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Automorphism-invariant modules

ADEL ALAHMADI (¥) - ALBERTO FACCHINI (**) - NGUYEN KHANH TUNG (¥*%)

ABSTRACT - A module M is called automorphism-invariant if it is invariant under
automorphisms of its injective envelope. In this paper, we study the en-
domorphism rings of automorphism-invariant modules and their injective en-
velopes. We investigate some cases where automorphism-invariant modules are
quasi-injective and a connection between automorphism-invariant modules and
boolean rings.
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1. Introduction

A module M is called automorphism-invariant if it is invariant under
automorphisms of its injective envelope, that is, if p(M) C M for every
o € Aut(E(M)) (equivalently, if p(M) = M for every ¢ € Aut(£(M))). In
[6, Theorem 16], it was shown that automorphism-invariant modules are

(*) Indirizzo dell’A.: Department of Mathematics, King Abdulaziz University,
Jeddah 21589, Saudi Arabia.

E-mail: analahmadi@kau.edu.sa

(**) Indirizzo dell’A.: Dipartimento di Matematica, Universita di Padova, 35121
Padova, Italy.

E-mail: facchini@math.unipd.it

The second author is grateful to Universita di Padova (Progetto di ricerca di
Ateneo CPDA105885/10 “Differential graded categories” and Progetto ex 60%
“Anelli e categorie di moduli”) and Fondazione Cassa di Risparmio di Padova e
Rovigo (Progetto di Eccellenza “Algebraic structures and their applications”) for
the financial support.

(***) Indirizzo dell’A.: Dipartimento di Matematica, Universita di Padova,
35121 Padova, Italy.

E-mail: khanhtung06@yahoo.com



242 Adel Alahmadi - Alberto Facchini - Nguyen Khanh Tung

precisely pseudo-injective modules, where a module M is called pseudo-
myjective if, for any submodule A of M, every monomorphism f: A — M
can be extended to an element of End(M). In this paper, we show that if
M is an automorphism-invariant module, then

End(M)/J(End(M))
turns out to be a rationally closed subring of
EndEW0M))/J(End(E(M))).

Both the rings End(M)/J(End(M)) and EndEM))/J(EndE(M))) are
von Neumann regular [11, Proposition 1]. We consider in particular the
case of automorphism-invariant modules of finite Goldie dimension or
indecomposable. Notice that automorphism-invariant modules have the
exchange property [11], so that indecomposable automorphism-invariant
modules have a local endomorphism ring. Moreover, idempotents can be
lifted modulo every right ideal both in End(M) and in End(¥(M)) [16].

We then study the connection between automorphism-invariant mod-
ules and boolean rings. The existence of such a connection was suggested
to us by the results in Section 5 of [19], where Vamos considers modules
whose endomorphism ring (or endomorphism ring modulo the Jacobson
radical) is a boolean ring. He studies modules in which the identity en-
domorphism is the sum of two automorphisms. This condition is related to
the existence of factors of the endomorphism ring isomorphic to the field
IFo with two elements [12]. Notice that if M is an automorphism-invariant
right R-module and End(}) has no factor isomorphic to Fy, then M is
quasi-injective [10, Theorem 3].

Every automorphism-invariant module is the direct sum of a quasi-in-
jective module and a square-free module [6, Theorem 3]. This leads us to
study, for an automorphism-invariant square-free module M, the relation
between M being quasi-injective and the existence of factors isomorphic to
Fy in End(M) and in End(E(M)).

Throughout, all rings have identity element and modules are right
unital. For a module M, E(M) denotes the injective envelope of M.

2. Notation, definitions, and some properties of automorphism-invari-
ant modules

Let R be aring. For every pair of right R-modules M and N, let A(M, N)
denote the set of all module morphisms f: M — N whose kernel ker (f) is an
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essential submodule of M. In [11, Proposition 1], it was shown that if M is an
automorphism-invariant module, then the Jacobson radical J(End(M)) of
End(M) consists exactly of all the endomorphisms of M with essential
kernel, that is, J(End(M) = AWM, M). Moreover, End(M)/J(End(M) is von
Neumann regular and idempotents lift modulo J(End(M)).

Recall that the Jacobson radical .7 of a preadditive category C is the ideal
defined, for every A, B € Ob(C), by J(A,B) := {f € Hom¢(4,B) | 14 — gf
has a left inverse (equivalently, a two-sided inverse) for every morphism
9:B — AinC }. Let Abe the full subcategory of Mod-E whose objects are all
automorphism-invariant right B-modules. It is easily seen that 4 is an ideal
of A contained in the Jacobson radical 7 of A, because if f € A(M, N), then
ker (gf) is essential in M for every g. Hence gf € J(End(M)) for every g
[11, Proposition 1]. Thus for the ideals 4 and 7 of A, we have that 4 C 7.

Nevertheless the ideal 4 can be properly contained in 7. For instance,
7.)27, and 7./47, are automorphism-invariant Z-modules, the mono-
morphism f:7,/27, — 7./47, does not have an essential kernel, but for
every morphism g: /. /47, — 7./27, the composite mapping gf is the zero
mapping. Hence ¢gf has an essential kernel, and so gf belongs to
J(End(2/27)). Therefore A2 /27,7, /47) C J(Z/27.,7.]4 7).

A ring morphism ¢: B — S is local if, for every r € R, ¢(r) invertible in
S implies » invertible in B. We will denote by U(R) the group of units, i.e.,
invertible elements, of a ring R. A rationally closed subring of a ring S is a
subring R of S such that the embedding R — S is a local morphism, that is,
a subring R of S such that U(R) = Rn U(S) [4].

