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Mordell-Lang in positive characteristic
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ABSTRACT - We give a new proof of the Mordell-Lang conjecture in positive characteristic for
finitely generated subgroups. We also make some progress towards the full Mordell-
Lang conjecture in positive characteristic.
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1. Introduction

This article is concerned with the full Mordell-Lang conjecture in positive
characteristic, which is the following statement:

CONJECTURE 1.1. Let L be an algebraically closed field of characteristic p > 0.
Let A be a semiabelian variety over L, let X C A be anirreducible subvariety and let
I' C A(L) be a subgroup of finite rank. If X(1.) N I' is Zariski dense in X, then there
exist a semiabelian variety B over I, a subvariety Y of B over F,,, a homomorphism
h: B;, — A/Stab(X) with finite kernel and an element a € (A /Stabs (X))(L) such
that X /Staby (X) = (Y) + a.

Here Stab4(X) denotes the translation stabilizer of X in A. We call irreducible
subvarieties X satisfying the conclusion of the above conjecture special.

We develop a new approach to Conjecture 1.1. Using this approach we give a
new algebro-geometric proof of

THEOREM 1.2 (Hrushovski, [18]). Conjecture 1.1 holds in case the group I is
finitely generated.
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Switzerland.
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This was first proved by Hrushovski in [18] using model-theoretic methods. An
algebro-geometric proof of this result has previously been given by Rossler [24].

The general case of Conjecture 1.1 is still open. We show that in case A is an
ordinary abelian variety it can be reduced to the following conjecture, which is
essentially a special case of Conjecture 1.1 (c.f. Section 6):

CONJECTURE 1.3. Let Ly be a field which is finitely generated over [, and let
Ly" be a perfect closure of Lg. Let A be a semiabelian variety over Ly and
per

X - ALpen an irreducible subvariety. If X(L, ) is Zariski dense in XLper then a
translate of X by an element of A(L}™) is defined over L.

We give an overview of the structure of this article. Since we will study X C A as
above through the completions XcAx Spf(R[[x1, ... ,x,]]) along the origin when
both X and A are defined over the valuation ring R of a local field of positive
characteristie, in Section 2 we provide a number of facts about closed formal sub-
schemes of Spf(R[[x1, ... ,x,]]). In fact we study more generally closed subschemes
of the formal spectrum of the mixed power series ring R[[x1, ..., @ 11{¥1, .-, Ym)
since this seems to be the natural setting for these results.

In Section 3 we collect some facts about special subvarieties and give a criterion
for subvarieties to be special (Theorem 3.10).

In Section 4 we set up our method. In Subsection 4.1 we collect some facts about
so-called completely slope divisible p-divisible groups. These are p-divisible groups
which possess a filtration such that on each graded piece, a power of the relative
Frobenius coincides, up to an isomorphism, with a power of the multiplication-by-p
morphism.

In Subsection 4.2, we construct our central tool, a certain Frobenius morphism
F': Let R be the valuation ring of a local field K of positive characteristic, let k be
the residue field of R, let K be an algebraic closure of K and let R**" C K be the
perfection of R. Let A be a semiabelian scheme over R. Denote by A the com-
pletion of A along the zero section of the special fiber. This is a p-divisible group
over the formal spectrum Spf(R) of E. Assume that Ais completely slope divisible.
Then the facts from Subsection 4.1 yield a canonical isomorphism (A]C)Spf(Rper) o
fispf(}gper). By transfering the Frobenius endomorphism of 4 with respect to the
finite field & via this isomorphism, we obtain an endomorphism F'; of ASpf(Rper). Its
significance lies in the following characterization of special subvarieties of Ay,
where for a subvariety X of A containing the zero section we denote by X its
completion along the zero section of the special fiber:

THEOREM 1.4 (see Theorem 4.17). Let X C Ak be an irreducible subvariety.
Then the following are equivalent:
(1) The subvariety Xg 1s special in Ag.
(1) There existx €¢ X ({? ) (mAd n =1 such that the schematic closure X of X —x
m A satisfies FZ(X) Cc X.
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This can be considered as a formal analogue of the classification of subvarieties
of semiabelian subvarieties which are invariant under an isogeny due to Pink and
Rossler (e.f. Theorem 3.7). Finally, in Subsection 4.3, we show that given a finitely
generated field Ly and a semiabelian variety A over Ly, one can always embed L
into a local field over which A up to isogeny can be spread out to a semiabelian
scheme A as above.

In Section 5, using the methods from Section 4, we prove Theorem 1.2: First we
reduce to the situation considered above which allows us to define F. Then using
Theorem 1.4 we show that Theorem 1.2 follows from a variant of the following
formal Mordell-Lang result:

THEOREM 1.5 (see Theorem 5.1). Let & be a formal group over k which as a
Sformal scheme is isomorphic to Spf(kllx1, ..., x,]1]). Let I' C £ (R) a finitely gen-
erated subgroup. Let .2 C Zgpr) be a closed formal subscheme. If 2" is the
minimal closed formal subscheme containing .2°(R) N I, then there exist closed
Sformal subschemes 2y, ..., 2"y of ' spr(r) defined over a finite field extension of k
and elements yy, ...y, € & (R) such that 2" = ;.27 + ;.

Theorem 1.5 is proven by the same method which was used by Abramovich and
Voloch in [2] to prove Theorem 1.2 in the case that the ambient semiabelian variety
is defined over a finite field: First one reduces to the case that .2 is irreducible in a
suitable sense. Then after a suitable translation one may assume that .2 (R) N pir
is dense in.2" for all &. Denote by RP' the subring of R consisting of all pi-th powers.
Since p'I" C & (R") it follows that .2 is defined over R?" for all i>0. From this it
follows that .2" is defined over k = N;=oR”".

In Section 6 we show that in case A is an ordinary abelian variety Conjecture 1.1
can be reduced to Conjecture 1.3 by combining our method with a reduction due to
Ghioca, Moosa and Scanlon. This depends crucially on the fact that in case A is
ordinary, the endomorphism F; of /ispf(gper) described above can already be defined
over Spf(R). The argument proceeds similarly to the proof of Theorem 1.2 sket-
ched above by reduction to an analogous statement (see Theorem 2.44) for formal
group schemes.

NotaTioN. We will frequently work over a local field K of characteristic p > 0.
For such a K, we will always fix an algebraic closure K which we endow with the
unique extension of the valuation on K.

We will denote by R (resp. R) the valuation ring of K (resp. K), by m (resp. 1)
the maximal ideal of R (resp. R) and by k (resp. k) the residue field of R (resp. R).

We will denote by K the completion of K. By a complete overfield K’ C K of K
we mean a field which is complete with respect to the valuation induced from K.
The valuation ring of such a K’ will be denoted R’ and the formal scheme associated
to R’ equipped with the valuation topology will be denoted by Spf(R’). We will

per

denote by K™ the perfection of K inside K and by R™ the valuation ring of K™,
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For >0 we let K" be the field consisting of pi-th powers of elements of K and
RP' the valuation ring of K”'.

By a subvariety of a scheme which is of finite type over some field we mean a
geometrically reduced closed subscheme.

2. Formal Schemes

Let K be a local field of characteristic p > 0.

By an adic ring we mean the same as in [15, 7.1.9], that is a complete and se-
parated topological ring whose topology is defined by an ideal J. We will also call
such a ring a J-adic ring. .

For R’ the valuation ring of a complete overfield K’ ¢ K and n,m >0 we denote
by C,,,, the ring R'[[x1,...,%,](1,...,¥n) Which consists of those power series
S rez 0y ez o ane'y’ with coefficients az; € R’ such that for each I the coef-
ficients a;; converge to zero as J goes to infinity. We endow C’  with the topology

n,m

defined by the ideal J/ = generated by nt and the variables x, . . ., x,. This makes

n,m
C,..n into an adic ring. For R’ = R we let Cy,,:=C,, ,, and Jy, ==}, .

By formal schemes, we mean the same as in [15, Section 10]. In this section, we
are concerned with affine formal schemes .%2" over Spf(R) defined by the following

class of rings:

DEFINITION 2.1 (e.f. [19, Section 2.1] and [4, Section 1]). A topological R-algebra
C is of formally finite type if it is adic and if for some ideal of definition J the
quotients C/J are of finite type over R for all i >0.

DEFINITION 2.2. We denote by AFSg the full subcategory of of the category of
formal schemes over Spf(R) whose objects are the formal schemes of the form
Spf(C) for C a topological R-algebra of formally finite type.

LEMMA 2.3 ([4, Lemma 1.2]). For a J-adic R-algebra C the following are
equivalent:
(@) The ring C is of formally finite type.
(i1) The ring C/J? is finitely generated over R.
(2ir) The ring C is topologically isomorphic over R to a quotient of Cy, for
some n, m=0.

REMARK 24. Let .2" = Spf(C) € AFSg. By the remark after [15, Definition
10.14.2] closed formal subschemes of .%" correspond to ideals of C. Thus by Lemma
2.3 a formal scheme over Spf(R) is in AFSg if and only if it admits a closed em-
bedding into Spf(C,, ) for some n,m.=0.
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DEFINITION 2.5 (c.f. [5, Def. I11.2.8.1]). A continuous homomorphism /: G — G’
of topological groups is strict if the quotient topology on the image of /2 induced from
G coincides with the subspace topology induced from G'. A continuous homo-
morphism of topological rings or modules is strict if the underlying homomorphism
of topological groups is strict.

The following summarizes properties of topological R-algebras of formally fi-
nite type:

ProposITION 2.6. Let C and C' be topological R-algebras of formally
finite type.

(@) The Jacobson radical of C is an ideal of definition, in fact it is the largest
ideal of definition. In particular there is a unique topology on the ring C
which makes C into a topological R-algebra of formally finite type.

(i1) Ewvery homomorphism C — C' is continuous.
(111) Every homomorphism C — C’ is strict.
() Each ideal of C is closed.

W) The ring C ®g K 1s Jacobson.

(1) For each maximal ideal n of C @ K the quotient (C @p K)/n is a finite
field extension of K.

Proor. For (2) and (27) see [19, Lemma 2.1]. For (722) and (v) see [4, Lemma 1.1].
For (v) see [19, Proposition 2.16] and for (vi) see [19, Lemma 2.3]. O

We will also have to work with formal schemesA.%'spf(R,) for .2" € AFSg and R’
the valuation ring of a complete overfield K’ ¢ K and with closed formal sub-
schemes of such formal schemes. However, in [15] the notion of a formal subscheme
is only defined for locally Noetherian formal schemes, and valuation rings R’ as
above are in general not Noetherian. Thus we make the following ad hoc definition:

DEFINITION 2.7. A morphism Spf(C) — Spf(C’) of affine formal schemes is a
closed embedding if the corresponding homomorphism €’ — C is surjective and
strict. In this case we will say that Spf(C) is a closed formal subscheme of Spf(C”).

Thus closed formal subschemes of Spf(C’) correspond to closed ideals of C'. In
case C' is Noetherian, this definition coincides with the one from [15] by the remark
after [15, Definition 10.14.2].

DEFINITION 2.8. Let R’ be the valuation ring of a complete overfield K’ ¢ K. We
denote by AFSp the full subcategory of the category of formal schemes over
Spf(R’) whose objects are those affine formal schemes which admit a closed em-
bedding into Spf(C;,,,) for some n,m > 0.
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LEMMA 2.9. Let C be a Noetherian J-adic ring and C' a J'-adic ring. Let
C — C' be a ring homomorphism such that JC' C J' and such that for each i >0 the
induced homomorphism C/J' — C'/(J’ ) is faithfully flat.

Let 0 =M — M — M" — 0 a sequence of finitely generated C-modules.
We endow these modules with the J-adic topology. Then the sequence
0—=M —-M—M'—0 is exact if and only if 0 — M &cC' — McC' —
M"&cC' — 0 is exact. If this holds, the homomorphism M&cC' — M"®cC' is
strict.

