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On the continuity of the finite Bloch-Kato cohomology
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ABSTRACT - Let K be an unramified, complete discrete valuation field of mixed character-
isties (0, p) with perfect residue field. We consider two finite, free 7,,-representations of
Gk,, T1 and T, such that T; ®7, (), for ¢ = 1,2, are crystalline representations with
Hodge-Tate weights between 0 and » < p — 2. Let K be a totally ramified extension of
degree e of K. Supposing that p > 3 and e(r — 1) < p — 1, we prove that for every integer
n>1 and i = 1,2, the inclusion HJ}(K7 TZ-)/p"Hfl(K7 T;) — HYK, T; /p"T;) of the finite
Bloch-Kato cohomology into the Galois cohomology is functorial with respect to morph-
isms as Z/p"Z[Gg,]-modules from T} /p"T; to T> /p" T>. In the appendix we give a related
result for p = 2.
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1. Introduction

Let K denote a complete discrete valuation field of mixed characteristics (0, p)
with perfect residue field k. We choose an algebraic closure K of K and denote by
Gk the Galois group of K over K. For a p-adic representation V of Gg, the finite
cohomology group H fl(K , V) is defined as

HYK,V) = ker(H'(K,V) — H'(K,V ©0, Bais)

where H'(K, —) denotes the first continuous Galois cohomology functor and B is
the ring of crystalline periods. If V is a crystalline representation then the coho-
mology classes in H }(K , V) represent classes of extensions

0=V —-E—0Q,—0

which are crystalline, i.e. such that ¥ is a crystalline Gg-representation. If 7' C V' is
a Z,p-lattice stable by G, the group H }(K ,T) is defined as the fiber product of the
diagram

HY(K,T)

HHK, V)~ H'(K,V)

where 7 is the map induced by the injection 7 C V. By definition the classes in
H LK, T) correspond to classes of extensions of 7' by 7, which are crystalline (after
extendmg scalars to (Q,). The canonical map H LK, T) — H'(K,T) is injective and
identifies Hl(K T) to ;7’1(H1(K V)); on the other hand the map Hl(K T) —

H LK, V)is not injective in general (H L(K,T) contains all the p-torsion of H YK, T)).

The main relevance of the groups H}-(K ,V) comes from global arithmetic.
Suppose that F' is a number field and that M is a p-adic representation of
Gp = Gal(F /F). Then the Selmer group of M over F is the subgroup of the con-
tinuous cohomology group H'(F, M) of classes which satisfy certain local restric-
tions, in particular the classes in the Selmer group restricted to the decomposition
group at v of G, for places v of F' dividing p, lie in H}(FU,M).
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If the p-adic representation M as above is the p-adic realization of a motive over
a number field ¥, then the family of p-Selmer groups over the cyclotomic tower of
F (or some other Z,-tower) encodes important arithmetic information about the
motive, in particular its algebraic p-adic L-functions are defined in terms of it.
Ralph Greenberg was the first to ask the question: suppose we have two motives
which are congruent modulo a power of p. What can one say about the two families
of p-Selmer groups?

For example in [14] and [13] one studies the case of two elliptic curves defined
over Q (or even modular forms of weight two) and one obtains: if the elliptic curves
are both ordinary or both supersingular at p and they are congruent modulo p, then
under certain further hypothesis one shows that the families of non-primitive
Selmer groups attached to these elliptic curves are also congruent modulo p. It
follows, using results of K. Kato that if the main conjecture holds for one of the
elliptic curves then it holds for the other.

Of course in order to study the behaviour of Selmer groups with respect to
congruences, one has to first investigate the behaviour of the local conditions de-
fining the Selmer groups with respect to the congruences, in other words to ask
whether H }(K , T') varies p-adically continuously with 7" (where now K is a p-adic
field and 7' a Z,-representation of G as at the beginning of this introduction). This
is the main task of this article.