Recall that a module M satisfies Condition (C) if every submodule of M/
is essential in a direct summand of M. An automorphism-invariant module
satisfies (Cy) if and only if it is quasi-injective [13]. Every automorphism-
invariant module M satisfies Condition (C2); that is, every submodule of M
isomorphic to a direct summand of M is itself a direct summand of M [5],
[6]. Moreover, every automorphism-invariant module M satisfies Condi-
tion (Cs); that is, if N1 and N» are direct summands of M with Ny NNy = 0,
then N1 @& Ny is also a direct summand of M = [13].

THEOREM 2.1. Let M be an automorphism-invariant module and
E(M) be its injective envelope. Then

(@) There is a canonical local morphism
¢: End(M) — End(E(M))/J(End(E(M)))

with kernel J(End(M)), so that ¢ induces an embedding @, as a
rationally closed subring, of the von Newmann regular ring



244 Adel Alahmadi - Alberto Facchini - Nguyen Khanh Tung

End(M)/J(End(M)) into the von Neumann regular right self-in-
jective ring

End(E(M))/J(End(EM))).

(b) Forevery invertible element v of the ring End(E(M))/J (End(E(M))),
there exists an invertible element u of End(M) /J (End(M)) such that
o(u) = v.

(¢) Foreveryidempotentelementf ofthe ring End(E(M))/J (End(E(M)))
there exists an idempotent element e of End(M)/J(End(M)) such
that pe) = f if and only if the module M 1is quasi-injective.

(d) If M 1is quasi-injective, then g is an isomorphism.

ProoF. (a) For any right R-module M, the morphism
p: End(M) — End(#M))/J (End(E(M)))

is defined as follows. If f € End(M), let f be an endomorphism of £(M) that
extends f. Then ¢(f) = f + J(End(EM))) [8, §4, p. 412]. 1t is easily seen
that ¢ is a well-defined ring morphism. Moreover, ¢ is a local morphism,
because if f € End(M) and ¢(f) is invertible in the ring End(&(M))/
J(EndEM))), then f is an automorphism of E(M). Since M is auto-
morphism-invariant, it follows that f (M) = M; that is, f(M) = M. This
proves that f is onto. Moreover, f is an automorphism of E(M) implies that its
restriction f is an injective endomorphism of M. Thus f is an automorphism,
and the ring morphism ¢ is a local morphism. It follows that the injective
morphism p: End(M)/ker (9p) — End#E(M))/J(End(E(M))) induced by ¢is a
local morphism as well. Moreover, ker (p) = AWM, M) = J(End(M)).

(b) If v is an invertible element of End(&(M))/J(End(£(M))), then
v =7 +J(End(EM))) for some element v € End(E(M)), necessarily
invertible. Therefore v' is an automorphism of E(M). Since M is auto-
morphism-invariant, the restriction %’ of v’ to M is an automorphism of M.
Thus % := %'+ J(End(M)) is an invertible element of End(M)/J(End(M))
and p(u) = v.

(¢) If M is quasi-injective, for every f € End(#(M)), the restriction
f" of f to M is an endomorphism of M. Thus @(f’ + J(End(M))) =
f+ J(End(EM))). Hence ¢ is onto, and (a) allows us the conclusion.

(d) Assume that for every idempotent element f € End(E(M))/
J(End(E(MM))) there exists an idempotent element e of End(M)/
J(End(M)) with @(e) = f. In order to show that M is quasi-injective, we
will prove that it satisfies Condition (C;). Let N be a submodule of M. We
must show that N is essential in a direct summand of M. Now E'(M) has a
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direct-sum decomposition E(M) = E(N) @ E. Thus there is an idempotent
¢ € End(E(M)) with E(N) = eE(M) and E = (1 — e)E(M). By hypothesis,
there exists an idempotent e € End(M)/J(End(M)) with g(e) =
e+ J(EndE{M))). As idempotents lift modulo J(End(M)), there is
an idempotent ¢ € End(M) such that e =¢ + J(End(M)). The idem-
potent ¢ € End(M) corresponds to a direct-sum decomposition M =
gM @ (1 —&)M. This direct-sum decomposition of M induces a direct-
sum decomposition EM) = EEM)® E((1 — ¢)M). Thus there is an
idempotent ¢’ € End(E(M)) with E(M) =¢'EM) and E((1 — &)M) =
1 —-&YEWM). We claim that endomorphism ¢’ of E(M) extends the
endomorphism & of M. To prove this claim, it suffices to show that
&'(x)=x for every x€&M and &'(y)=0 for every ye (1 —¢)M.
Now &M C E(EM)=¢'EWM), so that &'(x) =« for every «x e &M.
Similarly (1 —&)M C E(1 —&)M) =1 —&")E(M), so that for every
ye(@d—¢)M one has that y € (1 —&)EWM). Hence &'(y)=0. This
proves the claim. Thus ¢(¢' + J(End(M)) = &'+ J(End(E(Mg))). But g(e) =
e+ J(End(E(M))) and e =&+ J(End(M)), so that ¢ + J(End(M))) =
e+ J(EndEWD))). It follows that &’ + J(EndEWM))) = ¢ + J(EndEM)));
thatis, ¢’ — ¢ € J(End(E(M))), so 1 — &’ + ¢is an automorphism of £(M). As
M is automorphism-invariant, we have that (1 — &+ &)(M) = M. Thus
eM)yCA—-"+e)M)+1M)+'M) =M+ M + M) =M. It follows
that e restricts to an idempotent endomorphism of M. In particular, e(M)is a
direct summand of M. Moreover, N C E(N)NM = ¢eE(M)NM = M), so
that N is a submodule of ¢(A). It remains to show that N is essential in e(M).
This follows immediately from the fact that e(M) C eE(M) = E(N) and N
is essential in E(N). This proves that M satisfies Condition (C;), and
hence is quasi-injective [13].

