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algebra in the ind-category of overconvergent F-isocrystals on S. We prove a base
change property, which says that the fibres of this object are the Hopf algebras of the
rigid fundamental groups of the fibres of f. We explain how to use this theory to define
period maps as Kim does for varieties over number fields, and show in certain cases
that the targets of these maps can be interpreted as varieties.
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Introduction

Let K be a number field and let C/K be a smooth, projective curve of genus
g > 1, with Jacobian J. Then a famous theorem of Faltings states that the set C(K)
of K-rational points on C is finite. The group J(K) is finitely generated, and under
the assumption that its rank is strictly less than g, Chabauty in [14] was able to
prove this theorem using elementary methods as follows. Let v be a place of K, of
good reduction for C, and denote by C,,J, the base change to K,. Then Chabauty
defines a homomorphism

(1) log : J(K,) — H’ (JWQ}L,/Kv)

and shows that there exists a non zero linear functional on H(J,, 2} /k,) Which
vanishes on the image of J(K). He then proves that pulling this back to J(X,) gives
an analytic function on J(K,), which is not identically zero on C(K,), and which
vanishes on J(K). Hence C(K) C C(K,) NJ(K) must be finite as it is contained in
the zero set of a non-zero analytic function on C(K,).

In [29], Kim describes what he calls a ‘non-abelian lift’ of this method. Fix a
point p € C(K). By considering the Tannakian category of integrable connections
on C,, one can define a ‘de Rham fundamental group’ U® = 7{%(C,,p), which is a
pro-unipotent group scheme over K,, as well as, for any other x € C(K,), path
torsors P (x) = n®(C,,x, p) which are right torsors under U®. These group
schemes and torsors come with extra structure, namely that of a Hodge filtration
and, by comparison with the crystalline fundamental group of the reduction of C,, a
Frobenius action. He then shows that such torsors are classified by U /F°, and
hence one can define ‘period maps’

(2) Ju: C(Ky) — USE/F°

where UIR is the nth level nilpotent quotient of U, If n = 2 then j, is just the
composition of the above log map with the inclusion C(K,) — J(K,). By analysing
the image of this map, he is able to prove finiteness of C(K) under certain condi-
tions, namely if the dimension of U /F? is greater than the dimension of the target
of a global period map defined using the category of lisse étale sheaves on C.
Moreover, when n = 2, this condition on dimensions is essentially Chabauty’s
condition that rank;J(K) < genus(C) (modulo the Tate-Shafarevich conjecture).
Our interest lies in trying to develop a function field analogue of these ideas.
The analogy between function fields in one variable over finite fields and number
fields has been a fruitful one throughout modern number theory, and indeed the
analogue of Mordell’s conjecture was first proven for function fields by Grauert. In
this paper we discuss the problem of defining a good analogue of the global period
map. This is defined in [29] using the Tannakian category of lisse (J, sheaves on X,
and this approach will not work in the function field setting. Neither p-adic nor ¢-
adic étale cohomology will give satisfactory answers, the first because, for example,
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the resulting fundamental group will be moduli dependent, i.e. will not be locally
constant in families (see for example [34]), and the second because the ¢-adic to-
pology on the resulting target spaces for period maps will not be compatible with
the p-adic topology on the source varieties. Instead we will work with the category
of overconvergent F-isocrystals.

Let K be a finite extension of IV, (), and let k be the field of constants of K, i.e.
the algebraic closure of I, inside K. Let S be the unique smooth projective, geo-
metrically irreducible curve over k£ whose function field is K. If C/K is a smooth,
projective, geometrically integral curve then one can choose a regular model for C.
This is a regular, proper surface X/k, equipped with a flat, proper morphism
f:X — S whose generic fibre is C/K. Let S C S be the smooth locus of f, and
denote by f also the pullback f : X — S. The idea is to construct, for any section p
of f, a ‘non-abelian isocrystal’ on S whose fibre at any closed point s ‘is’ the rigid
fundamental group 7, (X;, ps). The idea behind how to construct such an object is
very simple.

Suppose that f : X — S'is a Serre fibration of topological spaces, with connected
base and fibres. If p is a section, then for any s €.S the homomorphism
(X, p(s)) — m (S, s) is surjective, and 71 (S, s) acts on the kernel via conjugation.
This corresponds to a locally constant sheaf of groups on S, and the fibre over any
point s € S is just the fundamental group of the fibre X;. This approach makes
sense for any fundamental group defined algebraically as the Tannaka dual of a
category of ‘locally constant’ coefficients. So if f : X — S is a morphism of smooth
varieties with section p, then f; : an (X,x) — nfs (S, s) is surjective, and nfs (S,s)
acts on the kernel. Here C_, is any appropriate category of coefficients, for ex-
ample vector bundles with integrable connection, unipotent isocrystals ete., and
e.g. nf’( (X, ) is the Tannaka dual of this category with respect to the fibre functor
«*. This gives the kernel of f. the structure of an ‘affine group scheme over Cg’, and
it makes sense to ask what the fibre is over any closed point s € S. The main
theorem of the first section is the following.

THEOREM. Suppose that f : X — S is a smooth morphism of smooth varieties
over an algebraically closed field k of characteristic zero. Assume that both S and
the fibres of f are connected, and that X is the complement of a relative normal
crossings divisor in a smooth and proper S-scheme X. Let Cg be the category of
vector bundles with a regular integrable connection on S, and let Cx be the category
of vector bundles with a reqular integrable connection on X which are iterated
extensions of those of the form f*&, with & € Cs. Then the fibre of the corre-
sponding affine group scheme over Cg at s € S is the de Rham fundamental group
iR (X, ps) of the fibre.

In Section 2 we discuss path torsors in the relative setting. We show in parti-
cular that for any other section g of f one can define an affine scheme n‘fR(X /S,q,p)
over Cg which is a right torsor under the relative de Rham fundamental group
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nd®(X /S, p). The upshot of this is that we obtain
(3) jn X(S) _)Hl(sanilR(X/S»p)n)

which are a coarse characteristic zero function field analogue of Kim’s global period
maps. Of course, if we were really interested in the characteristic zero picture, we
would want to define Hodge structures on these objects, and thus obtain finer
period maps. However, our main interest lies in the positive characteristic case, and
so we don’t pursue these questions.

In Section 3 we define the relative rigid fundamental group in positive char-
acteristic, mimicking the definition in characteristic zero. Instead of the category
of vector bundles with regular integrable connections, we consider the category of
overconvergent F-isocrystals (throughout Section 3 we will be over a finite field,
and Frobenius will always mean the linear Frobenius). We then proceed to use
Caro’s theory of cohomological operations for arithmetic D-modules in order to
prove the analogue of the above theorem in positive characteristic.

The upshot of this is that for a smooth and proper map f : X — S with geo-
metrically connected fibres and smooth, geometrically connected base over a finite
field &, and a section p of f, we can define an affine group scheme nllg (X/S,p) over
the category of overconvergent F-isocrystals on S, which we call the relative
fundamental group at p. The fibre of this over any point s € S is just the unipotent
rigid fundamental group of the fibre X; of f over s. As in the zero characteristic
case, the general Tannakian formalism gives us path torsors 7} *(X/S, p, ¢) for any
other ¢ € X(S), and hence we can define a period map

(4) X(S) — H!

brig S, T X /S, p))

where the RHS is a classifying set of F-torsors under n”g (X/8,p), as well as finite
level versions given by pushing out along the quotient map nlg(X /S,p) —

(X /S, ).

Flnally, we study the targets of these period maps, and show that after replacing

Hp rig (S, nllﬂg(X /S, p)), the set classifying F-torsors, by the Frobenius invariant part
of the set classifying torsors without F-structure, Hll,lg(S n{‘g(X /S, p)?4 then
under very restrictive hypotheses on the morphism f: X — S, we obtaln the
structure of an algebraic variety. The argument here is just a translation of the
original argument of Kim into our context, and what for us are restrictive hy-
potheses are automatically satisfied in his case.

We are still a long way away from getting a version of Kim’s methods to
work for function fields. There is still the question of how to define the analogue
of the local period maps, and also to show that the domains of the period maps
have the structure of varieties. Even then, it is very unclear what the correct
analogue of the local integration theory will be in positive characteristic. There
is still a very large amount of work to be done if such a project is to be com-
pleted.
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1. Relative de Rham fundamental groups

Let f : X — S be a smooth morphism of smooth complex varieties, and suppose
that f admits a good compactification, that is, there exists X smooth and proper
over S, an open immersion X< X over S, such that D = X \ X is a relative normal
crossings divisor in X. Let p € X(S) be a section. For every closed point s € S with
fibre X;, one can consider the topological fundamental group G := m; (X, p(s)),
and as s varies, these fit together to give a locally constant sheaf 7; (X /S, p) on S?".
Let

(5) U(Lie Gy) := lim C[G,]/a”

denote the completed enveloping algebra of the Malcev Lie algebra of G, where
a C C[Gg]is the augmentation ideal. According to Proposition 4.2 of [25], as s varies,
these fit together to give a pro-local system on S*", i.e. a pro-object Z:l;fp in the
category of locally constant sheaves of finite dimensional C-vector spaces on S".
(Their theorem is a lot stronger than this, but this is all we need for now). According
to Théoréme 5.9 in Chapter II of [18], the pro-vector bundle with integrable con-
nection Z:l}tfp ®c Ogan has a canonical algebraic structure. Thus given a smooth
morphism f : X — S as above, with section p, one can construct a pro-vector bundle
with connection Z;[p on S, whose fibre at any closed point s € S is the completed
enveloping algebra of the Malcev Lie algebra of 7y (X2, p(s)).

Denoting by g, the Malcev Lie algebra of 7 (X2, p(s)), U(a,) = U,)s can be
constructed algebraically, as g, is equal to Lie n‘liR (X5, ps), the Lie algebra of the
Tannaka dual of the category of unipotent vector bundles with integrable con-
nection on X;. This suggests the question of whether or not there is an algebraic
construction of U/,,?

We will not directly answer this question - instead we will construct the Lie
algebra associated to Z:lp - this is a pro-system ,,Zp of Lie algebras with connection
on S. The way we will do so is very simple, and is closely related to ideas used in [35]
to study relatively unipotent mixed motivie sheaves.

DerFINITION 1.1. To save ourselves saying the same thing over and over again,
we make the following definition. A ‘good’ morphism is a smooth morphism
f: X — S of smooth varieties over a field k, with geometrically connected fibres and
base, such that X is the complement of a relative normal crossings divisor in a
smooth, proper S-scheme X. Throughout this section we will assume that the
ground field k is algebraically closed of characteristic 0.

We will assume that the reader is familiar with Tannakian categories, a good
introductory reference is [31]. If 7 is a Tannakian category over a field k, and wis a
fibre functor on 7, in the sense of §1.9 of [20], we will denote the group scheme
representing tensor automorphisms of @ by G(7,w). We will also use the rudi-
ments of algebraic geometry in Tannakian categories, as explained in §5 of [19] - in
particular we will talk about affine (group) schemes over Tannakian categories. We
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will denote the fundamental group of a Tannakian category by n(7), this is an
affine group scheme over 7 which satisfies w(n(7)) = G(7,w) for every fibre
functor w (see for example 6.1 of [19]). If 7 is a Tannakian category over k, and k' /k
is a finite extension, then we will denote the category of k’-modules in 7 by either
T k', or Ty

We will also assume familiarity with the theory of integrable connections and
regular holonomic D-modules on k-varieties, and will generally refer to [18] and
[23] for details. We say that a regular integrable connection on X is unipotent if it is
a successive extension of the trivial connection, and these form a Tannakian sub-
category NIC(X) C IC(X) of the Tannakian category of regular integrable con-
nections.

DEFINITION 1.2. For X/k smooth and connected, the algebraic and de Rham
fundamental groups of X at a closed point x € X are defined by

(6) 78X @) == 2 (n(1C(X))) = G(IC(X), ")
() 2B (X, 1) == 2" (n(NIC(X))) = GWVIC(X), a").

REMARK 1.3. It follows from the Riemann-Hilbert correspondence that if
k = C, then these affine group schemes are the pro-algebraic and pro-unipotent
completions of 7; (X*", x) respectively.

