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On logarithmic nonabelian Hodge theory of higher level in
characteristic p
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ABSTRACT - Given a natural number m and a log smooth integral morphism X — S of fine
log schemes of characteristic p > 0 with a lifting of its Frobenius pull-back X’ — S
modulo p?, we use indexed algebras A%, B(m“) of Lorenzon-Montagnon and the
sheaf D(”” of log differential operators of level m of Berthelot-Montagnon to con-
struct an equlvalence between the category of certain indexed A% -modules with
D("}) -action and the category of certain indexed B(m“)-modules Wlth Higgs field.
Our result is regarded as a level m version of some results of Ogus-Vologodsky and
Schepler.
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1. Introduction

For a projective smooth complex algebraic variety, Simpson [12] estab-
lished a correspondence, which is called the Simpson correspondence nowa-
days, between local systems and Higgs bundles. In [10], Ogus and Vologodsky
studied an analogue of the Simpson correspondence for certain integrable
connections or equivalently certain D-modules in positive characteristic. As a
natural generalization of their theory, Schepler [11] studied its log version and
Gros, Le Stum and Quirés [4] studied its higher level version. The aim of this
article is to establish the log and higher level version of the theory of Ogus-
Vologodsky.

Let us recall the Ogus-Vologodsky’s analogue of the Simpson correspondence
in positive characteristic, which is called the global Cartier transform (see
Theorem 2.8 of [10]). Let X — S be a smooth morphism of schemes of char-
acteristic p > 0. Let us denote by X’ the pull-back of X — S via the absolute
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Frobenius Fg of S. Denote the relative Frobenius morphism X — X’ by Fy/s.
Let Ty /5 be the tangent bundle of X’ over S, ST s the symmetric algebra of
Txs and G the nilpotent divided power envelope of the zero section of the co-
tangent bundle of X'/S, so that Og = I Ty /s Assume that we are given a lifting
of X’ — S modulo p?. Then there exists an equivalence between the category of
Ox-modules E with integrable connection V equipped with a horizontal Ox-
linear G-Higgs field 0: Og — Fy/s.Endo,(E, V) extending the horizontal map
w: S Txys — Fxjs.Endo (B, V) given by the p-curvature and the category of
Ox-modules E" equipped with an Oy -linear G-Higgs field 0 : Og — Endo,, (E").
There are two key technical results for the proof of the global Cartier transform.
One is the fact that the sheaf Dg((])/s of differential operators of level 0 on X is an
Azumaya algebra over its center, which is isomorphic to S'7x /s via the p-cur-
vature map. The other is a construction of the splitting module Ky/s for this
Azumaya algebra over the scalar extension Og of S 7y s. This means an iso-
morphism of Ox-algebras D;?}S R8Ty s Og = Endo, (K v/s)- Then the global
Cartier transform can be obtained by the Morita equivalence. Ogus-Vologodsky
also constructed a splitting module over the completion S Ty, /s of STxi /g under
the assumption of an existence of a mod p? lifting of Fy /s and got an analogous
equivalence called the local Cartier transform.

As is mentioned in the first paragraph, the theory of Ogus-Vologodsky has
been generalized in (at least) two directions. First, Schepler [11] extended their
theory to the case of log schemes. The difficulty for this generalization is that
the Azumaya nature of the sheaf DE?}S of the log differential operators of level 0
is no longer true in general. Schepler overcame this difficulty by using Lor-
enzon’s theory of indexed modules and indexed algebras AY and By/s asso-
ciated to a log scheme X and its Frobenius pullback X’ — S. Roughly speaking,
AP and By/s are the suitable scalar extensions of the structure sheaf Ox and
Oyx respectively in the case of log schemes. He used the sheaf b;?)/s =
AY @0, Dg?/s in place of Dg?}s and proved the Azumayril nature of Dé?) g over its
center. Schepler also generalized the splitting module K /s of Ogus-Vologodsky
and got the log global Cartier transform. Second, in [4], Gros, Le Stum and
Quirés extended some results in [10] to the case of Berthelot’s ring of differ-
ential operators of higher level [2]. They proved the Azumaya nature of the
sheaf D&’% of differential operators of level m, constructed a splitting module
for D%)S over STy g (here X’ denotes the pull-back of X — S by the (m + 1)-st
iterate of the absolute Frobenius Fg:S — S) under the assumption of an
existence of a good lifting of the (m + 1)-st relative Frobenius morphism Fy g
mod p?, which they call a strong lifting, and proved the local Cartier transform
of higher level. They also constructed (but informally) a global splitting module
by a gluing argument. But their construction is different from that of Ogus-
Vologodsky. It should be remarked here that the sheaf f);?}s used by Schepler
(or more generally the sheaf f)g’(”)s of log differential operators of higher level)
was introduced by Montagnon [9]. She established there the foundations of log
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differential operators of higher level and especially obtained the log version of
Berthelot’s Frobenius descent by using the indexed algebras AY and Bg%,
where the latter denotes the higher level version of Lorenzon’s By/s.

The purpose of this paper is to generalize Schepler’s log global Cartier
transform to the case of higher level by using the indexed algebras A% and
Bg’;gl) of Lorenzon and Montagnon. Our construction is a natural general-
ization of Ogus-Vologodsky and Schepler, but we also need some log differ-
ential calculus of higher level which is based on Montagnon’s result. We also
prove the compatibility of the log global Cartier transform with Montagnon’s
log Frobenius descent.

Let us describe the content of each section. We work with a log smooth
morphism X — S of fine log schemes in positive characteristic. Let F'y s denote the
(m + 1)-st relative Frobenius X — X’. In the second section, we review the theory
of indexed modules. In the third section, we construct the log version of the higher
curvature map f: Tx/s — Fx /S*D%g, which we call the p"*!-curvature map, in
Definition 3.10 after reviewing the theory of log differential operators of level m. In
the fourth section, after reviewing the construction and some basic results of in-
dexed algebras associated to the log structure, we study the Azumaya nature of
f)%)s We prove that Bg?}gl) ®oy, STy sis identiNfied with the center of @%)S via the
p"-curvature map (see Theorem 4.16) and D;”g is an Azumaya algebra over
B%gl) ®oy S Txs (see Corollary 4.2—). We also prove the log Cartier descent
theorem of higher level as an application (see Theorem 4.26). In the fifth section,
we construct the splitting module K3 for DY/ over BY/{Y @o,, T Txs under
the assumption of an existence of a mod p? lifting of X’ — S (see (18)) and get the
log global Cartier transform of higher level by using the indexed variant of the
Morita equivalence (see Theorem 5.19). In the final section, we consider the
compatibility of the log global Cartier transform with Montagnon’s log Frobenius
descent. Our new ingredient is to prove the behavior of the splitting module IVC%)"SA
with respect to the Frobenius descent functor of Montagnon (see Theorem 6.10).
As a consequence of Theorem 6.10, we obtain the expected compatibility (see
Theorem 6.8).

2. Indexed Azumaya Algebra

In this section, we give a review of the theory of indexed modules and indexed
Azumaya algebras developed by ([5], see also [11]) which we will use to construct
the log global Cartier transform of higher level. The general theory of indexed
modules can be developed on a ringed topos but, for simplicity, we only consider
the case of the ringed topos associated to the étale site of a scheme and its
structure sheaf. Also, we try to describe several notions more concretely than those
given in [5] and [11]. We fix throughout this section a scheme X and an étale sheaf
of abelian groups Z.
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2.1 — Indexed module

Let us recall some notions on indexed modules.

DEFINITION 2.1. (1) An Z-indexed sheaf on X is a sheaf of sets over Z, namely, a
map of sheaves 7 — Z. We denote the map F — Z by pr. An Z-indexed sheaf of
abelian groups on X is an Z-indexed sheaf 7 — 7 on X equipped with an addition
map F x7 F — F over Z,aunit map Z — F over Z and an inverse map F — F over
7 satisfying the usual axioms of abelian groups.

(2) An Z-indexed Ox-module is an Z-indexed sheaf of abelian groups equipped
with a scalar multiplication map Ox x F — F over Z satisfying the usual asso-
ciativity, distributivity and unitarity conditions, where Ox x F is regarded as a
sheaf over 7 via the composite Ox x F — F — T.

(3) An Z-indexed Ox-algebra is an Z-indexed Ox-module A equipped with an
Ox-bilinear multiplication map 7 : A x A — A over the addition map T xZ — 7
and a global section 1,4 of A over the zero section 0 : e — 7 satisfying the usual
associativity and unitarity conditions. We say an Z-indexed Ox-algebra A is
commutative if the multiplication map = satisfies 7o ¢ = 7 where ¢ is the iso-
morphism A x A — A x A defined by (a,b) — (b, a).

(4) For an Z-indexed Ox-algebra A, an Z-indexed .A-algebra is an Z-indexed
Ox-algebra B equipped with a morphism A — B of Z-indexed Ox-algebras.

REMARK 2.2. Let A be an Z-indexed sheaf on X. For an étale open U of X and a
section 7 € Z(U), we denote by A; the pullback hy x7 A where hy is an étale sheaf
on X represented by U and hyy — Z is the section . We call A; the fiber of A — 7 at
1 € Z(U). Note that A; is naturally considered as an étale sheaf on U, and more-
over, if A is an Z-indexed Ox-module, then A; has an Opy-module structure
naturally induced by the Z-indexed Ox-module structure on A. If A is an Z-indexed
Ox-algebra, the multiplication map = of A is equivalent to the following data: for
each étale open U of X and sections 4,5 € Z(U), a morphism of Opy-modules
m; « A ®o, A;j — A;; functorial with respect to ¢,j satisfying the obvious condi-
tions of associativity and unitarity.

Now we recall the definition of [7-indexed .4A-modules.

DEFINITION 2.3. Let A be an Z-indexed Ox-algebra. Let 7 be an étale sheaf of
T-sets, that is, an étale sheaf of sets on X equipped with an Z-action map
Ix J— TJ;0,5)—1+j. A J-indexed left A-module is a J-indexed Ox-module &£
equipped with an Ox-bilinear map p : A x £ — £ over the Z-actionmapZ x J— J
satisfying the usual associativity and unitarity conditions. We can similarly define
the notion of 7-indexed right .A-module.

REMARK 2.4. Let A be an Z-indexed Ox-algebra and 7 be an étale sheaf of Z-
sets on X. Let £ be a J-indexed left .A-module. Then the structure morphism
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p:AxE— Eover ITx J— Jis equivalent to the following data: for each étale
open U of X, and each section (i,j) € Z x J, a morphism of Opy-modules
pij + Ai ®oy, & — Eiyj; a @ e ae functorial with respect to ,j satisfying the ob-
vious conditions of associativity and unitarity.

Next we recall the definition of tensor products and internal hom objects as an
indexed module.

DEFINITION 2.5. Let Abe an Z-indexed Ox-algebra and 7, K be étale sheaves of
Z-sets on X.

(1) Let £ be a J-indexed right .A-module and F a K-indexed left .A-module. Let
J @71 K be the Z-set J x K/ ~, where ~ is the equivalence relation generated by
the relation (1 +7,k)~(j,2+ k) for i € 7,5 € J,k € K. Then we define a J ®7 K-
indexed sheaf of abelian groups £ ® 4 F (the tensor product of £ and F) as the
object representing the functor which sends 7 @7 K-indexed sheaf of abelian
groups M to the set of biadditive .A-balanced morphisms £ x F — M over the
natural projection 7 x K — J®z K. Concretely this is the étale sheaf on X asso-
ciated to the presheaf

U— | (@ Ei(U) @oyw) J’:k(U)> /R
leJorKWU) \(j,k)=l

endowed with the natural projection to 7 ®7 K, where R is the Ox(U)-submodule
generated by

xe &), ye FWU) and a € A(U) satisfying
(pe(@) +pala), pry) =1
commutative, then £ ® 4 F naturally forms a 7 ®7 K-indexed .A-module.

(2) For a K-indexed left A-module F and ¢ € Hom7(7, K), we define the [J-
indexed .A-module F(p) by the étale sheaf F xx , J with the second projection and
the A-action via the action on F.

(3) Let &€ be a J-indexed left A-module and F a K-indexed left .A-module. We
define the internal hom object of £ and F, which we denote by Hom 4(E, F), as the
étale sheaf on X

{ma@yx@ay } When A is

Ur— |_| HomA(5|U7F|U(¢))
peHomz (T K)(U)

endowed with the natural projection to Homz(7, K), where Hom 4 denotes the set
of homomorphism of J-indexed .A-modules. When A is commutative, then
Hom 4(E, F) naturally forms a Homz(J, K)-indexed .A-module. Also, we denote
Hom 4(E, E) simply by End 4(E).