The converse follows immediately from (d), noting that the inverse
image of an idempotent via an injective morphism is necessarily
idempotent. O

Notice that if ¢p: R — S is a local morphism and S is local (resp.,
semilocal), that is, a division ring (resp., a semisimple artinian ring)
modulo the Jacobson radical, then R is local (resp., semilocal) [4, Theo-
rem 1]. Nevertheless, for any ring R there exist a von Neumann regular
right self-injective ring S and a local morphisms y: R — S. For example, it
suffices to take the first part 0 — Rr — E7 — E5 of an injective resolution
of the R-module Rg, the von Neumann regular right self-injective ring
S := End(#)/J(End(£7)) x End(®s)/J(End(E2)) and the local morphism
x defined in [8, Theorem 5.3].
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PropOSITION 2.2. Let M be an automorphism-invariant module.
Then

@) If M s indecomposable, then End(M) is a local ring.

(b) If M has finite Goldie dimension, then every injective endomor-
phism of M is an automorphism of M and the endomorphism ring
End(M) is a semiperfect ring.

Proor. (a) Automorphism-invariant modules have the exchange prop-
erty [11], and indecomposable modules with the exchange property have a
local endomorphism ring [7, Theorem 2.8].

(b) Let M be an automorphism-invariant module of finite Goldie di-
mension and let p: M — M be an injective endomorphism of M. Then ¢
extends to an endomorphism ¢,: E(M) — E(M), which is necessarily in-
jective. As M has finite Goldie dimension, ¢, is an automorphism of E(M).
But M is automorphism-invariant, so ¢,(M) = M. Thus p(M) = M, that is,
the endomorphism ¢ is also surjective.

Finally, every module of finite Goldie dimension is a direct sum of in-
decomposable modules. Thus if M = M @ ... ®» M, is automorphism-in-
variant and the M; are indecomposable, then the modules M; are auto-
morphism-invariant. Hence they have a local endomorphism ring by (a).
Therefore M is a direct sum of modules M; with local endomorphism rings,
so that End(M) is semiperfect. O

COROLLARY 2.3. IfM,N are two automorphism-invariant R-modules
of finite Goldie dimensions isomorphic to submodules of each other, then
M 1is isomorphic to N.

Proor. By the hypothesis, there exists two monomorphisms
f:M— N and g: N — M. So fg € End(N) and fg is injective. Hence fg
is an automorphism by Proposition 2.2(b). Thus f is onto. Since f is a
monomorphism, f is an isomorphism. O

We now recall a theorem by Guil Asensio and Srivastava that will be
repeatedly used in the sequel.

THEOREM 2.4 [10, Theorem 3]. Let M be a right module such that
End(M) has no factor isomorphic to Fo. Then M is quasi-injective if and
only if M is automorphism-invariant.

ProrosITION 2.5. If R is a ring of odd characteristic, then every
automorphism-tnvariant R-module is quasi-injective.
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Proor. Suppose that R is a ring of odd characteristic # with a module
M that is automorphism-invariant but not quasi-injective. By Theo-
rem 2.4, the endomorphism ring End(M) has a factor End(M)/ M iso-
morphic to FFe. Then nR = 0, so that nM = 0. Hence nEnd(M) = 0, so
that n(End(M)/ M) = 0. Thus nl's = 0, which is a contradiction because
n is odd. O

LEmMMA 2.6. Let M be an automorphism-invariant module. If
M=M,&M;&...HM,, whereeach M;is a quasi-injective module, then
M s quasi-injective.

Proor. It clearly suffices to prove the case n = 2. Assume that
M = My & My is automorphism-invariant, where M; and M, are quasi-
injective. By [13, Theorem 5], M; is Mz-injective and Mz is M;-injective.
Since My and M, are quasi-injective, M is quasi-injective by [1, Propo-
sitions 16.10 and 16.13]. O

ProposiTION 2.7. Let My, Mo, ..., M, be uniform modules. If M :=
My ® Mo @ ... DM, is automorphism-invariant, then M is quasi-injective.

Proor. By the previous lemma, it suffices to show that each M; is quasi-
injective. On the one hand, each M, is uniform, and each M; satisfies (Cy).
On the other hand, each M; is automorphism-invariant, being a direct
summand of an automorphism-invariant module. By [13, Corollary 13],
every M, is quasi-injective. Now apply Lemma 2.6. O

ProrosITION 2.8. The following conditions are equivalent for a ring R.

(1) Every automorphism-invariant R-module of finite Goldie dimen-
ston 1s quasi-injective.

(2) Every automorphism-invariant indecomposable R-module of
finite Goldie dimension is uniform.

(3) Every automorphism-invariant indecomposable R-module of
finite Goldie dimension is quasi-injective.

Proor. (1) = (2) An automorphism-invariant indecomposable module
M of finite Goldie dimension is quasi-injective by (1). Hence it satisfies
Condition (C;). Therefore M is uniform.