If f : X — Y is a morphism of smooth k-varieties, then we can form the pullback
of vector bundles with integrable connection on Y, which preserves regularity and
is the usual pull-back on the underlying Oy-module. This induces a homomorphism
foaf (X, @) — 7l (V,f(x) for # = dR, alg.

1.1 — The relative fundamental group and its pro-nilpotent Lie algebra

Letf : X — S be a ‘good’ morphism. A regular integrable connection £ on X is
said to be relatively unipotent if there exists a filtration by horizontal sub-bundles,
whose graded objects are all in the essential image of f* : IC(S) — IC(X). We will
denote the full subcategory of relatively unipotent objects in IC(X) by NIC(X),
which is a Tannakian subcategory. Suppose that p € X(S) is a section of . We have
functors of Tannakian categories

o
®) N/IC(X) 22 1C(S)
and hence, after choosing a point s € S(k), homomorphisms

9) G(J\/'fIC(X),p(s)*)é G(IC(S),s")

P+
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between their Tannaka duals. Let K; denote the kernel of f.. Then the splitting p.
induces an action of ni‘lg (S,s) = G(IC(S),s*) on K, via conjugation. This corre-
sponds to an affine group scheme over IC(S).

LEMMA 1.4. This affine group scheme over 1C(S) is independent of s.

Proor. Thanks to [19], §6.4, f., p. above come from homomorphisms

(10) P (n(fvflc<x>))%nac<s>>

of affine group schemes over IC(S). If we let K denote the kernel of f., then
K, = 5*(K), and this induces the action of 72'%(S, s) on K. O

DEFINITION 1.5. The relative de Rham fundamental group 7% (X/S,p) of X /S
at p is defined to be the affine group scheme I over IC(S).

Let 75 : Xy — X denote the inclusion of the fibre over s. Then there is a canonical
functor i : NrIC(X) — NIC(X;). This induces a homomorphism 7{® (X, ps) —
G(N/IC(X),p;) which is easily seen to factor through the fibre n{®(X/S,p) =
s*(K) = K of nd®(X/S,p) over s.

THEOREM 1.6. Suppose that k = C. Then ¢ : n®(X;, ps) — n{®(X/S,p), is an
isomorphism.

ProoF. The point s gives us fibre functors p; on N'IC(Xy), p(s)” on NFIC(X)
and s* on IC(S). Write
(1)  K=GWICKX,),p), G=GWNICX),p(s)"), H=G(IC(S)s")
and also let
(12) K=mn(X"p(s), G=mX"p(s), H=mn(S"s)

be the topological fundamental groups of X, X, S respectively. Then L = K", the
pro-unipotent completion of K, and H = H¥2, the pro-algebraic completion of H.
We need to show that the sequence of affine group schemes

(13) 1-K—-G—-H—-1

is exact, and we will use the equivalences of categories

(14) IC(X) = Repc (m (X*,p(s))), IC(S)= Repc(m(S™,s))
(15) IC(X;) = Repe- (m1 (X3, p(3)))-

By Proposition 1.3 in Chapter I of [35], ker(G — H) is pro-unipotent. Hence ac-
cording to Proposition 1.4 of loc. cit., in order to show that ¢ is an isomorphism, we
must show the following.
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o If £ € N/IC(X) is such that i}(E) is trivial, then E = f*(F) for some F' in
IC(S).

o Let H e N +1C(X), and let Fy C 7;(E) denote the largest trivial sub-object.
Then there exists £y C £ such that Fy = 1} (&y).

e There is a pro-action of G on /(Lie K) such that the corresponding action of
Lie G extends the left multiplication by Lie /.

The first is straightforward. Since f is topologically a fibration with section p,
we have a split exact sequence

(16) 1-K—-—Gs H—1

and a representation V of G such that K acts trivially. We must show that V is the
pullback of an H-representation - this is obvious! The second is no harder, we must
show that if V is a G-representation, then VX is a sub-G-module of V. But since K
is normal in G, this is clear. For the third, note that ¢/(Lie K) = U(Lie K) =
I}EC[K] /a’, where a is the augmentation ideal of C[K]. Let H act on C[K]/a" by
conjugation and K by left multiplication. I claim that C[K]/a" is finite dimen-
sional, and unipotent as a K-representation.
Indeed, there are extensions of K-representations

(17) 0— an/an+1 N ‘C[K]/C(n+1 N ‘C[K]/C[n =0

and hence, since the action of K on a™ /a”* is trivial, it follows by induction that each
C[K]/a" is unipotent. There are also surjections

(18) (a/a2)®"_» an/an-H

for each n, and hence by induction, to show finite dimensionality it suffices to show
that a/a? is finite dimensional. But a/a® =~ K® ., C is finite dimensional, as K is
finitely generated.

Now, since C[K]/a" is unipotent as a K-representation, it is relatively unipotent
as a G = K x H-representation, hence C[K]/a" is naturally an object in Rep(G).
Thus there is a pro-action of G on U(Lie K), and the action extends left multi-
plication by Lie K as required. O

REMARK 1.7. The co-ordinate algebra of n{®(X/S,p) is an ind-object in the
category of regular integrable connections on S. Hence we may view 7i%(X /S, p) as
an affine group scheme over S in the usual sense, together with a regular in-
tegrable connection on the associated Og-Hopf algebra.

If g: T — S is any morphism of smooth varieties over k, then there is a
homomorphism of fundamental groups

(19) 7R (X /T, pr) — 1% (X/S,p) x5 T = ¢* (xR (X /S, p))
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which corresponds to a horizontal morphism
(20) Ot x/3.p) ®05 O = Oty 1)
ProrosITION 1.8. If k = C then this is an isomorphism.

Proor. We know by the previous theorem that this induces an isomorphism on
fibres over any point ¢ € T'(C). Hence by rigidity, it is an isomorphism. O

Write G = n{®(X /S, p) and let G,, denote the quotient of G by the nth term in its
lower central series. Let A,, denote the Hopf algebra of G,, and I,, C A,, the aug-
mentation ideal. L, := Homo, (I,/I%,Os) is the Lie algebra of G,. This is a co-
herent, nilpotent Lie algebra with connection, i.e the bracket [, -] : L,, ® L, — L, is
horizontal. There are natural morphisms L, .1 — L,, which form a pro-system of
nilpotent Lie algebras with connection ﬁp, whose universal enveloping algebra is

the object U, considered in the introduction to this section.

1.2 — An algebraic proof of Theorem 1.6

Although we have a candidate for the relative fundamental group of a ‘good’
morphism f : X — S at a section p, so far we have only proved it is a good candidate
when the ground field is the complex numbers. One might hope to be able to reduce
to the case k = C via base change and finiteness arguments, but this approach will
not work in a straightforward manner. Also, such an argument will not easily adapt
to the case of positive characteristic, as in general one will not be able to lift a
smooth proper family, even locally on the base. In this section, we will give a more
algebraic proof, that will more easily adapt to positive characteristic. Recall that we
have an affine group scheme 7{®(X/S, p) over IC(S), and a comparison morphism

(21) ¢ 2 i (Xs, ps) — i (X/S, p),

for any point s € S. We will prove that this map is an isomorphism.
It follows from Proposition 1.4 in Chapter I of [35] and Appendix A of [22] that
we need to prove the following:

e (Injectivity) Every E e NIC(X,;) is a quotient of (F) for some
F e NfIC(X).

e (Surjectivity I) Suppose that £ € N(IC(X) is such that ¢}(E) is trivial. Then
there exists F' € IC(S) such that £ = f*(F).

e (Surjectivity II) Let £ € N/IC(X), and let Fy C i;(E) denote the largest
trivial sub-object. Then there exists £y C E such that Fp = ¢}(&)).

To do so, we will need to use the language of algebraic D-modules. We define

the functor
B NAICX) — ICS)
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by f®(E) = H~9(f,E) where f, is the usual push-forward for regular holonomic
complexes of Z-modules, d is the relative dimension of f : X — S, and we are
considering a regular integrable connection on X as a Dx-module in the usual way.

LEMMA 1.9. The functor fI® lands in the category of regular integrable con-
nections, and 1s a right adjoint to f*.

ProOF. The content of the first claim is in the coherence of direct images in de
Rham cohomology, using the comparison result 1.4 of [21], and the fact that a
regular holonomic Dx-module is a vector bundle iff it is coherent as an Ox-module.

To see this coherence, we first use adjointness of f, and f, together with the
facts that f*Og = Ox[ — d] and f, Oy is concentrated in degrees > —d, to get ca-
nonical adjunction morphism f*dR(OX) — Qg of regular holonomic Dx-modules. I
claim that this is an isomorphism. Indeed, by 1.4 of [21] we have fi®(Oy) =~
R’f. (% /S) and since f admits a good compactification f : X — S the latter is

isomorphic to R"7,(Q e /S(log D)) where D = X \ X. Since f is proper with connected

fibres, we know that f*( %) = Os, and since Rof (Q;‘—( 15
of £.(O%), the claim follows.

Hence in particular f4®(Ox) is coherent, and via the projection formula, so is
FR(F*F) for any F € IC(S). Hence using exact sequences in cohomology and in-
duction on unipotence degree, fi*E is coherent whenever E is relatively unipotent.

To prove to the second claim, we just use that f* is adjoint to f, f* = f*[ — d]
on the subcategory of regular integrable connections, and f, E' is concentrated in
degrees > —d whenever V is a regular integrable connection. O

(log D)) is a sub-Og-module

REMARK 1.10. Although the proposition is stated in [21] for k£ = C, the same
proof works for any algebraically closed field of characteristic zero.

Thus we get a canonical morphism g : f*fI®E — E which is the counit of the
adjunction between f* and £,

ExampLE 1.11. Suppose that S = Spec(k). Then
(22) FIRE = HYy (X, B) = Homy o) (Ox, B)
and the adjunction becomes the identification
(23) Homy10(x)(V @k Ox, E) = Homyee, (V, Homyic(x) (Ox, E)).

Since fI® takes objects in N/ IC(X) to objects in IC(S), it commutes with base
change and there is an isomorphism of functors

(24) Hip (X5, —) 0@} = 5" o f3R . NFIC(X) — Veey.

To see this, first note that by using the five lemma, the projection formula and
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induction on the relative unipotence degree, it suffices to prove that f¥(Oy) and
R}m £.(Ox) commute with base change, where we have written R(liR f:(Ox) =
HH( f1Ox). Again, using 1.4 of [21] this boils down to proving that R’ W(Qy /s)
commute with base change for ¢ = 0, 1. Since we know that they are coherent (and
hence locally free), and that f : X — S admits a good compactification f : X — S,
this follows from Corollary 8.6 of [27] together with the standard isomorphism
Rf.(Qys) = Rf.(Q ((log D)) where D =X \ X.

PROPOSITION 1.12. Suppose that i:E is trivial. Then the counit eg : f*fIRE — E
18 an 1somorphism.

Proor. Pulling back ez by ¢}, and using base change, we get a morphism
(25) Ox, @ Hyg (X;,i:E) — i:E

which by the explicit description of 1.11 is seen to be an isomorphism (as ¢}/ is
trivial). Hence by rigidity, ez must be an isomorphism. O

ProposITION 1.13. Let E € N/IC(X), and let Fy C i(E) denote the largest
trivial sub-object. Then theve exists By C E such that Fo = ().

Proor. Let F = i:(E), then we have H),(X;, F) = Homycx,)(Ox,, F). T first
claim that the natural map Oy, ® HgR(Xs,F) — F' is injective and identifies F
with Ox, ®; Hz (X, F). But since the category NIC(X,) is Tannakian, this is
equivalent to claiming that for an affine group scheme G over k, and V a re-
presentation of G, the natural map of G representations H(G, V) — V is injective,
and identifies H*(G, V) with the largest trivial sub-G-module of V. This is obvious.

To complete the proof, set Ky = f*fI®(K), then by the base change results we
know that i} (&) = F, and that the natural map £y — E restricts to the inclusion
Fy — F on the fibre X;.

COROLLARY 1.14. The map n{®(X;,ps) — ni¥(X/S,p), is a surjection.