Proor. Assume that0 — M’ — M — M” — 0 is exact.

For ¢>0 let M; :=J'M N M'. Since C is Noetherian, by [6, Theorem II1.3.2.2]
the topology on M’ defined by the M is the J-adic topology. This together with the
fact that JC'C J' implies that (M; ®c (J')'C");=o is a fundamental system of
neighborhoods of the identity in M’ @¢ C'. Thus M'©¢C’ can be written as

M'&cC' = lim M'/Mj @ C' /().
i
For i>0 there is an exact sequence 0 — M’ /M, — M /J'M — M" /J'"M" — 0 of
C/J'-modules. Since C/J' — C'/(J')" is flat, this induces an exact sequence

0 — M'/M}&¢5 C'/J) — M[TM &¢)5 C' /(T — M" T M" @¢,5: C'/(J) — 0.

The transition morphisms M'/M; ¢ C'/(J’ Y — M /M @cC'/(J’ Y1 are sur-
jective. By [3, Proposition 10.2] this surjectivity implies that the sequence
0 — M@cC' — M&cC' — M"&cC' — 0 obtained by taking the inverse limit of the
above exact sequences is again exact.

To prove the other direction of the claim, by a direct verification it suffices
to show that if M is a non-zero finitely generated C-module endowed with
the J-adic topology, the ring M &¢C’ is non-zero. As above we can write M &cC'’
as lim M JIM ®¢ 10 C' (T’ )" with surjective transition homomorphisms

(3
M/JM &, C' /(T — MM @51 C'/(J') ' As it is finitely generated
over the complete Noetherian ring C, the module M is complete. Hence the
modules M/J:M are non-zero. Thus by the faithful flatness of C/JI — C'/(J')’
the modules M/J'M ®c/i C'/(J")" are non-zero. Hence the surjectivity of the
transition morphisms implies that M &¢C’ is non-zero.

It remains to prove the claim about strictness. Since JC' C J', the topology on
M&cC' and M'®cC' is the J'-adic topology. Hence if the homomorphism
M&cC' — M'&cC' is surjective, its strictness follows from the fact that
(] M&cC) = () (M @cC). O

LEMMA 2.10. Let R' be the valuation ring of a completely valued overfield
K'C K of K. For n,m,i>0 the ring homomorphism Cy )T}, — C,,./ T} )"
induced by the inclusion Cy,,, — C), . s faithfully flat.

n,m
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Proor. The homomorphism in question is

(R/mi)[acl, e X Y1y Ynl /(. .,xn)i
— (R JRYNw1, -y Ty Y1y - Y/ @1,y 20
~ R @p (R/M)®1, ..., %0, Y1, - Yud/ @1, - 20)0).
Thus the claim follows from the faithful flatness of R — R'. O

LEMMA 2.11. Let %"= Spf(C) € AFS; and 2" = Spf(C") a closed formal
subscheme of .2 defined by an ideal I of C. Let R' be the valuation ring of a
complete overfield K' ¢ K of K. Then % "Spf(R,) 1s the closed formal subscheme of
Loty defined by the ideal (C&rR') of C&rR'. This ideal is equal to [QrR'.

Proor. Pick a strict continuous surjection Cy, ,, — C for some n,m>0. Note
that M&rR' = M&,, C,, ,, for any topological C-module M. By Proposition 2.6
the topology on C’ is the same as the topology defined by J,,.,,C’. Hence by
Lemma 2.9 applied to Cy,,, — C;,,,, which is possible by Lemma 2.10, there is an
exact sequence 0 — [&pR' — C&rR' — (C/)&rR' — 0 and the homomorphism
C&rR' — (C/I)®gR' is strict. Thus.2" is the closed formal subscheme of .2 gy¢r:)
defined by the ideal I&x R’ in C&gR'. Since C is Noetherian, there is a surjective
homomorphism of C-modules C®* — I for some k>0. Again by Lemma 2.9 this
induces a surjection (C®rR)N™ =~ C*&@prR' — I&RrR' which implies &R =
I(CQRR). O

DerINITION 2.12. Let .2 =Spf(C) be an affine formal scheme and
2y 2 be closed formal subschemes of .2° defined by closed ideals
Iy,...,I, of C. We say that .#" is the union of the formal subschemes .7Z"; if the
intersection of the ideals I; is the zero ideal of C.

2.1 — Points over R

DEFINITION 2.13. Lﬁet 2" = Spf(C) € AFSg. We define .2 (R) to be the set of
homomorphisms C — R of R-algebras.

LEMMA 2.14. Let C be a topological R-algebra of formally finite type and let
h:C — R be a homomorphism of R-algebras.

(@) The homomorphism h factors through the valuation ring R’ of a finite field
extension K' C K of K.
(11) The homomorphism h is continous.

B PROOF. _(i): The homomorphism % induces a homomorphism C ®r K —
R ®r K — K with the last homomorphism given by multiplication. Its kernel is
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a maximal ideal n of C ®p K. By Proposition 2.6 the quotient (C @ K)/n is a
finite field extension of K. This implies (7).

(17): By (?) it suffices to show that if R’ is the valuation ring of a finite field
extension K’ C K of K any homomorphism %: C — R’ of R-algebras is continuous.
Since R’ is of formally finite type this is a special case of Proposition 2.6 (ii). O

Caution: The ring R is not complete with respect to the valuation topology.
Thus there is no formal scheme Spf(R) and .Z'(R) cannot be considered as
2°(Spf(R)). The set .2'(R) is also not the same as .2 (Spf(R)).

Our interest in the set .2'(R) comes from the following situation, to which we
will later apply the results of this section: Let A be a semiabelian scheme of di-
mension g over R and X C A a closed subscheme containing the zero section. Let s
be the closed point of the zero section of A. Let A and X be the formal schemes
associated to the completions of the local rings O 45 and Oy ; with respect to their
maximal ideals. Then A = Spf(R[[xy,...,%,]]) so that.Z e AFS; and X(R) is
naturally identified with the set points in X(R) which map to 0 in the special fiber
(c.f. Subsection 2.6).

Note that the formation of .2(R) is functorial in .%".

For a finite field extension K’ C K of K with valuation ring R’ and .2" € AFSg
we denote by .2 (R’) the set of homomorphisms .Z2" — Spf(R’) over Spf(R). There is
a natural inclusion .2 (R') — .2(R) and Lemma 2.14 (i) implies:

LEMMA 2.15. Let 2" € AFSg. The set .2'(R) is the union .,%‘(Z%) = Ug 2 (R
where K' varies over all finite field extensions of K contained in K.

REMARK 2.16. For .2 € AFSg, the set .2°(R) can be described more con-
cretely as follows: For any 71,...,7, € itand si,...,s, € R there exists a unique
continous homomorphism of R-algebras C,,,,, — R which sends the x; to r; and
the y; to s; and each homomorphism C,, ,, — R is of this form. Thus associating
to an element % € Spf(Cn,m)(R) the images of the x; and the y; gives a bijection
Spf(Cn_,m)(I_%) 5 m®" @ R®". Any closed subscheme .Z" of Spf(C,, ) is cut out by
a family of formal power series {f; |t € I} C C,,,. Each formal power series
f €C,, induces a function m®" @ R®™ — R. The above bijection identifies
#2'(R) with the set of points in %" @ R®” on which the f; are zero.

DEFINITION 2.17. Let I":=Autg(R) = Autg(K). For .2 € AFSg, welet I" act on
2 '(R) from the left by

I'sx 2(R) — 2 R)
O ) =y h:T(2,0,) 5 R R,

LEMMA 2.18. Let C be a topological R-algebra of formally finite type. Every
homomorphism h:C — K of R-algebras factors through R.
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Proor. The homomorphism £/ induces a homomorphism C®p K —
R ®p K — K with the last homomorphism given by multiplication. Its kernel is
a maximal ideal n of C ®g K. By Proposition 2.6 the quotient (C ®r K)/1n is a
finite field extension of K. Hence it suffices to consider homomorphism
h:C — K' of R-algebras where K’ is a finite overfield of K contained in K. As-
sume that there is such an & whose image is not contained in R'. Then the image
of h@pr R':C®r R — K' @ R’ — K’ is also not contained in R’. Hence after
replacing K by K’ we may assume K’ = K. Since the image of / contains R, one
sees that it must be all of K. Hence the kernel of % is maximal. Let = be a
uniformizer of R. Since 7 is topologically nilpotent in C and since by Proposition
2.6 the Jacobson radical J of C is an ideal of definition, the element x is con-
tained in J and hence in the kernel of 4. This contradicts i(n) = 7. O

For a ring C, we denote by Max(C) the set of maximal ideals of C.

PROPOSITION 2.19. Let 2" = Spf(C) € AFSg. Let w be the map 2'(R) —
Max(C ®r K) which associates to h € .2°(R) the kernel of the induced homomorph-
iSmh@RK:C®RK~>R®RK%K.

(@) The map yw makes Max(C ®r K) into the set-theoretic quotient of 2 (R) by
the action of I
(17) Let 7/ = Spf(C’) be a closed formal subscheme of 4. Then there is a
commutative diagram

Y (R) —% Max(C' @ K)

| |

2 (R) —% Max(C ®r K)

in which y' is the analogue of y for 7/ and Max(C' @ K) — Max(C Qg K)
is induced by the surjection C — C'.

ProOF. (i): By Lemma 2.18 any homomorphism C @z K — K of K-alge-
bras maps C to R. Hence the assigment h—h @r K:C @r K — K gives a
bijection between .2'(R) and the set of homomorphisms 4:C @z K — K of K-
algebras.

The kernel of any such homomorphism 7 is a maximal ideal of C @ K. On the
other hand, for any maximal ideal 1t of C ®p K, the quotient (C ®p K)/1 is a finite
field extension K’ of K by Proposition 2.6. Thus giving / as above amounts to giving
a maximal ideal 1t of C ®p K and an embedding of (C @z K)/n into K over K. Any
two such embeddings are conjugate under 7.

By combining the above facts one gets (7).

(12) follows by a direct verification. O
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DEFINITION 2.20. Let R’ be the valuation ring of a completely valued overfield
K’ of K. Let .2" = Spf(C) be an affine formal scheme over Spf(R’).

(i) The formal scheme .%" is reduced if the ring C is reduced.
(ii) The formal scheme .%" is flat over R’ if the ring C is flat over R'.
(iii) We denote by AFS}g, the full subcategory of AFSg whose objects are those
formal schemes which are reduced and flat over R.

LEMMA 221. Let 2" = Spf(C) € AFSg. Let .2 be the closed formal sub-
scheme of 4" defined by the ideal {c € C | In>0: (crn)";: 0}. This formal scheme
1s reduced and flat over R and the natural map 2TR) = 2Z(R)is a biyjection.

Proor. Direct verification using the fact that an R-module is flat if and only if it
has no m-torsion. O

PROPOSITION 2.22. Let 7/, %/, € AFS% be two closed formal subschemes of
2 € AFSg. If 7/((R) C #/y(R), then 7/, C ¥/,.

Proor. Let C be the ring of global sections of .2 and I, I the ideals defining
Y, 5. Wewant to prove I C I;. Let 7 be a uniformizer of R. The fact that the 7/,
are flat over R means that = is not a zero-divisor in C/I;. This implies that it is
enough to prove Io ®p K C I1 ®p K inside C ®r K = C[1/x]. Since by assumption
the ideals I; are radical, so are the ideals I; ®g K. Since by Proposition 2.6 the ring
C ®r K is Jacobson it suffices to prove that each maximal ideal of C ®p K which
contains I; ®p K also contains I» ®g K. This follows from the fact that %/ 1(R) -
¥/,(R) and Proposition 2.19. O

For i>0, we endow the ring R/(mR)" with the quotient topology induced
from the valuation topology on R, with respect to which it is adic. Hence there is
a formal scheme Spf(R/(mR)’) and for .2" € AFSy we denote by .2'(R/(mR)") the
set of morphisms Spf(R/ (nR)") — .2" over Spf(R). There is a natural map
2(R) — 2 (R/(mR)") for all i>0.