(2) = (3) Let M be an automorphism-invariant indecomposable module
of finite Goldie dimension. Then M is uniform by (2), and hence it satisfies
Condition (C7). By [13, Corollary 13], M is quasi-injective.
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(3) = (1) Let M be an automorphism-invariant module of finite Goldie
dimension. Then End(M) is semilocal by Proposition 2.2(b). So
M=MaeM;a...»M,, where each M; is an automorphism-invariant
indecomposable module of finite Goldie dimension. By (3), every M; is
quasi-injective. From Lemma 2.6, it follows that M is quasi-injective. [

By Proposition 2.5, every ring R of odd characteristic satisfies the
equivalent conditions of Proposition 2.8.
Let E(M) be the injective envelope of a module M. It is easily seen that

(M)
peAut(EM))

is the smallest automorphism-invariant submodule of E(M) containing M.
We call it the automorphism-invariant envelope of M, and denote it by
AI(M). Clearly, a module is automorphism-invariant if and only if
M = AI(M).

LEmma 2.9. Let M,N be arbitrary R-modules. Then every mono-
morphism M — N extends to a monomorphism AI(M) — AI(N).

ProOOF. A monomorphism ¢: M — N extends to a monomorphism
¢': E(M) — E(N), which is necessarily a split monomorphism. Thus there is
a direct-sum decomposition E(N) = ¢'(E(M)) & C and, with respect to this
direct-sum decomposition, ¢": E(M) — ¢'(E(M)) & C can be written in ma-

trix form as ¢’ = (g), where o: E(M) — ¢'(E(M)) is an isomorphism. It
suffices to show that ¢'(AI(M)) C AI(N). Let f be an automorphism of

-1
E(M). Then (“f g (1)) is an automorphism of ¢/ (E(M)) @ C = E(N). Thus

1 -1
o (FOD) = af (M) = (af 1~ (o(M)) C (“f ; (1’)<a<M>>c(°‘f ; (1’)<N>c
AI(N).

Therefore ¢'(AI(M)) C AI(N). O

3. Boolean rings

Recall that a non-zero ring R is a boolean ring if every element of R is
idempotent. Every boolean ring is necessarily a commutative ring of
characteristic 2. A ring is boolean if and only if it is isomorphic to a subring
of 'y, where X is a non-empty set and Iy is the field with two elements. If a
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ring R is boolean, then E(Rp) is the Dedekind-McNeil completion of R, and
the Dedekind-McNeil completion of R is a boolean ring, which is iso-
morphie, as an R-module, to the total ring of quotients of R ([2, Corol-
lary 2] and [18, p. 79]). If R is a boolean ring, the identity is the unique
automorphism of the R-module E(Rp), so that every R-submodule of
E(Rp) is automorphism-invariant, but R is not quasi-injective (except for
the case R = E(Rp), that is, R is complete).

The condition “the endomorphism ring S of a module does not have
maximal ideals M with S/M = 5" has recently received a lot of attention
(Theorem 2.4 and [12]).

LEmMA 3.1.  Let T be a ring and I the two-sided ideal of T generated by
the subset {t —t> |t € T} of T. Then

(@) The ideal I is the smallest ideal of T with T /I a boolean ring or the
zero ring.

(b) The ideal I is the intersection of all maximal two-sided ideals M of
T with T/ M = I¥s.

(¢) The ideal I contains the Jacobson radical J(T) of T.

(d) The kernel of every ring morphism T — 'y contains I.

(e) I1is a proper ideal of T if and only if there exists a ring morphism
T — Vo, if and only if T has a maximal two-sided ideal M with
T/M = Fs.

PROOF. (a) is trivial.
(b) Let us check that

I= (] M.

T/ M=2Ty

( C) Since [ is generated by the elements t — t2, it suffices to show that
t —t2 € M for every t € T and every maximal two-sided ideal M with
T/M = I'5. Now 'y is boolean, so that 7'/ M is boolean, hence ¢t + M =
2 + M. It follows that t — t* € M.

(2) By (a), the ring 7'/I is boolean. Boolean rings are isomorphic to
subrings of Iy for some set X. Let & T/I — ¥ be an embedding and
mp: T — Iy (@ € X), p: T — T/I be the canonical projections. Then the
morphisms ¢, := n.ep: T — 'y have kernels ker ¢,, which are maximal
two-sided ideals of 7, T/ker ¢, =1y and (\,.xker ¢,=1.Thus
(s, M S pex ker g, = 1.

(¢) By (b), I is the intersection of all maximal two-sided ideals M of T'
with T/ M = II'y, and all maximal two-sided ideals M of 7' with T/ M = Iy
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are maximal right ideals of 7. Hence [ is an intersection of maximal right
ideals of T, so that I D J(T).

(d) The kernel of every ring morphism 7' — Fy is a maximal two-sided
ideal of 7 with 7/ M = I'y. Thus (d) follows from (b).

(e) is now trivial. O

Notice that —17 is an element of 7, so that (—17) —(—17)* =
— 217 € I. Therefore I contains the two-sided ideal 2T of 7. For example,
for T = 7, the ideal of 7 generated by all n — n?, where n ranges in 7, is
exactly the ideal 277.

Recall that two modules are said to be orthogonal to each other if they
do not contain non-zero isomorphic submodules. The following Lemma
appears in [15, Lemma 3.3] and will be repeatedly used in the sequel.