We now turn to the proof of injectivity of the comparison map, borrowing
heavily from ideas used in Section 2.1 of [24]. We define objects U,, of N'IC (X;), the
category of unipotent integrable connections on X; inductively as follows. U; will
just be Ox,, and U, 41 will be the extension of U,, by Ox, ® HéR (XS, U, )v corre-
sponding to the identity under the isomorphisms

(26) EXtIC(Xa(Un,O& @k Hyg (X;, UX)V) ~ Hyg (X&UZ Ok HéR(XSvUX)V)
%HéR(Xs:UX) Ok H<11R(X% UX)V
o Endk(HéR(Xs, U%))
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If we look at the long exact sequence in de Rham cohomology associated to the short
exact sequence 0 — Uy — U, — Hlp (X, UY) @ Ox, — 0 we get
(27) OHH{&R(X%UZ) — Hag (X5, Uy 1) HH%JR(X-% U,)

i>H(11R (XS» UX) - H(liR (X& UXH)-

LeEmMA 1.15. The connecting homomorphism o is the identity.

Proor. By dualising, the extension
(28) 0— U, — Uyyy — Ox, @ Hog (X, U)) — 0
corresponds to the identity under the isomorphism
(29) Extreqx,) (Ox, @ Hug (X5, U))), Uy) = Endy (Hag (X5, U))).-

Now the lemma follows from the fact that for an extension 0 — £ —
F — Ox, ®; V — 0 of a trivial bundle by E, the class of the extension under the
isomorphism

(30) Exticx,) (Ox, @ V, E) =~ Ve HéR(Xs,E) =~ Homy, (V’HtliR (XME))
is just the connecting homomorphism for the long exact sequence

(31) 0 — Hx (X5, E) — Hig(Xs, F) =V — Hp (X, E).
O
In particular, any extension of U, by a trivial bundle V ®,, Oy, is split after
pulling back to U1, and Hiy (X;, Uy, ;) = Hip (X, UY). It then follows by in-

n+1

duction that HYy, (X;, UyY) = HY, (X, Ox,) = k for all n.

DEFINITION 1.16. We define the unipotent class of an object £ € N IC(X;) in-
ductively as follows. If £ is trivial, then we say £ has unipotent class 1. If there exists
an extension

with £’ of unipotent class < m — 1, then we say that £ has unipotent class < m.
Now let x = p(s), u1 =1 € (U1), = k, and choose a compatible system of ele-
ments u,, € (Uy,), mapping to u;.

ProPOSITION 1.17. Let F € N'IC(X;) be an object of unipotent class < m. Then
for all n >m and any f € F, there exists a morphism o : U, — F such that

o (Uy) = f.

Proor. We copy the proof of Proposition 2.1.6 of [24] and use induction on .
The case m =1 is straightforward. For the inductive step, let F' be of unipotent
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class m, and choose an exact sequence

(33) 0-ELELG—0

with £ trivial and G of unipotent class < m. By induction there exists a morphism
f: Uy—1 — G such that ¢ (f) = f.(u,—1). Pulling back the extension (33) first by
the morphism f and then by the natural surjection U,, — U,,_; gives an extension of
U, by E, which must split, as observed above.

PR
0 s B s B s Up, >0
(34) 0 >JW >l] > Up—1 >0
0—sE—LF—* .G s 0

Lety : U, — F denote the induced morphism, then ¢, (y,(u,) — f) = 0. Hence there
exists some e € E,, such that w,(e) = y,(u,) — f. Again by induction we can choose
y U, — E with y/(u,) =e. Finally let o« =y —woy’, it is easily seen that
O‘x(un) :f- l

COROLLARY 1.18. Ewery E in NIC(Xy) is a quotient of USN for some
m,N € N\.

ProOF. Suppose that £ is of unipotent class < m. Let ey, ..., ey be a basis for
E,. Then there is amorphism o : USY — E with every e; in the image of the induced
map on fibres. Thus o, is surjective, and hence so is o. O

We now try to inductively define relatively nilpotent integrable connections W,,.
on X which restrict to the U, on fibres. Define higher direct images in de Rham
cohomology by R f.(E) = H~%(f, E), and begin the induction with W; = Ox. As
part of the induction we will assume that Ry fi (W) = Ry f.(Ox) = Os, that
R}m f.(WY) and R(IiR f.(W) are both coherent, i.e. regular integrable connections,
and that there exists a morphism p*W, — Og such that the composite
Os = W) = p*f*f, W, — p*W,) — Og is an isomorphism. We will define W,,.; to
be an extension of W, by the sheaf f*R} f. (W) )v, and thus consider the extension
group

(35)  Extice (W Rig e (W) ") = Hig (X. W, @0, f Rl £.(W,)").

The Leray spectral sequence, together with the induction hypothesis and the
projection formula, gives us the 5-term exact sequence
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(36) 0— HcllR (S7 RéRf*(WX)V) — Extiox (Wn,f*Rde (WV) )
— Endic(s) (R(llRf*(Wv\z/)) — Hiy (Sv R}iRﬁ«(er)v)
— Hig (X, W, @0, Rag LW,)").

Now, the projection p*W, — Og induces a map
(1) Hin(S.p'W) @o Rig £W)") = Hig (S, Rl £.(W;)")
such that the composite (dotted) arrow
Hig (S, Ripfe (Wy)") —— Hip (X, W) ®ox RipfWY)Y)
[
(38) | l
1
] Vv 7 *
Hig (8, Ripfe (W))") «—— Hig (S,p* W, ®ox (RgrfiWy)Y)

is as isomorphism, since it can be identified with the map induced by the composite
arrow Og = f, W) = p*f*f.W,) — p*W, — Og. Hence both the maps

(39) Hgg (37 R f. (WX)V) — Extic(x) (Wn ,f*R(lin*(WX)v>
Hiy (S> Rig /. (WX)V> — Hip (X, W, @0, Reg £ W,)")

appearing in the 5-term exact sequence split. So there is a commutative diagram

Extic(x) (Wa, F*REg fe WY)") — Extiocx.) (Un, Ox, ®r Hig (Xs,UY)Y)

(40) |

Endic(sy (Rirfs (WY)) » Endy, (Hig (X5,UY))

where the horizontal arrows are just restrictions to fibres, and the left hand vertical
arrow is surjective. The identity morphism in Endy (H}g (Xs, U))) clearly lifts to
Endygs) (R(l1R f*(W,X)), and there exists a unique element of the extension group
Extioqx) (Wa,f*Rig £.(W))") lifting the identity in Endyc) (Rig £.(W))), and
which maps to zero under the above splitting

(41) Extico) (W Rin . (W))") = Hi (S Rl £.(W))").
Let W, 1 be the corresponding extension.

ProPOSITION 1.19. Ewvery object of NIC(X;) is a quotient of i'E for some
E e N/IC(X).
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ProoF. To finish the induction step, we must show that
(42) Rog /- (W)1) 2= Rag f. (W),

that Rig £.(W, 1) and Ry f.(W, 1) are coherent, and that there exists a morphism

p*W, ., — Og as in the induction hypothesis. For the first claim, if we look at the

long exact sequence of relative de Rham cohomology

(43) 0— Rng* (W;Y) — Ry aR S« ( n+1)

we simply note that the given map restricts to an isomorphism on the fibre over s,
and is hence an isomorphism. For the second, we simply use the long exact sequence
in cohomology and the inductive hypothesis for R}y £.(W,) and Riy £.(W)). For
the third, note that it follows from the construction of W, ; that the exact sequence

(44) 0—p'W) = p W), — R W) =0

splits when we push out via the map p*W,” — Og. This splitting induces a map
p*WY, . — Og such that the diagram

n+1

(45) \ J

Os
commutes. Now the fact that the diagram

W, +1 ——p LW, +1 —p" Wn-l—l

w ] T I ™

Os F WY p* [ W, —— p*W,) —— Os

commutes implies that the composite along the top row is an isomorphism, finishing
the proof. O

COROLLARY 1.20. Let f : X — S be a ‘good’ morphism over an algebraically
closed field of characteristic zero, and p a section of f. Then the natural ‘base
change’ map iR (X, ps) — n{R(X /S, p)s is an isomorphism.

REMARK 1.21. Itis possible to define a relative fundamental group when k is not
necessarily algebraically closed (but still of characteristic 0) using identical
methods. One can then show that the corresponding ‘base change’ question can be
deduced from what we have proved in the algebraically closed case. Since this
argument is rather fiddly, and not necessary in the context of this paper, we have
omitted it.
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2. Path torsors, non-abelian crystals and period maps

If 7 is a Tannakian category over an arbitrary field &, and w; are fibre functors
on 7, 1 =1,2, with values in the category of quasi-coherent sheaves on some k-
scheme S, then the functor of isomorphisms w; — wy is representable by an affine
S-scheme, which is a (G(7, wy), G(T , we))-bitorsor. This allows us to define path
torsors under the algebraic and de Rham fundamental groups. In this section, we
show how to do this in the relative case.

2.1 — Torsors in Tannakian categories

Let C be a Tannakian category over a field k. A Tannakian C-category is a
Tannakian category D together with an exact, k-linear tensor functor ¢: C — D.
We say it is neutral over C if there exists an exact, faithful k-linear tensor functor
@ : D — C such that w o ¢ = id. Such functors will be called fibre functors. If such a
functor w is fixed, we say D is neutralised. Thanks to §6.4 of [19], we have a
homomorphism

(47) t": (D) — t(n(C))
of affine group schemes over D. Hence applying w gives us a homomorphism
(48) o(t’) : o(n(D)) — n(C)

of affine group schemes over C. We define G(D, w) := ker w(t*).

For an affine group scheme G over C, let Oz be its Hopf algebra, a re-
presentation of G is then defined to be an Og-comodule. That is an object V € C
together with a map 6 : V — Og ® V satisfying the usual axioms.

DEFINITION 2.1. A torsor under G is a non-empty affine scheme Sp(Op) over C,
together with a Og-comodule structure on Op, such that the induced map
Op ® Op — Op @ O is an isomorphism.

ExaMpLE 2.2. Suppose that C = Rep,(H), for some affine group scheme H
over k. Then an affine group scheme G over C ‘is’ just an affine group scheme Gy
over k together with an action of H. A representation of G ‘s’ then just an H-
equivariant representation of Gy, or in other words, a representation of the semi-
direct product Gy x H.

Representations have another interpretation. Suppose that V is an Og-como-
dule, and let R be a C-algebra. A point ¢ € G(R) is then a morphism Og — R of C-
algebras, and hence for any such g we get a morphism

(49) V-VeR
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which extends linearly to a morphism
(50) VeoR—V®R.

This is an isomorphism, with inverse given by the map induced by g—'. Hence we get
an R-linear action of G(R) on V ® R, for all C-algebras R. The same proof as in the
absolute case (Proposition 2.2 of [31]) shows that a representation of G (defined in
terms of comodules) is equivalent to an R-linear action of G(R) on V @ R, for all R.

For G an affine group scheme over C, let Rep.(G) denote its category of re-
presentations, which is a Tannakian category over k. There are canonical functors

t
(51) C = Rep¢(G)

given by ‘trivial representation’ and ‘forget the representation’. This makes
Rep:(G) neutral over C. There is a natural homomorphism G — w(n(Rep.(G)))
which comes from the fact that by definition, G acts on w(V) for all V' € Rep. (G).
Since this action is trivial on everything of the form ¢(W), W € C, again by definition,
this homomorphism factors to give a homomorphism

(52) G — GRep.(G), w).

Conversely, if D is neutral over C, with fibre functor w, then the action of w(n(D)) on
a(V), for all V' € D, induces an action of G(D, w) on wx(V), and hence a functor

(53) D — Rep,(G(D, ).

PROPOSITION 2.3. In the above situation, the homomorphism
(54) G — GRep(G), w)
s an isomorphism, and the functor
(55) D — Repe(G(D, w))
18 an equivalence of categories.