COROLLARY 2.23. Let 2" € AFSg. The set 2 (R) is nonempty if and only if for
all >0 the set 2 (R/m'R) is nonempty.

ProOF. The “only if” direction is clear. Conversely, assume that . %2 '(R) is empty.
Let .2 ¢ AFSﬁ be the closed formal subscheme given by Lemma 2.21. Since
2™ (R) = 2'(R) is empty, it follows from Proposition 2.22 that .2™ is the empty
formal scheme. Hence, ifwe let C:=1"(.2", O ;") and = is a uniformizer of R, it follows
from the definition of .2 that for each ¢ € C there exists 7 > 0 such that (¢z)" = 0.
For ¢ = 1 we get that there is an % >0 such that the image of 7" in C is zero. Hence
for all i > n there is no homomorphism C — R/(mR)' of R-algebras since for such i
the image of 7" in R/(mR)" is not zero. This proves the claim. O
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LEMMA 2.24. Let %7: Spf(C) eiAFSR be be the union of closed subschemes
21y s X Then 2°(R) = U; 27(R).

Proor. Let Iy,...,I, C C be the ideals defining the .27;. Let h:C — R. We
want to show that 2(/;) = 0 for some ¢. If this is not the case we pick 0 # r; €
h(I;). Then the product = of the 7; is a non-zero element which lies in A([;) for all
1. For each 1 pick ¢; € I; such that &(c;) = ». Then the product of the c; lies in the
intersection of the I; which by assumption is zero. Thus by applying % to this
product we get ¥ = 0 and hence r = 0, which is a contradiction. O

2.2 — Irreducibility

DEFINITION 2.25. Let R’ be the valuation ring of a finite field extension K’ of K.
Let .2 = Spf(C) € AFS}Iaf, be non-empty.

e The formal scheme .%" is irreducible if and only if Spec(C) is irreducible.

e An irreducible component of .%" is a maximal irreducible closed formal sub-
scheme.

e The formal scheme .2" is geometrically irreducible if and only if .2k is
irreducible for all valuation rings R” of finite field extensions K" of K'.

Note that the irreducible components of .2" correspond to the irreducible
components of Spec(C), that is to the minimal prime ideals of C. In particular there
are finitely many such components. Also, since C is reduced, the intersection of all
its minimal prime ideals is the zero ideal. Thus .#" is the union of its irreducible
components in the language of Definition 2.12.

PROPOSITION 2.26. Let .2 € AFS% be non-empty. Each irreducible component
of 2" 1s reduced and flat over R.

Proor. Let C:=I'(2",O). It suffices to show that each irreducible component
of Spec(C) is reduced and flat over R. Reducedness is clear. As R is a discrete val-
uation ring, a scheme X over Spec(R) is flat if and only if its generic fiber is sche-
matically dense in X. By a direct verification, if Spec(C) satisfies this condition, then
so does any irreducible component of Spec(C). O

LEMMA 227. Let 2" = Spf(C) € AFS] be irreducible. If 21,...,. 2%, are
closed formal subschemes of 2" such that %" is the union of the 27;, then 2" = .2";
for some 1.

Proor. Let Iy,...,I,, C C be the ideals defining the .Z";. By assumption their
intersection is zero and C is integral. If all I; were non-zero, we could pick ele-
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ments 0 # x; € I; whose product would be zero. Thus one of the I; is zero, which
is what we wanted. O

In [9, Section 7], de Jong gives a construction, due to Berthelot, of a “generic
fiber” functor from AFSg to the category of quasi-separated rigid analytic spaces
over K. We denote this functor by .2 — .2, It can be described on objects as
follows: The formal scheme Spf(C,,,,) is sent to the product of the open n-dimen-
sional unit disec D} over K and the closed m-dimensional unit disc B} over K. A
closed formal subscheme .Z" as above is cut out by a family of power series
{fi|i €I} C Cyy. These f; induce global sections of D} x By, and .2 is the
closed rigid analytic subspace of D} x By cut out by these global sections.

In [7], Conrad introduces the notion of irreducibility of a quasi-separated rigid
analytic space and that of an irreducible component of such a space. He also shows
that this notion is well-behaved under the functor .2"+— .2, The following is a
slight reformulation of [7, Theorem 2.3.1]:

THEOREM 2.28. Let 2" € AFS}"{ be non-empty and 2',...,. 2%, be the 'iwe-
ducible components of Z". The closed rigid analytic subvarieties .7 Tof 27 are
the irreducible components of 2.

) Proor. Infact, [7, Theorem 2.3.1] says the following: Let C:=1I"(.#", O4) and let
C be the normalization of C, that is the integral closure of C in its total ring of

fractions. Let I, .. ., I,, be the preimages in C of the minimal prime ideals of C. Let
Y4, ..., ¢, be the closed formal subschemes of . defined by the ideals /;. Then
YiE, .. 75//7‘;@ are the irreducible components of . % .

Since C is the normalization of C, the preimages of the minimal prime ideals
of C are exactly the minimal prime ideals of C. Thus Theorem 2.28 is a re-
formulation of [7, Theorem 2.3.1]. O

COROLLARY 2.29. A non-empty formal scheme 2" € AFS;‘? 1s irreducible if and
only if the rigid analytic space .2 is irreducible.

PROPOSITION 2.30. Let 2" € AFS% be non-empty. There exists a finite field
extension K' C K of K with valuation ring R’ such that the irreducible components
of 2 sptwry are geometrically vrreducible.

PrOOF OF PrROPOSITION 2.30. In [7, Section 3.4], Conrad calls a quasi-separated
rigid analytic space X over K geometrically irreducible if for all completely valued
overfields K’ of K the rigid analytic space Xk is irreducible. By [7, Theorem 3.4.3],
for any quasi-separated rigid analytic space X over K having finitely many irre-
ducible components, there exists a finite field extension K' C K of K with valuation
ring R’ such that .27 has finitely many irreducible components which are geo-
metrically irreducible. Using the compatibility of the functor .2" — .2 ™ with base
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change to finite extensions of K (c.f. [9, 7.2.6]) the claim follows from this result and
Theorem 2.28. (I

2.2.1 — Formal Schematic Image

DEFINITION 2.31. Let f:.2" — .2” be a morphism of affine formal schemes. We
define the formal schematic tmage f(%") of f to be the intersection of all closed
formal subschemes of .2” through which f factors.

Thus f(#%") is the smallest closed formal subscheme of .2” through which f
factors. If .2" = Spf(C) and .2” = Spf(C’) then the ideal corresponding to f(.2") is
the kernel of the homomorphism €' — C corresponding to .2" — .2”.

LEMMA 2.32. Let &, %" be connected p-divisible groups 01)67' Spf(R) considered
as formal schemes. Let f ¢ — " be an isogeny and 7/ C " be a closed formal
subscheme. Let 2" :=f Y (/)= %, & be its preimage in <. Then 7/ is the
formal schematic image of 2" in &'

Proor. Let C:=I'(¢,0y) and C":=I'(¥",0',). By [14, Proposition 4.4], the
rings C and C’ are isomorphic to R[[x1,...,x,]] for some n>0. First we want to
showthat C' — Cisflat. Since R[[xy, .. ., x,]]is aregular local ring, by [12, Theorem
18.16] for this it suffices to show that dim (C") = dim (C/n’C) + dim (C’) where 1’ is
the maximal ideal of C’. This follows from the fact that C/n’C'is finite over k. Thus as
a finite flat module over the local ring ', the ring C is finite free over C'.

Let I' C C' be the ideal defining 7/. Then .Z2" is the formal spectrum of
C'/I'®cC. Since C" — C is finite free we have C'/I'©cC = C'/I' ®¢ C = C/I'C.

Now let 7/’ be the formal schematic image of .2 in . It is contained in 7.
Thus it is defined by an ideal I’ containing I'. Its preimage in & must coincide
with .2". Thus the induced homomorphism C'/I' ¢ C — C'/I' ®¢: C is an iso-
morphism. Since €’ — C is finite free this implies that C'/I’ — C’/I' is an iso-
morphism. This means 7' = 7. O

2.3 — Base Change and Formal Schematic Closure

PROPOSITION 2.33. Let T C m®" ¢ R®™ for some n, m>=0. Let R’ be the valua-
tion ring of a complete overfield K' C K of K. LetI C C,,,, and I’ C C!, , bethe ideals

n,m

consisting of those power series which vanish at all elements of T. Then IC, =1

Proor. The ideal I is characterized by the left exact sequence
0—1— nm (th—)te>T HR
teT

where for ¢ € T we let evy: Cy, ,, — R be the function given by evaluation at ¢.
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Let D =~ C,,,/I be the image of C,,, in [[,.; B endowed with the quotient
topology from C,,,. This is a topological R-algebra of formally finite type by
Proposition 2.6. Lemma 2.11 yields an exact sequence

(2.34) 0—IC — D&gpR' — 0.

/
nm Cn,w

Q

Let D; be the kernel of D — [[,cp B — [[;cp R/m'. We have D = lim;D/J;, ,, D
and the rings D/J! D, being quotients of Cum /Jfl’m, are Artinian. Furthermore

n,m
Ni=oD; = 0. By [6, Prop. I11.2.7.8] these facts imply that there exists a sequence
(j(@))i=o of positive integers going to infinity such that D; C J49,D. Since
Jf’lva C D; this shows that the topology on D defined by the D; is the J,, ,,-adic
topology. Thus D&pR' can be written as (li_miD /D; @p R'.
The inclusion D — [[,.; R induces injections D/D; < [[,.p B/m’ and hence

injections D/D; ®g R'— ([[,cp B/m") ®g R'. Hence we get a homomorphism
5 I 18 . ! : i /
(235) D&pR' =lim (D/D; @p R') — lim (J] R/ @r R))

i i teT
—lim (J[R/mR)) =[] R
i teT teT
and by a direct verification the composition of this homomorphism with the
homomorphism C},,, — D&pR’ from (2.34) is the homomorphism which evalu-
ates a power series at the elements of 7.

We want to show that the homomorphism (2.35) is injective. That the first arrow
in (2.35) is injective follows from the choice of the D;, the flathess of R — R’ and the
left exactness of the inverse limit functor. By the left exactness of inverse limits, in
order to prove injectivity of the second arrow in (2.35), it is enough to show that

(2.36) (J[R/m) @r R — [[ R /(mR))

teT teT
is injective for all 7. Since any element of (][, ., R/ m') ®@p R’ is contained in the
image of ([[,cr R/ m’) @ R” for the valuation ring R” of a finite field extension
K" C K’ of K for this step we may assume that K’ is finite over K. But then R’ is
finite free over R and hence (2.36) is even an isomorphism in this case.

Thus by combining (2.34) and (2.35) we get a left exact sequence
0—1C,,, —C,,, 5 T[R

n,m n,m
tel
which shows IC;,,, = I'. O

DEFINITION 2.37. Let R’ be the valuation ring of a complete overfield K’ ¢ K of
K. Let .%2" be an affine formal scheme over Spf(R’) and T' C .Z'(R’). We define the
formal schematic closure of T in .2" to be the intersection of all closed subschemes
2 of 2" for which T ¢ Z/(R").
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If 2" is the formal schematic closure of 7, then we say that T is formal-sche-
matically dense in .2,

Thus the formal schematic closure of T is the smallest closed subscheme of .2"
which contains 7.

COROLLARY 2.38. Let 2" c AFSg and let T C 2 (R). Let 7/ be the formal
schematic closure of T in 2. Let R’ be the valuation ring of a complete overfield
K' c K of K. Then 4 Spf(R!) is the formal schematic closure of T C %' (R) C %' (R')
mside .%épf(g/).