Finally we recall the local freeness and faithful flatness as an Z-indexed .A-
module.
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DEFINITION 2.6. Let A be an Z-indexed Ox-algebra and let B be a J-indexed
A-algebra.

(1) We say that an Z-indexed .A-module £ is locally free of rank k if étale locally
on X there exist sections 7y, ..., n; of Z = Homz(Z, ) such that £ is isomorphic to
EBi-“:l A(n;), where A(n;) are as in Definition 2.5 (2).

(2) We say that B is faithfully flat over A if the functor £+— £ ® 4 B is exact and
faithful.

2.2 — Indexed Azumaya algebra

The following proposition due to Schepler (see [11]) is an index version of the
Morita equivalence.

ProrosITION 2.7. Let A be a commutative Z-indexed Ox-algebra. Let J be an
étale sheaf of Z-sets on X and M be a locally free Z-indexed A-module of finite
rank. We denote End 4(M) by E which is an T-indexed Ox-algebra in natural way.
Then the functor E— M @4 E is an equivalence of categories between the
category of J-indexed A-modules and the category of J-indexed left E-modules.

ProoF. The quasi-inverse of £ +—— M ® 4 E is given by F'—— Hom 4(M, F). For
more details, see Theorem 2.2 of [11]. O

Now let us recall the notion on indexed Azumaya algebra.

DEFINITION 2.8. Let A be a commutative Z-indexed Ox-algebra and £ an Z-
indexed .A-algebra. Then, for a commutative Z-indexed .A-algebra B, £ splits over B
with splitting module M if there exists an Z-indexed locally free B-module M of
finite rank such that £ ® 4 B = Endg(M). £ is an Azumaya algebra over A of rank 72
if there exists a faithfully flat Z-indexed .4-algebra 3 such that £ splits over B with
splitting module M of rank 7.

If we know that £ is an Azumaya algebra over A, then we can find a splitting
module for £ over A in certain case by the following proposition.

ProposITION 2.9. Let A be a commutative Z-indexed Ox-algebra and £ an
Azumaya algebra over A of rank v2. If there exists a locally free T-indexed A-
module M of rank r with a structure of Z-indexed left E-module compatible with
the given T-indexed A-module structure, then & splits over A with splitting
module M.

Proor. See Corollary 2.5 of [11]. O
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3. The p™*!-curvature map

From this section, we are mainly concerned with log schemes. Our aim of this
section is to construct the p”*+!-curvature map for a log smooth morphism X — S
of fine log schemes defined over a field of positive characteristic, which generalizes
the classical p-curvature map.

3.1 — Logarithmic differential operators of higher level

In this subsection, we briefly recall the log version of Berthelot’s theory of
differential operators of higher level which is studied by Montagnon. For more
details, see [2] and [9].

Let us start with basics on log schemes [5]. A pre-log structure on a scheme X is
a pair (My, oy) where My is a sheaf of monoids on the étale site of X and oy is a
homomorphism from My to the multiplicative monoid Ox. A pre-log structure
(Myx, ax) is a log structure if «x induces an isomorphism from oy ((’)X) to O%. Alog
scheme is a pair of a scheme X and a log structure (My, ax). We usually denote a
log scheme by a single letter such as X and the log structure of X by My. For a
scheme X, the natural forgetful functor from the category of log structures on X to
that of pre-log structures on X has a left adjoint functor (see (1.3) of [5]). We denote
by (MY, o%) the log structure defined by the image of a pre-log structure (Myx, ox)
under this left adjoint functor. We call (MY, «”) the log structure associated to
(Myx, ax). A monoid P is integral if the natural map from P to the group P% as-
sociated to P is injective. It is fine if it is finitely generated and integral. A log
scheme X is fine if, étale locally on X, there exists a fine monoid P with a morphism
Px — Mx of monoids such that the log structure of X is isomorphic to the log
structure associated to a pre-log structure Py — Mx — Oyx. Here Px denotes the
constant étale sheaf on X defined by P. Fine log schemes form a category in an
obvious way. This category has all finite projective limits (see (2.8) of [5]). A
morphism of log schemes f : X — Y is strict if the natural morphism f* My — My
induced by f is an isomorphism, where f* My denotes the log structure on X as-
sociated to a pre-log structure f ! My — My — Ox. It is an exact closed immer-
sion if it is strict and the underlying morphism of schemes is a closed immersion.
One can define a log smooth (resp. log étale) morphism of fine log schemes in terms
of local infinitesimal liftings in the category of fine log schemes (see Subsection 3 of
[5]). Let (X, Mx) — (S, MS) be a morphism of log schemes. Then we define the
module of log differentials Qfy )/ 1) bY the quotient Q% ¢ & (Ox @7 MY)/N.
Here QX /S is the module of differentials of the underlying morphism of schemes
X — S and N is the Ox-submodule locally generated by the sections of the form
(dox(a),0) — (0, 0x(a) @ a) with @ € Mx and (0,1 ® a) with a € Im(f* Mg — Mx).
From now on, we simply denote the module of log differentials of X — S by Q% ss- 1t
X — S is a log smooth morphism of fine log schemes, then its module of log dif-
ferentials Q5 /s is a locally free Ox-module of finite rank.
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From now on, all log schemes are assumed to be defined over 7). Let us recall
the definition of the m-PD structure.

DEFINITION 3.1. Let X be a log scheme and [ a quasi-coherent ideal of Ox. A

divided power structure of level m (m-PD structure) on 7 is a divided power ideal
(/,7) of Ox such that

1P yplcJclI

and the divided power structure y on J is compatible with the unique one on p7 ).
Here I?") denotes the ideal of Ox generated by p"-th powers of all sections of I. If
(J,7) is an m-PD structure on I, we call (I,J,y) an m-PD ideal of Ox and call
(X,1,J,7) an m-PD log scheme.

Let (X,1,J,y) be an m-PD log scheme. For each natural number k, we define
the map I — Ox; frfH0 by M .= fry (fP") where k=p™q+r and
0 < r < p™. These maps satisfy the following formulas (see p. 13 of [9]).

ProposITION 3.2. Let (X,1,J,y) be an m-PD log scheme and k,l be positive
mtegers.

(1) For any x € 1,210 =1 ¢ — o and ¥ e . Moreover if k > p™,
then xtk}m) ¢ J.
©2) Forany x € I and a € Oy, (ax)F™ = gkygkom,

(3) For any x,y I, (96' + y){k}(m): Z <l];>x{k/}(m)y{ku}(m).
K+ =k
4) Forany x € 1, qk!x{k}(m) —_—

() For any x € I, (xFom)yhm Lll!x{kl}(m)_
(@:)'q!

In the following, we sometimes denote an element f{™ simply by f{,
if there will be no confusions. For a while, we fix an m-PD fine log scheme
(S,a,b,9) (.e. S is a fine log scheme) on which p is locally nilpotent and a
log smooth morphism X — S of fine log schemes. We assume that y extends
to X (for definition, see [2] Définition 1.3.2(1)). Note that y always extends
to X in the case b = (p) (see [2] Définition 1.3.2(1)), which is the case of our
interest.

To recall the sheaf of log differential operators of higher level, we need the log
m-PD envelope. The construction of the log m-PD envelope is the same as the
classical case of level 0, which we explain now: Let 7 : X — Y be an immersion of
fine log schemes over S. Etale locally on X, we have a factorization i = g o ¢/ with an
exact closed immersion 7 : X — Z and a log étale morphism ¢g:Z — Y. Let
1" : X — D be the usual m-PD envelope of i’ (for definition, see [2]), and endow D
with the inverse image log structure of Z. Then, since ¢” satisfies the obvious
universal property, it descents to the exact closed immersion X — Py (,,,(Y) with



On logarithmic nonabelian Hodge theory of higher level ete. 55

the m-PD structure globally on X. Px ,)(Y) is called the log m-PD envelope of
1: XY,

Let us consider the diagonal immersion X — X xg X. We simply denote its log
m-PD envelope by Py /s ) and the defining ideal of X — Py /s () by I. Then there
exists the m-PD-adic filtration {T {”}}n .~ associated to I (for definition, see [3]

Définition A.3) which satisfies the following property.
(1) If 2 is a local section of I'™, then 2!} is in 7{"*},

Let Py s o) denote the structure sheaf of Py s (). For each natural number 7, we

1

denote by Py /g, the quotient sheaf PX/S,(M)T{WH} and by Py g, the closed

subscheme of Py/g ) defined by 7" We have a sequence of surjective homo-
morphisms of sheaves

-1 1 0
B 7)?(/s,(m) - P?(/S,(m) — PX/S,(m) - 7)X/s,(m)-

Let po and p; (resp. py and p}) denote the first and second projection
Px /sy — X (resp. Py IS.my X) respectively.

DEFINITION 3.3. Let 7, m be natural numbers. The sheaf of differential opera-
tors of level m of order < n is defined by

'Dg(r%'% = HOWLOX(]OZ)Z* ;Lf/S(m)7 Ox)

The sheaf of differential operators of level m is defined by

(m) . __ (m)
2 U DY
nelN
REMARK 3.4. Since, for any m’ > m, an m-PD ideal can be considered as an
m/-PD ideal, {D%g}m>0 naturally forms an inductive system.

D%)S has the (non commutative) ring structure as follows. By using the uni-
versality of m-PD envelope, we obtain the canonical homomorphism of Ox-alge-
bras

nn' | ! 7
I PX)s my = Pxysom @ox Pxys,om

for each natural number #, 7/, which is induced by the projection X xg X xg X —
X xg X to the first and the third factors (for precise definition of 6", see Sub-

mo
section 2.3.2 of [9]). For each @ € DY, and ¥ € D™, ,, we define the product

) X/Sn X/Sm'"
?-¥c DX/S.,nJrn’ by

0+ W 0 de¥ ), @
Px/s.omy — Pxysm ©ox Pxjsm) — Pxsom — Ox-

This is well-defined and D%, forms a sheaf of non commutative Ox-algebras on X.
X/8
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REMARK 3.5. Let &€ be an Ox-module. Then a log m-PD stratification on £ is a
family of Py /S_’(m)—linear isomorphisms &, : py*€ — S p}*€ satisfying the usual cocycle
conditions. As is the same with the classmal case, giving a D;}%—action on &
extending its Ox-module structure is equivalent to giving a log m-PD stratification
on €.

Finally we recall the local description of Dw‘) Let 5 denote the log m-PD en-
velope X — Px /g of the diagonal X — X xg X We have an exact sequence

@) 0= A +D) % Mpy ) - My — 0,

where A is the restriction of the log structure ]‘1(ocPX/S (m)) j‘l(PX /s, (m)) —

5N M; Pyson ). For any section a € My, p;(a) and p;j(a) have the same image in Mx.
Thus, from the exact sequence (2), there exists a unique section y,,,(a) € 5~ 1141
such that pj(a) = pj(a) - i(/z<m)(a)) Log smoothness of X — S implies that, étale

locally on X, there is a logarithmic system of coordinates m, ..., m, € ./\/lg}’ , that is,
a system of sections such that the set {dlogm,,...,dlog m,»} forms a basis of the

log differential module €} /s of X over S. We deflne 17 = Uy(m;) — 1 and
o = TT7_ e for each multi-index k € N”.

1=

PROPOSITION-DEFINITION 3.6. We regard Py g ) as an Ox-module via pg,.
Then the set {n"1"”||k| < n} forms a local basis of Py s,y over Ox. We denote the
dual basis of {nB||k| <n} by {8y |kl < n}. We also denote 5= (resp.
Aiyom)) bY g{lﬁ} (resp. Q) simply, if th_ere will be no confusions.

ProOOF. See Proposition 2.2.1 of [9]. O

ProposITION 3.7. Let X — S be a log smooth morphism of fine log schemes.