Proor. Suppose first that C = Rep,(H) is neutral. In the first case, we can
identify G with an affine group scheme Gy over k together with an action of H, and
the category Rep.(G) with the category of representations of the semi-direct pro-

duct Gy xH. The functor w : Rep.(G) — C can be identified with the forgetful
functor from Gy x H-representations to H-representations, and the morphism

(56) o(r(Repe(3))) — n(C)
with the natural map

(57) GoxH — H

of affine group schemes with H-action. Thus the kernel of this map is identified with
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Gy together with its given H-action. In other words,
(58) G — GRep(@), w)

is an isomorphism.

In the second case, D is also neutral, and corresponds to representations of
some affine group scheme G. The functors ¢, w give a surjection G — H and a
splitting H — G which induces an action of H on Gy := ker (G — H) such that
G =2 Gy xH. Then G(D, w) is identified with G, together with its H-action, and
D — Rep(G(D, w)) with the natural functor from G = Gy x H-representations to
H-equivariant Gy-representations. It is thus an equivalence.

If C is not neutral, then we can choose a fibre functor with values in some k-
scheme S, apply Théoréme 1.12 of [20] and replace the affine group scheme H by a
certain groupoid acting on a S (for more details see §3.3). The argument is then
formally identical. O

REMARK 2.4. Our definition of the fundamental group 7{%(X/S,p) is then just
G(N/IC(X),p*), as an affine group scheme over IC(S).

In order to define torsors of isomorphisms in the relative setting, we must first
recall Deligne’s construction in the absolute case, which uses the notion of a coend.
So suppose that we have categories X and S, and a functor F : X x X — S. The
coend of /' is the universal pair ({, s) where s is an object of S and { : F' — s is a bi-
natural transformation. Here s is the constant functor at s € Ob(S), and by bi-
natural we mean that it is natural in both variables. If such an object exists, we will
denote it by

X
(59) / F(x,x).

If S is cocomplete then the coend always exists and is given concretely by the
formula (see Chapter IX, Section 6 of [30])

(60) / F(ac,w):colim( I Fewn= ] F(x,x)).

[re—yeMor(X) xe0b(X)

Suppose that C is a Tannakian category, and let w;, w2 : C — QCoh(S) be two
fibre functors on C. In [20], Deligne defines

c
(61) Lg(on, m2) = /wl(V) ® (V)"

to be the coend of the bifunctor

(62) w1 @ wy : C x C® — QCoh(S),
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and in §6 of loc. cit., uses the tensor structure of C to define a multiplication on
Lg(w1,m2) which makes it into a quasi-coherent Og-algebra. He then proves that
Spec(Lg (w1, w2)) represents the functor of isomorphisms from w; to ws.

Now let C be a Tannakian category, let D be neutral over C, and suppose that
w1, ws : D — C are two fibre functors from D to C. Define the coend

D
(63) Le(on, m2) = / o1 (V) @ on(V)" € Tnd(C).

If : C — QCoh(S) is a fibre functor, then # commutes with colimits, and hence
n(Le(wr, w2)) = Lg(nowr, news): this is a quasi-coherent Og-algebra, functorial in 7.
Since algebraic structures in Tannakian categories, such as commutative algebras,
Hopf algebras, and so on, can be constructed ‘functorially in fibre functors’, (see for
example §5.11 of [19]), it follows that there is a unique way of defining a C-algebra
structure on L¢(wq, we) lifting the Og-algebra structure on each 5(Le(wr, w2)).
Moreover, since 7(Sp(Le¢(wri,wz))) is a (w1 (n(D)), nws(n(D)))-bitorsor, functo-
rially in #, the affine scheme

(64) Pe(wy, we) := Sp(Le(wr, wz))

is a (w1(7(D)), wa(n(D)))-bitorsor over C.

What we actually want, however, is a (G¢(D, wz), Ge(D, w2))-bitorsor. We get
this as follows. Suppose that V' € D, then by the definition of L¢ (w1, ws2) we get a
morphism

(65) w1 (V) @ wz(V)"'— Le(wy, wg)

which corresponds to a morphism

(66) w1(V) = w2(V) @ Le(wr, w2).

Thus a morphism L¢(wi,w2) — R for some C-algebra R induces an R-linear
morphism

(67) o1(V)®R — (V)@ R

which is in fact an isomorphism, since it is so after applying any fibre functor.

DEFINITION 2.5. Define Py (w1, w2) to be the sub-functor of Pe(wi, ws) which
takes R to the set of all morphisms L¢(w;, ws) — R such that for every V in the
essential image of ¢ : C — D, the induced automorphism of R ® w1(V) = R @ wa(V)
is the identity.

PROPOSITION 2.6. The functor Py, (w1, we) 1s representable by an affine scheme
over C, and s a (Ge(D, wy), Ge(D, w2))-bitorsor in the category of affine schemes
over C.
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Proor. Firstnote thatif V € Ob(D), then w;(n(D)) acts on w;(V), and G(D, w;)
is the largest subgroup of w;(7(D)) whose action on w;(V) is trivial for all V in the
essential image of .

Now, if p € Pyiv(w1, 02)(R) and g € Ge(D, w1)(R) then gp € Pe(w1, wz)(R) acts
trivially on everything of the form ¢(W), and hence lies in Py (w1, w2)(R). Hence
G(D, ;) acts on Py, (w1, wz). For p,p’ € Puiy(wr, we)(R), p~'p’ is an automorph-
ism of w; (V) ® R which is trivial for all V in the essential image of . Hence it must
be an element of G(D,w;)(R) C w(n;(D))(R). The same arguments work for
Ge(D, w2).

Thus Piiv(wr, we) is a bi-pseudo-torsor, and to complete the proof, we must
show that Py, (w1, w2) is represented by a non-empty affine scheme over C. Now,
consider the ind-object of C

(68) Lc(id,id)—colim( T vew=]] V®VV)‘

[ V—WeMor(C) VeOb(C)

For every fibre functor 5 : C — QCoh(S), there is a natural Hopf algebra structure
on 7(L¢(id,id)) = Lg(y, 1), and the Spec of this Hopf algebra is the affine group
scheme of tensor automorphisms of 7. Thus as before, L¢(id, id) has a Hopf algebra
structure, and its formal Spec satisfies the defining property of the fundamental
groupoid 7(C) of C. Hence one can construct a morphism of affine C-schemes

(69) Pe(wr, wz) — n(C)

which is the formal Spec of the obvious morphism L¢(id,id) — L¢(ws, wz). Then
Piiv(w1,w2) is the fibre of Pe(wi,w2) — n(C) over the identity section
Sp(1) — =(C). Hence it is the formal Spec of the algebra Ly, (w1, @wz) defined by the
push-out diagram

Le (id,id) ————— 1

"

L¢ (w1, ws) — Liriv (w1, w2)

and is thus representable by an affine C-scheme.

To prove that Pyqy(wy, w2) # 0, it suffices to show that n( Py (w1, ws)) # 0 for
any fibre functor #: C — QCoh(S). For any f: T' — S, n(Pyuiv(w1,w2))(T) is the
subset of Isom®(f* o nawy,f* o nwe) which maps to the identity under the natural
map

(1) 7 : Isom®(f* oy, f* o nae) — Isom®(f* o nat, f* o nant) = Aut®(f* o).

Since nw; and nwe are fibre functors on D, according to 1.13 of [20] the affine
scheme Isom® (5wy, noz) of tensor isomorphisms from 5w, to news is faithfully flat
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over S, and in particular is non-empty. Hence there is certainly some S-scheme
f: T — § such that

(72) Isom® (f* o yoon, f* o yosp)

is non-empty. Pick such a 7', and pick some p € Isom®(f* o 5wy, f* o nwg). Since the
morphism w; (7(D)) — n(C) admits a section, the induced homomorphism

(73) Aut® (f* o nwy) — Aut®(f* op)

is surjective, and hence there exists some g € Aut®(f* o nw;) mapping to 7(p) €
Aut®(f* on). Then p' := g~!pis an element of the set Isom® (f* o oy, f* o nwe) and
r(p') = id, thus 5(Pyiy (w1, w2))(T) # 0.

REMARK 2.7. We can rephrase this as follows. Consider the functors of C
algebras
Isom® (e, wp) : C—alg — (Set)
(74) R —Isom® (o (—) @ R, we(—) ® R);
Aut”(id) : C—alg — (Set)
(75) R —Aut”((—) ® R);
as well as the sub-functor Is&i’} (w1, m2), the “functor of C-isomorphisms w; — wy’,
defined to be the fibre over the identity of the natural morphism
(76) Isﬂ@)(wl, wz) — Aut”® (id).

Then the functor Isom% (w1, m2) is representable by the affine scheme Py (w1, w2)
over C, which is a (G¢(D, w1), Ge(D, wz)) bitorsor.

2.2 — Path torsors under relative fundamental groups

Let k& be an algebraically closed field of characteristic zero, S a connected,
smooth variety over k and f : X — S a ‘good’ morphism. Let p,x be sections of f.
We can apply the above methods to obtain an affine scheme over IC(S), the torsor
of paths from x to p, which can be considered as an affine scheme P(x) =
% (X /S, x, p) over S, together with an integrable connection on Op(s) (as a quasi-
coherent Og-algebra). This is naturally a left torsor under z{%(X /S, x) and a right
torsor under #{®(X/S,p) =: G. Moreover, the action map P(x) x G — P(x) is
compatible with the connections, in the sense that the associated comodule
structure

(77) Op@) — Op@w) ®os Og

is horizontal, the RHS being given the tensor product connection. If G, is the
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quotient of G by the nth term in its lower central series, we will denote the push-out
torsor P(x) x% G, by P(x),. As before, the action map P(x),xG, — P(x), is
compatible with the connections.

DEFINITION 2.8. A V-torsor under G,, is a G,,-torsor P over S in the usual sense,
together with a regular integrable connection on Op, such that the action map

(78) Op — Op®Qg,

is horizontal. The set of isomorphism classes of V-torsors is denoted H IV(S ,Gy).
Thus we have ‘period maps’

(79) X(S) — Hy(S,Gy)

which takes « € X(S) to the path torsor P(x),.

REMARK 2.9. (1) This is not a good period map to study. For instance, if k = C,
then the relative fundamental group is not just an affine group scheme with
connection. There are reasons to expect that one can put a ‘non-abelian’
variation of Hodge structure on this fundamental group. Similar con-
siderations will apply to the path torsors, and the period maps should take
these variations of Hodge structures into account.

(2) We can use the pro-nilpotent Lie algebra of 7{®(X /S, p) and the Campbell-
Hausdorff law to view 7d8(X /S, p) as a non-abelian sheaf of groups on the
infinitesimal site of S/k. We can use this interpretation to give an altern-
ative definition of the cohomology set H IV(S ,Gy).

(3) A natural question to ask is whether or not, as in the situation studied by
Kim, the targets for the period maps have the structure of algebraic vari-
eties. Since we are more interested in the positive characteristic case, we
will not pursue this question here.

3. Crystalline fundamental groups of smooth families in char p

Our goal in this section is to define the fundamental group of a smooth family
f: X — S of varieties over a finite field. Many of our arguments are essentially the
same as those we gave in Section 1.

We will assume that the reader is familiar with the theory of rigid cohomology
and overconvergent (/-)isocrystals, a good reference is [2]. Assume that k is a finite
field, of order ¢ = p® and characteristic p > 0. Frobenius will always refer to linear
Frobenius. If U/K is a variety, the category of overconvergent (F'-)isocrystals on
U/K is denoted (F-)Isoc! (U /K). These are Tannakian categories over K.

We define A Isoc' (U /K) to be the full subcategory of Isoc' (U /K) on objects
admitting a filtration whose graded pieces are constant. Chiarellotto and Le Stum
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in [16] define the rigid fundamental group n’fg (U, x) of U at a k-rational point x to
be the Tannaka dual of A Isoe (U /K) with respect to the fibre functor x*. This is a
pro-unipotent group scheme over K.

Now suppose that g : X — S is a ‘good’, proper morphism over k, and let
p:S — X be a section.

DEFINITION 3.1. We say that E € F-Isoc'(X/K) is relatively unipotent if there is
a filtration of K, whose graded pieces are all in the essential image of
g* : F-Isoc'(S /K) — F-Isoc' (X /K). The full subcategory of relatively unipotent
overconvergent F-isocrystals is denoted N, gF-IsocT(X /K).