LEMMA 3.2 [15, Lemma 3.3]. Let M = My & M. If My and My are ortho-
gonal, then End(M)/AM, M)~=End(M,)/AM1, M) x End(Ms) /A Mz, M2).
The converse holds if My and Mz are relatively injective.

COROLLARY 3.3. Let M = My & My be an automorphism-invariant R-
module where My and Mz are orthogonal. Then End(M) has no factor
isomorphic to Fe if and only if each End(M;) (¢ =1,2) has no factor
1sormophic to IFy.

ProoF. Let I be the two-sided ideal of End(M) generated by the set
{x—a?|xcEnd(M)}. By Lemma 3.2, End(M)/AM,M) =~ End(M;)/
AWMy, M) x End(Ms)/AMs, Ms). As AM, M) = J(End(M)) for any auto-
morphism-invariant B-module M, it follows that End(M)/J(End(M)) =
End(M,)/J(End(M;)) x End(Mz)/J(End(Ms)) in a canonical way. Thus
there is a homomorphism End(M) — IFy if and only if there is a homo-
morphism End(M)/J (End(M)) — Iy, if and only if there is a homomorph-
ism End(M;)/ J(End(M;)) — Iy for an ¢ equal to 1 or 2. The conclusion
follows immediately. O

Recall that a module is square-free if it does not contain a direct sum of
two non-zero isomorphic submodules. The following important result is
due to Er, Singh and Srivastava.

THEOREM 3.4 [6, Theorem 3]. Ewvery automorphism-invariant mod-
ule M decomposes as a direct sum M = X @ Y, where X is quasi-injective,
Y is a square-free module ovthogonal to X, and X and Y are relatively
myjective modules.
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The previous Theorem reduces our study to considering automorph-
ism-invariant square-free modules. Notice that if M is any right R-module
such that End(M) has no factor isomorphic to s, then M is quasi-injective
if and only if M is automorphism-invariant (Theorem 2.4).

LemmA 3.5.  If My, My are two right modules over a ring R and My, My
hawve isomorphic injective envelopes, which are non-zero modules, then M,
and My have non-zero isomorphic submodules.

Proor. Let f:EM;) — E(Ms) be an isomorphism. Then M; and
f~NMs,) are essential submodules of E(M;). Hence M, Nf~'(Ms) is an
essential submodule of E(M). It follows that M; Nf~1(M;) is a non-zero
submodule of M. Via the isomorphism f, we find that f(M; Nf~1(Ms)) is
an essential submodule of E(M;) isomorphic to M;Nf—1(Ms). But
fMy N f~1(My)) = f(M;) N My is a submodule of M. O

COROLLARY 3.6. A module M is square-free if and only if its injective
envelope E(M) is square-free.

Proor. If M is not square-free, then it contains a submodule iso-
morphic to N & N for some non-zero module N. Hence the same holds for
E (M), that is, E(M) is not square-free.

Conversely, assume that E(M) is not square-free. Then E(M) contains a
submodule isomorphic to N & N for some non-zero module N. It follows
that E(M) = E; ® Ko @ E3 with E1 = Ey # 0. Then M N E; is a non-zero
essential submodule of E; for ¢ = 1,2. In particular, M N E; and M N E,
have isomorphic injective envelopes, which are non-zero modules. By
Lemma 3.5, M N E; and M N Ky have non-zero isomorphic submodules.
Thus M is not square-free. O

COROLLARY 3.7. If M is an automorphism-itnvariant square-free
module, then every injective endomorphism of M is an automorphism of M.

Proor. Let M be an automorphism-invariant square-free module
and let ¢p: M — M be an injective endomorphism of M. Then ¢ extends
to an endomorphism ¢,: E(M) — E(M), which is necessarily injective.
Then E(M) = py(E(M)) @ C, so that E(M) = g2(E(M)) & ¢,(C) & C with
9,(C) = C. By Corollary 3.6, E(M) is square-free, so C = 0. This proves
that ¢, is an automorphism of E(M). But M is automorphism-invariant,
so py(M) =M. Thus (M) = M, that is, the endomorphism ¢ of M is
also surjective. O
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Arguing as in Corollary 2.3, we find that:

COROLLARY 3.8. IfM,N are two automorphism-invariant square-free
R-modules 1somorphic to submodules of each other, then M is isomorphic
to N.

COROLLARY 3.9. Let M be an automorphism-invariant R-module.
Assume that M = My & My, where M1 and Mz are orthogonal. Let E; be
an jective envelope of M;. Then E is orthogonal to Es.

ProoOF. Assume that there exists 0 # Ny < K7 and 0 # Ny < Es such
that Ny = N;. Let £’ be an injective envelope of N;. Then £y = E| & EY and
E; = E, & E] where E|=FE),. Set Er:=E, & E> =L ¢ B, & (E] & EY).
Then £ is an injective envelope of M. Since M is automorphism-invariant
and B} = E),, we get that M =M NE)®MnE) s MnE] o E))
[17, Lemma 7]. We will show that M NE] < M;. Let x € M N E}, then
x =1 +x2 where x; € M; and x € B} C Ey. Hence 0z =x —x; € MaN
E; C Ey; N Ey = 0. Therefore © = 1 € M;. By a similar argument, we get
that M N E, < M. As M N E’ is essential in £’ and £’ is injective, £’ is an
injective envelope of M N E’.. Moreover, K} = E/,. Hence, by Lemma 3.5,
there exist non-zero submodules P1<MNE;<M; and P;<
M N E; < Ms such that Py = Py. Therefore M, is not orthogonal to Ms.
This is a contradiction. O

PrOPOSITION 3.10.  Let M be an automorphism-invariant module and
E(M) be its injective envelope. The following conditions are equivalent:

(@) M 1is square-free.