We will now be more precise and consider two crystalline /,,-representations of
Gk, T1 and Ty which are isomorphic modulo p” (we say that T and T are con-
gruent modulo p”). Consider a class ¢ € H'(K, Ty /p"T1) which is the reduction
modulo p” of a class coming from H? (K T1). We would like to know if the image of ¢
via the isomorphism between H 1(K Ty /p"Ty) and HY(K, Ty /p"T>) is the reduction
of aclassin H }(K , T2). This could be reformulated as follows: given an isomorphism
:T1/p"Ty — To/p"Te of Z/p"7Z[Gglmodules, is there an isomorphism 7 of
7./p"7-modules making the following diagram commutative?

HH(K,Ty)/p"H} (K, Ty) — H'(K, Ty /p"T})
|
3707 ngl(KﬁL)
7
Hi(K,T»)/p"H} (K, T) — H' (K, T2/p"T»)

The maps HH(K,T)/p"H{(K,T:) — H'(K,T;/p"Ty), for i =1,2, in the diagram
above are 1nduced by the injections Hl(K T;)— HYK,T;) and H'(K,T;)/
p"HY (K, T;)— H (K, T;/p"T;). Werecall thatthey areinjective, cf. Lemma4.1.1, and
so this reformulation of the question is only apparently more general. However it
makes sense to ask more generally whether H 1(K —)/p"H }(K ,—) defines a sub-
functor of T'/p"T +— HY (K, T /p"T).
It is known that these questions do not have positive answers in general. For
example let T = Z,(1), To=7Zy(p), K=0Q, and p>3. We have clearly
T1/pTy = F,(1)=Ts/pT> and Kummer theory implies that H 1(Qp7 IF,1) =
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Qy/ ('Q*)p which is a two dimensional I',-vector space. Simple cohomological argu-
ments show that the [,-vector spaces Hl(Qp,Tl)/le Q,,T) and H1 (Q,,To)/
pH (Qp, T2) have both codlmensmn one in H? (Qp, 17y (1)) However, one can show
that they are orthogonal with respect to cup- product and they correspond to sub-
spaces of (;ép / ((;2;)7” spanned respectively by p and p + 1. This example shows also
that our problem cannot be solved by using only arguments based on the lengthes of
the 7 /p"Z-modules Hl(K T)/p"H; YK, T;).

Another example, due to R. Greenberg, shows that the equivariance of the
morphism 7Ty /p"Ty — T2/p"Ts with respect to G is too weak in general.
Consider two ordinary elliptic curves £; and E» over K, assume that K contains
the coordinates of the p-torsion points E1[p] and E2[p] and that it has finite re-
sidue field. For i = 1,2, let T'; = T,(E;), where T}, denotes the p-adic Tate module.
A result of Coates and Greenberg (cf. [9]) states that Hl(K T;) is equal to the
image of HY(K, T(E;)) — H (K, T;), where E; is the formal group of E; (which has
height 1 by ordinarity). By the hypothesis on K, the reduction 7;/pT; = E;[plis a
two dimensional [)-vector space, trivial as Gg-module, in particular 7y and T are
congruent modulo p. So any isomorphism = 74 /pT1 — T2/pTs not sending the
image of Tp(E'l) /pr(E'l) to Tp(E’z) /pr(E’z) gives a negative answer to our
question.

Nevertheless several positive answers are know in the literature, some of them
are listed in Remark 1.1.4—(1) : the goal of this article is to generalize them as
detailed above.

1.1 — The main result

111 -

We use the notations of the previous section and denote by K, the maximal
absolutely unramified subextension of K, by e := [K : K] and by Gk, the absolute
Galois group of K.

Let n > 1 be an integer, W C Z a subset and Z a 7 /p"’Z-module of finite type
endowed with a continuous action of Gx. We say that Z is crystalline with Hodge-
Tate weights in W if there exists an exact sequence of Z,[Gg]-modules

0—7T —T—7Z—0

where T is a crystalline Z,-representation with Hodge-Tate weights in W.

We denote by Rep,,, (GK) , (resp. Repy, (GK)crls resp. Rep//p,z/(GK) ) the
category of crystalhne Qp—representatlons (resp. Z,-representations, resp
7,/p"Z-representations) with Hodge-Tate weights in W. For semi-stable re-
presentations we use analogous notations. For any integers a < b, we denote by
[a, b] the set of integers 7, such that a <17 < b.