The pair of functors

(80) N F-Isoc! (X /K) 5:’ F-Isoc!(S/K)

makes N, gF—IsocT(X /K) neutral over F-TIsoc'(S /K) in the sense of §2.1. Hence we
get an affine group scheme G\ gF—IsocT(X /K), p*) in F-Isoc'(S/K).

DEFINITION 3.2. We define the relative fundamental group to be the affine
group scheme G(N gF—IsocT(X /K),p*) in F-Isoc'(S /K).

For s € S a closed point, let 75 : X; — X denote the inclusion of the fibre over s
and let g, : X; — Speck(s) denote the structure morphism. Let K(s) denote the
unique unramified extension of K with residue field k(s). Let V(s) denote _the ring of
integers of K(s). In keeping with notation of previous sections, let (X /S, p);
denote the affine group scheme s*(z;#(X /S, p)) over K(s). The pull-back functor

(81) it : NyF-Tsoc' (X /K) — N Tsoe! (X, /K(s))
induces a homomorphism
(82) ¢ Xy, ps) — M EX/S, )

of affine group schemes over K. We would like to show again that when S is an affine
curve, this is an isomorphism. The question is whether or not the sequence of affine
group schemes corresponding to the sequence of neutral Tannakian categories

(83)  NTsoc(Xs/K(s)) — N F-Isoc'(X/K) @k K(s) — F-Isoc'(S/K) ®x K(s)
is exact. Thus, as before, this boils down to the following three questions.
(1) IfE e NV, gF—IsocT(X /K) ®k K(s)is such that i} E is constant, is & of the form
g*F for some F € F-Isoc'(S/K) @x K(s)?
Q) IfE e N, gF—IsocT(X /K) @k K(s), and Iy C i;E denotes the largest constant
subobject, then does there exist £y C E such that Fy = 1;E?
(3) Given E ¢ Isoc'(X;/K(s)), does there exist F € N ,F-Isoc'(X/K) ®x K(s)
such that ¥ is a quotient of 7;F'?
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REMARK 3.3. Actually, in order to apply these criteria, we need to know that the
kernel of the homomorphism of group schemes corresponding to

(84) N F-Isoc' (X /K) @k K(s) — F-Isoc!(S/K) @k K(s)

is pro-unipotent, or using Lemma 1.3, Part I of [35], that every object £ of the
category N gF—IsocT(X /K) ®x K(s) has a non-zero subobject of the form f*F for
some F' € F-Isoe/(S /K) @k K(s). Let Ey denote the largest relatively constant sub-
object of E, considered in the category N, gF-IsocT(X /K). Then functoriality of K
implies that it is invariant under endomorphisms of E, and hence a K(s)-module
structure K(s) — End N, F-Tsoe (X /K)(E') will induce one on Ey. Hence we must show
that for F € F-Isoc'(S /K), every K(s)-module structure on g*F' comes from one on
F, and it certainly suffices to show that End(f*F) = End(¥). Using Tannakian
duality we can translate this into a problem about representations of groupoids -
we have a surjective morphism G — H of K-groupoids and a representation V of
H, and we want to show that Endg(V) = Endg(V|;). This is clear.

3.1 — Base change

Hypotheses and notations will be as in the previous section, and will make the
following additional technieal hypothesis.

HypoTHESIS 3.4. The morphism g : X — S is realisable, in the sense that there
exists a commutative diagram

—>m

||

S—— 0

where %5, ) are smooth and proper formal V-schemes, both horizontal arrows are
locally closed immersions and 8 — £ is smooth around X.

REMARK 3.5. (1) We should eventually be able to remove this technical hypoth-
esis, using methods of ‘recollement’, but we do not worry about this for now.

(2) One non-trivial example of such a g is given by a model for a smooth, proper,
geometrically connected curve C over a function field K over a finite field. In
this situation S’ is the unique smooth, proper model for K, X’ is a regular,
flat, proper S’-scheme, whose generic fibre is C, S € S’ is an affine open
subset of 8’ over which ¢ is smooth, and X is the pre-image of S. Since X’ is a
regular, proper surface over a finite field, it is smooth, hence projective, and
the above hypotheses really are satisfied.

In this section we will prove the following two theorems.
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THEOREM 3.6. (1) Let K € NgF—IsocT(X/K) @k K(s) and suppose that 1:E is a
constant isocrystal. Then therve exists E' € F-Isoc'(S /K) @k K(s) such that
E~g*F"

() Let Ee N, F-Tsoc' (X /K) @k K(s), and let Fo C i;E denote the largest
constant subobject. Then there exists Ko C E such that Fo = i;E.

THEOREM 3.7. Let Ee N IsocT(XS /K(s)). Then there exists some object
E e N, gF-IsocT(X /K) @k K(s) such that E is a quotient of iK'

REMARK 3.8. The reason we have used categories of overconvergent F-iso-
crystals rather than overconvergent isocrystals without Frobenius is that the
theory of ‘six operations’ has only fully been developed for overconvergent F-iso-
crystals. If six operations were to be resolved for overconvergent isocrystals in
general, then we would be able to deduce results for smooth fibrations over any
perfect field of positive characteristic, not just over finite fields where we can
linearise Frobenius.

The method of proof will be entirely analogous to the proof in characteristic 0,
replacing the algebraic D-modules used there by their arithmetic counterparts, the
theory of which was developed by Berthelot and Caro. It would be far too much of a
detour to describe this theory in any depth, so instead we will just recall the no-
tations and results needed, referring the reader to the series of articles [5], [3], [4]
and [10], [9], [6], [12], [8], [7] for details.

We let F_Dls)urhol(DX /k) (resp. F_DlsJurhol(DS /k)) denote the category of over-
holonomic F-D-modules on X (resp. S) as defined in Section 3 of [9]. There is a

functor

(86) spy.4 : F-Isoc'(X/K) — F-D},3.0(Dx/x)

which is an equivalence onto the full subcategory F-Isoc'' (X /K) of overcoherent F-
isocrystals (Theorem 2.3.16 of [13] and Théoreme 2.3.1 of [8]) and compatible with

the natural tensor products on both sides (Proposition 4.8 of [10]). The same also
holds for S. Let

(87) g+ F_Dgurhol(DX/K) - F_Dgurhol(DS/K)

(88) g+ : F_Dgurhol(DS/K) - F_D(S]urhol(DX/K)

be the adjoint functors defined in Sectipn 3 0f [9]. By Théoréme 4.2.12 of [12], for any
E € F-Isoc'(X/K), and any i € Z, H'(g.spy_ (E)) € F-Isoc'(S/K) and hence we
can define

(89) 9. = spg, Hgspy (= ))(— d) : F-Isoc! (X /K) — F-Isoc'(S/K)

where d is the relative dimension of X /S, and ( — d) denotes the Tate twist. We can
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also define the higher direct images
(90)  R'g, :=spg . H (g spy . (—))(—d) : F-Isoc!(X/K) — F-Isoc'(S/K).

Let s': F-D° , (Dg/k) — F-D , (Dspeci(s))/K(s)) denote the functor defined in
Section 3 of [9].

REMARK 3.9. Although Caro’s functor s' lands in F‘Dgurhol(DSpec (k(s))/K) Tather
than F-D° , - (Dgpec)ks),K(s), it can be easily adapted to land in the latter category.
The base change result that we use below holds in this slightly altered context.

Now, if Y is any smooth, proper, realisable variety over k (i.e. Y can be em-
bedded into a smooth and proper formal V-scheme) with structure map
h :Y — Speck then we can similarly define

(91) R'h, : F-Isoc'(Y /K) — F-Isoc'(k/K)

where the target category is that of K-vector spaces equipped with an auto-
morphism ¢. We also have the rigid cohomology functors

(92) HL (Y, ) : F-Isoc'(Y/K) — F-Isoc'(k/K)

where the Frobenius action on the rigid cohomology Hj,,
convergent F-isocrystal £ is the one induced by functoriality.

(Y,E) of an over-

ProprosITION 3.10. For Y/k smooth, proper and realisable there is an iso-
morphism of functors

(93) Rih,(—) = H (Y, -) : F-Isoc!(Y/K) — F-Isoc'(k/K).

PROOF. Lemme 7.3.4 of [7] states that R'2.( — )(d) = Hi; (Y, —), however, it is
pointed out in Remark 3.15 (iii) of [1] that this is incorrect, and needs to be altered by

a Tate twist to give the claimed result. O
Of course, a similar result holds over any finite extension of k.

COROLLARY 3.11. Let s € S be a closed point. There is an isomorphism of
Sfunctors s*R'g.(—) = Hiig(Xs, (=) F-Isoc'(X/K) — Veegs).

REMARK 3.12. We are deliberately ignoring Frobenius structure in the final
target category of these two composite functors.

Proor. This follow from proper base change for arithmetic D-modules (Théo-
réme 4.4.2 of [12]), together with the identification s* = s'[dim S] for overcoherent
F-isocrystals on S (1.4.5 of [10]), and the previous proposition applied to Y = X /k(s)
(after forgetting the Frobenius structures). O
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PROPOSITION 38.13. For E € F-Isoc' (X /K), 9+8px . (B) s concentrated in
degrees > —d.

Proor. We know that g,spy (&) has overcoherent F—isocrystals for coho-
mology sheaves, and by the previous proposition, the fibre over s of H'(gspy , (K))
is zero for ¢ < —d. Hence Hl(g+st, +(&)) is zero for 1 < —d. O

PropoSITION 3.14. ¢, is right adjoint to g*.

Proor. Since ¢, is right adjoint to g*, this will follow from the previous
proposition provided g*spS, L(=)ldId) =spx_g*(—). To see this, note that it
follows from Proposition 6.5.2, together with 6.4.3(b) and 6.4.4(c) of [7] that
g'sps (=) —dl = spy_, g"(—), and from 5.4.8 of [11] that ¢'[ — d] = g™ [d](d) for
overcoherent F-isocrystals on smooth k-varieties. O

REMARK 3.15. Again, it may seem as though 5.4.8 of [11] gives ¢* = g*, however,
the functors ¢' and 0" defined there differ from ¢' and g+ respectively by an ap-
propriate shift and twist.

Proor oF THEOREM 3.6. Because ¢. and g* are functorial, they extend to give
adjoint functors

(94) g : F-Isoc(S/K) @k K(s) — N, F-Isoc' (X /K) @k K(s) : g,

such that (using the base change theorem as in the proof of Corollary 3.11) the
counit g*g.E/ — E restricts to the counit of the adjunction

(95) — @k O ko) : Vekis = Isoc (Xy/K(s) : Hy, (X, -).

on the fibre over s. Thus exactly as in the proof of Proposition 1.12, if 7} F is trivial,
the counit g*g.F — E is an isomorphism on the fibre over s, and hence an iso-
morphism. Similarly, since H?q.g(Xs, (WHR= HomISOCT(X /K(s))(OXwi;E)’ (see Proposi-
tion 3.16 below) exactly the same argument as in Proposition 1.13 shows that in
general H Sig(Xs, 1t E) @k Oy, is the largest trivial sub-object of i} E. Hence if we let
Ey=g*g.E, then i;E, =~ H‘r)ig(Xs, 1:E) @k Ox, is the largest trivial sub-object of
1:F, proving (2), and if ¢} & is trivial, then E = E, proving (1). O

We now turn our attention to Theorem 3.7.

PROPOSITION 3.16. Suppose that E,E’ IsocT(XS /K(s)). Then there are canon-
ical 1somorphisms

(96) Homlsoc*(XS/K(s))(E', E) ~ H‘lfig(XS7 Hom(E, E"))

ExXtygoeicx, ks B B = Hy, (X, Hom(E, E))
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and moreover if K, K" have Frobenius structures, this induces an isomorphism
(97) Homyp_yooix, /sy B EY~H ?,ig(Xs, Hom(E, E))?~!
as well as a surjection

(98) ExXtp1q0cicx, i) B B — Hio (X, Hom(B, E')*~!