Asswme that we are given a logarithmic system of coordinates my, . .., m, € M.
1) Dg?})s is locally generated by {9,y gy -+ > g 1 <i<r}as an Ox-
algebra.
2) We have
K+E g
LR kl g /-g Al
Qk/ 'Qk" = Z 7 7 — 7 Z Lt Qk'
&) =) & +E —bWk—-K)Nk—-K) q! —®
kesupflf 'y = T E TR TRIE TR

In paﬁlcula’i" 8 8 ) = a<]£’> : Q(@ holds.
3) Forany x € OX, we have

k "
Oy = 2;{ i } 9y y@y) in DY
1<k N~

4) The nat/uml map D%)S D(”}S sends  jyom) to L i 8< ooy Where k=p"q+r,
E =p"q 41 with0 <r <p™ and0§L<p
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Proor. (1) See Proposition 2.3.1 of [9]. (2) See Lemme 2.3.4 of [9]. (3) See (2.5)
of [9]. (4) See (2.6) of [9]. O

We prove the following lemma needed later.

LEMMA 3.8. Let X — S be a log smooth morphism of fine log schemes defined
over 7./p7. Forany k € N, l € N and 1 <1 <7, we have

Dty * Qteyy = gy

PrROOF. We may assume 1 < [ < p”*1. When k; = 0, the assertion follows easily
from Proposition 3.7 (2). Thus we may also assume k; > 1. By Proposition 3.7 (2), we
have

l m+1
(p" ki + 9)! (pkd)'q)!
() Q(P"‘“@ ' Q@i) = ; (= )Isl(p™h; — 1+ s)! (pk; + qs)!Q(I””“@—O—SEJ'
We put
B (p" ki + 5)! ~ (pR)\q!
A= s — T4 © - MAB = i €@

First, we consider the case s = [. Then, we have

(p" ki + 1) (pk)g!
Npm k) (pk; + q)!

() IO

J=1

A-B=

m+1k

Since l—i—p] el pZy if 1<j<p™l—11+2 qmﬂ =1+k; if j=pm,
L+ el+pZ) if 1<j<p-—1and A+2)" =A+k)" if j=p, we
have A-B €1+ p7Z, and thus A-B =1 mod p. Next, we consider the case

0<s<l—1,l=p"*" Then, we have

_ (pkplq! '

Hence A - B € p”Zp). We thus have A - B = 0 mod p. Finally, we consider the case
0<s<l-1,0<1<p™! 1. Then, we have

qs 1
B=||—— q!'€Z.

Let v: Q" — 7 denote the normalized p-adic valuation. For any n € N, it is
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known that (p — Dv(n!) = n — o(n), where o(n) := Zj a;if n = Zj ajpj. Thus, we
have

(p — D) =al — s)+ als) + a(p" M h; — L+ 8) — a(p" ki + 5)
=o(l —8)+ a(p" ki — 1 +5) — a(p"*k;)
>0.

Hence A - B € pZ,). We thus have A - B = 0 mod p. The assertion follows from
these calculations and (é). O

3.2 — The p"™*-curvature map

Throughout this subsection, all the log schemes are assumed to be defined over
7./p7. Let us introduce some notations. For a log scheme X, Fx denotes the
(m + 1)-st iterate of its absolute Frobenius. For a morphism X — S of fine log
schemes, we consider the following commutative diagram:

Fx

/—\
X X' X" X

S~ ||

S——35,

where X" is the fiber product in the category of fine log schemes, and the morphism
X — X' (denoted by Fx /s and called the ((m + 1)-st) relative Frobenius morphism)
is uniquely determined by the requirement that the morphism F g is purely in-
separable and X’ — X" is log étale (see Proposition 4.10 of [5]). We denote the
composition X’ — X” — X by ny/s or simply by 7. We also denote X' by X" if
there is a risk of confusion.

First we prove the log level m version of Mochizuki’s theorem which is used to
construct the p”*1-curvature map (see also Proposition 3.2 of [4] and Proposition
A7 of [11]).

THEOREM 3.9. Let X — S be a log smooth morphism of fine log schemes. Let
Px/s,om) (resp. Y) be the log m-PD envelope (vesp. the log formal neighborhood) of
the diagonal immersion X — X xg X and I (vesp. I) its defining ideal. Let Px 18.m)
denote the structure sheaf of Px s . Then there is an isomorphism of Ox-modules

o F;(/SQ}(’/S — i/ (I{p”l+1+l} + ]PX/S,(M))
such that, for any & € I with image o € I/I? = Q% /s

41 }

(3) o1 ® ') = P
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ProoF. First we show that the map o' : I — I/IPy/s ) defined by

I — T/IPX/S,(WI)
5 N é{pm*»l}

is F-linear and zero on I%. If ¢ and 7 are local sections of 1, by Proposition 3.2 (3) we

e P S VL SN PN s 1)
E+olP ) =¢ + ) < ; >é T

it
i,j>0

Since 0 < i,j < p™*1, we have ¢;,q; < p, where ¢;,¢; are as in Subsection 1.3.
Therefore ¢;! and ¢;! are invertible. From Proposition 3.2 (4) we have
Wl = (g;lgN) '€ € IPy/s - It follows that the last term in the sum is in
I'Px /s m) and we see the additivity of o. Similarly, the fact that o’ is F'y-linear and
zero on I? follows from Proposition 3.2 (2), (5). We thus obtain the Ox-linear map

ot Py gQh s = FxQy s — 1/ (I{p”"““} + IPX/SAW))

which satisfies (3). Let us show that « is an isomorphism. Since the assertion is étale
local on X, we may assume that we have a logarithmic system of coordinates
ma, ..., my € M. Then theleft hand side is isomorphic to @;_; Ox(1 @ n*dlogm;).
On the other hand, by Proposition-Definition 3.6, I/T%"""'+1} is freely generated
by {Q{i’}\l <y < pm“} as an Ox-module and the image of IPy s, under the
map IPy s — 1/ I} ig generated by {njg{i}|0 <l <p™t-1,1<j<7}
as an Ox-module. Actually I/T"""+1} 1Py, is freely generated by
{”ip"‘+l}|1 <1< r} as an Ox-module. So the right hand side is isomorphie to
D, OX;yl{p "'} and, by construction, o sends 1 ® 7*dlogm; to n,L{p """} This com-
pletes the proof. O

Let a denote the map defined by the composite
Px/s.om = Ox = Pxsmy

where the first map is the natural projection and the second one is the structural
morphism p{*. Now, we are ready to define the p™!-curvature map.

DEFINITION 3.10. Let X — Sbe alog smooth morphism of fine log schemes. Let
Tx1 /s = Homo,, (QX, /80 Ox) denote the log tangent bundle on X'. We define the

(m)

map f§: Tx/s — Fxs5.Dy s by sending D € Txs to the composition of maps

m+1
p

—Y—aly) 5 Fomt T F{pmt =% % F5 A‘D
Vi L T 1 (100 1Py, ) Fshs — 2 Oy,

where the second map is the natural projection and the third one is the isomorphism
in Theorem 3.9. We call it the p"*!-curvature map.

The local description of the p”*!-curvature map is the following.
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ProPOSITION 3.11. Let X — S be a log smooth morphism of fine log schemes.
Assume that we are given a logarithmic system of coordinates my, ..., m, € M .
Let {5;|1 <i< r} denote the dual basis of {n*dlogm;|1 < i < r}. Then f sends &
to 9 1o)e

Ipmg)

PrROOF. We calculate that A(¢}) sends 5 to 1if k = p™*1¢; and 0 otherwise by
construction of /5, thereby completing the proof. O

REMARK 3.12. When m is equal to 0, our p”!-curvature map is the usual p-
curvature map ([10] Proposition 1.7). If the log structure of X is trivial, then our
p"™*+l-curvature map coincides with the p™-curvature map studied in [4] section 3.

4. Azumaya algebra property

The goal of this section is the Azumaya algebra property of the indexed version
of the sheaf of log differential operators Dg?})s =AY ®0, D(m) defined by Mon-
tagnon [9]. We also study the Azumaya nature of Dom = B(”js ®0 ) D(O)m) /9
which is also introduced by Montagnon. At first we give a reV1eW of the canonical
indexed algebra A’ associated to the log structure of X introduced by Lorenzon

[5] and Montagnon s D(ms and Dg‘(’?m /s*

4.1 — Indexed algebra associated to a log structure

4.1.1 - The Z%-indexed algebra Dg?})s

First we recall the definition of Agg’ (I, 3.1 of [5]). Let X be a fine log scheme. We
consider the extension of sheaves of abelian groups

0—>(9X—>Mgp Igp—>0

Here Z% is the quotient sheaf M%’ /O%. We define A%’ as the contracted product
M Ao, Ox which is the quotient of M x Ox by the equivalence relation
(ax,y) ~ (x, ay) where a, x, y are local sections of Oy, M% and Oy respectively. The
projection MY x Ox — M% — Z% induces a map AY — 7% which makes A% an
Z9%P-indexed OX—module For a local section i of Z%, the flber /\/l cof M — Igp ati
is an Oy-torsor. This implies that the fiber AY; of AY — T¢ ati isan 1nvert1ble Ox-
module. A% has a multiplication map induced by the addltlon map MY x M¥ —
MY over Igg’ x I% — T9%. Hence AY forms an 7% -indexed OX—algebra, called the
Z%-indexed algebra associated to the log structure.

Next let us recall the definition of the section e, of Agf associated to a section s
of M. For each étale open U of X and a section s € M (U), s trivializes the O-
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torsor M%’ X )" Thus it gives a basis ¢; := (s, 1) of the invertible Oy -module Ag? ss)°
Then '

eo) =1, ese; = €514, €5 = €qs
for s,t € M¥(U) and a € Ox(0).

The construction of A% is functorial in the following sense. For a morphism
f: X — Y of fine log schemes, we have a commutative diagram

0 O% (f*My)?® —— TP —— 0
0 O% MY IF 0,

where vertical arrows are isomorphisms if f is strict. This induces a commutative
diagram

ap

f* A,;J/P U ./4‘%)

! |

—179p gp
f IY IX )

where horizontal arrows are isomorphisms if f is strict. So we get the following
proposition.

ProposITION 4.1. If [ : X — Y 1s a strict morphism of fine log schemes, then
AP frAY — AY is an isomorphism of T% -indexed algebras.

Next we recall the definition of 7% -indexed left D;?”)S—module structure on A%
(Subsection 4.1.1 of [9]). Let * be the trivial sheaf of abelian groups on X. We
naturally regard D("}) as a x-indexed Ox-algebra and % as a sheaf of x-sets. Since
the natural projections pj : Py, — X with ¢ = 0,1 are strict, we have the iso-

morphism of 7% -indexed Ox-algebras

. gp = plvt 9P
877/ . pl*A .APZ pO*AX .

X/8,(m)

These isomorphisms are compatible with respect to n by construction and satisfy
the cocycle condition. Hence we can define an 7% -indexed left D;’})S—module
structure on Agg" by

/S x AP o D(”} pAYP idxe DY) W X ppAY
H P @) AP P AP
— Omox( X/S,(m)s X) X Ay Qoyx Px/Sm) — Ay -

By calculation with the section e, (s € Z%'), one can see that the action of D;}”/)S
on Agg’ satisfies the Leibniz formula (for more details, see Subsection 4.1 of [9]).
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Therefore we have the following nontrivial ring structure on 75?{75 which is a
central object in this article.

PROPOSITION-DEFINITION 4.2. Let X — S be a log smooth morphism of fine log
schemes. Let D%)S denote the T8 -indexed Ox-module AY @0, D%)S Then there

exists a unique I% -indexed Ox-algebra structure on f)%)s such that the maps
AP — f)g’(%; a—a®1 and D%g — f)f;’?s; P—1® P are homomorphisms and
that for any a € AY, P € D%)S and k€ N, we have the relations a @ P =
(a®1)(1®P)and

k
1@ 9dp)a®1) = Z{ R } (Qge—iy-@) ® Dy

i<k L L

Here {0, } is as in Proposition-Definition 3.6.
ProoF. See Subsection 4.1 of [9]. O

REMARK 4.3. In [9], Montagnon defines @g}% by Aﬁ’}’ ®oyr Dg;% 7> Where Ox 7

(resp. D%gj> denotes an Z-indexed Ox-module Ox x T (resp. Dg% x T ) with
the second projection. So, in Montagnon’s definition of f)%g, if we take a section
a®Pe @%)S, then P may have a nontrivial index. It seems to us that P must have
the trivial index. For example, equation (4) in the following Proposition 4.4 should
actually be considered as an equation in TD;;”/)S If 94, has a nontrivial index, then (4)
does not make sense because both sides of the equation must have the same index. If
we define ZNDE?;)S = AP @0, D%)S by regarding D;’})S as a x-indexed Oyx-algebra in a
natural way, then equation (4) makes sense (both sides have the same index []; mf)

Therefore, it seems to us that the natural definition of @%)s is AY @0, Dg?j)s

However, this is not serious. Actually, if we replace in [9] .Ag(p ®0y 5 D;??SI by
AP @0y D;}"/S (and also modify the definition of Bg}"/)s and IF(€), see Proposition-
Definition 4.7 and Subsection 6.1 respectively), then all equations in [9] make sense

and all the proofs are correct without any essential changes.