Let denote by Mod('Z/p"7) the category of Z/p"'Z-modules.
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112 -

To address the problem of continuity for the Bloch-Kato finite cohomology we
proceed as follows. First assume p > 3. For every integer 0 < r < p — 2, we con-
struct explicitly a functor

H (K, —):Repy, (G, )y — Mod(Z/p"Z),
endowed with a morphism of functors t3: H } (K, —) — HY(K, —), such that for every
crystalline Z,-representations 7T of Gg, with Hodge-Tate weights in [0, ], we have
the canonical factorisation:

Hp(K.T)/p"H}(K,T)C HY(K,T/p"T)

H (K, T/p"T)

For any crystalline Z,-representation 7' of Gg,, we denote by 7yx 0T 7iyax(T)
the largest Hodge-Tate weight of 7.

The following statement which is proved as Theorem 4.1.6 in section §4.1 con-
stitutes the main result of this article.

THEOREM. Letp > 3 be a prime integer and fix an integer r with 0 < r < p — 2.
We denote by T a crystalline 7., -representation of Gk, with Hodge-Tate weights in
[0,7] and assume e(rymax —1) < p —1. Then for every integer n > 1, H}(K 1)/
p"HHK, T) is isomorphic to H\(K, T /p"T) via .

REMARK 1.1.3.

(1) We point out that if 7., < 1the condition on the ramification index e of K is
empty.

(2) The hypothesis e(rn.« — 1) < p — 1 is necessary, see Proposition 4.2.3.

3) For every r such that r,.,<r<p-2, we have H}”(K, T/p"T) =
H! (K,T/p"T) canonically. It is a consequence of the theorem but actually

Tmax

it follows already by the construction of H’, see Remark 4.1.3.

In particular if e(r — 1) < p — 1, HX(K, —) is a subfunctor of H'(K, —); in this
case set

(1.1.3.1) H{(K,-) = H\(K, ).
The next statement which is proved as Corollary 4.1.12 in section §4.1 states the

hypothesis under which the correspondence 7' /p"T — H }(K 1)/ p’lH}(K , T)is well-
defined and functorial (we have indeed H }(K 1)/ p"H}(K IH=H }.(K ,T/p"T)).
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COROLLARY. Let p > 3 and let Ty and Ts be two crystalline Z,-representations

of Gk, with Hodge-Tate weights in [0,7] C [0,p — 2] and assume e(r —1) <p — L
Then for every morphism (resp. tsomorphism) :T1/p"Ty — To/p"Ts of
7./p" 711Gk, l-modules, there exists a morphism (vesp. isomorphism) 1 of 7./p" 7~
modules making the following diagram commutative.

@

@)

®3)

)

(®)

HY(K.Ty)/p" B} (K. T)) = H'(K, T\ /p"Ty)

lz lHl(K,z,)

Hy(K,Ty)/p"H} (K, To) = H' (K, T /p"T>)
REMARK 1.1.4.
Some cases of Corollary 4.1.12 were already known:

(a) The case where e = 1 and the representations 7'; and T have Hodge-Tate
weights in [0,p — 2]. In this case the result follows from [1, Lemmas 4.4
and 4.5] using Fontaine-Lafaille theory.

(b) Inthe case where the Hodge-Tate weights of 7 and T are in [0, 1], under
the hypothesis (74/p" )% = (T, / p"Tl)GK and p > 3, the result was
proved in [13].

(¢) The case of representations coming from Barsotti-Tate groups have been
treated by Nekovar [18, A.2.6] using flat cohomology; if p > 3 this implies,
by a result of Kisin [16, (2.2.6-7)], the case where representations have
Hodge-Tate weights in [0, 1].

Under the stronger hypothesis er < p — 2 we can prove a more general func-
toriality, see Proposition 4.2.1.

The hypothesis e(r —1) <p —1 is not necessary in Corollary 4.1.12. For
example, assume that k is finite and let T be a crystalline Z,-representation
of rank one and Hodge-Tate weight » > 2. We have H}(K, T)=HYK,T),
with no restrictions on e (cf. [1, Example 3.9]); by Tate duality it follows
H}(K, T)/p”H}(K, T) = HY(K,T/p") and the functoriality is obvious.