Proor. It suffices to prove this for .2" = Spf(C,,,,) in which case it is a re-
formulation of Proposition 2.33. O

2.4 — Transporters

Let & be an abelian group object in the category AFSg. We will need the ex-
istence of (strict) transporters in £

CONSTRUCTION 2.39. Let 2", 7/ C & be two closed formal subschemes. For
1=0let &; be the i-th infinitesimal neighborhood of the zero section in ;¢ and let
X =02, 0;N Y. These are finite schemes over R/ m'. The group
structure on %" makes ¢; into a group scheme over R/m’ and .2 and %, are
closed subschemes of ;. For ¢>0let Trans, (27, 7/;) be the strict transporter in
i, that is the closed subscheme of &; whose points are those points g of & for
which .2"; + g = 7/,. It exists by [3, Exemple V1.6.4.2 e)]. Then for each i one has a
decreasing sequence (Transy, (7%, 7, ﬂ-)ﬁ %)j=0 of subschemes of ;. By
noetherianity this sequence stabilizes; let Trans, (2", 7/); be its eventual value.
Then Trans (24", );is1 N ¥ = Transy (2", %); for all i. Hence the inductive limit
of these schemes is a closed formal subscheme Transy (2", /) of &

For a formal scheme Z over Spf(R) and an affine formal scheme Spf(C) over
Spf(R) we denote by Z(C) the set of morphisms Spf(C) — £ over Spf(R).

PROPOSITION 2.40. Let 2", 7/ be closed formal subschemes of & and let Spf(C)
be an affine formal scheme over Spf(R). Then
Transy (2", 7)C) ={g € Z(O) | 9+ - Zsp1¢) = Z sptcr}-

Proor. Let J be an ideal of definition of C. Let g: R[[x1,...,x,]] — C € Z(C).
Since g is continuous, there exists N>0 such that g(JfX o) CJ. Then g induces
homomorphisms g;: R[[x1,. .., x,]] /J{fi) — C/J7 for each j>1. Denote as in
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Construction 2.39 by ; = Spec(R[[x1, . .., 2,]] /J‘Z:L,O) the j-th infinitesimal neigh-
bourhood of the origin in &". Then g; € &;n(C/J7) C £(C/J/) is the image of ¢ in
(C/J7). The construction of Trans (.2, 7/) implies:

g € Trans, (2", /)(C) <= Vj=>0:g; € Trans, (2, f//)Nj(C/Jj)

= 9+ Lspre) = 7 sptco)-

2.5 — Descent

Let R’ be the valuation ring of a complete overfield K’ C K of K. Let 2" € AFSg
and 2" C 2 a closed formal subscheme. If there exists a closed formal
subscheme .2 of .2 such that .2°g sy =.2” then it follows from Lemmas 2.9,
2.10 and 2.11 that such an .2" is unique. In this case we will say that .2” is defined
over R.

In the following we will always endow k[[x1, ..., x,]] with the (xq,...,x,)-adic
topology. Let .2" = Spf(C) be a formal scheme over Spec(k) which is isomorphic to
Spt(kllas, . .., 1.

LEMMA 2.41. Let.2" be a closed formal subscheme of 2" defined by an ideal I of
C. ’.I:hen 2 "SprR) is the closed formal subsgheme of Zsptr) defined by the ideal
1(C®R) of CRpR. This ideal is equal to I Qi R.

PRrOOF. Since the homomorphisms klxy, ..., ®,1/(x1, . .. ,ocn)i — Rlxy, ... 2,1/
(1,...,%,)" are faithfully flat, this follows from Lemma 2.9 in the same way as
Lemma 2.11. O

Let 2" C Z5pm) a closed formal subscheme. If there exists a closed formal
subscheme .2 of 4" such that .27g ) = 2" then it follows from Lemmas 2.9 and
2.41 that such an .#2" is unique. In this case we will say that .2" is defined over k.

Let F:.2" — .2 be the Frobenius endomorphism of .2" with respect to k. If .2"
is a closed formal subscheme of .Zg,r) defined by formal power series
{fi |1 €I} C Rl[#1,...,x,]], then the formal schematic image /(") of 2" under F'
is defined by the power series obtained by applying F' to the coefficients of the f;.

LEMMA 2.42. Let 2" be a closed formal subscheme of 2 sy If 27 is defined
over RP' for all >0, then 2" is defined over k.

Proor. Wemay assume that. 2" = Spf(k[[x1, .. ., x,]]). Leti>0. As any element
of RP" is congruent to an element of £ modulo m”', the fact that .2” can be defined
over RP implies that the intersection of .2” with Spec((R/m?)[xy,...,x,]/
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(@1,...,%, )pi) C .2 can be defined over k. As .%” is the direct limit of these inter-
sections, the claim follows by varying 7. O

LEMMA 2.43. A closed formal subscheme 2" of % sy is defined over k if and
only if F(2°) = .2

Proor. The “only if” direction is straightforward. For the other direction, the
fact that F'(2) = 2" implies that .2 is defined over R?" for all i>0. Thus we can
conclude using Lemma 2.42. O

PROPOSITION 2.44. Let & be a formal abelian group scheme over k which as a
Jormal scheme is isomorphic to Spf(k[[xy, ..., x.]]). Let 2" C S gy be a closed
formal subscheme. If for each 1> 0 there exists a finite field extension K' C K of K
and g € S (R') such that .2 sy + g is defined over RP', then there exists a finite
field extension K'C K of K with valuation ring R and g € <(R') such that
Zsptry + 9 18 defined over k.

Proor. We consider the closed formal subscheme Trans;;fspt.(m(k% VF(2) C
% spt(r) given by Construction 2.39. Let 1> 0 and pick R’ as in the claim together with
g € & (R') such that .2 sy + ¢ is defined over R”'. Let n € R be a uniformizer. By
identifying R with k[[z]] and considering defining equations for .2 'spsx) + g with
coefficients from k[[n”']] one sees that .2 +¢g = F(Zr +g)(modzr?). Thus
g — F(g) € Transy (2", F(2))(R/(mR)") by Proposition 2.40. Thus Proposition 2.23
implies that there exists ¢’ € Trans, (2", F(2))(R).

The morphism & — & g+— g — F(g) is the identity on the tangent space at the
identity of & and thus is an isomorphism by [17, A.4.5]. Hence ¢’ can be written as
g’ — F(g") for some ¢g" € <(R). By Lemma 2.15 there exists R’ as in the claim
such that ¢" € Transy,, (2 F(2))(R). The fact that ¢’ € Trans, (2", F(2"))(R')
translates to .Zsprry + 9" = F(Zsprry) +9”). By Lemma 2.43 this shows that
Zsprry + 9" is defined over k. O

2.6 — Formal schemes arising from schemes

Let X be a scheme locally of finite type over R together with a k-valued point
s: Spec(k) — X of the special fiber of X'. We let X be the completion of X’ along the
closed subscheme s. We denote by Oy the stalk of Oy at the closed point in the
image of s. Then X is the formal spectrum of the completion (’A)X,S of the local ring
Oy s with respect to its maximal ideal.

PROPOSITION 2.45. (7) If X is smooth over R at s of relative dimension n the
formal scheme X is 1somorphic to Spf(R[[x1, . .., x,]]).
(1) The formal scheme X is in AFSg.
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(iii) The set X(R) can be naturally idemziﬂed with the set of elements of X(R)
which map the closed point of Spec(R) to the closed point in the image of s.

ProoF. (i) The fact that X is smooth at s implies (in fact is equivalent to)
that there exist an affine neighbourhood U of s and an étale morphism
U — Spec(R[x1,...,2,]) over Spec(R) which maps the zero section of the
special fiber of Spec(R[xy,...,x,]) to s (c.f. [26, Tag 054L]). Such an étale
morphism induces a finite étale morphism @X,S — Rl[[xy,...,x,]] of R-alge-
bras. Since @X,s, being a complete local ring, is Henselian, the fact that both
@X,S and R[[x1,...,x,]] have residue field k¥ implies that this is an iso-
morphism.

(17) From a closed embedding of an affine neighborhood of s into
Spec(R[xy,...,x,]) for some n>0 one gets a closed embedding of X into
Spf(RI[as, ..., 1. A A

(227) This follows from the fact that X = Spf(Ox ). O

PROPOSITION 2.46. Let X be a reduced scheme which is flat and of finite type
over R and let s: Spec(k) — X a k-valued point of X.

(1) The formal scheme X is reduced and flat over R.

(i1) Assumethat X is integral and let 7/ be an irreducible component of X. The
set 7/(R) C X(R) is schematically dense in Xp.

ProOF. (7) Since X is reduced, so is the local ring Oy 4. The ring Oy, is also
excellent. Since the completion of any excellent reduced local ring is reduced (c.f.
[16, 7.8.3]) the formal scheme X is reduced. Flatness follows from the flatness of
R — Oy, and the flatness of Oy — @X,S.

(11) Let Y C X be the schematic closure of 7/(R) C X(R) and let T C Oy be the
sheaf of ideals defining ).

As Oy, is a Noetherian local ring, the homomorphism Oy — @X,s is faith-
fully flat and for any finitely generated Oy -module M, its completion with
respect to the topology induced by the maximal ideal of Oy 18 isomorphie to
OXS ®0, M. By applying this to M = Oy one sees that Y is the formal closed
subscheme of X corresponding to the ideal Z, (’)XS Since by construction
4 (R) C Y(R) Proposition 2.22 implies 7/ C Y. Thus Z, @X,s is contained in a
minimal prime ideal of @X.,s and hence the rings @X_é‘ and @y.’s have the same
dimension.

Using the flatness of Oy — (’A)X,S and the fact that the maximal ideal of (’A)X,s is
generated by the image of the maximal ideal of Oy 5, Theorem 10.10 of [12] implies
that dim (Oy) = dim (Oy;). Analogously we get dim (Oy) = dim (Oy;). Thus
dim (V) = dim (Oy ;) = dim (Oy;) = dim (O 5) = dim (O ). Since X is irreducible
dim (Oy ) = dim (X) and thus we get dim () = dim (X) which using the irredu-
cibility of X implies ) = X. O
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Let X’ be a second scheme locally of finite type over R together with a k-valued
point s’ of its special fiber. For a morphism /: X — X " over R which maps s to s’ we
denote by % the induced momorphism X — X of formal schemes over Spf(R).

PROPOSITION 2.47. Let X, X' be schemes locally of finite type over R. Let s, s' be
k-valued points of X, X' and let f: X — X' be morphism over R which maps s to s’
and 1s ﬂat at s. Let 7/ be the formal schematic image of the induced momhzsm
f: X — X', Every irreducible component of 2 is am trreducible component of X

ProoF. By the assumption on f the induced homomorphism Oy ¢ — Oy sisflat.
First we want to prove that the induced homomorphism Oy ¢ — Oy is also flat.
Let 1’ be the maximal ideal of O y and 1’ its completion, which is the maximal ideal

of Oy « - By the local criterion for flatness (see [12, Theorem 6.8]) is suffices to show
that Toro’“ it ,(9;48) = 0. Note that since W' = n OX/‘SI we have OX/‘s,/n =
Ox /W @0, o v ¢~ Using this and the flatness of Oy o — o v ¢ the Proposition
3.2.9 of [27] on flat base change for Tor says

OX 1 gl OX’ o

O g/, 0x5) = Tor, " (O g /1, Oy).

The second term of this equation is zero since the homomorphism Oy — @X s 18
flat, being the composition of the two flat homomorphisms Oy ¢ — Oxs and
Oxs — O}(g Thus (’)X - C’)X9 is also flat.

That the homomorphism 1) Yy — (’)X s is flat implies by [12, Lemma 10.11] that
it has the going down property, that is for any prime ideal p of O and any prime
ideal g C O s M p there exists a prime ideal p’ C p of Ox. ssuchthat g = O vy NP
By applying this to a minimal prime ideal p of (9)(3 one sees that its pullback
Oy s Mp is a minimal prime ideal in Oy S

This means that the formal schematic image of any irreducible component of X
is an irreducible component of X”. This implies the claim. O

We will in particular apply the above to a smooth abelian group scheme A over
R with s the zero section of the special fiber. Then A is a formal group scheme,
which, as a formal scheme, is isomorphic to Spf(R[[x1,...,x,]]). Note that often
one denotes by A the completion of A along its zero section. This is a formal
scheme over Spec(R), and A as we define it is the base change of this formal
scheme to Spf(R) along the morphism Spf(R) — Spec(R) given by the identity
homomorphism R — R.