Finally we recall the following formula needed later. Let my, ..., m, € M%” be a
logarithmic system of coordinates. For i € {1,2,...,7} and a multi-index j, we put

0; := ey, and Qi =1L Hfi,
ProPOSITION 4.4. For k € N,
. ADE

Proor. See Lemme 4.2.3 of [9]. O
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4.12 - The Z%-indexed algebra D), s

We start with a general theory of log D-modules of higher level. For details in
more general settings, see Chapitre 3 of [9]. Let X — S be a log smooth morphism
of fine log schemes defined over 7, /p7. We consider the following commutative
diagram:

X —— Pxy5,0)

Po
0) —_— X(m)
pP1

x(m) o Pyom s,

Here the vertical two arrows are the m-th relative Frobenius of X — S defined
in Subsection 3.2 and ¢y and ¢; (resp. po and p;) are the first and second pro-
jections. We denote by F' the m-th relative Frobenius of X — S by abuse of
notation. Then, by the universal property of log 0-PD envelopes, there exists a
unique morphism of 0-PD fine log schemes Fx : Px/s ) — Pxwm/s ) which fits
into the above diagram.

PropPoSITION 4.5. Let X — S be a log smooth morphism of fine log schemes.
(1) There ewists @ : Pxsm) — Pxo s such that Fp uniquely factors as

Px/s0) — PX/S7(m)gPX(7n) /s Where the first map is the natural homo-
morphism.

(2) Asswme that we are given a logarithmic system of coordinates {m;} of
X — 8. Let {,7{@}(77%)} (resp. {;7’{@}@)}) denote a basis of Pxsm) (resp.
Pxon /s,0) ) associated to the basis {dlogm;} (resp. {dlogn*m;}) (see Pro-
position 3.11), where n denotes the natural projection X — X explained

in the beginning of Subsection 3.2. Then @ : Pxw s o) — Px/sm) sends
’7/{]2}(0) to ”{pm]i}(m)' !

Proor. (1) see Proposition 3.3.1 of [9]. (2) See (i) of Proposition 3.4.1 of [9]. O

Let £ be a left Dg(()(),,l) /S—module and {e,} the log O-stratification on £ via the
equivalence in Remark 3.5. By endowing F*£ with a left Dg’g})s—module structure by
pulling back {¢,} via @, we have a functor

5)  F* (left DO

o /S-modules on X W) — (1eft D%),S—modules on X >

REMARK 4.6. Let & be a left DY), /g-module. Let {n®™} and {5’ {k} (0)} be as
in Proposition 4.5 (2). Let {8, } (resp. {9, }) denote the dual of {7} (resp.

{#E®1). Then the Dg’(%—action on F*E is characterized by the following for-
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mula:

1® Jjpyugy-f  if p™ divides k
(6) Oy-A®f) =

0 otherwise.

For the proof of this formula, see Proposition 3.4.1 of [9].

In particular, we can consider F*Dgg()m) ;g asa left Dg%—module. Now, we define
the subalgebra B%)S of AY.

PROPOSITION-DEFINITION 4.7. Let BY)s be the T = Hom. (x,I¥)-indexed

sheaf of abelian groups Bg}’;g = Hom (F*D(O) AP ) We give Oxm-action on
X

) X /S X
/S
B?{;)S by right multiplication of Oxw on F*DY), s and define the morphism

e Bg}m — AY by g— 91 @ 1). Then y is injective and B%)s forms an T% -indexed

sub Oxon-algebra of A induced from the multiplication on A%Y.
Proor. See Lemme 4.2.1 of [9]. O

REMARK 4.8. In [9], Montagnon defines Bg??s by Hompg?s , ( F*DE;?ZW /ST Ag? ) t

seems to us that a natural definition of Bf,;% is Hom (F*D(O) Agf > because of
X

) X m) / S
. /s
the same reason as in Remark 4.3.

PROPOSITION-DEFINITION 4.9. Let X — S be a log smooth morphism of fine log
schemes. Let f)g?()m) /s denote the I5-indexed Oxon-module Bg}‘j)s ®O gy Dgg),m /s
Then there exists a unique I% -indexed Oxun-algebra structure on DY - such

3 ” X(m)/S
that the maps Bg}% — Df,??m) 55 @ a® 1 and D;??n s PO - P—1®P are

X(m) /S?
homomorphisms and that for any a € Bg}%, Pe Dg(()(),m /s and k € N', we have the
relations a @ P = (a® 1)1 ® P) and

lod)acl)=Y" (lf) Oy ® .

i<k

Here the notation {Q’@} s as i Remark 4.6.
ProoF. See Subsection 4.2.1 of [9]. O

REMARK 4.10. In general, Bf;’})s does not coincide with A?}fm. For counter-ex-
ample, see 1.8 of [5].

Finally, we give the local description of B%)S Let {Q@(m)} be as in Remark 4.6.
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ProposITION 4.11. Locally, Bg?})s can be written as follows:
{aeA%’|Q<pg§i>(m)a:O for all 0 <s<m—1,1 gigr}.
ProoF. See Subsection 4.2.1 of [9]. O

REMARK 4.12. By virtue of Proposition 4.11 combined with Proposition 3.7 (4),
we can locally write

Bg}"/gl) = {a €AY ’@pg)(m)“ =0 forall0<s<m,1<i< 7‘}.

PROPOSITION 4.13. Z%-indeved Ox-algebra AY is locally free as an T%-
indexed B?g}gl)—module with local basis {02 € [0, p™* —1]" }.

Proor. See Corollaire 4.2.1 of [9]. O

PROPOSITION 4.14. I -indexed Oxw-algebra Bg?})s is locally free as an I%'-
indexed B%;Cl)—module with local basis { 0P| J€0,p— 1]’"}.

PROOF. In this proof we put M := [0,p™*! —1]". Since the assertion is étale
local on X, we may work in a local situation. Note that #7"/ € B%)S by Proposition
44. Let f be a local section of B;% By Proposition 4.13, we can write
[ =Y jem 0;6? with a; € B%ED. Then we calculate

p3§. .
Qs f =) ( > { E }Q@Sgim@zﬁwﬁz)-

JEM \ k<p’g;

From the proof of Proposition 2.3.1in [9], 9,
D%)S generated by {9,,:,,|0 < i < m —1}. So 9,
Proposition 4.4, we have

) belongs to the Ox-subalgebra of

pe— )0 = 0if k& # p’e;. Hence, by

Q@sgﬁ.f: Z%(;@)Qj =0 foranyl<s<m-—1,and1<7<r.
‘Z'eM

Let us calculate the p-adic valuation of (]7; . Let v be the normalized p-adic va-
luation. In the case that p™ divides j;, we easily calculate v( -17;; ) > 0 for any
1 < s <m — 1. In the case that p™ does not divide j;, if we write j; = >_ b;p', then
there exists 1 < s < m — 1 such that by > 0. We obtain v( ;;; ) = 0 for this s. Since
{02]j € M } is linearly independent, we conclude that we can only have a; # 0if p™
divides j. We finish the proof. _ O
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4.2 — The Azumaya algebra property

We first prove the Azumaya algebra property of D“’;  over its center. To do this,
first we calculate the center of D(m) Throughout this subsection we assume that all
log schemes are defined over Z/pZ

Let X — S be a log smooth morphism of fine log schemes and Fy/s: X — X’
the relative Frobenius of X — S defined in Subsection 3.2. We have constructed
the p"*-curvature map f : Ty /s — Fy /S*Dg") (Definition 3.10).

LEMMA 4.15. The image of Tx:;s under the p™*-curvature map f is contained
in the center of D%)S

Proor. Since the assertion is étale local on X, we may work with the
local description of f (Proposition 3.11). Since Dg?})s is generated by
{04sy|1 <1 <71 <s <m} asan Ox-algebra, we need to calculate Q) - @-and
Qi+ 1) " s >f0ranya € Ox,1 <1, <randl < s < m.By Proposition 3. 7(2) we
obtaln Q(I)m+1£j> e pie;) Q@b_i Q(ﬁ"‘“é, Note that, by Proposition 3.7 (4), we have
Q@mvl%)(m)(a) = p!QWH%)(M 11(a) = 0. Therefore, by Proposition 3.7 (3), we also

obtain
pm+1
Q<pm+1§j> Q= Zl i Q<(p7n+1,i)§j>(a)Q<i§j>
igper
=a- Q<pm+1£7_> .
We finish the proof. O

Hence we obtain a morphism of rings
S Txs — Fxs. Dk

We also denote this map by . Let us put 3 := S 75 and regard 3 as a subring of
D(”} Y s via the map f. The following theorem is due to Schepler when m is equal to zero
(see Theorem 2.14 of [11]).

~ THEOREM 4.16. Let X — S be a log smooth morphism of fine log schemes. Let
3 denote the center of Dﬁ}% Then 3 is isomorphic to B%gl) ®Ro, 3 as an indexed

subalgebra of Dg’(%

Proor. We may consider the question étale locally on X. Let my, ..., m, € My

be a logarithmic system of coordinates. If f Bg’fsrl), then, since 8 . f =0 for
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any 0 <s <m, 1 <1 <7 (Remark 4.11), we have

d1® Q(,,ag))(f ®1) = Z{]; }(Q((ps—j)gi>’f) ® Oy

J=p
=f® )
=(fed® Q(P3§i>)

for any 0 <s <m, 1 <17 <r. Since {8@8 |0 <s<m,1<1i<r} generate Dgz%

(Proposition 3.7), we see that f commutes with D(m X/S and it obviously commutes
with Agf . Hence we have f € 5 and see that B;’}ED ®oy 3 C 5. Conversely,
since AY is locally free as an Z%’-indexed B%gl)—module with local basis
0i e [0, p" 1 — 1]"}(see Proposition 4.13), DU is generated as a B(m+1)—alge—
X/ X/S
bra by {0;,0,,|0 <s <m,1 <@ <r}. First, for a local section ¢ = > i ® 9
of D?(’})S, we now calculate commutators [¢, 0;] and [¢, 9, ]-

lp, 0] = Z (fe ® Q) - 0i — Z O:fi @ Oy
k k

k
=> f (Z{ i }@@])-9@') ® Q<z>) :
R & L

By Proposition 4.4, we have
kA
(7) lp,0;]1 = zk:{ k; _Z 1 }f@@i & Q@

Similarly,

p8
[%Qm»]:z i ® DDy =D D { I }8<p ~0g)-Je ® 0Oy
0<i<p*

k

(8) :_Z Z { le. } ((p*=Dg;) fk@ale a
ko 0<i<ps * "=
:_Z > gy fie ® @

k 0<l<p’

k;
Note that { ki — 1

then fi #0 only for k with p"*!|k. Hence, by (8) and Lemma 3.8, we have

o)-fie = 0 for any 0 < s <m,1 <<, thatis, f; € Bg’(’;gl) Since the p”*1-cur-
Vature map sends &, to Oy, its image is generated as an Oy-algebra by
{9 gy lk € N"} by Lemma 3.8. Therefore ¢ € 3 implies ¢ € Bg}'}gl) ®0y 3. This
completes the proof. O

} = 0 in characteristic p if and only if p"*1|k;. By (7), if ¢ € 3
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We also calculate the centralizer of A in f)g% in a similar manner. By the
calculation (7), we also see the following.

ProPOSITION 4.17. Let Cx denotes the centralizer of Agg’ m 155(”})5 Then Cx =
AP @0, 3 as an indexed subalgebra of Dg(m/g

Let us consider @%)S as a right Cx-module by multiplication on the right.

THEOREM 4.18. Let X — S be a log smooth morphism of fine log schemes. Then
there is an isomorphism of T% -indexed Cx-algebras

p®C — {x—p-x-c}.

REMARK 4.19. Theorem 4.18 is due to Schepler in the case m = 0 (see Theorem
2.15 of [11]) and is due to Gros, Le Stum and Quirés in the case when X — Sis a
smooth morphism of schemes (see Theorem 3.7 of [4]).