If the representations have Hodge Tate weights in [0, 7] C [0, p — 2], but not in
[1,7], then we do not know if the hypothesis e(r — 1) < p — 1 is necessary in
Corollary 4.1.12. In particular, we do not know if Corollary 4.1.12 is true even in
the following particular case: the representations 7 and 7% are irreducible of
rank 2 with Hodge-Tate weights exactly 0 and p — 2, with p > Tand e > 1 (or
p=>5ande > 2).

In Appendix A we deal with the case of characteristic p = 2 which is essentially
independent from the rest of the paper.
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1.2 — Notation and conventions
1.2.1 -

We denote by Oz (resp. Ok) the ring of integers of K (resp. K).

For any ring A, we denote by W(A) the ring of Witt vectors with coefficients in
A.When A = k, we write simply W = W (k). We recall that we have denoted by K
the field of fractions of W and let ¢ denote the arithmetic Frobenius of W (and K),
i.e. the isomorphism lifting the p-power map on k. We set for every n > 0,
W, =W/p"W.

We denote by N the set of integers 7 > 0.

2. Strongly divisible modules

In the following, except for the appendix, we assume p > 2.

2.1 —The ring S

In this section we recall a definition of G. Faltings in [10, §2], see also [5] and [6].

211 -

Let 7 be a uniformizer of K and denote by E(u) its minimal monie polynomial
over K. It is an Eisenstein polynomial with coefficients in W of degree e.

We denote by ev,: W[u] — Ok the W-algebra homomorphism sending u to 7.
Its kernel is generated by E(u). We let S denote the p-adic completion of the di-
vided power hull of W[u] with respect to the ideal ker(ev,), on which we have di-
vided powers compatible with the canonical divided powers of the 1deal pWlu]. The
ring S can be identified to the sub-ring of Q[ ]l of series >, a; — ( 5 such that the
a;’s belong to W, the sequence (a;);>( converges to 0 for ¢ going to +o0o and q(?) is
the quotient of the Euclidean division of 7 by e.

212 -

The ring S is endowed with the following extra structures.

(1) A Frobenius homomorphism ¢:S — S, which is the unique continuous o-
semi-linear morphism sending » to u”.

2) A decreasmg flltratwn (Fﬂ’S)Ze\ on S, deflned as follows: for every 1nteger
i >0, Fil'

We have: for all 0<i<p-—1, pFil'S) C p'S; for such an 1nteger i, put

=p (p|F1ILS'
Finally, we set ¢; = ¢ (E(u)): it is a unit in S.
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213 -

We denote by Qllog = f?é jw(log) (resp. Q= f)}g sw) the module of continuous
logarithmic differential (resp. regular) 1-forms of S over W and d: S — Q' Qllog
the canonical differential. We have Q' = Sdu and Q|,, = Su~'du.

We denote again ¢: Qllog — Qllog the p-semi-linear homomorphism, induced by
the Frobenius on S via the universal property of the differentials forms. It maps
wdu to pu~'du and we put ¢; = p~'¢. The submodule Q' is stable under ¢ and ¢,.
Clearly we have dp = ppd. In the literature, it is also common to introduce the

continuous W-derivation N:S — S sending u to —u.

2.2 — Strongly divisible lattices over S (Following [5] and [17])

Let r be an integer such that 0 <» < p — 2.

221 -

We first define the category ’Mod(S){Og. Its objects are 4-uples
(M,Fil'M, ¢,, V), where:
(1) M is an S-module;
(2) Fil"M is a sub-S-module of M containing (Fil"S)M;
(3) ¢, is a p-semi-linear map ¢,: Fil"M — M, such that for all s in Fil"S and « in
M we have ¢,(sx) = ¢;"0,(8)p,EwW) ©);
4) Vi M — M ®g QL is alogarithmic connection satisfying E(u)V (Fil"M) C

log
Fil'M ®g .Qllog such that the following diagram commutes.