If [pl: A — Ais an epimorphism, then A is a p-divisible group over Spf(R) (c.f.
[20, Corollary 4.5]). More precisely, it follows from [loc. cit.] that in this case Ais
equal to the pullback to Spf(R) of the connected part A[p>]° of the p-divisible
group A[p>] of A.

For a closed subscheme X of A containing the zero section, we denote by X’ its
completion along the zero section of the special fiber.
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3. Special Subvarieties

For any group scheme A over a scheme S and any closed subscheme X of .4
we denote by Stab4(X) the functor which associates to any scheme S’ over S
the set {a € AWS") | a + Xg = Xs} and acts on morphisms by pullbacks. In case
S is a field or a valuation ring, which will be the only relevant cases for us, this
functor is representable by a closed subscheme of A, c.f. [11, Exp. VIII, Ex.
6.5(e)].

Let L be an algebraically closed field of characteristic p > 0 and A a semiabelian
variety over L.

DEeFINITION 3.1. We call a subvariety X of A special if X is irreducible and there
exist a semiabelian variety B over [, a subvariety Y of B over [}, a homomorphism
h: B;, — A/Stabs (X) with finite kernel and an element a € (A/Stab, (X))(L) such
that X /Stabs (X) = (Y) + a.

REMARK 3.2. This notion of a special subvariety is equivalent to Hrushovski’s
[18] notion of a special subvariety, as can be shown using the following Lemma:

LeEMMA 3.3. Let B be a semiabelian variety over L, let X C A be an irreducible
subvariety and let f: A — B be a homomorphism. If X is a special subvariety of A,
then f(X) 1s a special subvariety of B. If f has finite kernel and f(X) is a special
subvariety of B, then X is a special subvariety of A.

ProOF. The homomorphism f induces a homomorphism f:A/Staby(X) —
B/Stabp(f(X). )

If X is special, then there exist a semiabelian variety C over I, a subvariety ¥
of C over F‘p, a homomorphism %:C;, — A/Stabs(X) with finite kernel and an
element a € (A/Stabs(X))(L) such that X/Staby(X) = (Y) + a. Let D be the
connected component of the identity of the kernel of f o h equipped with the re-
duced scheme structure. This is a semiabelian subvariety of By,. Thus it is defined
over [,. The homomorphism fok induces a homomorphism #':C/D —
B/Stabp(f(X)) with finite kernel such that f(X)/Stabg(f(X)) =r'(Y/D) + fla).
Thus f(X) is special in B.

Now let f have finite kernel and f(X) be special in B. After replacing B
by the image of f, we may assume that f is an isogeny. Then f is also an
isogeny. Pick an isogeny g: B/Stabp(f(X)) — A/Staby(X) such that gof = [n]
for some n € 77°. There exist a semiabelian variety C over Fp, a subvariety
Y of C over 7p, a homomorphism #&:C;, — B/Stabx(f(X)) with finite kernel
and an element b€ (B/Stabp(f(X)))(L) such that f(X)/Stabp(f(X)) =
Y)+b. Then [n](X/Stabs(X)) =g((Y)) +g®). Let Y’ be an irreducible
component of (%] Y(Y). Then g(h(Y")) + ¢g(b) is an irreducible component of
] ([(n](X /Staba(X))). Since the mn-torsion points of (A/Staba(X))(L) act
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transitively on the irreducible components of ] ((n1(X /Stabs(X))), it fol-
lows that X /Stab,(X) is a translate of g(h(Y’)). This shows that X is special
in A. O

LEMMA 3.4. Let L' be an algebraically closed overfield of L and X C A a
subvariety. Then X s special in A if and only if Xy, is special in Ay, .

Proor. The “only if” direction follows directly from the definition of a
special subvariety. The other direction is shown in the proof of [24, Lemma 3.4].
For the sake of completeness, we sketch the argument: Let B, Y and h: B, —
(A/Stabs (X)), = Ar//Staby,, (X7,) as in Definition 3.1. Then by a rigidity
property of morphisms of semiabelian varieties the morphism 7 is defined over
L and since the points a satisfying the condition of Definition 3.1 form a closed
subscheme of A/Stab,(X), it follows from Hilbert’s Nullstellensatz that such an
a already exists over L. O

LeEMMA 3.5. Let Ly be an arbitrary field, let Ay be a semiabelian variety over
Ly and let Xy C Ay be an irreducible subvariety. Let I' C Ay(Ly) be a finitely
generated subgroup such that Xo(Lo) NI 1s Zariski dense in Xy. For any semi-
abelian variety Aj over Lo which is isogenous to Ay, theve exist a finitely gen-
erated subgroup I'" of Ay(Lg) and an irreducible subvariety X)) of A; such that
X\ (Lo) N I' is Zariski dense in X, and such that X, is special in Ay, if and only if
X is special in Ay.

Proor. Letf:Ay — Aj be anisogeny. Take I'"":= f(I') and X :=f(Xj). Lemma
3.3 implies that I and X| have the required properties. O

For an extension L — L’ of algebraically closed fields, recall the notion, due to
Chow, of the L’ /L-trace of an abelian variety A over L' (c.f. [8]): This is an abelian
variety over L, which we will denote Tr;, A, together with a homomorphism
©:(Try/,A)r, — A which satisfies the following universal property: For each abe-
lian variety B over L together with a homomorphism f: By, — A, there exists a
unique homomorphism g: B — Try, ;A (defined over L) such that f = 7o g7,. For
L C L/ algebraically closed this trace always exists (see [8, 6.2]) and the map 7 has
finite kernel (see [8, 6.4]). Thus roughly speaking Tr;, /1A is the largest subobject
of A which can be defined over L. It is determined up to unique isomorphism and
functorial in A.

In case A is abelian, using the trace of A one can describe special subvarieties as
follows:

LEmMmA 3.6. If A is an abelian variety over L, an irreducible subvariety X C A
18 special in A if and only if there exists a closed subvariety Y C Try, /E)A defined
over I, and a € A(L) such that X + a = ©(Y) + Staby(A).
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Proor. Because the formation of Try,: A is functorial in A, there is a com-
mutative diagram

TI'L/[FP A T A

l

Tr, 5, (A/ Staba(X)) T—> A/ Staba(X)

with both abelian varieties on the left as well as the morphism between them defined
over I, and with 7 and ¢’ having finite kernel. The “if” direction follows directly from
this. For the “only if” direction, we assume that X is special. Then there exist Y C B,
h and a as in Definition 3.1. Since the homomorphism £ factors through 7/, we may
replace Y by its image in Tr;, JF, (A/Stabs (X)) and assume B = Tr;, JF, A/ Stabé(X ).
Let Y’ be the inverse image of Y in Try, i, A. Note that Y' is defined over I,. If
o € A(L) is a lift of a the identity 7/(Y)= X/Stabs(X)+ a implies =(Y")+
Staby(X) =X +a'. O

Specialness Criteria

THEOREM 3.7 (Pink-Rossler, see [23, Theorem 3.1]). Let p: A — A be an isogeny.
Let X C A be an 1rreducible subvariety such that p(X) = X + a for some a € A(L).
Then p(Stab (X)) = Stab (X) and we denote the isogeny A /Stab (X) — A/Staba (X)
mduced by ¢ by .

There exist finitely many homomorphisms hy,: A, — A/Staba(X) for certain
ue Q> where the A, are semiabelian varieties endowed with 1s0genies
0, A, — A, satisfying @oh, =h, o, and irreducible subvarieties X, C A,
satisfying ¢,(X,) = X, + ay for some a, € A,(L) such that:

o [fa=0, then ¢, is an automorphisms of finite ovder of A,.

o If o> 0, then there exist positive integers r and s such that o =1r/s and
@5 = Frob,- for some model of A, over [y

e The morphism

hi= " hy: | [ Az — A/Staba (X)

has finite kernel and, for some point @ € (A/Stab(X))(L),
X /Staba(X) = @ + k(] [ X.).

We will use the following consequence of Theorem 3.7:

COROLLARY 3.8. Let p: A — A be an isogeny whose minimal polynomial does
not have any complex roots which are roots of unity. Let X C A be an irreducible
subvariety such that p(X) =X + a for some a € A(L). Then X is a special sub-
variety of A.
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Proor. The condition on the minimal polynomial of ¢ ensures that ¢ cannot
act as an automorphism of finite order on any subquotient of A. Hence the term
Aj in Theorem 3.7 does not appear, and it follows using Lemma 3.3 that X is
special in A. O

DEFINITION 3.9. We call a polynomial f € Z[t] good if it is monie, if f(0) # 0
and if no complex root of f is a root of unity.

THEOREM 3.10. Let G C A(L) be a subgroup and &:G — G an endomorphism
such that there exists a good polynomial f € 7[t] which annihilates @.

Let X C A be an irreducible subvariety. If there exists a subset T of G N X(L)
which is Zariski dense in X and which satisfies @(T') C T, then X is special in A.

PROOF. Write f(t) = t" + 37"} a;t' with a; € 7. Let ¢ be the endomorphism of
A" defined by the matrix

0 0 o 0 —Qo

1 0 -+ 0 -¢

0o 1 ° : ,
0 1 0

0 - 1 —au

which satisfies f(p) = 0 and ¢(a, ®(a), ..., " (@) = (&(a), P*(a), ..., D" (a)) for
o € G. Let X’ be the Zariski closure of the set {(x, d(x), .. ., & 1(x) |xeT}inA"
The fact that &(T) C T implies that p(X’) C X'. Since ag = f(0) # 0, the above
matrix is invertible over Q and hence ¢ is an isogeny. Hence for each irreducible
component Z of X', its image ¢(Z) is also an irreducible component of X’. Thus there
exist my > me =0 such that ¢°"1(Z) = ¢°™2(Z). Hence ¢°"2(Z) is special in A" by the
assumption on f and Corollary 3.8. Thus by Lemma 3.3 each irreducible component
of X’ is special in A",

Let n: A" — A be the projection to the first factor. The fact that 7' is Zariski
dense in X implies 7n(X’) = X. Since X is irreducible, some irreducible component of
X’ maps onto X under n. Hence Lemma 3.3 implies that X is special in A. O

4. The General Setup
4.1 — Completely slope divisible p-divisible groups
First we collect some terminology and facts from [22].
Let S be a scheme over I,. Let Frob:S — S be the absolute Frobenius

morphism «— 2. For a scheme G over S and s>1 we write G?) = G Xg gy S.
We denote by F*: G — G®") the Frobenius morphism relative to S.
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Let L be an algebraically closed field of characteristic p > 0 and ¢ a p-divisible
group over L. For a rational number 1> 0, one calls & isoclinic of slope /. if there
exist integers >0 and s > 0 such that A = »/s and a p-divisible group <" over L
which is isogenous to & and for which there exists an isomorphism y: %7 — ¥
making the following diagram commute (c.f. [22, Section 1]):

g Y g0
] lw
i

Every p-divisible group < over L is isogenous to a direct sum of isoclinie p-divisible
group and the slopes appearing in such a direct sum determine < up to isogeny.
They are called the slopes of ¢ and are assembled into the Newton polyon of & (see
e.g. [10, IV.5]).