(b) EM) is square-free.

(¢) The von Newmann regular ring End(M)/J(End(M)) is abelian.

(d) The von Newmann regular right self-injective ring End(E(M))/
J(End(E(M))) is abelian.

ProOF. (a) < (b) has been proved in Corollary 3.6.

(b) = (d) follows from the fact that A%, E) = J(End(M)) for any in-
jective module £ and [15, Lemma 3.4].

(d) = (c) follows from the fact that every subring of an abelian ring is an
abelian ring and Theorem 2.1.

(¢) = (a) Assume that (¢) holds. Set S := End(M). Suppose that M
contains a direct sum X & Y of two isomorphic submodules. Taking the
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injective envelopes in E(M), one finds that E(M) = EX)e E(Y)a C. If
¢: X — Y is an isomorphism, ¢ extends to an isomorphism y: E(X) — E(Y).
Thus there is an isomorphism

0 w1 0
w:= (1// 0 0)2E(M)_E(X)@E(Y)€BC—>E(M)—E'(X)EBE(Y)@C.
0 0 1¢

The automorphism w of E(M) restricts to an automorphism «’ of M be-
cause M is automorphism-invariant. From [17, Lemma 7], we know that
M= MNEX)oWMNEY)®dMnNC). Thus M =e1M & eoM & esM
for orthogonal idempotents e; €S, where eyM =MNEX) and
esM =M NEXY). Now o' (M NEX)) =M NEX)) =wolM)NwoFEX)) =
MNEY). Thus M NEX)) =2 M N E(Y), thatis, egM = esM. Applying the
functor Hom(M, —): Mod-R — Mod-S, one finds that Sg = ¢1S @ xS @ e3S
and e;Sg =2 e2Ss [7, Theorem 4.7]. If ¢; is the image of ¢; in S/J(S),
then S/J(S) =e1S/J(S) & exS/J(S) ®e3S/J(S) and e1S/J(S) = exS/J(S)
[1, Exercise 7.2]. But S/J(S) is abelian, so that e1S/J(S) = e:S/J(S)
implies e1S/J(S) = e2S/J(S) [9, Theorem 3.4]. From this we get that
1—eje; =0, i.e., s = e165. Similarly e = eze;. Thus e; — e; is an idem-
potent in J(S), from which e; =e3. Thus M NEX) =M NE), and
X=Y=0. O

The next Corollary generalizes [14]. Recall that a ring is duo if all its
right ideals and all its left ideals are two-sided ideals. A ring is quasi-duo if
all its maximal right ideals and all its maximal left ideals are two-sided
ideals.

COROLLARY 3.11. The endomorphism ring of an automorphism-in-
variant square-free module s quasi-duo.

Proor. Let M be an automorphism-invariant square-free module. By
Proposition 3.10, End(M)/J(End(M)) is an abelian von Neumann regular
ring. One-sided ideals of abelian regular rings are generated by central
idempotents, hence all of them are two-sided. Thus End(M)/J(End(M)) is a
duo ring. The conclusion now follows from the fact that a ring S is quasi-duo
if and only if S/J(S) is quasi-duo. |

THEOREM 3.12. Let M be an automorphism-invariant module and let
E(M) be its injective envelope.

(@) If M is quasi-injective and End(M) has a factor isomorphic to e,
then End(E(M)) has a factor isomorphic to IYs.
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(b) If M has finite Goldie dimension and End(M) has a factor iso-
morphic to Iy, then the following conditions hold.

(1) End(E(M)) has a factor isomorphic to ['s.

(ii)) EM) has a direct-sum decomposition E(M) = FE & C with K
orthogonal to C, E an indecomposable R-module and End(&)/
J(End(£)) = IFs.

(i) Aut(£) =1+ J(End(E)), so that every automorphism of the R-
module E is the identity on an essential R-submodule of E.

(iv) E isthe injective envelope of its non-zero R-submodule anng(2).

Proor. (a) If M is quasi-injective, the mapping
9: End(M)/J (End(M)) — End(E(M))/J (End(EM)))

is an isomorphism by Theorem 2.1(d). Thus End(£(M)) has a factor iso-
morphic to [Fz.

(i) We first consider the case of M indecomposable. If M is auto-
morphism-invariant indecomposable, then End(M) is local by Proposi-
tion 2.2. If End(M) also has a factor isomorphic to e, then

End(M)/J(End(M)) == .

Since M is automorphism-invariant, we get that M = N @ P, where N is
quasi-injective and P is square-free (Theorem 3.4). But M isindecomposable,
so that either M = N or M = P.If M = N is quasi-injective, End(#(M)) has
a factor isomorphic to Iy by (a). In the other case, M = P is square-free, so
that End(E(M))/J(End(#(M)) is abelian. As M has finite Goldie dimension,
E (M) has finite Goldie dimension. Hence End(#(M)) is semilocal. Therefore
End(E(M))/J(End(EM)) = Dy x Dy x ... x Dy, where each D; is a divi-
sion ring. Consider the mapping ¢: End(M) — End(#(M))/J (End(E(M)) of
Theorem 2.1. From ker ¢ = J(End(M)), it follows that im¢ = End(M)/
J(End(M)) == Fy. Moreover, the group of units of End(E(M))/J(End(E(M))
is contained in im(gp), because M is automorphism-invariant. Hence the group
of units of

End(E(M)/J(End(EM))

has one element. Since it is isomorphic to D; \ {0} x ... x D, \ {0}, it fol-
lows that D; = Iy for every ¢ =1,...,n. So End(£(M)) has a factor iso-
morphie to [Fe. This concludes the proof of (i) for M indecomposable.