ProOF. Since the assertion is étale local on X, we may assume that there is a
logarithmic system of coordinates my, ..., m, € Mx. Then D;;”/)S ®3 Cx has a basis
{1 ® 01 € [0,p™ " — 1]7} as a left @%g—module. We set

Bi=0'20;, 121

Note that this sum is well-defined since 0; '®0; and 1 ® 1 are both in the fiber
of D%’S ®3 Cx at 0. We put p = [T, B! for j € [0,p"™ " —1]". By the binomial
theorem, we have

- (g1 0 g

e (o2 )asen

p Z]f i
Thus, if we endow M with some suitable order compatible with the product partial
order then the transition matrix from the basis {1 ® 0l)i e [0, p™ 1 — 1]1‘} to the
set {E_ﬂ je[0,pmtt — 1]7} of f)%)s ®3 Cx is upper triangular, with units on the
diagonal. Therefore {/_)’1\ JEM } is also a basis for f)%)s ®3 Cx. On the other hand,
let us consider the image of {§1| je[0,pmtt — 1]11} by the map (9). For i € M, let o;
be the unique homomorphism which sends 9, i) to dj;. Then, since ﬁgﬁ% has a basis
{Q@ i € [0,p™ " — 1]7} as aright Cxy-module, {o;i € [0,p"*! —1]"} forms a basis

for Endcx(@%)s) as a left @%)S—module. By Proposition 3.7 (3) and 4.4, we now



On logarithmic nonabelian Hodge theory of higher level ete. 69

calculate that f; acts on 9, by

Bi Oy = 07" 0yy - 05 — Dy

_ ki
=0;" <9i ® 9y + {k, o }91' ®a<m>> — 9
k;
{k _l}ak &) "

Hence /)’J acts on DE??S by sending 0,y to 8@ _jy if k > jand 0 otherwise. We thus
obtain i

A q;!
Br= > |52 |
T oeiEn\4yt )

in Endec, (D") and see the transition matrix from the basis {o;|i € [0,p"+' —1]"} to
the set {é’1| je[0,pmtt — 1]7'} of Endcx(@g’(")) is lower triangular with units on the
diagonal. We see that { ﬁi| je[0,pmtt — 1]7”} is also a basis for Ende, (DY), O

COROLLARY. Let X — S be a log smooth morphism of fine log schemes. The % -
mdexed Ox-algebra D;}’;)S 1s an Azumaya algebra over its center 8 of rank pz(m“)’”

Proor. From Proposition 4.13, A{ is locally free as an Z% -indexed By’ "-
module. Thus Cy = AY B e 3 is a faithfully flat extension of 3. By Theorem 4.18,

D;?;)S splits over Cy with sphttmg module Dg;% O
The proof of the Azumaya nature of D! X(m) /s is the same as that of @g}’})s except
for obvious modifications.

THEOREM 4.20. Let X — S be a log smooth morphism of fine log schemes.

(1) Let g’ denote the center of D}?()m /st Then the p-curvature map 3 — D;?()m) /s
mduces an isomorphism between BitD ®o, 3 and %/ as an indexed

0 X/S
subalgebra of Dg?()m /S

(2) The I%-indexed OX(m) -algebra DY) X /s is an Azumaya algebra over its
center 3/ of ramk p?".

Proor. We shall only sketch a proof. Take ¢ € D(Om s As in the proof of
Theorem 4.16, we consider the necessary and suff1c1ent condition for ¢ € 3.
Recall that B%g is locally free as an I% -indexed B%gl) -module with a local

basis {Qi””f_' ljel0,p—1] } (see Proposition 4.14). Thus Dgg(m) /8 is generated by



70 Sachio Ohkawa

{OZ?OM,Q<§£>(O)|1§@'§V} as an Z%-indexed B%gb—algebra. Let us describe

9 =) fi © Qo) With fi, € Bg?}gl). Then commutators [¢, 07" ] and [, 9,1 can be
calculated as follows.

m

(10) 9,071 =" kifil" @ D0
k
(11) [0, 01y = =Y Do) fi ® Dy
k

By (10), if p € ’3’ then f;. # 0 only for p|k. By (11) and (6), we have Q@mgi)(m) Jk =
) fi = 0 for any 1 < i <, that s, fi € BY/S". This finishes the proof of (1). For
proving (2), let Cxw be the centralizer of B;?})S in @(}g()m) /s which is isomorphic to
B%)s ®o, 3. Then, by an analogous argument to the proof of Theorem 4.18, one can
obtain the isomorphism

(12) ,b‘()?()m) /S ® Y CX“’” = Ench(m) (IZN);?()””)/ S )
p®c — {x—o¢-x-c}.
Therefore (2) follows from Proposition 4.14. O

REMARK 4.21. Theorem 4.20 is a variant of Theorem 2.14 and Theorem 2.15
in [11].

4.3 — The log Cartier descent theorem

As a first application of Corollary 4.2—, we prove the log Cartier descent the-
orem of higher level. (See Corollary 3.2.4 of [6] for the case without log structure.)

First we generalize the notion of admissible connection to the case of higher
level.

DEFINITION 4.22. Let J be a sheaf of 79" -sets on X and let £ be a J-indexed A} -
module with a J-indexed left Dé}”/s—module structure. Then the action of D%)S oné&is

admissible if the J-indexed .A{’-module structure and the J-indexed left D%)S—
module structure on £ extend to the [7-indexed f);}”)s—module structure on £. We also
define the notion of admissibleness for a 7-indexed Bg’(%—module with a J-indexed
left Dg?()m) s-module structure in a similar manner.

We give an equivalent condition for the action of D%)s on a J-indexed AY-
module to be admissible. Let £ be a J-indexed Ag’(p -module. Recall from Remark
2.4 that the action of AY on € is equivalent to the family of morphisms Pij

AL @0, £ — Eiyj satisfying suitable conditions.
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PROPOSITION 4.23. Let J be a sheaf of T -sets on X and let € be a J-indexed
AP -module with an J-indexed left Dgf”;)s—module structure. Then the action of
D%)S on £ 1s admissible if and only if the corresponding structural morphism
pij .Aggf i Qoy & —Eivj; aQer—aeisa Dg’(’;)s-homomomhism Sfor any étale open U
of X and any section (1,7) € Igf x JWU). Here A?}fi ®oy &j 1s a tensor product as a
left Dg’(%—module. '

Proor. We show the if part. Let us show that the action of TD%)S on & defined by
Dg’(’”l) ®oy € — Eirj(a ® P) ® e — a.P.eis well-defined. We may work locally and, by
assumption, we have

k
Oy-(a.0) = Z{ i }Qac@ 09,j).e-

i<k

On the other hand, we have

k
Oy-0)e = ( { ; }3<l_c—i>~“ ® 8<i>> €
ik
k
i o

This completes the proof. O

REMARK 4.24. We can also give a condition for the action of DE??S on a J-in-
dexed A%’ -module to be admissible by using the notion of log m-stratification. Let
p; (with 7 =0,1) be the natural projection P ¢, — X and {e4,} (resp. {ec.}
the log m-stratification on Ag}” (resp. on &) associated to the D%g—action. Let £ be
a J-indexed .Ag(p -module with a J-indexed left D%)S—module structure. Then a -
indexed left Dg%—module structure on £ is admissible if and only if the following
diagram is commutative for any positive integer n:

p?* (‘Agéo ®Ox S) — p(7)l* (‘Ag? ®Ox 5)

l l

€ Py E,

where the upper horizontal arrow is the tensor product 4, ® &g, the lower hor-
izontal arrow is &g, and the vertical arrows are induced from the A% -action on &.

REMARK 4.25. Let £ be a Dg”)s—module. Then the Dg%—action on the tensor
product AY ®o, £ as a D;"/’)S—module is admissible.

For a J-indexed f)g(”;)s—module &, we put eV = Hompm (Ox, E).
X/S
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THEOREM 4.26. Let X — S be a log smooth morphism of fine log schemes. Let [T
be a sheaf of IS -sets on X. Then the functor € — &Y give an equivalence between the
category of J-indexed AS-modules with an admissible J-indexed left Dg”/)s
module structure and zero p"-curvature map and the category of J-indexed

B%gl)—modules.

Proor. We use Proposition 2.7 to construct the equivalence. We consider Bg’;gl)

as a g—algebra via the composite S'(7x/5) — S‘(TX//S)/S+(TX//S) = Ox — Bg}’jgl).

By Corollary 4.2, Dy := D}" ®3 Bg;’}gl) is an Azumaya algebra of rank p?" V", Let

us find the splitting module for Dy. Since A is a locally free Bg}’;gl)—module of rank

"+ which has a structure of left Dy-module, Dy splits over Bg?gl) with splitting

module A by Proposition 2.9. Hence, we can apply Proposition 2.7 and get the
equivalence of categories £+ Hom@U(A“}’f ,€) between the category of 7-indexed
left Dy-modules and the category of 7-indexed B%gl)—modules. Now the notion of 7 -
indexed left Dy-module is equivalent to that of 7-indexed AfP-module with an ad-
missible 7-indexed left D;’;)S—module structure and zero p”*!-curvature, and there
is a natural isomorphism Hom@O(Agfp ,&) = V. This completes the proof. O

5. The global Cartier transform

The goal of this section is to construct the log global Cartier transform of higher
level. First we recall a few notions on the log crystalline theory of higher level
needed later. It should be remarked here that Miyatani studied the foundations of
log crystalline theory of higher level in his unpublished master thesis in the Uni-
versity of Tokyo [8].

5.1 — Logarithmic crystalline site of level m

We fix throughout this subsection an m-PD fine log scheme (S, a, b, ) and a fine
log scheme X over S. We assume that the m-PD structure y extends to X.

DEFINITION 5.1. Let U be a fine log scheme over X. A log m-PD thickening
(U, T,J,0)of Uover (S, a,b, y) is a data which consists of a fine log scheme T over S,
an exact closed immersion U — T over S and an m-PD structure (J, d) on the de-
fining ideal of U < T' compatible with (b, y). A morphism of log m-PD thickenings
over (S, a, b, y) can be defined in an obvious way.

DEFINITION 5.2. (1) The log m-crystalline site Cris™ (X /S) is the category of log
m-PD thickenings (U, T, J, o) of an étale open U of X over (S, a, b, y) endowed with
the topology induced by the étale topology on 7. Its associated topos (X /S)gf; is
called the log m-crystalline topos.
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(2) The sheaf of rings defined by
,T,J,6)— I(T,Or)
in the topos (X/8)™ is called the structure sheaf of the site Cris"”’(X/S) and we

cris

denote it by (’)%)S

REMARK 5.3. A sheaf E on Cris"’(X/S) is equivalent to the following data: For
every log m-PD thickening (U,T,J,0), an étale sheaf Er on T, and for every
morphism % : 77 — T» in Cris””)(X /S), amap p,, : ufl(ETz) — Ky, satisfying the
cocycle condition such that p,, is an isomorphism if « is étale.

Next we define the notion of log m-crystal.

DEFINITION 5.4. Let E'be an Oé}"’;)s—module in (X/S)". Then, E is called a log m-
crystal in ogg';g-modules if, for all morphism f: (U,T,J,d) — (U, T".J',d) of
Cris" (X /S), the canonical morphism

" Eg s —Ewurse

is an isomorphism.

DEFINITION 5.5. Let M be an Ox-module. Then a log hyper m-PD stratification
on M is a Py s -linear isomorphism

&: Px/sm @ M-—-M Px /s,m)

which is reduced to the identity map on M modulo the kernel of Py s () — Ox and
satisfies the usual cocycle condition.

PRrOPOSITION 5.6. Let (ag, by, yy) be a quasi-coherent m-PD subideal of a, let
So— S denote the exact closed 1mmersion defined by agy, and Xo— X its base
change by X — S. We assume that X is log smooth and flat over S. Then the
following categories are equivalent

(1) The category of log m-crystals in Og;’;}s—modules
(2) The category of Ox-modules equipped with log hyper m-PD stratifications.

Proor. The proofis the same as the classical case. It suffices to see that the log
m-PD envelope of Xyin X xg X, X xg X xg X is equal to the log m-PD envelope of
XinX xgX,X xgX xgX, respectively. This follows from the fact that the m-PD
structure of the latter is compatible with the m-PD structure (by, y,)- O

Finally, for technical reasons, we introduce a variant of the big crystalline site.