DEFINITION 4.1 (c.f. [22, Definition 1.2]). e Let s>1 and 7q,...,7, be in-
tegers such that s>r >r > ... > r,>0. A p-divisible group ¥ over a
scheme S is said to be completely slope divisible with respect to these in-
tegers if  has a filtration by p-divisible subgroups

0=vyCco1C...CSu=Y
such that the following properties hold:

(i) Fori =1,...,mthekernel of [p"]: &¥; — <, is contained in the kernel of
Fs: 5 — 5%

(i) Fori=1,...,mthe kernel of [p"]: /< ;1 — /%118 equal to the
kernel of F5: &/ i1 — (53] %)%,

e A p-divisible group & is completely slope divisible if there exist integers
§=11 > 12 > ... > ¥, >0 such that & is completely slope divisible with re-
spect to these integers.

REMARK 4.2. Let £ be a p-divisible group which is completely slope divisible
with respect to s=>7; > 1 > ... > 7, >0. Note that condition (i7) is equivalent to
the existence of isomorphisms (¢;/ 5}7”1)(1’5) — /% ;.1 such that the following
diagram commutes:

G, /G — > (%)) .
k lu
gi/gi-i-l

Thus all geometric fibers of the subquotients /<1 are isoclinic of slope 7; /s and
in particular the Newton polygon of £ is constant on S.
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REMARK 4.3. Let & be a p-divisible group which is completely slope divisible
with respect to s>7r; > 1 > ... > 7, =0. By the remark after Definition 1.2 of [22]
there exists a unique filtration (:£7;);_¢__,, satisfying the conditions above for the
given integers s =1y > 1o > ... > 1, =0.

THEOREM 4.4 ([22, Theorem 2.1]). Let & be a p-divisible group over a integral
normal Noetherian scheme S with constant Newton polygon. There exists a com-
pletely slope divisible p-divisible group over S which is isogenous to <.

We call a scheme S of characteristic p > 0 perfect if for each open set U of S the
endomorphism x— &P of the ring Og(U) is an isomorphism.

ProposiTION 4.5 [Oort-Zink]. Let & be a p-divisible group over a perfect
scheme S which 1is completely slope divisible with respect to integers
s=r >1e > ... > 1, =0. Let (;); be a fillration as in Definition 4.1 with
respect to these integers. The filtration (;); splits uniquely, that is there are
unique sections &;/5 ;.1 — & of the quotient maps &; — /5 i.1.

Proor. This is [22, Proposition 1.3]. Although the uniqueness of the splittings is
not part of the statement there, it is shown in the proof given there. O

PROPOSITION 4.6. Let & be a p-divisible group over a scheme S which is
completely slope divisible. Let .77 be a p-divisible subgroup of <. Then 7 and
S| are completely slope divisible.

Proor. Let (:¢;) be a filtration as in Definition 4.1. Let .7%7;,:= .77 N ¢;. Then
it follows by a direct verification that (77;) and (5;/.7%;) have the required
properties. O

LEMMA 4.7 (see [22, Corollary 1.10]). Let G — S be a finite flat group scheme
over a connected base scheme S. Let w: G —~ G¥ be an isomorphism. Then there
extists a finite étale morphism T — S and a morphism T — Spec(F)s) such that Gr
ts obtained by base change from a finite group scheme H over Spec(Il))

H ><Spec(‘l“ps) T— GT

and such that wp is induced from the identity on H.

The argument in the proof of the following proposition is taken from the proof of
Proposition 3.1 of [22].

PROPOSITION 4.8. Let R be a perfect strictly henselian local ving over I, and &
a completely slope divisible p-divisible group over R. Then there exists a p-
divisible group & over ', such that & g is isomorphic to 5. In case that & has a
single slope, it suffices that R be strictly henselian.
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Proor. In case £ has multiple slopes, by Proposition 4.5 we can write & as a
direct sum of completely slope divisible groups having a single slope. Thus it suffices
to treat this case. Then there exist s >7>0 and an isomorphism y: £*” — < such
that y o F* = [p"]. For >0 denote by < (n) the kernel of [p"]: & — &. Applying
Lemma 4.7 to (n) and w~! we obtain finite group schemes ,(n) over Spec(ly)
and isomorphisms

&) = 50(n) Xspee(r,) B

The inductive limit of the group schemes £(n) is a p-divisible group & over I
which has the required property. O

The following result is probably not new, but we could not find a reference.

PROPOSITION 4.9. Let k be an algebraically closed field of positive character-
istic. Let & and .77 be p-divisible groups over k. For any integral scheme S over k
the base change map

Hom, (¢, 7%) — Homg(< g, #'s)

s a isomorphism of 7Z,-modules.

Proor. Let k' be the function field of S. First we claim that for any finite flat
group schemes G and H over S the natural map Homg(G, H) — Homy (G, Hy) is
injective: We may assume that S is affine, say S = Spec(R). Then G and H are the
spectrum of finite flat R-algebra A; and Ap. Since these are flat over R, the
homomorphisms Ag — Ag ®r k' and Ay — Ag @g k' are injective. Hence any
homomorphism Ay — Ag of R-algebras is determined by its generic fiber
Ay @r k' — Ag ® k'. This shows that Homg(G, H) — Homy (G, Hy) is injective.
By applying this to group schemes <[p"] and .77[p"] for n >0 one gets that the
homomorphism Homg(¢'s, #s) — Homy (5, 7)) is injective. Thus we may as-
sume that S = Spec(k’). We may also assume that &’ is algebraically closed.

We use the theory of Dieudonné modules. Denote by W (k) (resp. W(k')) the ring
of Witt vectors of k (resp. k'), by o the lift of Frobenius to these rings and by B(k)
(resp. B(k')) their quotient field. Let M(¥) and M(7) be the contravariant
Dieudonné modules associated to ¢ and .77. They are free W(k)-modules endowed
with a ¢-linear self-map F and a ¢~ !-linear self-map V.

A homomorphism & — .7 corresponds to a W(k)-linear homomorphism
M) = M) Qway WE') — M(Z ) = M(S) Qwgy WK') compatible with V
and F'. We need to show that any such homomorphism arises from a homomorphism
M%) — M(¥). Since we are dealing with free W(k)-modules, it suffices to prove
that the induced homomorphism M(7) Qwa) Bk') — M(S) @ww B(K') arises
from a homomorphism M(7) @wu) Bk) — M(5) @we Bk). The B(k)-vector
spaces M(7) @way B(k') and M(5) @wgy B(k') together with the o-linear en-
domorphism induced by #" are what is called an F'-space in [10, Chapter IV]. By the
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theorem in [10, Section IV 4], each such F-space is a direct sum of certain simple F'-
spaces denoted E,AC for /. € Q>°. Furthermore, by a proposition in [10, Section IV.3],
if 2 # /', any homomorphism E} — E}C/ of F-spaces is zero. Hence it suffices to
prove that any endomorphism of E} @pgu) B(K') of F-spaces arises from an en-
domorphism of Eg This follows from the description of such endomorphisms given
by a proposition in [10, Section IV.3]. O

PrOPOSITION 4.10. Let R be a discrete valuation ring of characteristic p with
perfect residue field k and perfection R— RP®*. Let & be a completely slope
divisible group over R. There exists a unique 1s0morphism & goer =2 (5),) goer Which
18 the identity in the fiber over k. In case & has a single slope, this isomorphism is
already defined over R.

PROOF. Let RPe" < RPS! be a strict henselization of RP*" and k the residue
field of RP*". Note that k< k is an algebraic closure of k. Let RP®" < R’ be a
finite étale extension of RP®. Using the fact that the relative Frobenius
morphism of R’ over RP®' is an isomorphism one sees that R’ is again perfect.
Hence R™" is perfect. Hence by Proposition 4.8 there exists a p-divisible group
%" over k such that & pun = “%,.. By taking the special fiber of this iso-
morphism, we get & = ¥, so that we may take ' = ©;.. Then Proposition 4.9
implies that there exists a unique isomorphism y: (:5)gosn = & gpsn Which is the
identity in the special fiber. For any o € Aut(RPs" /RP"), the conjugate of y by o
is again the identity in the special fiber and thus is equal to y. Thus v is defined
over RP®" by Galois descent.

In case ¢ has a single slope, one does not need to pass to RP®" to split the slope
filtration. Thus with the same argument as above one obtains y over a strict
henselization of R and sees that it is defined over R by Galois descent. O

Now let R be a discrete valuation ring as in Section 2 with quotient field K. The
results in this subsection are formulated for p-divisible groups over Spec(R),
however below we will work with p-divisible groups over Spf(R). Thus we will need
the following:

ProposiTION 4.11 ([20, Lemma 4.16]). Let R’ be the valuation ring of a
complete overfield K' C K of K. The base change functor & s Cspiry) from the
category of p-divisible groups over Spec(R’) to the category of p-divisible groups
over Spf(R') is an equivalence.

Accordingly we define:
DEFINITION 4.12. Let R’ be the valuation ring of a complete overfield K’ C K

of K. A p-divisible group over Spf(R’) is completely slope divisible if and only if
the corresponding p-divisible group over Spec(R’) is completely slope divisible.
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4.2 — Nice Semiabelian Schemes
Let K be a local field of characteristic p > 0.

DEFINITION 4.13. We call a semiabelian scheme A over Spec(R) nice if A is an
extension of an abelian scheme by a torus over Spec(®) and the p-divisible group A
over Spf(R) is completely slope divisible.

Let A be a nice semiabelian scheme over R.

LEMMA 4.14. Let B C A be a semiabelian subgroup scheme. Then B and A/B
are nice.

ProoF. The ranks of the toric parts of B and .A/B are constant since they have
constant sum and can only go up upon specialization. Thus by [13, Corollary 2.11]
both B and .4/B are extensions of an abelian scheme by a torus over S. Propo-
sition 4.6 shows that the formal completions of both group schemes are again
completely slope divisible. O

CONSTRUCTION 4.15. We construct an isogeny F~Aspf<3pm) — ASpf(Rpel) as
follows: Propositions 4.10 and 4.11 yield a unique isomorphism (Ak)spf(Rpel) o
Aspf(Rpel) which is the identity on the special fiber. The p-divisible group Ay,
being defined over the finite field k, has a Frobenius endomorphism with
respect to k. Transfering the base change of this Frobenius endomorphism

to Spf(RP¢') to an endomorphism of /ispf(Rper) via the above isomorphism
yields Fj.

The following summarizes the relevant properties of F ;:

PROPOSITION 4.16. (i) There exists a good polynomial which annihilates F ;.

(11) The endomomhzsm F ; is the Frobenius endomorphism with respect to a
suitable model of ASpf(Rper) over the finite field k.

(i11) Let B be another nice semiabelian scheme over R. For any homomorphism
f: A— B, the induced homomorphism fR Aspf(Rper) — Bspf(Rper) satisfies
F OfSpf(Rper) —fSpf(Rper) o F

() In case A has a model over k, the endomorphism F' i 1s the one induced by
the Frobenius endomorphism of such a model.

() If one replaces K by a finite overfield K' contained in K, then F is re-
placed by Fj’ , where N 1is the degree of the extension of the residue fields of
Rand R
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ProoF. (i7), (1v) and (v) follow directly from the construction.

(1) By the construction of F'; it suffices to show that there exists a good poly-
nomial which annihilates the Frobenius endomorphism of .Aj. This follows from the
Riemann hypothesis for abelian varieties, see for example [14, Fact 3.1].

(727) Pick isomorphisms ARper o (Ak)Rper and nger o (Bk)Rper as in Construction
4.15. Under these identifications by Proposition 4.9 the homomorphlsm
prer ARper — Bprer arises by base change from its special fiber fk + — B Since
the latter is defined over £, it is compatible with the Frobenius endomorphisms of
By, and Aj. This implies F o frrer = fros o F . O

THEOREM 4.17. Let X C Ag be an irreducible subvariety. Then the following
are equivalent:

(@) The subvariety Xg is special in Ag.

(11) There exist a finite field extension K' C K of K with valuation ring R/,
x € X(K') and n>=1 such that the schematic closure X of X — x in Ap
Satisfi@s FZZ(XSpf((R’)p")) C XSpf((R’)per)'

(#ii) There exist x € X(K), n>1 and a subset T C AR) N (X — x)(K) which is
Zariski dense in Xz — x and which satisfies FZ(T) cT.