Now let M be an arbitrary automorphism-invariant module of finite
Goldie dimension and assume that End(M) has a factor isomorphic to IFs.



Automorphism-invariant modules 255

The proof will be by induction on the Goldie dimension » of M. If n =1,
then M is indecomposable, and we are done. Suppose n > 1. Since M is
automorphism-invariant, we have that M = N & P, where N is quasi-in-
jective, P is square-free and N, P are orthogonal. If P = 0, then M is quasi-
injective, and we conclude by (a). If N = 0, then M is square-free. If M is
indecomposable, we are done, as we have seen in the previous paragraph.
Otherwise M = M, & Ms for suitable non-zero submodules M, Ms. The
modules M1, My are orthogonal because M is square-free. By Corollary
3.3, either End(M;) or End(M;) has a factor isomorphic to . Without loss
of generality, we can assume that End(};) has a factor isomorphic to .
Let E; be an injective envelope of M;, so that E(M) = E1 © Es. By the
inductive hypothesis, we get that End(#;) has a factor isomorphic to Fs.
Moreover, Eq,FE2 are orthogonal by Corollary 3.9. Thus End(¥) has a
factor isomorphic to Iy by Corollary 3.3, and we are done.

It remains to consider the case M = N & P with both N and P non-
zero. Then E(M) = E(N) ® E(P). Then E(N) and E(P) are orthogonal
(Corollary 3.9), and either End(N) or End(P) has a factor isomorphic to
[F'e (Corollary 3.3). By the inductive hypothesis, End(Z(N)) or End(E(P))
has a factor isomorphic to Fs. The conclusion follows by Corollary 3.3.

(ii) Since M is of finite Goldie dimension, E'(M) decomposes as E(M) =
E\®...®E,,where the E; are indecomposable injective B-modules. Now
End(M) is semiperfect (Proposition 2.2(b)), hence semilocal. By the hy-
pothesis, there exists a ring morphism End(M) — [, so that there exists a
ring morphism End(M)/J(End(M)) — Fs. The semisimple artinian ring
End(M)/J(End(M)) is a finite direct product of rings of matrices Mn Dy)
over division rings D;. The kernel of the ring morphism End(M )/
J(EndM)) — Feis a mammal ideal of this finite direct product of rings of
matrices M,,(D;). It follows that there exists an index j with »; =1 and
D; > F,. Thus in the direct-sum decomposition E(M) =E1 @ ... ® K,
there exists an index 7 with E; 2 Ky, for every k = 1,...n different from 7
and End(#;)/J(End(E;)) = Fy. Set £ :=E; and C. Eito..oE, 1®
Ei1&...0E,. In order to conclude the proof of (ii), it suffices to show
that £ is orthogonal to C. Assume the contrary. Then there exist iso-
morphic non-zero submodules A of £ and B of C. Thus E(B) is an in-
decomposable direct summand of C isomorphic to E(A) = E. By the Krull-
Schmidt-Azumaya Theorem, the module £(B) must be isomorphic to one of
the modules E1,...,FE;_1,E;.1,...,E,. This is a contradiction.

(iii) If ¢ € Aut(&), we have that ¢ 4+ J(End(£)) is an invertible element
in the ring End(%)/J(End(£)). But End(#)/J(End(£)) = Fy, so that
¢+ J(EndE)) =1+ J(End(#)). Thus ¢ € 1 + J(End(%)). This proves that
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Aut(F) =1+ J(End(¥®)). In particular, every automorphism of the R-
module ¥ is the identity on an essential R-submodule of £.

(iv) From End(®)/J(End(£)) = Fy, it follows that 15+ 15 € J(End(&));
that is 2 annihilates an essential submodule of E. Therefore anng(2) is a
non-zero R-submodule of E. But £ is uniform. O

Theorem 3.12(b) does not hold when M is not automorphism-invariant.
To see this, take R = 7, and M = 7. Then Q is an injective envelope of
7:7. The endomorphism ring of 7 is isomorphic to Z. So it has a factor
isomorphic to Fe. But the endomorphism ring of QO has no factor iso-
morphic to .