- E(u)V .
i M — T R e 0L
Pr l%@w
M S M @g O}
®s QIog

When there is no risk of confusion, we will simply denote V = V.

The morphisms in this category are defined to be the S-linear maps preserving
the submodule Fil" and commuting with ¢, and V.

We remark that the integer r is fixed in the definition of the category "Mod(S);,,
and thus the datum of Fil"M in the 4-uple (M, Fil"M, ¢,., V) refers to a single sub-
module of M.

If no confusion is arising, we will sometimes denote an object (M, Fil"M, ¢,., V)
only by its underlying module M.

The category ' Mod(S)fOg is Zp-linear. A short sequence 0 — M — M —
M" — 0 of objects in ’Mod(S){"Og is said exact, if the induced sequences
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0—-M —-M-—-M"—0and 0 — Fil'M — Fil'M — Fil'M" — 0 are short exact
sequences of S-modules.

222 -

We denote 'Mod(S)" the full subcategory of ’Mod(S)ﬂ)g of objects whose con-
nection V is regular. In the literature it is common to use the derivation
Ny =Vy(— ui) instead of the connection V: it is called the monodromy op-
erator and the rggularity condition is equivalent to N(M) C uN(M).

2.2.3 — Free objects
We denote Mod(S)" (resp. Mod(S)fog) the full subcategory of 'Mod(S)" (resp.
! Mod(S){"Og) whose objects satisfy:

(1) M is free of finite type as an S-module;
(2) the S-module M /Fil"M has no p-torsion;
(3) the image of ¢, generates M as an S-module.

We call Mod(S)" (resp. Mod(S)ﬂ)g) the category of strongly divisible lattices (resp.
logarithmic strongly divisible lattices) over S of weight r.

2.2.4 — Torsion objects

We denote ModFI(S)" the full subcategory of "Mod(S)" whose objects satisfy:

(1) M is isomorphic to ,.; S/p™ S as an S-module, where [ is a finite set and »;
are positive integers;

(2) the image of ¢, generates M over S.

For every n > 1, we denote ModFI(S/p"S)" the full subcategory of ModFI(S)"
of objects annihilated by p", as S-modules.

2.3 — Functors towards Galois representations

23.1 -

We denote by R the projective limit (H—mOR /pOg, where the transition maps are
given by the absolute Frobenii &+ aP. We denote by A.is the W(R)-algebra of
crystalline periods defined by Fontaine in [11, 2.2.3].
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Let n = (n"),cx be a compatible sequence of p"-roots of 7, i.e. every z be-
longs to K, 79 = 7 and 7V = 7. We denote by [z] € W(R) C Aeys its Teich-
miiller representative, and, for any g in Gg, we put &(g) = g([z])/[z] in Ais.

232 -

We recall the definition of a ring introduced by Kato in [15, § 3], and denoted
afterwards Ag, cf. [2] and [4] for more details.

Let Agis(x) be the divided power hull of the polynomial algebra A.is[x] com-
patible with the canonical divided powers of tlle ideal pAslx]; forj > 0, we denote
by 7;(x) the j-th divided power of . The ring A is the p-adic completion of Aeyis(x).
It is endowed with the following structures:

(1) A filtration: for any integer ¢ > 0,

R +00
Fil' Ay = {Zam(m)

n=0

ty € Aeis, lim a, =0,Yn <i,a, € Fili_"Ams}.
Nn—-+00

We note that for every n > 0, we have Fili’;lst N p”?lst = p"’Fili;lst.
(2) A Frobenius ¢, extending that of A by mapping x to (1 + x)” — 1.

(8) A Gg-action extending the action on A, defined as follow: for any ¢ in Gy,
g@) = e(g)x + &g) — 1.

(4) An S-algebra structure given by the monomorphism S <—>let, U
[z](1 + 2)~ L. It identifies S to (Ae)?  and it is compatible with all the others
structures.

(5) A p-adically continuous connection V: ;lst — Ast ®s Qllog, satisfying V(Aeis) =0
and V(x) = —(1 + 2) @ u 1du.

