ U(Z2 x S),
0, —y3) + 1, —y1) =1, —y3 —y1) ¢ U(Zz x S) and
0,—y3)+Q,y3) = 1,00 ¢ U(Z2 x S),

and so (0, —y3) is not adjacent to the elements of D. This implies that
(0, —y3) € D and therefore (0, — y3) = (0,y1). This means that y; +y3 =0,
which is a contradiction. This shows that y(G(Zs x S)) > 4.

Now, by Lemma 4.1, we have 4 < y(G(Zg x S)) < y,(G(Z2 x S)) < 4 and
s0 Y(G(Z2 x S)) = y(G(Zg x S)) = 4, as required. O

LEmMA 4.4.  Let R be a ring such that R = Ry x Rg, where Ry and Rg
are local rings with maximal ideals my and Mms, respectively. Suppose
that either |[R1/my| = 2 or |Ra/mg| = 2. If R 2 72 x i, where IV is a field,
then p(G(R)) = y,(G(R)) = 4.

Proor. Without loss of generality, let |Rq/my|=2. If my # {0},
then R; is not a field. Therefore, by Lemma 4.2, y(G(R)) = y,(G(R)) = 4.
If my = {0}, then R; =~ 7y and since R % 7 x I, where F is a field, we
conclude that Ry is not a field. Now, Lemma 4.3 implies that y(G(R)) =
7(G(R)) = 4. O
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We also need Lemmas 4.5, 4.6 and 4.8 for proving part (3) of Theorem
2.2 and completing the paper.

LEmMA 4.5.  Let 1 and Fs be two fields in which either both of them
have characteristic 2 and none of them is isomorphic to 7o or none of them
has characteristic 2. Then p(G(I'y x 9)) = y,(G(IF; x [F2)) = 3.

Proor. The assumption implies that || > 3 and |Iy] > 3 and so we
may choose nonzero elements a, ¢ € 'y with @ # cand b, d € e with b # d.
We claim that D = {(0,0), (a,b), (c,d)} is a total dominating set of the unit
graph G(F; x F). In order to prove the claim, note that a given element in
1 x 2 has one of the following forms, where a € ', and y € 'y are non-
zero elements: either (0, 0), (x, 0), (0,¥) or (x,y).

For (0,0), we have

0,0) + (@, b) = (a,b) € U’y x I')

and so (0, 0) is adjacent to (a, b).
For (x,0), we have either x # — a or & # — ¢, and so either

(@,0)+ (a,b) = (x + a,b) € U(F; x Fy) or
(@,0) + (c,d) = (x +¢,d) € U(T"; x ).

This implies that («, 0) is adjacent to (a, b) or (¢, d). By a similar argument,
we obtain that (0, y) is also adjacent to (a, b) or (c, d).
For (x,y), we have

(@,y) +(0,0) = (x,y) € U(l'; x Iy)

and so (x,y) is adjacent to (0,0).

Therefore, the claim holds true and so y,(G(IF; x Fg)) < 3. On the other
hand, by Lemmas 3.4 and 3.6, we conclude that y(G(I; x Fg)) > 3.
Therefore,

3 < (G(Fy x Fz)) < 7(G(Fy x Fp) <3

and so (G(IF x Fe)) = 7(G(I; x Fy)) = 3, as required. O
LEMMA 4.6. Let Iy and Fy be two fields in which only one of them

has characteristic 2 and none of them 1is isomorphic to 7o. Then
(G x Fg)) < 3.

Proor. Without loss of generality, we may assume that Char(l¥;) = 2
and Char(Fy) # 2. Since I 2 Zo and Iy 2 Z», we conclude that |F| > 3



192 S. Kiani - H. R. Maimani - M. R. Pournaki - S. Yassemi

and |IF2| > 3, and so we may choose a € I'; and b € Iy such that @ # 0,1 and
b # —1,1. Weclaimthat D = {(0,1),(1, — 1), (a, b)} is a total dominating set
of the unit graph G(I; x IF3). In order to prove the claim, note that a given
element in I['; x ['s has one of the following forms, where x € ['; and y € [y

are nonzero elements: either (0, 0), (x, 0), (0,y) or (x,y).

For (0,0),
0,00+ 1, -1) =1, -1 € U(Fy x )

implies that (0, 0) is adjacent to (1, —1).
For (x,0),

(@,0)+(0,1) = (x,1) € U(I"; x I'p)

implies that (x, 0) is adjacent to (0,1).
For (0,9), if y # 1, then we have

0,9+ 1, —-1) =1,y —1) € U(F; x y)
and if ¥ = 1, then we have
0,9+ (a,b) = (@, 1+ b) € U(l"; x I'y).