DEFINITION 5.7. We define a site CRIS&Z?(X /8) as the category of log m-PD
thickenings (U, T, J, ) of U over S such that U is any fine log scheme over X and
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that T — S is integral endowed with the topology induced from the étale topology
onT.

REMARK 5.8. As in the classical case, we obtain an equivalence

<log m-crystals of Og}%—modules> ( Ox-modules >

on Cris”(X/S) with log m-PD stratifications

by the following way. Let £ be a log m-crystal of O(}?;)S—modules. Then, for each
natural number 1, the natural morphism (X — Py g ) — (X 2 X) in Cris"(X /)
defines an isomorphism of P /Sﬁ(m)—modules en 1 Py Ex 2¢ PLcom = Py Ex. These
isomorphisms define a log m-stratification on an Ox-module £ := Ex. If X — S'is
log smooth and integral, a case which interests us in the sequel, then the log m-PD
envelopes of X in X xg X and X xg X xg X are integral over S. So, under these
hypotheses, we also obtain an equivalence

<log m-crystals of Og}’}g-modules,) < Ox-modules >

on CRIS{)(X/S) with log m-PD stratifications

in a similar manner. Hence the category of log m-crystals on CRIS%’Q(X /S) is

equivalent to that on Cris””(X/S) in this case.

REMARK 5.9. Let (U,T,J,9) be an object in CRIS{")(X/S). Because U and T
are integral over S by definition, the underlying scheme of U” = U xg S (resp.
T" =T x5 S) coincide with the fiber product of the diagram U — S « S (resp.
T — S < S)in the category of schemes, where S — S is the (m + 1)-st iterate of its
absolute Frobenius Fg of S. See also Subsection 3.2—.

5.2 — The global Cartier transform

Let us set some notations. Let X — S be a log smooth morphism of fine log
schemes defined over //p”. As in the beginning of Subsection 3.2, we have the
following Frobenius diagram:

Fx

/\
X X' X" X

]z

S——09,

where Fg (resp. F'x) denotes the (m + 1)-st iterate of the absolute Frobenius of S
(resp. X), X" is the fiber product in the category of fine log schemes, and Fy g
((m + 1)-st relative Frobenius) is uniquely determined by the requirement that
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Fxg is purely inseparable and X’ — X" is log étale (see Proposition 4.10 of [5]). We
denote the composition X’ — X” — X by n. Fix a sheaf of 7% -sets .7 on X. Write G
for the nilpotent divided power envelope of the zero section of the cotangent bundle
of X — S, so that Og = I Txs. We put OF := BYY @0, Og, 04 = A¥ ®0,, Og,
and D?;;)S} = DE}% ®; OF. We denote by HIGg‘Dj (X'/8) the ca?egory of J-indexed
(’)S—modules, and by MICﬁI’)j (X/S) the category of J-indexed D%)S’y—modules. Note

that an object of HIGg’Dj (X'/8) is equivalent to a J-indexed B;’}gl)—module E’
equipped with a homomorphism of indexed Oy:-algebras

0 : Og — gnng?gl)(E/)

(called a BY/"-linear G-Higgs field). Similarly, an object of MIChy (X/S) is
equivalent to a J-indexed A% -module £ with an admissible D%)S-action endowed
with a homomorphism of indexed algebras

0 : Og — Fx/S*gTLd@(m) (E)
X/8

extending the map

[/ S'TX//S — FX/S*gndb;?;)s(E’)

given by the p"-curvature (called a horizontal A{-linear G-Higgs field). The
global Cartier transform is formulated as an equivalence of categories between
MIC?DJ (X/8S)and HIngj (X’/8S). Asin[10] and [11], first we study the lifting torsor
of the (m + 1)-st relative Frobenius morphism in the context of crystals.

DEFINITION 5.10. Let f : Y — Zbe a morphism of fine log schemes defined over
7,/pZ. Then alifting of f modulo p” is amorphismf : Y — Z of fine log schemes flat
over 7 /p"7 which fits into a cartesian square in the category of fine log schemes

Yy — 5 YV
L
Z — 7

)

where Z — Z is the exact closed immersion defined by p.

If f is log smooth, respectively log étale, resp. integral, resp. exact, so is f .From
now on, we are mainly concerned with liftings modulo p?.

For the rest of this paper, we consider a log smooth integral morphism
f : X — S of fine log schemes defined over 7./p7. equipped with a lifting X’ — S of
X’ — S modulo p?, and we regard S, S as m-PD fine log schemes with the canonical
m-PD structure on (p). We denote the data (X — S ,X" -39 by X/S.
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LeMMA 5.11. Let (U, T,J,0) be an object of CRIS{"(X/S). Then there exists a
canonical morphism T — U’ such that the following diagram commutes

N

where the symbol ' is as in the beginning of Subsection 5.2.

Proor. We use the symbol ” as in the beginning of Subsection 5.2. Since J is an
m-PD ideal, we have a”"" = pla?"™} = 0 in characteristic p > 0 for any a € J.
Therefore U — T is a homeomorphism. Since a?""" = 0 for any a € J, the morph-
ism Og @0, Op — Op; a®@b—a-bP"" induces a natural morphism Oy — Op.
Since U"” — T" is strict, we also have a natural morphism Mgy» = Mp — Mo
Therefore the morphism 7 — 7" factors through U”. We thus obtain solid arrows in
the diagram

U——=U'

4
/
v/
T——U".
Then, since the morphism U’ — U” islog étale and U — T is an exact nilimmersion,

there exists a unique morphism 7' — U’ (the dotted arrow) making the above dia-
gram commute. O

DEFINITION 5.12. Let (U, T,J, ) be an object in CRIS{"”(X/S). We define the
morphism 7' — X’ by the composition of the morphism in Lemma5.11 and U’" — X',
and denote it by f7/s.

If g : T1 — T be a morphism of CRIS{(X/S), then fr, /s o g = fr,/s. Hence, if
E' is an Ox,-module, there exists a natural isomorphism

Oy - 9'f1,/5E' = fi 5B

Thus we have the following lemma.

LEMMA 5.13. Let E' be an Ox-module. The collection {f; sE', 0y} defines a log
m-crystal of (9;?75-m0dules on CRIS&Z?(X /S). We denote it by % /SE by abuse of
notation.

DEFINITION 5.14. Let T be an object of CRIS{"(X /S) which is flat over S, and T
the closed subscheme defined by p. A lifting of f7 /g to Tisa liftingﬁ' : T — X' overS
modulo p2. K(](%(T) denotes the set of all such liftings, and 5(;75 7
sheaf of sets on T of local liftings of f7 /5. For a morphism g : Ty — Ty of

CRIS%’&)(X/S), we define the map E()’:;)S(g) : L‘X/S(Tg) — EX/S(Tl) by F'—F o 3.

denotes the étale
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Let CRIS%)J(X /S) denote the full subsite of CRIS{")(X/S) consisting of

those objects which are flat over S. The family {E%’ST | T ¢ CRIS%)J-(X /S)}
(m)

together with the family of transition maps L y 5(9) defines a sheaf of sets on

CRIS{ (X/S).

LEMMA 5.15. Let (U, T,J,0) be an object of CRISYy, (X/S). Let T denote the

closed subscheme of T defined by p. Then the sheaf L(:('j)s 7 forms a torsor over
Homo, (f152%/5: On) = f)5Txs -

Proor. Let us consider the following diagram

Tl %

l l

T S.

Since X’ — S is log smooth, a lifting of frys to T exist locally on T, so £ X/ST has
nonempty stalks. If we define, for g,92 € £, /8.0 the subtraction ¢g; —gs €
Homo, (f7,52xs, Or) by

(13) f1/5(dx)— a where pa = g5(@) — g7(2)
(14) f1/s(d1ogm) — b where gj(m)(1 + pb) = g3(m),

where a € O; (resp. a € Oy) is alift of @ € Or (resp. b € Or) and g is the under-
lying morphism of the structure sheaf or the log structure, then we can check that
Ly /ST is a torsor over f; /ST x/s by this subtraction. O

Therefore the family {E()Z)s 71 defines alog m-crystal of torsors over Fy ssTx/s
The following lemma shows that this crystal of torsors on CRIS§Z2 f(X /S’) defines a

log m crystal of torsors on CRIS%’:&)(X /).

LEMMA 5.16. (1) The natural inclusion of sites CRIS{, .(X/S) — CRIS[;(X/S)
mduces an equivalence of categories between the respective categories of log
m-crystals of O%g-modules.

(2) The natural functor from the category of p-torsion log m-crystals of Og;’;)s
modules on CRIS%’Q(X /8) to the category of log m-crystals of O%)S-modules
on CRIS{" (X /S) is an equivalence of categories.

) The natural functor from the category of p-torsion log m-crystals of torsors
over Fy s Tx s on CRIS(I’I’I?(X /S) to the category of log m-crystals of torsors
over Fy sTx s on CRIS(I’Z?(X /8S) is an equivalence of categories. lflere we
regard F'y, / sTx/s as alog m-crystal of O;;’;)S -modules on CRIS};’? X/S) by 2).
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Proor. First, we prove (1) Since the question is étale local on X, we may as-
sume that there exists a lifting X / S.Then, by Proposition 5.6, both categories can be
identified with the category of Oj-modules equipped with log hyper 7m-PD strati-
fications. Second, we prove (2). Since the question is étale local on X, we may assume
that there exists a lifting X /S. Let i : X < X be the exact closed immersion. Then,
by Proposition 5.6, the former category (resp. the latter category) can be identified
with the category of p-torsion Og-modules (resp. Ox-modules) equipped with log
hyper m-PD stratifications. Let (£, ¢) be an Ox-module with a log hyper m-PD
stratification. Then 7,£ naturally forms a p-torsion Oy-module. We can also endow
1.€ with a log hyper m-PD stratification by using ¢ in a natural way. This gives a
quasi-inverse. Finally, we can prove (3) in the same way as (2). O

Now we construct the Ox-module IC(;% with natural actions of I Fy /ST x/8)

and Dg’("/g Let (U,T,J,d) be an object of CRIS ntf(X/S) Let T be a closed sub-

scheme of 7' defined by p. In Lemma 5.15, we saw that E%g 7 forms a torsor over
17 /sTxs- For a local section a € L(;% 7 and ¢ € Hom(ﬁg’(”/ig 7 Or), we define the
map ¢, : fr/57xs — Or by D— ¢p(a + D) — ¢(a). Let 5(’”)5 denote the subsheaf

of Hom(ﬁ%gw Orp) consisting of morphisms ¢ : EE;’;)S’T — Oy such that, for any

local section a of E(X Js» the map ¢, is Op-linear. Note that, for ¢ € 8(;'78 .

¢, is independent of the choice of a. We put w, := ¢,. Then, we have a diagram

the map

(ﬁ)T 0—)07‘—)8(;/787, oo fT/SQX’/S_)O

where the map Oy — 8(;(’% 7 sends b € Oy to the constant function. This is a locally

split exact sequence. In fact, given a local section a € E(;;)s 7 We define the map
(m)

Oq 'f;/SQ}(,/S — EX/ST by @+ [b+— (w,b — a)]. Then this map gives a section of

8(;"/)8 7 17 /SQX, /s The injection Op — 5<’”) ST induces an injection S“(S(”ys T) —
S”“(é'(;”)s T) for each natural number ». We define the Op-algebra IC(/,:’;)S 7 by the
1nduct1ve limit S'(E™_.) := hm SrE™ ).

X/ST X/ST

Next, let us define an action of f; /ST X//s On ICW;) . When the exact sequence
(m)

Xx/S,T
morphism of Op-algebras K

()7 splits, we have & ~0Or ¢ fT/SQX, 5. This 1som0rphlsm induces an iso-

%)ST =~ S'(fy /SQX, ss)- Now we define an action of

D € fr,sTx s on IC(;(% 7 by the composition

IC(;’;)S 7 = S (frys2%8) = S (fr/59%5) = IC%)S T

where the map D is defined as a derivation. Furthermore, this action induces an
action of I'.(f7 57 x/s) on IC(;(’;)S -Since D € fr,Tx s acts on IC()’("/; - as a derivation,
the action of D € f; /ST x/s on Or is zero. Thus the action is independent of the
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choice of a splitting 5(”7 ~Or®fy /SQ}(, /s of the exact sequence (f);. Now the

family {1 /s Tx /s} (resp. { I /SQ}(, /st {6()(”75 ;) and {IC();’;)S 7)) defines a p-torsion

log m-crystal of O(m) -modules on CRIS&’? FX /S). Hence, by Lemma 5.16, we ob-
tain correspondlng log m-crystals of 0;}%-modules Fx% /ST x/8 Fy /SQX, € ;} s and
ICE;”/)S respectively. Each of the log m-crystals defines an Ox-module. We denote it
by the same symbol. The family of exact sequences {(#);} induces an exact se-
quence of Ox-modules

Let us assume that there exists a lifting X — X’ of X — X’ modulo p2. Then the
exact sequence () coincides with (#); and splits. The splitting defines an action of

I (Fy /ST x1/s) on Ky m) . Since this action is independent of the choice of a splitting,
we have an action (A) of r (Fy /ST X7/8) On Ko e / S globally on X. On the other hand, the

structure of log m-crystal of Og}%—modules on IC“ X 3 gives the action of D(’ ¥/s On

IC%) Thus we also have an action (B) of T/ on IC( XS via the p”*1-curvature map
B:Txs — D}})S Let us show the following lemma.