ProoF. The first isomorphism is clear, and this immediately implies the third.
The second is Proposition 1.3.1 of [17], from which the fourth is then easily
deduced. O

We define the U, inductively as follows. U; will just be (’)}T(s, and U,,, 1 will be the
extension of U, by O}S QK H iig (X,,UY) ¥ corresponding to the identity under the
isomorphisms

(99) BExtioet x, /x0s)) (Un, O;s QK(s) Hrl—ig (X, UX)V)
(Xs, U, @xs) Hyig (X, UX)V)
= HYy (X, UY) @k Hiy (X5, UY)”
=~ EndK(s> (Hrl.ig(Xg7 U;{)) .

1
~H rig

If we look at the long exact sequence in cohomology associated to the short exact
sequence 0 — U — U | — O&s R Hyg (X5, Uyy) — 0 we get

0
(100) 0 — HY,

(X, Uy) = Hygg (X, Upia) — H,

n+1 rig

(X, Uy)

9 111
- Hrig n+1

(X, U))) = Higy (X, U)Ly).-
LEMMA 3.17. The connecting homomorphism o is the identity.

Proor. By dualising, the extension

(101) 0— U — U,y — O @) Hig

(Xs, U, ) —0
corresponds to the identity under the isomorphism
(102)  Exty,elx. k) ((9;( @K Hyyg (X5, UyY), Uy, ) = Endgg) (H%ig (X, U, ))

pr the Lemma follows from the fact that, for an extension 0 - K — F —
(9}(8 ®k) V — 0 of a trivial bundle by £, the class of the extensions under the iso-
morphism

(103) EXtigol (x. /k09) ((9}(8 Rk V,E) =~ VY g HL (X, E)

rig

=~ Hompgs) (V7 Hiig (X, E))
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is just the connecting homomorphism for the long exact sequence
(104) 0 — Hy, (X, B) — Hy, (X, F) — V — Hy (X, B).

rig rig T

O

In particular, any extension of U, by a trivial bundle V ®gs) (’)j,(g is split after

pulling back to U1, and HY, (X, Uy,;) = Hig (X, UY). It then follows by in-
duction that HY, (X,, U)) = H (X,, 0} ) = K(s) for all n.

REMARKS 3.18. We can also show inductively, using Proposition 3.16, that each
U,.1 can be endowed with some Frobenius structure, since for any Frobenius
structure on U, the identity in EndK(S)(Hiig(Xs, U,)) will be Frobenius invariant,
and hence will lift to some Frobenius structure on U, ;.

DEFINITION 3.19. Define the unipotent class of E € NIsoc'(X,/K(s)) in-
ductively as follows. If £ is trivial, then we say F has unipotent class 1. If there exists
an extension

(105) 0—V@kyOf —E—E —0
with £’ of unipotent class < m — 1, then we say that £ has unipotent class < m.

Now let = p(s), u; =1 € *(Uy) = K(s), and choose a compatible system of
elements u,, € *(U,,) mapping to ;.

ProposITION 3.20. Let FF € N IsocT(Xs /K(s)) be an object of unipotent class
<m. Then for all n>m and any f € x*(F) there exists a homomorphism
o: Uy, — F such that (x*o)(uy) =f.

ProOF. Asinthe characteristic zero case, we copy the proof of Proposition 2.1.6
of [24] and use induction on m. The case m = 1is straightforward. For the inductive
step, let F' be of unipotent class m, and choose an exact sequence

(106) 0—ELFL G0

with E trivial and G of unipotent class < m. By induction there exists a morphism
p: Un—1 — G such that (x*¢)( f) = («*f)(uy—1). Pulling back the extension (106)
first by the morphism /5 and then by the natural surjection U, — U,_; gives an
extension of U,, by E, which must split, as observed above.

)/\
» U,

0 s B S n s 0

0 E > I

1

0 » B >

<

> U,

!
£

s
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Let y: U, — F denote the induced morphism, then (x*¢)((x*y)(u,) —f)=0.
Hence there exists some e € x*E such that (x*w)(e) = («*y)(u,) — f. Again by in-
duction we can choose )’ : U,, — E with (x*y")(u,) = e. Finallylet o =y —y oy, it
is easily seen that (x*o)(u,) = f. O

COROLLARY 3.21. Every E in N TIsoc' (X,/K(s)) is a quotient of U™ for some
n,m € N.

Recall that we have the higher direct images Rig*(E) forany £ € F-Tsoel (X /K).
Thanks to 2.1.4 of [6], and the compatibilities already noted between tensor pro-
ducts and pull-backs of arithmetic D-modules and their counterparts for over-
convergent F-isocrystals, these satisfy a projection formula

(108) Rig.(E ® g'E") = Rig (E)® E'

for any K € F- Isoe’ (X /K)and £’ € F- Isoc!(S /K). If we let h denote the structure
morphism of S, then the fact that 2, o g, = (hog), implies that there is a Leray
spectral sequence relating R'%., Rig, and R™(h o g),, the exact sequence of low
degree terms of which reads

S,9.E)— H%,(X, E).

rig

(109) 0—H},(S,9.B)— Hyy (X, E)— HY (S, R'g E)— Hy,

rig rig rig

We are now in a position to inductively extend the U,, to X. Let W7 = O}.

THEOREM 3.22. There exists an extension W, of W,, by ¢ (ng*Wg ) i the
category Ny F-Isoc!(X /K) such that i;W,1 = Uyy1 and g W)/ | = Og.

Proor. The statement and its proof are by induction on %, and in order to prove
it we strengthen the induction hypothesis by also requiring that there exists a
morphism p*W,/ — (9T such that the composite morphism Og =g W) =pg'g. W), —

pWY — Olisan 1somorph1sm

To check the base case we simply need to verify that g*(’)gf = O' By the results
of the previous section, we get a natural morphism (9T — g*OT as the unit of the
adjunction between g, and g*. By naturahty, restrlctlng this morphism to the fibre
over s gives us the unit K(s) — HO (XS, O ) of the adjunction between Hng( 2
and - Qg O}, which is easily checked to be an isomorphism. Hence by I'lg'ldlty,
ol — g*O} is an isomorphism.

So now suppose that we have W,, as claimed. We look at the extension group
(110)  Extp oW 0" RYg.W)Y) — Hip (X, W, @ g"(R'g. W) )P
The Leray spectral sequence, the projection formula above and the induction hy-
pothesis that g, W,/ =~ (’)T give us an exact sequence
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(111) 0 — Hy(S,(Rg.W))") — H,

X W) @ g"Rlg, W)Y

— HY%, (S, End(R'g, W) — H2,(S,R'g.W,)")
— HZ, X, W) @ " R'g.W))").

Now, the projection p*W,’ — O; induces a map

(112) Hiy (S.pW, @ (R'g.W))") — Hiy (S, Rg.(W))")

for 7 = 1,2 such that the composite (dotted) arrow

Hjig (Sv ng* (W’I\L/)v) B— Hriig
|
(113) | l
NA
Hi, (S,Rg. (WY)") «—— HE, (S,p*WyY @ Rlg,Wy))

rig rig

(X, WY @ g*(R'g. WY)V)

is an isomorphism, since it can be identified with the map induced by the composite
arrow Og = f,W) = p*f*f.W,) — p*W,/ — Os. Hence both the maps

n
(114) H, (s, Rlg. (W;)V) — HL X WY @ g Rg. W)

H2 (S Rg.(W))") = HEA,(X, W) @ g’ R'g.W,)")

appearing in the 5-term exact sequence split, compatibly with Frobenius actions. So
there is a commutative diagram

Hrlig(Xa Wr\z/ ® g*(ng*Wr\z/)v) — Hrllg
(115) J
HI(‘)ig(Sa gnd(ng*Wn\/)) - EndK(s) (Hrlig(Xs’ U;L/))

(Xm U»r\L/ ®K(s) Hrlig(X87 U7\z/)v)

where the horizontal arrows are just restrictions to the fibre over s, and the left
hand vertical arrow is surjective. The identity morphism in End g (H, l{ig(Xs, U,
which is Frobenius invariant (for some Frobenius structure on U,,, see Remark
3.18) and corresponds to the extension U, 1, lifts to the identity in

(116) Hy,(S, EndR' g, W,) = Endy, 150 R'0. W),

and this element is also Frobenius invariant. Thus there exists a unique Frobenius
invariant element of Hy (X, W, © gR'g,WY)Y) lifting the identity in
Endp i K R! 9.W,)), and which maps to zero under the above splitting

(117) HY (X, W, @ g (Rg.W))") — Hi, (S, Rg. ()"
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Let W, _, be any corresponding extension (the map from the extension group as
F-isocrystals to the Frobenius invariant part of H! is surjective). Now, we have a

natural map
(118)  Exty o0 R'GW)) 5 Exty oo Wa, g Rg.W,)Y)

which has a section (denoted p*) induced by the map p*W,! — Og, and such that the

whole diagram

H (S, (R'g.WY)Y) H}iy (X, Wy ®41 g*(R'g.WY)Y)

-
— T

Extp_1soct (5/K) (OL, (R1g.WY)Y) Extp1soct (x/ ) (Wn, " (R g W) )Y)

\_/

commutes. We let W,, 1 be the extension corresponding to [W), ;1 —g*p*[W, ,]in
Exty_igoet x50 (W g*(ng*Wg)i). Note that this splits when we pullback via p* and
then push-out via p*W) — O, and also has the same image as W, inside
HY (X, W @0 g (RYg, W),

To complete the induction we need to show that g W ; = (’)g, and that there
exists a map p.W, ; — (’)g as claimed. We have an exact sequence (using the

projection formula and the fact that g, ng = O;)

(119)

(120) 0—g W, —g W', —RgW — ..

and it follows from Lemma 3.17 together with base change that the arrow
9:-W,, — g.W,/; restricts to an isomorphism on the fibre at s. Thus by rigidity it is
an isomorphism. Finally, we have an exact sequence

(121) 0— pW) — p'Wy1 — RgWY) — 0

which splits when we push-out via the map p*W,) — (9;. This splitting induces a

map p*W,/ ; — (’)fg such that the diagram

p*W,y —— p* W7\z/+1

(122) \ |

ok
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commutes. Now the fact that the diagram

G Wy —— g g Wy —— WY,

S R N

Of —— WY ——— p*g* g WY » WY ol

commutes implies that the composite along the top rowis an isomorphism, finishing
the proof. O

To complete the proof of Theorem 3.7, we use the base extension functor
(124) — @k K(s) : Ny F-Tsoc' (X /K) — N, F-Tsoc' (X /K) ©x K(s),

which is defined on pages 155-156 of [31], to view the W,, as objects of the latter
category.

3.2 — F'robenius structures

~ The upshot of the previous section is that we now have an affine group scheme
78X /S,p) over the Tannakian category F-Isoc'(S/K) whose fibre (ignoring
Frobenius structures) over any closed point s is the usual rigid fundamental group
7 #(Xs, ps) as defined by Chiarellotto and Le Stum in [16]. In Chapter II of [15],
Chiarellotto defines a Frobenius isomorphism F, : m¢(X;, ps) =7 *(X;, ps), by
using the fact that Frobenius pullback induces an automorphism of the category
N Isoc'(X,/K). Since we have constructed 7, 2(X/S,p) as an affine group scheme
over F-Isoc'(S /K), it comes with a Frobenius structure that we can compare with
Chiarellotto’s. However, it is not obvious to us exactly what the relationship be-
tween these two Frobenius structures is, so instead we will endow nlfg (X/8S,p) with
a different Frobenius, which we will be able to compare with the natural Frobenius
on the fibres.

REMARKS 3.23. From now onward, we will consider n‘fg(X /S,p) as an affine
group scheme over Isoc'(S/K), via the forgetful functor.

Let o5 : S — S denote the k-linear Frobenius, X’ = X xg,, S the base change
of X by os, and ox/s: X — X' the relative Frobenius induced by the k-linear
Frobenius ox of X. Let p’ be the induced point of X', and ¢ = gx/5 0 p € X'(S).
Then by functoriality and base change we get a homomorphism

(125) T (X /S, p) — T EX' /8, 9)
and an isomorphism

(126) TEX' /S, p) = osni S (X /S, p).
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One can easily check that p’ = ¢ € X(S), and hence we get a natural morphism
¢ 1 *(X/S,p) — a§n *(X/S, p).