Therefore, (0,y) is either adjacent to (1, — 1) or (a, b).
Finally, for (x,y), if © =y = 1, then we have

(@, y) + (a,0) = 1+ a,1+b) € U x Fy),
if x # 1 and y = 1, then we have
(@, )+ (0,1) = (x,2) € U(Fy x Fy),
ifx =1 and y # 1, then for y # — 1 we have
(x,y)+(0,1) = (1,y + 1) € U(Fy x Fy)

and for y = — 1 we have

(@,y) + (a,b) =1 +a,—1+b) € U(F; x Fy),
and if x, y # 1, then we have

@y+A,-1)=@+1y—1) € Ul x Fy).

Therefore, (x,y) is either adjacent to (0,1), (1, — 1) or (a, ).

Hence, the claim holds true and so y,(G(IF; x Fy)) <3, as required.

We need the following proposition for the proof of Lemma 4.8.

O
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ProrosiTiON 4.7 ([1], Lemma 2.7(a)). Let R be a ring, x,y € R and
suppose that J(R) denotes the Jacobson radical of R. If x + J(R) and
Yy + J(R) are adjacent in the unit graph G(R/J(R)), then every element of
x + J(R) is adjacent to every element of y + J(R) in the unit graph G(R).

LEMMA4.8.  Let R be a ring. Then y,(GR)) < y(G(R/J(R))), where J(R)
denotes the Jacobson radical of R.

Proor. Let y,(G(R/J(R)))=n and consider D={x1+J(R), ..., x,+J(R)}
as a y,—set of G(R/J(R)). We claim that D' = {x1,...,u,} is a total dom-
inating set of G(R). In order to prove the claim, let y € R be given.
Therefore, y + J(R) € R/J(R) and so there exists «; + J(R) € D such that
y + J(R)is adjacent to x; + J(R) in G(R/J(R)). Now, Proposition 4.7 implies
that y is adjacent to x; in G(R) and so the claim holds true. This implies that
WGR) < |D'| = n =1 GR/IR). O

We are now ready to prove part (3) of Theorem 2.2, that is:

THEOREM 4.9. Let R be a ring. Then y(G(R)) = 3 if and only if R is
not isomorphic to the product of two fields such that only one of them
has characteristic 2, and R =2 R x Ry, where for 1 =1,2, R; is a local
ring with maximal ideal m; in such a way that R;/m; 2 Zs.

Proor. (=): Let »(G(R)) = 3. Note that, by Theorem 3.20, R is not
isomorphic to the product of two fields such that only one of them has
characteristic 2. Now, by Remark 3.15, we may write R~ R; x---x R,,
where for every 1 <i<mn, R; is a local ring with maximal ideal m;.
If n >3, then by using Lemma 3.16, we conclude that 3 = y(G(R)) >
n+1 >4, which is a contradiction. Therefore, n < 2. If n =1, then
R =~ R, is either a field or a local ring which is not a field. In the first
case, by Lemma 3.1, we have p(G(R)) =1, and in the second case, by
Theorem 3.20, we have y(G(R)) = 2, which both of them are contra-
dictions. Therefore, » =2 and so we have R = Ry x Re. By Theorem
3.20, we conclude that R ¢ 7y x I, where F is a field, and so Lemma 4.4
implies that |R;/my| >3 and |R2/mgz| > 3. Therefore, E;/m; 2 72 and
Rg/mg 7’? Zo.

(«): By the assumption and Remark 3.15, we have R/J(R) = Fy x Iy,
where '} = R;/ny and Iy = Ry /my are fields. Also, 'y and Iy are not
isomorphic to Zy. Now, one of the following cases occurs:
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Case 1: Either both of 'y and [Fe have characteristic 2 or none of
them has characteristic 2. In this case, by Lemma 4.5, we conclude
that W(G(R/J(R))) = y,(G(R/J(R))) = 3. Now, in view of Lemmas 3.14
and 4.8, we conclude that 3 < y(G(R)) < »(G(R)) < 3, which implies
that y(G(R)) = 3, as required.

Case 2: Only one of I'; or Fy has characteristic 2. In this case, by
Theorem 3.20, we have y(G(R/J(R))) = 2, and also by Lemma 4.6, we have
7(GR/J(R))) < 3. Therefore, in view of Lemmas 3.14 and 4.8, we conclude
that either y(G(R)) = 2 or y»(G(R)) = 3. Since R = R; x Ry, R is not a local
ring. Also, by the assumption, R is not isomorphic to the product of two
fields such that only one of them has characteristic 2. Finally, in contrary,
suppose that R = 7» x I, where I is a field. Therefore, R/J(R) = 7o x F
and so Zg x [ 22 [y x Iy, which implies that |7Zs x | = |’y x Fg|. The
assumption implies that Char(I*) = 2 and so |Zz x | is a power of 2, while,
by the assumption in Case 2, |y x IFy| is divisible by an odd prime. This
contradiction shows that R % 7o x I, where I is a field. Hence, by The-
orem 3.20, y(G(R)) = 2 is impossible and so y(G(R)) = 3, as required. [
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