LEMMA 5.17. The two T g-actions (A) and (B) on IC%”/)S are equal.

PRroor. Since the assertion is étale local, we may assume that there exists a
lifting F' : X — X’ of X — X’ modulo p? and a logarithmic system of coordinates
{;}; of X — S.Denote by {m;}, the image of {172, }, in M. Then {z*(m;)}, forms a
a logarithmic system of coordinates of X’ — S. Let {é }7 denote the dual basis of
Ty /s associated to {dlog n*(m;)},;. We take alift m; € My, of n*(m;). We denote by
P the log m-PD envelope of the diagonal X — X X3 X and by P the log m-PD en-
velope of X — X xg X. Let {n{k ! } denote a basis of (9 induced by {7;};. We denote

the image of { 7%} in Op by {#*}}.

By the construction of IC“’}> (and the actions of 7Ty /g on it), it suffices to show that

the two actions (A) and (B) agree on &£ (/{% By the existence of a lifting F:X X ,the
(m) (m) ~

exact sequence () splits via g : FX/SQX, g EX/S Hence we have EX/S ~Ox®
F3 / SQX, /8- The two actions (A) and (B) are zero on Ox. Thus, we need to calculate the
action on FY% S‘QX’/S The action (A) of & e Txys 1s given by FX/S.QX,/S —
Oy; dlog n*(m;) — d;;. On the other hand, the action (B) of f € Txs is given by

Pi =~
FX/SQX,/SHE%)S — 05 R €L — €4 ®Op

_ (m) {k (m) {p"7} _ om)
= @5;{75’7{ B 5;!;3’71' 5;}3’
k

where the isomorphism Op ® E(Xﬂ% Eg}% ® Op is the HPD-stratification asso-
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ciated to the log m-crystal structure on 8%)3,
jection. Let us calculate this action explicitly. First, as a map LE;V;)SX — Oy,
op(dlogn*(m;)) € 5(}(% sends F' e E%)SX to a, where a is the section of Ox
satisfying F*(mj’.)(l +pa) = F’(mj’.). (We denote by ~ alifting of a section.) Next, we

take the pullback of ¢ (dlog n*(m;)) by p; and obtain the map Tpro p(dlog " (m;)) :

and the last map is the natural pro-

L‘(;';)S » Op. We consider the composition of maps

_ =(dlog 7" (m;))
(m) °Po - ~(m) piof
L X/SX £ X/S.p P

Then, this map sends F'€ EZ’;{S ; to beOp= @ Oxn'th  satistying
(Fo pl)*(ﬁzg)(l + pi)) = (F"o po)*(”/;bj’-). We have to show that the nl{p mvl}—component
of bis d;;. Let us take ¢, d € Op satisfying
(15) (F o 1) (m))(1 + pé) = (F 0 po)" (),

(0 po) ()1 + pd) = (F o po)* (m).
Then, we have b = ¢ + d. By the definition of d, we may assume that d is of the form

d = pj(d). Then d is in Ox - 1 C Op, and we see that the ngp M}—component of d is
zero. On the other hand, From (15), we have

(16) P (B ) 1+ pe) = i (F 0m)).
Since F*(m/) is a lift of Fi " (m;) = m!"", there exists & € Oy satisfying

(17) P (m) ="+ po).

From (16) and (17), we have

1

(1+p(pi@ — py@ +))A + """ =1.

Now, since (1 + Tyj)pml =1+ p(the terms of 7; of degree < p™*!) + p!?y}pw} , We
see that '

the 772{17 W}—component of (pile) —pyle) + ¢) = dy;.
Finally, since pj(e) — pj(e) = 3.0 Oy (@',
the %{p M}—component of (pi(e) —pyle)) = Q(w“ 6_7_>(e) =0.

Hence the n}p M}—component of ¢ is d;;. We finish the proof. O

Now, we are ready to construct the log global Cartier transform of higher level.
Let IC()?;)‘S be the dual of IC%)S as aleft D%)S—module. We consider the tensor product

/VC(;'%A = AP ®0, IVC%)S as aleft D;’;)S—module. Let us show that /VC(;("/)"SA is a splitting



On logarithmic nonabelian Hodge theory of higher level ete. 81

1), A

module for b%)s over Og. Since the action of Dg’(% on IVC(;' 18 is admissible by Re-

mark 4.25, the action of D%)S extends to an 7-indexed @%)S—module structure on

IVC%)SA On the other hand, we also have the Og-action on IVC(;"/; induced from the
action (A). By Lemma 5.17, these two actions extend to the structure of left
AP @0, D%)S R8Ty 5 Og = f)g”)’y—modules on IVCE;"//)"SA. Since we locally have an

isomorphism
K = Homo, (K5, Ox) 2 T.(Fy ;s Tx/s) = F 50g,
IVCE:%A is a locally free (’)“g“—module of rank 1. Moreover, by Proposition 4.13,

OF 22 O8 @ g AY is alocally free module of rank p® " over O5. Hence IVC()?%A is
X/3

a splitting module for f)g}% over OS by Proposition 2.9. We thus obtain the following
isomorphism of O%-algebras:

(18) DY) ©3 Of = Endos (K5,

REMARK 5.18. In the case without log structure, Gros, Le Stum and Quirds
obtained a similar isomorphism (18) in a different way. See Subsection 6.4 of [4].

Using Proposition 2.7, we obtain the following theorem, which is the central
result of this paper.

THEOREM 5;19. @et X/§=X-—-S ,X’ — S’) be a log smooth integral morphism
with a lifting X — S modulo p?. Then the functor

C/s : MICoy (X/S) — HIGHY (X'/S), E Hombgn,,,(/'cgjjgf‘, E)

s an equivalence of categories. The quasi-inverse of Cy s is given by
- B.J AT (m), A
CX}S : HIGpy (X'/S) — MICyy" (X/S), E’HK()??S ®os E.

Let us give two corollaries. In the case J= Igg’ with the standard action, the
category of J-indexed A%-modules is equivalent to the category of Ox-modules
with quasi-inverse £ — Agg’ ®oy F (see p. 22 of [11]).

We put Dg?;)sy = Dg?})s ®3 Og, and denote by MICpp(X/S) the category of
D%g’—modules. We thus obtain the following corollary.

COROLLARY. The functor
Cues - MICpp(X/S) — HIGE® (X'/S), E Homym (KY)s", AY @0, E)
s an equivalence of categories.

Next, we consider the case without log structure. Let X — S be a smooth
morphism of schemes. We denote by HIGpp(X’/S) the category of Og-modules.
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COROLLARY: Le}f X/S§=X— S,X" — 8) be a smooth morphism of schemes
with a lifting X — S modulo p?. Then the functor

Cr/s : MICpp(X/S) — HIGpp(X'/S), E — Homm,(KY, E)
Dyyd VY X/S

s an equivalence of categories.

6. Compatibility

In this section, we discuss the compatibility with the log global Cartier trans-
form and the log Frobenius descent. Throughout this section, we fix a sheaf of
I% -sets 7. For alog smooth morphism X — S in characteristic p, we denote by ¥
(resp. Fys) the m-th relative Frobenius morphism X — X (resp. the (m + 1)-st
relative Frobenius morphism X — X’ := X™*V) of X — S by abuse of notation.

6.1 — Frobenius descent

Let us briefly recall Montagnon’s log Frobenius descent. Let £ be a J-indexed
left f)%g—module. We consider the J iHom*(*7 J)-indexed sheaf defined by

(19) Fr(E) := Homp% (F*Dggim /50 €)-

We give a Bg’(%-action on [17(€) by the scalar restriction of the A% -action on £ and

give a left D? -action on I 7(£) by the right multiplication of D?;Z,m /g 01 F~ Dé?fm /s

(m)/S
7(0)

Then one can see that these two actions naturally extend to a J-indexed left Dy, /s
module structure on F'/(€) (for the proof, see Subsection 4.2.1 of [9]). We thus obtain

a functor

(j -indexed left f)%é-modules) RES (.7 -indexed left 25;?(),,” /S-modules).

REMARK 6.1. As is the case with the definition of B, Montagnon defines the

X/8?
Frobenius descent functor by () := Hom.pm (F*pY £). It seems to us that
X/ST

Xm) /S,I’
a natural definition of IF(€) is Hom o (F*Dg(()fm) /s &) because of the same reason as
in Remark 4.3. o
Next, let us construct a quasi inverse of I;. Here we give some supplementary
argument which was missing in [9]. Let F be a J-indexed left Dgg(),,m /S—module. We
consider J iIgg’ ®I§§7 J-indexed sheaf defined by
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Here F*B%)S is the Z{¥ S+ ®, I%-indexed Ox-algebra Ox BF 10, F’lB%)S and
F*F is defined in a similar manner. G 7(F) has an A‘?f -action induced from the first
component. Let us endow G 7(F) with a left D%"‘)S—action in the following way. Let
{&an} be the log m-stratification of A?g’ associated to its D;%—action. Let {e7,}
(resp. {e5}) be the log O-stratification associated to the D?,,,) y g-action on F (resp.
Bg??s)- Let ¥ be the composition

eAn XD eFn

PUAY x plrF*F DAY S DY F — AR @ PF,
where pg and p} denote the first and second projection P s X, @ is defined in
the beginning of Subsection 4.1.2 and the second map is the natural projection.

LEmMMA 6.2. ¥ is a biadditive p{L*F*B%)S-balanced map.

Proor. We prove ¥(ab,f)=¥(a,bf) for any local section a € pi*AY,
be p’f*F*B%)S and f € p{*F*F. Since ¢4, is a morphism of Z¢-indexed Py g (-
algebras, ¥(ab,f) is equal to &4, (@)es,(0) @ D er,(f). On the other hand, since
Dé?()m) /S—module structure on F is admissible (see Remark 4.25), ¥ (a, bf) is equal to
ean(a) @ D ep (D)D" ex,,(f). So it suffices to show that ¢4,,(b) = @"¢p,(b). This

claim follows from Lemma 6.3 below. O

LEMMA 6.3. The natural homomorphism F*B%g — AP of T -indexed Ox-
algebras is a morphism of T% -indexed D%)S—modules.

Proor. We may work étale locally on X. Let {9} and {Q’@} be as in Re-
mark 4.6. Let y denote the natural homomorphism of 7% -indexed Ox-algebras
defined by

F *B?g% = 0x ®o

x(m)

Hom (F Dy 50 A =AY, aof —afl@1).

We shall show the equality w (9 -(a ©f)) = dyy-w(a@f). By the formulas in
Remark 4.6, the left hand side is calculated by

W(Q@-(a ®f)) =y (Z{ ];C }Q(@g)(“)@@(l ®f))

i<k
k ,
=v(> i (L@ @ Gy f )
prj<k -

3
=) k{ o }Q<@—p"ez> @f1®3).
pmizg_
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Similarly, by the formulas in Remark 4.6, the right hand side is calculated by

Q@@f(l ®1) = {1}3@ 3 (a)8 JA®1)
z<lc =
= {E 0y p(@f (8 (121))
< i Zk—1) =)

k ,
— Z {p ]} (e @A ® 8yj).