LEMMA 3.24. This is an isomorphism.

Proor. Let s € S be a closed point, with residue field k(s) of size ¢“. The map
induced by ¢” on the fibre 7}"®(X;, p;) over s is the same as that induced by pulling
back unipotent isocrystals on X by the k(s)-linear Frobenius on X;. This is proved in
Chapter II of [15] to be an isomorphism, thus ¢“ is an isomorphism by rigidity.
Hence ¢ is also an isomorphism. O

We now let F', : ognrfg(X /S,p) = nlfg (X/S,p) denote the inverse of ¢, which by
the proof of the previous lemma, reduces to the Frobenius structure as defined by
Chiarellotto on closed fibres.

DEFINITION 3.25. When we refer to ‘the’ Frobenius on n’fg(X /S, p), we will mean
the isomorphism F', just defined.

3.3 — Cohomology and period maps

~In this section we study the non-abelian cohomology of the unipotent quotients
m8(X/S, p), of n¥(X/S,p). Assumptions and notations will be exactly as in the
previous two sections, so g : X — S will be a ‘good’, realisable morphism of varieties
over a finite field, and p a section. Recall from Section 2.1 the notion of a torsor
under an affine group scheme U over Isoc'(S/K).

DEFINITION 3.26. We define H, (S, U) to be the pointed set of isomorphism
classes of torsors under U.

ExampLE 3.27. Suppose that U is the vector scheme associated to an over-
convergent isocrystal £. Then Example 5.10 of [19] shows that there is a bijection
H}ig(S, U) = Hll,ig(S,E').

If U has a Frobenius structure, that is an isomorphism ¢ : 63U = U, then we
can define an F-torsor under U to be a U-torsor P, together with a Frobenius
isomorphism ¢, : ogP = P such that the action map P x U — P is compatible with
Frobenius.

DEFINITION 3.28. We define H},
F-torsors under U.

rig(S; U) to be the set of isomorphism classes of

Given any torsor P under U, without F-structure, ogP will be a torsor under
o5U, and hence we can use the isomorphism ¢ to consider o P as a torsor under U.
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1

Hence we get a Frobenius action ¢ : H Il,ig(S ,U)— Hrig(S ,U), and it is easy to see

that the forgetful map
(127) Hip (S, U) — H}1, (S, U)
is a surjection onto the subset H 1}ig(S U )‘ﬁ:id fixed by the action of ¢. '

Given any point « € X(S), we have the path torsors P(x) under 7;*(X/S,p) as
well as the finite level versions P(x),. Moreover, these come with Frobenius
structures, and hence we get compatible maps

X () = H 3, (S, 71 5(X/ S, p)n)

(128) l
HY, (S, 71 (X/S, p)a) =1

for each n > 1.

In order to get a handle on this ‘non-abelian’ H', we first discuss the general-
isation of Theorem 2.11 of [31] to non-neutral Tannakian categories via groupoids
and their representations, following [20]. The reason for doing this is to obtain a
generalisation of Example 2.2 giving a more explicit description of Hll,ig(S ,O).

So let K be a field of characteristic 0, and Y a K-scheme.

DEFINITION 3.29. A K-groupoid acting on Y is a K-scheme G, together
with ‘source’ and ‘target’ morphisms s,t: G — Y and a ‘law of composition’
o:G Xsyt G — G such that the diagram

G Xyt G ——— G

(129) l J(S,t)

Y — 2 sV xgY

commutes, and such that the following condition holds: for any K-scheme T, the
data of Y(T), G(T), s, t, o forms a groupoid, where Y (7)) is the set of objects and G(T)
the set of morphisms.

ExampLE 3.30. Suppose that Y = Spec K. Then a K-groupoid acting on Y is
just a group scheme over K.

DEerINITION 3.31. If G is a K-groupoid acting on Y, then a representation of G is
a quasi-coherent Oy-module V, together with a morphism p(g) : s(¢)*V — t(g)*V for
any K-scheme 7" and any point g € G(T'). These morphisms must be compatible with
base change 7" — T, as well as with the law of composition on G. Finally, if
id, € G(T) is the ‘identity morphism’ corresponding to the ‘object’ y € Y(T'), then
we require the morphism p(id, ) to be the identity. A morphism of representations is
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defined in the obvious way, and we denote the category of coherent representations
by Rep(Y : G). Of course we can similarly define actions of G on any (group) scheme
U over Y, by instead requiring morphisms p(g) : U xy 4y T — U xyyq T of
(group) schemes over 7.

ExampLE 3.32. If Y = Spec K, then this just boils down to the usual definition
of a representation of a group scheme over K.

Now suppose that C is a Tannakian category over K, which admits a fibre
functor w:C — Vec;, taking values in some finite extension L/K. Let
pr; : Spec (L ®k L) — Spec (L) for i = 1,2 denote the two projections. Then we
get two fibre functors pr o w: C — Modt o (L ®g L) taking values in the cate-
gory of finitely generated L ®x L-modules, and the functor of isomorphisms
Bﬂ@(prf ow,pryow) is represented by an affine scheme Mﬁ(w) over
L ®k L. The composite of the map Auty(w) — Spec(L ®x L) with the two
projections to Spec (L) makes Auty(w) into a K-groupoid acting on Spec (L).
Moreover, if E is an object of C, then w(£) becomes a representation of
Mﬁ(w) in the obvious way. Thus we get a functor

(130) C — Rep(L : Aut (o))

and Théoreme (1.12) of [20] states (in particular) the following.

THEOREM 3.33. The induced functor C — Rep(L : Mfﬁ(w)) s an equivalence of
Tannakian categories.

Finally, to get the generalisation of Example 2.2 that we need, the following
technical lemma is necessary.

LemMA 3.34 ([20], Corollaire 3.9). Let L/K be finite, and G a K-groupoid acting
on Spec (L), affine and faithfully flat over L @k L. Then any representation V of G
18 the colimit of its finite dimensional sub-representations.

COROLLARY 3.35. If C is a Tannakian category over K, w a fibre functor with
values i L, then an affine (group) scheme over C s’ just an affine (group) scheme
over L together with an action of Auty(w), and morphism of such objects ‘are’ just
M?{(w)—equivam'ant morphisms.

DEFINITION 3.36. Let G be a K-groupoid acting on Spee(L). If U is a group
scheme over L with a G-action, we will denote by H'(G, U) the set of isomorphism
classes of G-equivariant torsors under U.

ExampLE 8.37. e If Vis arepresentation of G, then Spec (Sym (V')) naturally
becomes a group scheme over L with a G-action. We will refer to this latter
object as the vector scheme associated to V.
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e If U is a unipotent affine group scheme over Isoc(S /K) as above, then for
any closed point s € S, the unipotent group U over K(s) attains an action of
the K-groupoid Auty(s*), and there is a natural bijection of sets

(131) HY,(8,U) = H Auti(s"), Uy).

Suppose that Y = Spec (L), with L/K finite, and let G be a K groupoid acting on
Y. Let U be a unipotent group over L, on which G acts.

DEFINITION 3.38. A 1-cocyle for G with values in U is a map of K-schemes
¢ : G — U such that
e The diagram

¢—2—vu

(].32) x‘ lcanonical

Spec (L)

commutes.

e For any K-scheme T, and points g, 2 € G(T) which are composable in the
sense that s(g) = t(h), ¢(gh) = ¢(g) - p(9)(¢(h)) holds. This equality needs
some explanation. By the first condition above, ¢(g) lands in the subset
Homy(T,U X149 T) of Homg(T,U) which consists of those morphisms
T — U which are such that the diagram

T—U
(133) % lcanonical
Spec (L)

commutes. Similarly, ¢(k) € Homp(T, U xr, 40y T) = Homyp(T, U 1,5 T).
Since U/L is a group scheme, Homy (T, U x4, T) is a group, and the action
of G on U gives a homomorphism

(134) p(g) : HomT(T, U XL,s(g) T) — HomT(T, U XL,t(g) T)

Hence the equality ¢(gh) = é(g) - p(9)(¢(h)) makes sense inside the group
HOl’I’lT(T, U XL,t(g) T)

The set of 1-cocycles with coefficients in U is denoted Z'(G, U). This set has a
natural action of U(L) via

(135) (@ *u)g) = @) w) " - ¢g) - pg)(s(g)* ()
for any g € G(T), as above this makes sense inside the group Homy(T', U X1, 4y 1).

The point of introducing these definitions is the following.
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LEMMA 3.39. Let G be a K-groupoid acting on Spec (L), and U a pro-uni-
potent group scheme over L with a G-action. Then there is a bijection between
the non-abelian cohomology set H'(G, U) and the set of orbits of ZX(G, U) under
the action of U(L).

Proor. Let P be a G-equivariant torsor under U. Since any torsor under a
unipotent group scheme over an affine scheme is trivial, we may choose a point
p € P(L). Now, for any g € G(T') we can consider the points t(g)*p and s(g)*p inside
Homy(T, P x4, T) and Homyp(T, P xp, 4, T) respectively. We have a morphism
P@) P xpgpyT — Pxryy T and hence there exists a unique element ¢(g) €
U x 1,44 T(T) such that t(g) pé(g) = p(9)s(g)"p. Thus we get some ¢(g) € U(T), and
the map g—¢(g) is functorial, giving a map of schemes ¢ : G — U. The fact that
¢(g) € Homy(T, U 1,44 T) means that the diagram

a— v

(136) \ loanonical
t

Spec (L)

commutes, and one easily checks that ¢ satisfies the cocycle condition. A different
choice of p differs by an element of U(L), and one easily sees that this modifies ¢
exactly as in the action of U(L) on ZX(G, U) defined above. Hence we get a well
defined map

(137) H\(G,U) — Z\G, U)/UL).

Conversely, given a cocycle ¢ : G — U, we can define a torsor P as follows. The
underlying scheme of P is just U, and the action of U on P is just the usual
action of right multiplication. We use the cocycle ¢ to twist the action of G as
follows. If g € G(T), then we define p(g): P X1 4 T — P X34 T to be the
unique map, compatible with the U action, taking the identity of U xz, 4y T =
P xp59 T to@¢(g) € U xpyqp T =P X144 T. One easily checks that this descends
to the quotient Z'(G, U)/U(L), and provides an inverse to the map defined
above. O

We now want to investigate more closely the case when U is a vector scheme,
coming from some finite dimensional representation V of G. In this case we define,
for any n > 0 the space C"(G, V) of n-cochains of G in V as follows. Let G™ denote
the scheme of ‘n-fold composable arrows in G’, that is the sub-scheme of
G xg...xg G (n copies), consisting of those points (g¢1,...,9,) such that
s(gi) = t(gi41) for all i, by convention we set G = Spec (L). Then the space of n-
cochains is simply the space of global sections of the coherent sheaf (5})V on G™,
where 6] : G™ — Spec (L) is defined to be the map ¢ o pry, where pr; : G* — G is
projection onto the first factor. This can also be viewed as the set of morphisms
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G™ — Spec (Sym(V")) making the diagram

G(™ — Spec (Sym(VY))

( 138) \ loanonical
topr;

Spec (L)
commute, and hence we can define differentials d" : C"(G,V) — C"*{(G,V) by
(139) d"®)G1, - - 9nr1) = PGEG2, - .., Gni1)

n
+Y (= D'9G1, 1 GiGir1 - Gus1)
i=1

+ (= D" g1, ... 0n)

for n > 1, where ¢1,...,9,11 are composable elements of G(T), and all the sum-
mands on the RHS are global sections of the coherent sheaf t(g;)"V on 7. Forn = 0
we define (d°9)(g) = p(9)$(s(g)) — ¢(t(9)). It is easily checked that these differentials
make C*(G,V) into a chain complex, and we define the cohomology of G with
coefficients in V to be the cohomology of this complex:

(140) H'G,V) = H'(C*(G,V)).

LEMMA 3.40. Let V be a representation of the groupoid G acting on Spec (L).
Then there is a canonical bijection H'(G,V) = HYG, Spec (Sym(VVY))).