Proor. (i) = (#1): Using Proposition 4.16 (iii) we see that if (i4) holds for
X /Stab 4, (X) C Ag/Stab 4, (X), then it holds for X C Ay. Hence we may assume
that Stab(X) = 0. Then there exist a semiabelian variety B defined over a finite field
k' containing k, a subvariety Y of B, ahomomorphism /: By — Ay with finite kernel
and a € A(K) such that Xz = h(Yy) + a. Note that it suffices to prove (ii) after
replacing K by a finite field extension contained in K. After doing so we may assume
a € A(K) and k = k/. After suitably translating ¥ we may assume that 0 € Y (k).
Then a € X(K), so that after translating X by —a we may assume a = 0. Let X’ be
the schematic closure of X in A.

As Y is defined over &/, the set Y(k) is Zariski dense in Y, and hence the set
(Y (k)) C X(K) is Zariski dense in X. Thus there exists y € Y(k) such that X is
smooth over R at i(x) and such that # is flat at y. After possibly replacing k' and K
by finite field extensions we may assume that y € Y (k') and hence h(y) € X(R).
Then after replacing Y by ¥ —y and X by X — i(y) we may assume that X is
smooth over R at 0. By [13, Proposition 2.7] the homomorphism # extends to a
homomorphism B — Ap. Hence after replacing K by a finite field extension
contained in K we may assume that & extends to a homomorphism k: By — A. By
Proposition 2.45 the formal scheme Xis isomorphic to Spf(R[[x1, . . ., x,]]) for some
n and hence is irreducible. Thus it follows from Proposition 2. 47 that X is the
formal schematic image of YSpf(R) under .

We have F'; o hspf(Rper) = hspf( gy © Fp by Proposition 4.16. This together with
the fact that Yspf(Rper), being defined over k’ k,is invariant under F'z implies that

Xspf(Rper) = h(YSpf(Rper)) is invariant under F'; i This shows (77).
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(1) = (i47): By Proposition 2.46 set T':= A(R) N (Xz — «)(K) is Zariski dense in

XK — .
(121) = (¢): Using Proposition 4.16 (i), Theorem 3.10 applied to G = A(R) and
@ = I shows that Xy — w is special in Ag. O

4.3 — Choice of a nice valuation

LEmMA 4.18. Let L be an algebraically closed field equipped with a non-ar-
chimedean valuation v with valuation ring Q. Let A be a semiabelian scheme over
Q which is an extension of an abelian scheme over Q by a torus over Q. For
a € AL), if na € A(Q) for some n € 770 then a € AQ).

ProoF. Let
0—T—A-B—0

be exact with 7 a torus over @ and B an abelian scheme over Q. Then
n(a) € B(L) = B(Q).

Since Q is strictly Henselian the flat cohomology group H'(Q, 7) is zero. Thus
the point 7(a) € B(Q) lifts to a point a’ € A(Q). Since Q is strictly Henselian, the
torus 7 is split. Thus for ¢t = a — o’ € T(L) = (L*)" we have ¢" € (Q*)" which im-
plies that ¢ € (Q*)". Hence « lies in A(Q). O

PRrOPOSITION 4.19. Let Lo be a field which is finitely generated over I¥, and let
A be a semiabelian variety over Ly. There exists an embedding of Ly into a local
field K such that the semiabelian variety Ag extends to a semiabelian scheme A
over the valuation ring R of K which is isogenous to a wice semiabelian scheme
over R.

If we are given a finitely generated subgroup I' C A(Lg) (vesp. a finite rank
subgroup I' C A(LY™)) we can pick v such that I' C AR) (resp. such that
I'" C A(RP)).

Proor. There exists aring 2y C Lo which is finitely generated over I, and has
quotient field L¢ such that A extends to a semiabelian scheme A over Ry. Since the
Newton polygon of A is generically constant, after localizing £( we may assume that
A has constant Newton polygon. Since the rank of the toric part of A is generically
constant, we can also assume that this rank is constant. Then A is globally an
extension of an abelian scheme by a torus by [13, Corollary 2.11].

If we are given a finitely generated subgroup I” as above, after further locali-
zation we may assume that a finite generating set of 7", and thus all of I', is con-
tained in A(Ry).

If we are given a finite rank subgroup I as above, pick a finitely generated
subgroup I” of I such that I consists of divison points of I". Then as before after
further localization we may assume that I" ¢ A(R,).
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By [25, Lemma 3.1] there exists an embedding Ry — R:=1'y[[t]] for a suitable
power g of p. We pick such an embedding and let K:=1((¢)). By Theorem 4.4, the
p-divisible group Asps(r) is isogenous to a completely slope divisible group ‘¢ over
R. Since an isogeny As/p?(g) — £ is the quotient by a finite group scheme, this
shows that we can find a nice semiabelian scheme A’ over R which is isogenous to
Apg. In case we are given I as above, Lemma 4.18 ensures I’ C A(RP"). Thus the
embedding has the required properties. O

5. Proof of Mordell-Lang for finitely generated groups

5.1 — A formal Mordell-Lang theorem

Let K be a local field of characteristic p > 0. Let 5" be a commutative formal
group scheme over Spf(R) which as a formal scheme is isomorphic to
Spf(R[[x1,...,2,]]). From an isomorphism ¢ = Spf(R[[x1,...,x,]]) one gets a
bijection < (R) =~ m® as in Remark 2.16. This endows < (R) with a valuation
topology which is independent of the chosen isomorphism. The fact that
[pl: ¥ — £ acts by zero on the tangent space at the identity of & implies that for
all g € ¥ (R) the sequence (p"g), ¢ converges to zero with respect to the valua-
tion topology. This implies that the Z-module structure on < (R) can be uniquely
extended to a Z,-module structure which is continuous with respect to the val-
uation topology.

First we prove the following Mordell-Lang statement for formal schemes in
positive characteristic:

THEOREM 5.1. Let K be a local field of characteristic p. Let & be a formal group
over k which as a formal scheme s isomorphic to Spf(k[lxy, ..., x,]1]). Let
I’ C Z(RP) be a finitely generated 7.,-module. Let 2" C 7 sptcreery be a closed
formal subscheme.

If 2 (RP*") N I is formal-schematically dense in %", then there exist a finite
field extension K' of K with valuation ring R/, closed formal subschemes
1y D of Dperyy and elements yy, ...y, € I such that 2" + 7j 18 defined
over the residue field of R" and such that .2 g giypery = Ui(-2 Dptrrpey

For the proof of Theorem 5.1 we need the following lemma:

LEMMA 5.2. Let K be a local field of characteristic p and q the cardinality of the
residue field k of K. For i=0 let K9 be the field consisting of q'-th powers of ele-
ments of K and RY the valuation ring of K9 Let & formal group scheme over k.
Then ¢S (R) C < (RY).
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ProoF. Let F: & — & be the Frobenius endomorphism of & with respect to k.
By [1, Section VII A.4] there exists a “Verschiebung” endormorphism V: & — &
such that [q] = F oV =V o F. Using the fact that F{G(R)) C G(R?) this implies
the claim. O

Proor oF THEOREM 5.1. Since I is a finitely generated 7,-module, after pos-
sibly replacing K by a finite extension we may assume that I" ¢ <(R). Since then
Z(RP)YN T C %(R), Proposition 2.33 implies that .2" is defined over R. Let
21, ..., 2 be the irreducible components of .2". Then .2;(R)N T is formal-
schematically dense in .2"; for each 1. It suffices to prove the claim for each .2";, that
is we may assume that .#" is irreducible.

Since the group I"/p'I is finite for all i >0 and since .#" is irreducible, it follows
using Lemma 2.27 that we can choose (;);50 € I'% such that p'I" N (2" + y,)(R) is
formal-schematically dense in .2" +y; and such that y;,; = y;(modp'I") for all
i>0. Since the finitely generated 7,,-module I" is complete for the p-adic topology,
there exists y € I" such that y = y;(modp'I") for i>0. Then (2" 4 y)(R) Np'T is
formal-schematically dense in. 2"+ y for all i >0. Let ¢ be the number of elements
of k. For i>01et K7 be the field consisting of ¢'-th powers of elements of K and RY
the valuation ring of K. Since ¢'I" C £(R?) by Lemma 5.2, Proposition 2.33
implies that .2" + y is defined over R?. Thus Lemma 2.42 implies that .2" + y is
defined over k. O

5.2 — Proof of Mordell-Lang for finitely generated groups
Using Theorem 5.1 we can now prove Theorem 1.2.

THEOREM 5.3 (Hrushovski). Let L be an algebraically closed field of positive
characteristic. Let A be a semiabelian variety over L, let X C A be an irreducible
subvariety and I' C A(L) a finitely generated subgroup. If X(L) NI is Zariski
dense in X, then X is a special subvariety of A.

Proor. Let Lo C L be a field which is finitely generated over [, such that A
arises by base change from an abelian variety A over Ly, such that X arises by base
change from a subvariety X, defined over Ly and such that I" C Ay(Lg). By Pro-
position 4.19 there exists an embedding Ly K into a local field K and a semi-
abelian scheme A over the valuation ring R of K which has generic fiber Ag, is
isogenous to a nice semiabelian scheme over R and satisfies I C A(R). Let X be the
schematic closure of X,  inside A.

By Lemma 3.4 it suffices to prove that X'z is special in Az. Using Lemma 3.5
we can replace A by an isogenous semiabelian variety, so that we may assume that
A is nice.

Since we have an exact sequence

0— AR) — AR) — A(k) — 0
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with A(k) finite, after replacing X’ by a suitable translate we may assume that
(I' N A(R)) N X(R) is schematically dense in X. After replacing I" by I N A(R) we
may thus assume I" C AR).

Let Fj: Aspf(Rper) — Aspf(Rper) be the endomorphism given by Construction 4.15.
By Proposition 4.16 (ii) there exist a p-divisible group £ over k and an isomorphism
V' S Spt(rrery 2 ASpf(Rpez) under which F; corresponds to the Frobenius en-
domorphism of ¢ with respect to k.

Let I" be the closure of I" with respect to the valuation topology on AR).

Since I' is finitely generated this is a finitely generated 7,-module. Let
v C A be the formal schematic closure of I" N X(R) inside A. Then ZR)N r
is formal-schematically dense in %/. Thus %(R)ﬁf is formal-schematically
dense in /Spf(Rper) by Corollary 2.38. Thus by Theorem 5.1 applied to
w( /Spf(Rpe,)) and Y(I), there exist closed formal subschemes 2T .
Y poers €lements yy,...,7,, € I’ and n>0 such that F”(/ +y) C i+ and
Y=V / Since I'NX(R) C //(R) the set /(R) is schematlcally dense in
Xp. Lemma 2.24 implies 7/(R) = U; 7/,(R). Since X} is irreducible there exists
t such that /1(R) is schematically dense in Xp. Thus Proposition 4.17 (iii)
holds for T:=7/,(R) +7;. By Proposition 4.17 this implies that Xy is special
in .AK.

6. Towards full Mordell-Lang

The full Mordell-Lang conjecture in positive characteristic is the following
conjecture:

CONJECTURE 6.1. Let L be an algebraically closed field of positive character-
istic. Let A be a semiabelian variety over L, let X C A be an irreducible subvariety
andlet I" € A(L) be asubgroup of finite rank. If X (L) N I is Zariski dense in X, then
X is a special subvariety of A.

In this section we show that in case A is an ordinary or supersingular abelian
variety Conjecture 6.1 can be reduced to the following special case by combining
our method with a reduction due to Ghioca, Moosa and Scanlon.