This finishes the proof. O

Thanks to Lemma 6.2 and the universal mapping property of a tensor product,
we have

Ep b H*Agp ® n F* B(m) pl F*j: i p Aggo ®p'g*F%B§r;)g pg*F*]:

One can obtain the inverse of ¢, in a similar way. So these maps {¢,} are iso-
morphisms of J-indexed Py g, -algebras. Furthermore {e,} satisfy the obvious
cocycle conditions. Therefore {¢,} form a log m-stratification on AY ®,. B, F*F
and defines a J-indexed D;’})S-module structure. "

LEMMA 6.4. The J-indexed Dg?})s-module structure on AY @ p. o0 F*F is ad-
.. X/S
missible.
Proor. It suffices to show that the following diagram is commutative:

P AY @ox AY @p. ) F1F) — 1" (A @ox AY @p. ) F7F)

| l

P (AY @ F*F) pyr(AYY ®F*B():;)s F*F),

13(’”

where the upper horizontal arrow is the the log m-stratification ¢4, ® &, and
the vertical arrows are induced from the multiplication on A%’. This follows
from the fact that the log m-stratification &4, is a morphism of Z%-indexed
P /s,my-algebras. O

By Lemma 6.4 and Remark 4.24 , we have a J-indexed D%)S-module structure
on AY @p. B, F*F and obtain a functor

(j -indexed left DY

i /s modules) 2, (j -indexed left D" —modules)

X/S

THEOREM 6.5. 7 is an equivalence of categories with a quasi-inverse G ;.

Proor. See Théoréeme 4.2.1 of [9]. O
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REMARK 6.6. In [9], Montagnon only treats the case of J= Z?}O , but the same
argument works for any sheaf of 7%/ -sets 7.

6.2 — Main Theorem

Let us start with stating the main theorem. Let X /S = (X — S, X’ — S) be alog
smooth integral morphism of fine log schemes with a lifting X’ — S of X’ — S modulo
p?. Note that X’ — S can likewise be considered as a lifting of (X*) D_ xm+n) — x
modulo pZ, and we will also denote the data (X™ — S, X’ — S) by X' /S by abuse of
notation. As in Subsection 5.2-, G denotes the nilpotent divided power envelope of the
zero section of the cotangent bundle of X'/S, O5 denotes B%gl) R0y Og and
HIGng (X'/8S) denotes the category of 7J-indexed (’)B—modules We put D X(m) 5=

DY)« @5 OB, and denote by MICE (X /S) the category of J-indexed D(O(),,L
X0 /8 PD X /8

modules By Theorem 4.20, Proposition 4.14 and Lemma 5.17, we see that
IC()(())/ g B(”j /5 @O s K )8 s Is asplitting module for D;?()m) /5 Over OS and we obtain an

equivalence of categories

C': MICHY (X™/S) — HIG (X’/S),EHHomﬂ . Ky, B),
which is a variant of Theorem 5.19 and Theorem 4.2 in [11]. Note that the equiva-
lence C’ does not coincide with Theorem 4.2 in [11] (see Remark 4.10).
On the other hand, the Frobenius descent induces the following equivalence of
categories.

LEMMA 6.7. The Frobenius descent functor 7 induces an equivalence of
categories between MICA J(X/S) and MIC (X(’") /S).

Proor. Let & be an object in MICﬁbj (X/S). Then the I". Ty, /s-action on (&) is
naturally induced from the I".7y ss-action on £. We shall show that the following
diagram is commutative:

S'TX'/S f'TX’/S
DY, g — End(F 7(E)).

Here the left vertical arrow is the p-curvature map and the right vertical arrow
(resp. the lower horizontal arrow) is induced from the I'.7y /s-action (resp. the
D(O()m) g-action) on I 7(£). Note that, by assumption, the composite STy /s —
7Ty /s — End(l'7(E)) is equal to the composite S 7y /g — D?(% — End(F7(E)),

where the first arrow S 7y g — DX /)S is the p"*!-curvature map.
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We may work in a local situation. Take g € IF7(£). Then, by the formulas given
in Remark 4.6, STy g-action on [7(£) defined by the composite S 7y /g —
Dé?()m) s End(7(E))is calculated by

Ql<p£l>(0)g(1 ® 1) = g(l ® Q/<p§i>(0)) = g(Q<pm—1§Z>(m).(1 ® 1)) = Q<pm+1£i>(m/).g(1 ® 1)

So this is the same as the action defined by the composite S 7/ /g — D%)S —
End(F 7()). Therefore these two STy s-actions are equal and [77(£) defines an
object in MICﬁ'Dj(X ) /S) if £ is an object in MICﬁbj(X /S). One can check that a

quasi-inverse (7 of I'; induces the functor MIChy (X /S) — MICpyy’ (X/S) in a
similar manner. O

Now, we are ready to state the main theorem in this section.

THEOREM 6.8. The following diagram of categories commutes:

Cx/s

MICEY (X/S) HIGE (X'/S) .

MICE (X (™)/S)

REMARK 6.9. Theorem 6.8 can be regarded as the log global version of the
result stated in Subsection 6.6 of [4].

The key ingredient is the following.

THEOREM 6.10. The image of fcg’%f‘

naturally isomorphic to IVC()S)/"?, that is,

under the Frobenius descent functor is

Fap(R5H = K-

We shall give a proof of Theorem 6.10 in the next subsection. Here, let us prove
Theorem 6.8 from Theorem 6.10. We need the following easy lemma.

LeEmMA 6.11. Let A be an Z-indexed Ox-algebra. Let £ be an T-indexed left A-
module and F a J-indexed left A-module. Then, foreachj € J(X) = Homz(Z,T),
Hom 4(E, F)(j) is isomorphic to Hom 4(E, F(7)).

Proor. There exists a natural morphism Hom 4(E, F)(J) — Hom4(E, F())). It
suffices to show that this morphism is an isomorphism at every fiber. Let 7 be a
section of 7 defined on U. The right hand side is a sheaf defined by

Vi || Homy, €y, FG@) = | | Homu, Ely, F@ + ).
eZ(V) 7eZ(V)
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Therefore the fiber at 1 is isomorphic to Hom 4(E, F(¢ + 7). On the other hand, the
fiber of left hand side at ¢ is isomorphic to Hom 4(&, F)ij = Hom4(E, F(i+7). O

Now, we prove Theorem 6.8. Let £ be an object in MIC (X /8S) and consider
the image

C'(5(€) = Homgo, (K5, ().
Xx(m /S

It is given as a presheaf on X by

U+— |_| Hom - PO Iy (/Cg)/gh], N](g)(]))

jeT ) X(m)/
It suffices to show that Homzo, o (IVC()(())/Q i, F7(E)(J)) is canonically identified
X(m)/
with Hom@m),;“ (IC%{SA|U, E(y)) for every U and j € J(U). We may assume U = X.
x/s It

Then, by Theorem 6.10 and Lemma 6.11, we have

Homg, (K Vs: 7)) = Homgo, (Fry (K359, Fan (€G-

The assertion follows from the fact that the Frobenius descent is an equivalence of
categories.

6.3 — Proof of Theorem 6.10

In this subsection, we give a proof of Theorem 6.10. First, we introduce a de-
seription of 7 in terms of erystals which is essentially due to Berthelot [1].

Let & be a log 0-crystal on CRIS{, (X" /S) and (U, T,J,d) a log m-PD thick-
ening in CRIS{"(X/S). We consider a closed subscheme T of 7' defined by
J + pOr and endow Ty with the inverse image log structure from 7". We have a log
0-PD thickening Ty — T and the following commutative diagram:

X U T

o

X(m) U(m) Tém) )

Here all vertical arrows are the m-th relative Frobenius morphisms.

LEMMA 6.12. There exists a unique morphism To — U™ such that the fol-
lowing diagram commutes

U———=1T

e

U(m) - To(m) )
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ProoF. Note that all fine log schemes in the diagram are homeomorphic. Let 1
denote the defining ideal of U < 7. Since (U, T, J, d) € CRIS{"’(X/S) (so U and T
are integral over S), Opm = Oy ®o, Or/105 @0, Or, Or, = Or/J + pOr. Con-
sider the composition Oywy — Or — Or,, where the first map is the m-th relative
Frobenius and the second one is the natural projection. Then, since the image of this
map is contained in I7") + pI, this one is zero on IOy ®p, Op. Thus Opw — O,
uniquely factors as Oy — Oy — Or,. O

By Lemma 6.12, Ty — T can be considered as an object in CRIS{,(X"/S). We
define a functor

) log 0-crystals log m-crystals
G R .
on CRISY,(X/S) on CRIS{"(X/S)

by G wrss = Exyrripops for each (U,T,J,0) e CRISV(X/S). We also
obtain a functor

log 0-crystals log m-crystals
on CRISY, (X /S) on CRIS(X/S)
in a similar manner and denote it also by ' by abuse of notation.

LemMA 6.13. The following diagram of categories commutes

log 0-crystals Y log m-crystals
on CRISY, (X /S) on CRIS{"(X/S)

| |

left D;?Zm) /S—modules [ left Dgg"“/g—modules
on X" on X '

Here each of the vertical functors is defined by the composite of functors defined
i Remark 3.5 and Remark 5.8.

ProOF. Let € be a log O-crystal on CRIS{), (X" /S). Let us consider the fol-
lowing diagram:
po

X X (P s, (my)o—— P

X/S,(m) ———— X
P1

e .
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where the first, second and last vertical arrows are the m-th relative Frobenius
morphisms, the slanting arrow is defined in Lemma 6.12, @ is explained in Sub-
section 4.1.2 and py, p1 (resp. qo, q1) are the first and the second projection. Then the
two squares in the diagram are clearly commutative. The triangle in the diagram is
commutative by construction of the map (P% XS, (m>)0 — X (see Lemma 6.12). To
prove the commutativity of the middle trapezoid, we may work locally. Then the
assertion follows from the local description of @* (see (2) of Proposition 4.5) and (1) of
Proposition 3.2. Now, we see that @ : ((P% /s, (m))O P /S’(m)) (X m ., Py, s, (0))
is a morphism of log 0-PD thickenings and, since £ is a log 0-crystal, we obtain the
canonical isomorphisms

o

@ g(X(m)Hpn ) — g((Pﬂ

(m)/g ) X/S, (m)) X/S (m)

y = G'(E)x . pr

X/S.(m) )
Therefore the log m-PD stratification of (G'(£) is equal to that of F*(£x). O

Finally, we are ready to prove Theorem 6.10. By construction of the functor
GI?, Remark 4.24 and Remark 4.25 the following diagram of categories commutes:

(left Dom) /s -modules on X“’”) (left D%)S—modules on X )

(1)
B}?}sJ }@Agf

G J[J

(left D Ofm) s -modules on X (m)) — (left D;;”/g-modules on X )

So it suffices to show that F*IC()(;)/ s 1s isomorphic to IC(/{,';)‘S Since the following dia-

gram of categories commutes:

p-torsion log 0-crystals’ ., /p-torsion log m-crystals
on CRISY) (X™/8) on CRISY} (X/S)

JA JA/
log 0-crystals o log m-crystals
—
on CRISY,(X™/S) on CRIS{(X/S)

| |

left DE?W /s -modules \ p+ [ left Dg?})s-modules
on X on X

where A and A’ are equivalences of categories in Lemma 5.16 and the right square is
same as Lemma 6.13, we shall show that the functor &’ sends the p-torsion log 0-

crystal ICES)/S to the p-torsion log m-crystal IC%)S Let (U,T,J,0) be a m-PD
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thickening in CRIS?;‘& f(X /S’). Let T denote the reduction of 7' modulo p. Let us

consider the following commutative diagram:

Here the slanting arrow a is defined in Lemma 6.12, the slanting arrows b and ¢ are
defined in Lemma 5.11 and the arrow d : T§" — X' = (X (W))(D is induced from the
composition Toal/™ — X via the functoriality of the first relative Frobenius
morphism. T}~1en, by definition, (G’ (£53)/ s) ) G = (Eg)/ )@, — 7 IS the étale sheaf
of sets on T of local liftings of the composition d oc. On the other hand,
(5(2’(%) T is the étale sheaf of sets on 7' of local liftings of the composition
fr/s :=eob. Therefore the equality (G/ (ﬁ(Xo} 5)>(f];>i) = (5(2?1/)3) (@7 follows
from the fact that the morphism d o ¢ is equal to the morphism e o b. Actually this

is the identification as a torsor over f; /ST x7/s- S0 we have (G’ (528)/5))(0 o=

(m) e (0) _ (m) ;
(€%7s) @1 and (\(H’ (’CX/S))(DHT) = (K¥s) ¢ 1)- Consequently we obtain the
equality G’ (IC(;(’)/ s) = IC%"/)S as a p-torsion log m-crystal. This finishes the proof.
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