REMARK 3.13. Let M be any right R-module, let E(M) be its injective
envelope and S := End(£(M)) be the endomorphism ring of E(M), so that
E(M) turns out to be a S-R-bimodule. Let I be the two-sided ideal of S
generated by the set {s —s?| s € S}. Then the annihilator annggp! :=
{e€ E(M)|Ie =0} is an S-R-subbimodule of sE(M)g, as is easily seen.
Thus there is an R-module direct-sum decomposition E(M)r = E1 & Es,
where £ is an injective envelope E(anngasl) of annganl in E(M)p and
E5 is a complement of £; in E(M)g, so that no non-zero element of Fs is
annihilated by I, i.e., es € Es and Ies = 0 imply e; = 0. Assume there are
two non-zero R-submodules Ai,As such that A; < Ey, Ay < Ey and
A; =2 Ay. Then their injective envelopes E(A;), E(Ag) are isomorphic and
each E(A;) is a direct summand of E;. So E(M) decomposes as a direct
sum EWM) = e EM) $ eo (M) & esE(M) for orthogonal idempotents
e; € End(E(M)) where e, E(M)=FEA;) 1 =1,2). Since E(A,) = EAy),
ertEE(M) =2 eoE(M). Applying the functor Hom(E'(M), —): Mod-R — Mod-S,
one finds that Sg = e1S © €S ®e3S and e1Ss =2 e2Ss [7, Theorem 4.7],
where S = End(#E(M)). So there exists a unit element % € S such that
e1 =ulesu. As epannpgnl =0 and e; =u lepu, it follows that
erannggn! = 0. But this contradicts e;annggy! # 0, because e;annggnl =
E(Ay) nannggpl # 0. Therefore two B-modules £ and £ are orthogonal.
By Lemma 3.2, S/AEM), E(M)) = S1/AE1, E1) x Se/A(Es, Es), where S;
denotes the endomorphism ring of the R-module E;. As AF¥,E)=
J(End(&)) for any injective R-module K, it follows that S/J(S) =
S1/J(S1) x Sg/J(S2) in a canonical way. If I; denotes the two-sided ideal of
S; generated by all x — x* with x € S;, then I/J(S) 2 I1/J(S1) x I2/J(S3).

Now consider the ring morphism p: S — End(anngas) /) that associates
to any f € S its restriction f|,,,, ; to anngapl. The ring morphism p is
well defined because annggnl is a left S-submodule of E(M). The
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morphism p is clearly an onto mapping, and its kernel is kerp :=
{f € S|f(anngupl) = 0}. In particular I C ker p. Since S/I is a boolean
ring, the ring End(annggy/) is also boolean. Moreover, J(S) C I C ker p,
so that p induces a ring morphism p:S/J(S) — End(annggpnl). As
S/J(S) = 8S1/J(S1) x S2/J(S2) and the elements of Sy/J(Sy) are clearly
mapped to 0 by p, we get that 0 x Sa/J(S2) C ker (p). Thus there is a
surjective ring morphism S;/I; — End(annggl).

From Remark 3.13, we get in particular that:

PRroOPOSITION 3.14. Let M be an R-module, S := End(E(M)) be the
endomorphism ring of E(M) and I be the two-sided ideal of S generated
by the set {s —s* | s € S }.

(@) If anngopnl # 0, then End(M) has a factor isomorphic to .

(b) If M is automorphism-invariant and annganl is an essential
submodule of the R-module E(M), then the ring End(M)/J(End(M))
1s a boolean ring.

Proor. Compose the ring morphism ¢: End(M) — S/J(S) of Theo-
rem 2.1 with the morphism p:S/J(S) — End(anngys/) in Remark 3.13,
obtaining a morphism pp: End(M) — End(annggnl), where End(anng /)
is aboolean ring. If anng! # 0, then End(anngg ) is a non-zero boolean
ring, so that there is a morphism End(annggpnl) — Fz. Thus there is a
morphism End(M) — Fy, necessarily surjective. Hence End(M) has a
factor isomorphic to I*s. This concludes the proof of (a).

If M is automorphism-invariant and annggsn! is essential in E(M),
then in Remark 3.13 we have that E(M)=FE,, E; =0 and kerp C
AEWM),E(M)) =J(S). As I Ckerp and J(S) C I, it follows that [ =
ker p = J(S). Thus S/J(S) = End(anngup!) is a boolean ring. By Theo-
rem(a) 2.1, the ring End(M)/J(End(M)) is isomorphic to a subring of the
ring End(Z(M))/J(End(EM))) = S/J(S). Thus End(M)/J(End(M)) is
boolean. O

ProposITION 3.15.  Let M be an automorphism-invariant square-free
module of finite Goldie dimension. Then M decomposes as a direct sum
M = N & P, where N is a module orthogonal to P, End(N) has no factor
isomorphic to Ve, and End(P)/J(End(P)) is isomorphic to a boolean ring
Iy for some n.

Proor. The automorphism-invariant module M of finite Goldie dimen-
sion, decomposes as a direct sum M = M; & ... ® M, of indecomposable
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modules, necessarily automorphism-invariants. Let ey, ..., e; € End(M) be
the orthogonal idempotents corresponding to this direct-sum decomposition
of M. Then ey, ...,¢ € End(M)/AM, M) are orthogonal idempotents of
EndM)/AM, M), which is an abelian ring by Proposition 3.10. Thus the
idempotents ey, . .., e; of End(M)/AM, M) = End(M)/J(End(M)) are cen-
tral, so that

End(M)/J(End(M)) =
=~ ¢ End(M)/J(End(M))e; x ... x g End(M)/J(End(M))e; =
=~ End(M;)/J(End(M1)) x ... x End(My)/J (End(M,)),

is isomorphic to the direct product of the residue division rings
End(M;)/J(End(M;)). Let N be the direct sum of the M; with the residue
division rings End(M;)/J(End(M;)) not isomorphic to ' and P be the di-
rect sum of the M; with the residue division rings End(M;)/J(End(M;))
isomorphic to IFy. Then M = N & P, End(NV) has no factor isomorphic to Iz,
because End(N)/J(End(N)) is a direct product of finitely many division
rings not isomorphie to s, and End(P)/J(End(P)) isomorphic to a direct
product of finitely many copies of 5.
Finally, N and P are relatively injective by [13, Theorem 5]. As

End(M)/ AWM, M) = End(N)/AN,N) x End(P)/ AP, P),
we conclude that N and P are orthogonal (Lemma 3.2). O
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