Proor. Taking into account the description of the latter in terms of cocyles
modulo the action of V, this is straightforward algebra. O

So far we have been working over a field K, however, exactly the same defini-
tions make sense over any K-algebra R, and we can similarly define the cohomology
of an R-groupoid acting on Spec (R ®g L). There is an obvious base extension
functor, taking K-groupoids to E-groupoids, and hence we can define cohomology
functors

(141) H"(G,V)(R) = H"(Gg, VR)

for any representation V of G. These are the cohomology groups of a natural
complex-valued functor
(142) C"(G,V)R) = C"(Gg, VR).

We will also denote by Z"(G,V) and B"(G,V) the ‘n-cocycle’ and ‘n-coboundary’
functors respectively.

ProposITION 3.41. Suppose that G = Spec (4) is affine. Then for any K-algebra
there are a canonical isomorphisms H" (Gg, Vi) = H"(G,V) @k R for all n > 0.
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ProoF. Inthis case, there is an alternative algebraic description of the complex
C*(G,V). First of all, A is a commutative L ®x L-algebra, hence A becomes an L-
module in two different ways, using the two maps L — L ®g L. We will refer to
these as the ‘left’ and ‘right’ structures, these two different L-module structures
induce the same K-module structure. The groupoid structure corresponds to a
morphism4: A — A ®;, A, using the two different L-module structures to form the
tensor product.

The action of G on a representation V can be described by an L-linear map
Ay 'V — V@ A, where on the RHS we use the ‘left’ L-module structure on A to
form the tensor product, and define the L-module structure on the result via the
‘right’ L-module structure on A. This map is required to satisfy axioms analogous
to the comodule axioms for the description of a representation of an affine group
scheme.

Hence the group C"(G,V) of mn-cochains is simply the L-module
VeLA®...o, A (n copies of A). We can describe the boundary maps d”
algebraically as well by

(143) A" ®...0a)=40) @0 ®...Qa,

n
+Zv®a1®...®A(ai)®...®an
i—1
Fr01 Q... a, R 1.

Exactly the same discussion applies over any K-algebra R, and one immediately
sees that there is an isomorphism of complexes C*(Gg, V) = C*(G,V) ®k R. Since
any K-algebra is flat, the result follows. O

REMARKS 3.42. In other words, the cohomology functor H*(G,V) is re-
presented by the vector scheme associated to H"(G, V).

If U is a unipotent group scheme on which G acts, we can also extend the sets
ZY(G,U) and H'(G, U) to functors of K-algebras in the same way. We can also
define H(G, U) to be the group of all € U(L) such that p(¢)s(g)*u = t(g)*u for any
g € G(T), and any K-scheme 7. We will also need to make use of a truncated co-
chain complex functor for non-abelian cohomology. This is the complex

(144) C'G,U) — CHG,U) — C¥G, U)

where C"(G, U) is the pointed set of maps G — U commuting with the projection
to Spee (L), G™ being the scheme of n-fold composable arrows in G. Thus we can
identify C°(G, U) with U(L), and the differential d° : U(L) — CY(G, U) is defined by
du(g) = (p(g)s(g)*u)(t(g)*u)_1 for any g € G(T). The differential d' : C'(G,U) —
C%(G, U) is defined by

(145) d'¢(g, h) = $g)(p(@)ph)$(gh) .



Relative fundamental groups and rational points 41

for g € G(T). Thus if we let e;, e2 € CHG, U), C*(G, U ) denote the ‘trivial’ cochains
then we get natural identifications H/(G, U) = (d°) (e;) and ZX(G, U) = (d) (es).

These constructions extend to functors C*(G, U), H O(G, U) of K-algebras in the
obvious way. It is straightforward to check that when V is a representation of G,
C*(G, Spec (Sym(V"))) agrees with C*(G,V) in degrees < 2.

ProOPOSITION 3.43. Let 0 -V — U — W — 0 be an exact sequence of uni-
potent group schemes over K, acted on by G, with V a vector scheme. Suppose that
V is central in W. Then there is a sequence of cohomology functors

(146) 0— H%G,V) — H'G,U) — H"G,W) — H'(G,V)
— H'G,U) — H'(G,W) — H*@G,V)

which is exact in the sense that for all K-algebras R, the induced sequence on R-
points is exact as a sequence of pointed sets.

Proor. The only non-obvious part of the existence of the sequence is the con-
struction and functoriality of the boundary maps H/(Ggr, Wg) — H""\(Gg, V), for
¢ =0, 1. So suppose that we’re given a map ¢: G() — Wpg for 1 = 0,1, which is a
cocycle. Then we may lift this to a map gb G(“ — U R, (since the surjection U — W
always admits a section as a map of schemes) and we thus obtain a map
di(9) : G%) — Vg measuring the failure of this lifted cochain ¢ to be a cocycle. Then
exactly as in Chapter VII, Appendix of [33], we can verify that d'(c) is actually a
cocycle, and the class of d'(¢) in H*1(Gg, Vi) does not depend on either the class of
the cocycle ¢ or on the lift ¢, It is also easy to check functoriality of the induced map
Hi(Gr,Wg) — H"(Gg, Vg), since a lifting of ¢ : G(Z) — Wg toamap gb G(Z) — Up
then induces a lifting of ¢y : G(l) — Wg to gbs G(l) — Ug for any R- algebra S. That
the sequence is exact on R- pomts is more or less word for word the same as the
argument as in Proposition 2, Appendix, Chapter VII of loc. cit., and consists of a
series of fairly straightforward checks. O

Recall that if U is a unipotent group scheme, we define U" inductively by

=[U,Uland U" = [U"},Uland U, by U,, = U/U". Since U is unipotent over
K, afield of characteristic zero we know that each U"/U"*! is a vector scheme, and
that U = Uy for large enough N.

THEOREM 3.44. Let U be a unipotent group scheme acted on by G. Assume that
G is affine, and for all n > 1, HY(G,U" /U") = 0. Then for all n > 0 the functor
HYG,U,) is represented by an affine scheme over K. In particular, the functor
H 1(G, U) 1is represented by an affine scheme over K.

ProoF. Note that the hypotheses imply that ﬁo G, U"/U (R = 0 for all K-
algebras R, and hence, by induction on n, that H° (@, U,)(R) = 0forall K-algebras R
and all n > 1.
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We will prove the theorem by induction on %, and our argument is almost word
for word that given by Kim in the proof of Proposition 2, Section 1 of [28]. When
n =1, U is just a vector scheme associated to a representation of G, and we al-
ready know that E(G, U1) is representable for all i. For general n > 1, we know
that we have an exact sequence

(147) 1— U"Jrl/Un+2 —Upy1— U, — 1

realising U, 1 as a central extension of U,, by the vector scheme U"+!/U"*2, and
we may choose a splitting s : U,, — U,.1 of this exact sequence (just as a map of
schemes). Looking at the long exact sequence in cohomology associated to this
exact sequence, the boundary map HY(G, U,) — H*(G, U™ /U"*%) map between
representables (using the induction hypothesis for representability of H'(G, U,))
and hence the pre-image of 0 € I;IZ(G, Untl JUnt 2) is an (affine) closed sub-scheme
of H'(G,U,), which we will denote by I(G,U,). Thus we get a vector scheme
H 1(G, U™+l /U"+2), an affine scheme I(G, U,,), and an exact sequence

(148) 1— HY(G, U /U )R) — H'(G, U, 1)(R) — IG, U )(R) — 1

for all R, in the sense of Proposition 3.43. We claim that in fact this sequence is exact
in the stronger sense that H'(G, U"'/U"*2)(R) acts freely on H (G, U,;1)(R)
(functorially in R), and the surjection H 1(G, U,.1)(R) — I(G,Uy,)(R) identifies
1(G, Uy)(R) with the set of orbits for this action. We will give the argument for K-
points, since functoriality will be clear from the definition of the action, and the case
of R-points is handled identically.

Since U"*1/U™*? is in the centre of U, 1, there is an action of the group
ZNG, U™ U™ 2) of cocyles on ZY(G,U,.1) by (ox¢)g) = a(g)lg) for ¢¢€
ZNG, U™ ) U™?), 6 € ZNG, Uyy1) and g € G(T). Tt is straightforward to check
that this descends to an action of HY(G, U"*! /U"*?) on H'(G, U,,,1). Suppose that
0,0 € ZYG, U,41) represent cohomology classes in the same orbit under this ac-
tion. Thus there exists some ¢ € Z1(G, U"*!/U"*2) and u € U,,,1(L) such that

(149) a(g)(g) = ) w) ' (@p(g)(s(g) )

for all g € G(T). If we now project to U,, we can see that the cohomology classes of &
and ¢’ map to the same element of H*(G, U,,). This argument can be reversed, and so
the orbits for this action can be exactly identified with I(G, U, )(K).

To show freeness of the action, suppose that the cohomology class of
¢ € ZN(G, U™ JU™?) stabilises the cohomology class of ¢ € ZY(G, U,11), so that

(150) a(@)9(g) = (g )~ a(g)p(g)(s(9)w)
for some u € U, 1(L). Now, projecting to U,, gives
(151) Hg)'u = a(@)pg)(s@g) walg) !

where we have written « (resp. @) for the image of u (resp. ¢) in U,, (resp. Z(G, U,)).
Now an easy induction using the fact that H*(G, U™ /U™ *') = 0 for all m > 1 im-
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plies that % =1, and thus, since U""1/U"*? is central in U, i, that o(g) =
(t(q)*u)_lp(g)(s(g)*u) is a coboundary.

If we take R to be the co-ordinate ring of H Y@, U,) and lift the identity in
H 1(G, U,)(R) via the surjective map

(152) ZG,U,)(R) — H' (G, U,)(R)
we get a splitting
(153) i H\G,U,) — Z'G,U,)

and composing with the map s : QI(G, U, — QI(G, U,.1) and the boundary map
d:CYG,U,.1) — C¥G, Uy,,y) gives a map

(154) dsi : H(G, U,) — C*G, U, 1)

which factors through ZZ(G, U1 /U"+2), and is such that the induced map
H'(G,U,) — H%G, U™ /U"*2) is the boundary map appearing in the long exact
sequence of cohomology from Proposition 3.43. Hence we have

(155) I(G, Un) = (dS'L.)il(B2((;7 U77,+1/U’VL+2)).

Now, the proof of Proposition 3.41 shows that the functors Ql(G, U™ /U"+2) and
BZ(G, U+ /U"+2) are represented by the vector schemes associated to the K-
vector spaces

(156) Ql(G, U77/+1/U7L+2)(K) _ CI(G7 Un+1/Un+2)
EQ(G, UnJrl/UnJrZ)(K) _ BZ(G, U7L+1/Un+2)

respectively, and hence we may choose a functorial splitting
(157) a: BZ(G7 Un+1/Un+2) N QI(G, UnJrl/UnJrZ)

and can define amap b : I(G, U,) — CHG, U,1) by b(x) = (s)(@)((adsi)(x)) L. Then
another explicit calculation shows that b factors throughout Z'@G., U,+1), and the
induced map I(G,U,) — H'(G,U,1) is a splitting of the natural surjection
H'G,Uys1) = 1G, Uy).

Thus using the stronger sense in which the sequence (148) is exact, we get an
isomorphism of functors

(158) H'G,Uypy1) = H'G, U JU"?) x IG, U,)

and hence H I(G, U, 1) is represented by an affine scheme over K. O

COROLLARY 3.45. With the assumptions as in the previous theorem, assume
further that HY(G, U’ /U™Y) is finite dimensional for each n. Then H (G, U,,) is of
finite type over K, of dimension at most 31— dimgH (G, U'/U*),
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Recall that for a ‘good” morphism f : X — S over a finite field satisfying Hy-
pothesis 3.4, we have the period map

(159) X(S) — Hyyy (S, m(X/S, p))

taking a section to the corresponding path torsor. Choosing a closed point s € S
means we can interpret this map as

(160) X(S) — H'(Autg(s"), 7,5 (Xs, ps))-
This latter set has the structure of an algebraic variety over K under the condition that
(161) HY,(S, 78 (X /S, p)" /7 #(X /S, p)" )

is zero for each n. If, for example, X is a model for a smooth projective curve C over a
function field, then we expect this condition to be satisfied under certain non-iso-
triviality assumptions on the Jacobian of C.
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