CONJECTURE 6.2. Let L be a field which is finitely generated over I, let L be an
algebraic closure of Ly and let L be the perfect closure of Ly in L. Let A be an
abelian variety over Ly and X C A Ly an irreducible subvariety. Assume that the
canonical morphism Tr; ; A — A is defined over Lo, that there exists a finite

subfield IV, of Ly over which Tr;, /i, A can be defined and that Staby e (X) is finite. If

X(Ly") is Zariski dense in X, then a translate of X by an element of ALY is
defined over L.
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REMARK 6.3. We expect that Conjecture 6.2 holds without the condition on the
field of definition of the morphism Tr; ; A — A, the existence of Iy as above and
the condition on StabALpe,. (X). However we were unable to deduce Conjecture 6.2

from Conjecture 6.1 without these conditions. Note that they can always be
achieved by dividing by StabALper (X) and by replacing Ly by a suitable finite
extension. 0

REMARK 6.4. Consider the case of a supersingular abelian variety A. Then A is
isogenous to a power of a supersingular elliptic curve (c.f. [21, Theorem 4.2]), and
thus in order to prove Conjecture 6.1 for A, it suffices to prove it for powers of
supersingular elliptic curves. But these can be defined over a finite field and for
such abelian varieties, Conjecture 6.1 is proven in [14]. Thus the results in this
section are only interesting in case A is ordinary.

LEMMA 6.5. Let Ly be a finitely generated field of characteristic p > 0 with
perfection Lo— LY and let A be a semiabelian variety over L.

(i) The group ALY™) has finite rank.
(#%9) Let I' ¢ A(LE™) be a subgroup and n=0. The group I' /p"I is finite.

PrOOF. (i) For n>0 the group p"A(L% ') is contained in A(Le). This together
with the fact that A(Ly) is finitely generated implies that A(L)™) has finite rank.

(#3) By Claim 1 in the proof of Theorem 2.2 of [14] the torsion subgroup of A(L§™)
is finite. Hence both the rank and the size of the torsion subgroup of the finitely
generated groups [7;:=1"N A(Lgil) are bounded as 7 >0 varies. Thus the size of the
groups I";/p"I; is bounded as i varies. Let I'; be the image of I';/p"I; in I /p"I.
The groups I'; form an ascending sequence of finite groups of bounded size, thus for
all 7 > 0 the I'; coincide. Since I'/p" I is the union of the I'; this shows (i7). O

PROPOSITION 6.6. Congecture 6.1 implies Conjecture 6.2 for abelian varieties A.

PRrOOF. After translating X by an element of X(L}*) we may assume that 0 € X.
By Lemma 6.5 the group A(L5®) has finite rank. Hence by Conjecture 6.1 the
subvariety X, is special in A;. Thus by Lemma 3.6 there exist a subvariety
Y C Try s A over [y and @ € A(L) such that X7, = ©(Y) + Stabs(X);, + @, where t
is the natural homomorphism Tr;, A — A which by assumption is defined over L.
Since by assumption Stab4(X) is finite and X is irreducible, there exists a’ € A(L)
such that 7(Y;) = X, +a'.

The fact that 0 € X implies ¢/ € Im(z)(L). Thus X C Im(z). After replacing A by
Im(z) we may assume that 7 is an isogeny. We fix a model of Tr;,;; A over a finite
field Iy contained in Lo and let F: Tr;, ;i A—Try,; A be the Frobenius endomorph-
ism of Tr;, /EA with respect to [,. Since by [8, Theorem 6.12] the homomorphism t
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is purely inseparable, the induced map z: Tr;, z A(Ly™) — A(Lg™) is surjective. Let
Y" be an irreducible component of the Zariski closure of 7t '(X(L)™)) C
Try, /5, A(Ly™). Let I':=Try, i A(Lo). This is a finitely generated F-invariant sub-
group of Try; A(L) and Y'(L) N (Uyzo F 1) = Y' L) N'Try, /ppA(Lger) is Zariski
dense in Y’. Thus by [14, Proposition 3.9] for some 7%>0 the set Y'(L)N
F"I' C Y'(I{ ") is Zariski dense in Y". Thus X(L{ ') is Zariski dense in X. Since
the group A(LY )/q"A(LY ") is finite, there thus exists a” € A(L{ ") such that
(@' +q"ALE NNXALL") is Zariski dense in X. Since ¢"A(L! ) C A(Lg) and
since Zariski closure commutes with base change this implies that X —a” is
defined over L. O

6.1 — A specialness criterion

Let K be alocal field of characte}ﬂistic p > 0. Let A be an abelian scheme over R
such that the Newton polygon of A is constant. Denote Ax by A.
The following definition is somewhat ad hoc and adapted to our present needs:

DEFINITION 6.7. Leti>0and X a subvariety of A. Denote the schematic closure
of X in A by &X. We say that X is K /KP' -special in A if X is irreducible and there
exists an abelian variety B over K”', a subvariety Y of B over K”', a homomorphism
h: Bx — A/Stabs(X) with finite kernel and an element a € (A/Stab4(X)(R) such
that (X /Staby(X))z = (Y) + a.

THEOREM 6.8. Assume that A is ordinary or supersingular. Let X be an
irreducible subvariety of A containing 0. If X is K/KP -special in A for all i >0,
then Xi is special in Ag.

ProoF. Since the Newton polygon of A is constant, by Proposition 4.4 the p-
divisible group Ais isogenous to a completely slope divisible p-divisible group. Since
isogenies of p-divisible groups are quotients by finite subgroup schemes, this im-
plies that there exists a nice abelian scheme A’ over R together with an isogeny
f: A — A Tt follows directly from Definition 6.7 that f(X) is again K /K" -special in
Al for all i > 0. By Lemma 3.3, the subvariety Xz of A is special if and only if f(X)
is special in A%. Thus we may replace A by A" and can assume that A is nice.

Let X be the schematic closure of X in A. After dividing by Stab 4(X) we may
assume that Stab4(X) = 0. By Proposition 2.30, after replacing K by a finite field
extension we may assume that each irreducible component of X is geometrically
irreducible. _

Let i>0. By assumption there exists a abelian variety B over K”', a subvariety
Y C B, a homomorphism /: Bx — A and a € A(R) such that Xz = i(Yz) + a. Let
B be the Néron model of B over R”'. Since A is the Néron model of Ag, the
homomorphism % extends to a homomorphism %: By — A. Since the generic fiber
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of the completion h:Bp — Ais an isogeny, Tate’s conjecture implies that h is an
isogeny. Since the Newton polygon of A is constant, the existence of this isogeny
implies that the Newton polygon of B is constant. Thus, by Theorem 4.4 and
Proposition 4.11, there exists a completely slope divisible p-divisible group & over
Spf(R"") together with an isogeny #: & — B.

Let ) be the schematic closure of Y in . Pick a finite field extension K’ ¢ K of K
with valuation ring R’ suchA that a € A(R'). Then p) + a = Xp. Let 7/:=
(W) (V) € &. Then .2':=h(l (¥ gypm))) + @ C Xspe(rr), Where h(h' (7 ) s
t}}e formal schematic image of ;//Spf(R,). By Lemma 2.32 we have #/(7/ Spf(R’)) =
Ysptwy- Thus by Proposition 2.47 each irreducible component of .2 "; is an irreducible
component of Xspf(gf). Since each irreducible component of X is geometrically irre-
ducible, it follows that .2"; is the union of some of the irreducible components of X.

Using the fact that A, and hence &, has a single slope, Prop0s1t10ns 4.10 and
4.11 yield unique isomorphisms y: & — (:})q DR and y/: A = (Ak)spf(R) which
are the identity in the special fiber. Under these identifications, by Proposition 4.9
the homomorphism / o W:5g — A arises by base change from its special fiber.

Thus the 1dent1ty 2= h(h’ (7)) + a shows that a translate of W'(27;) by an ele-
ment of A(R) is defined over R”'.

As we saw above, each .%"; is the union of some of the irreducible components of
2. Since there are only finitely many such components it follows that there exists
2° C % such that 2" = 27 for infinitely many 7. Theorem 2.44 implies that there
exists a finite field extension K’ ¢ K with valuation ring R’ and x € .2"(R’) such that
W' (2 sprwy — @) is defined over k. By construction, the endomorphism F; corre-
sponds to the Frobenius endomorphism of Ay, under v'. Thus T:=.2" (R) — x sat-
isfies F'4(T) C T. By Proposition 2.46 (ii) the set T'is Zariski dense in X'z — x. Thus
condition (it7) of Theorem 4.17 is satisfied and Theorem 4.17 implies that Xj is
special in Aj. O

6.2 — Proof of the reduction

THEOREM 6.9. Conjecture 6.1 and Conjecture 6.2 are equivalent for abelian
varieties which are ordinary or supersingular.

ProoF. One direction was already proved in Proposition 6.6 above. Now we
prove that Conjecture 6.2 implies Conjecture 6.1.
By [14, Theorem 2.2], Conjecture 6.1 is implied by:

CONJECTURE 6.10. Let L be a field which is finitely generated over I,, L an
algebraic closure of Ly and L; the perfect closure of Ly in L. Let A be a semi-
abelian variety over Lo, let X C A be an irreducible subvariety and let I" C A(L;")

be a subgroup of finite rank. If X(L, ) NI is Zariski dense in X7, then X7, is a
special subvariety of Ay,.
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Furthermore, from the proof of [14, Theorem 2.2], one sees that if one only
wants to prove Conjecture 6.1 for abelian varieties which are ordinary or super-
singular, then it suffices to prove Conjecture 6.10 for such abelian varieties. This is
what we do now.

After replacing Ly by a finite extension we may assume that the canonical
morphism 7: Try i A — A is defined over L and that there exists a finite subfield
I'q of Lo over which Try,; A can be defined. After dividing by Stab, (X) we may
assume that Staby(X) =

By Proposition 4.19 there exists an embedding of L, into a local field K such
that the abelian variety Ax extends to an abelian scheme A over the valuation ring
R of K which is isogenous to a nice abelian scheme over R and such that
I c A(LY™) C ARre™).

Let X be the schematic closure of Xy inside .A. By Lemma 3.4 it suffices to
prove that Xj is special in Ag.

Since there is an exact sequence

0 — ARP™) — AR — A(k) — 0

with A(k) finite there exists y € I' N X(L§™) such that X(K) N (y + (I' N A(RPe)) is
Zariski dense in Xj. After replacing L by a finite extension we may assume that
y € A(Ly). Then after translating X by X — y and replacing I" by "N A(RPe) we
may assume that I” ¢ A(RP®") and 0 € X.

Fix a finite subfield 'y of Lo over which Try, i A;, can be defined. By Theorem
6.8 it now suffices to show that X is K/K? —spemal in A for all :>0. Thus we fix
such an i. We will work with the abelian variety A, which is naturally defined
over Lgl, together with the Verschiebung homomorphism V: A%) — A. By Lemma
6.5 the group I"/q'I" is finite. Thus there exists y € I" such that X(Lb*) N (y + ¢'I")
is Zariski dense in Xz. Let T C I" be such that y + qiT XL N (@ +4¢'0). Let
F:A — A@ De the relative ¢'-Frobenius and Y A7) Ly an irreducible component
of the Zariski closure of F(T) c AY )(Lper) The fact that Vo F = [¢'] implies
V) +7y=X.

By [8, Theorem 6.4] the formation of TrL/r Aj, commutes with purely in-
separable base change. Thus 7@ Try, 5, AL = (TrL/[ A A(q) is the L/F -

trace of A(q) This morphism is defined over Lq Since Stabs(X) = 0 the sta-
bilizer Stab o (Y) is contained in the kernel of V and thus is finite. Thus

pex
Conjecture 6. 2 applied to Y C A

Y + a is defined over Lq . _

We consider a as an element of ADK™ ) = ADR™. Since the natural
map A(ql)(R_'f) — A9(k) is surjective, there exists o € AD(RTY such that
a—a e AYRrer), Then Y +a—a is defined over K¢ and VX +a—a)+
Vi —a)+y=XwithV(a —a)+7y e A(RPeY). Thus X is K/K‘?l—special and we
are done. O

CR)

L gives an element a eA(q”(Lger) such that
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