Remark that for every 0 < < p — 2, the datum (let,Fil’";lst,p"”m
belongs to "Mod(S),, -

Fil’ Ay’ V)

233 -

We denote by T : Mod(S),, — Rep%p(GK)i(z”"], the contravariant functor de-
fined as follows:

o~

T (M) = Homneqcsy,, (M, Ast),

with the Gg-action induced by that on let.
The functor Df.,: Repr(GK)gz’” — Repr(GK)gz”'], sending a ”/,-representa-
tion T to its r-twisted Z,-linear dual Homy, (T, Zp)(fr), is an anti-equivalence of
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categories because, by definition, the objects in Rep; (Gk) 071 are free as Zip-
modules. We denote T'st: Mod(S)j,, — Rep;, (GK)EE "l the covariant functor which is

the composition of 7% with D,
In [5, Conj. 2.2.6-(1)] Breuil conjectured that the functor 7 is an anti-equiva-
lence (*) of categories and this has been proved by T. Liu.

THEOREM 2.3.4. (Theorem 2.3.5 in [17]). For 0<r <p—2 the functor
M — T (M) establishes an anti-equivalence between the category of logarithmic
strongly divisible lattices of weight v and the category of semi-stable 7.,-
representations of Gg with Hodge-Tate weights in [0, 7]

COROLLARY 2.3.5. If M is in Mod(S)", then T (M) is crystalline and the re-
striction T} to Mod(S)" is an equivalence of categories with Rep. 7 (GK)[M

ProoOF. By aresult of Breuil [2] the monodromy operator of Ds(T'5 (M) @, Q)
is the residue at zero of the connection of M ®w Kj: the corollary follows. O

ExampLE 2.3.6. Let 0 < » < p — 2 be an integer.

(1) The datum (S, Fil'S, ¢,,d) is an object of Mod(S)" that we denote shortly
by 1(»).
(2) The datum (S, S, ¢, d) is an object of Mod(S)" that we denote by 1.

We have T (1) = T%(1() = 7, and T (1() = T%(1) = Z,,(1).

2.3.7 -

We denote 21;0 = ﬁst ®w (Ko/W) and endow it with the induced structures. It is
an object of ’Mod(S)fOg in a straightforward way. We consider the contravariant
functor T'¢™": ModFI1(S/p"S)" — Rep,, -, (Gk) defined by

T;f*(M) = H0m1M0d<S>ﬁ)g (M,Agf) .
We denote Dy,.: Rep,, . (Gx) — Repy, i, (Gi) the Pontryagin duality twisted by
7, which is the functor sending 7" to Hom,, (T, Qp/ ,’Zp)(r). It is an anti-equivalence
of categories and we have D{ (T) = Hom, 17, (T, Z/p"Z) (r) because T is anni-
hilated by p". We set

tor

T (M) = D}, (T (M),

tor

(*) The notations for T; and T are exchanged in [17].
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By [4, 2.3.1.1-2.3.1.3] the functor 75" is exact and so the functor 7% is also
exact. In general the functor 7' is not full, but if er < p — 2 it is fully faithful, cf.
[8, Théoreme 1.0.4].

For every integer n > 1, we have the following commutative diagram of func-
tors

*

T 7 Dhe
Ty : Mod(S)” —— = Repy, (Gx)lp) ———

cris

23.7.1) l l
o'o) n T TSQCC’* DCOY
Tge s ModFI(S/p"S)" —— Repy, jpnz (G ) Repy,/nz(Gk)

Repy, (Gr)l

cris

where the vertical functors are reduction modulo p”: indeed by [7, 1.2.2] we have

23.7.2) 0 — T5(M) 2 T (M) — T (M Jp" M) — 0,

which gives the commutativity of the left square; the commutativity of the right
square is obvious because the representations in Rep*/,,)(GK)L?a}Z] are free /,-mod-
ules of finite type.

3. Extensions of crystalline representations
3.1 — The Fontaine-Lafaille theory

We recall some definitions and results of Fontaine and Lafaille, see [12], [21, §2]
and [1, §4].
Let 0 <7 < p — 2 be an integer.

3.1.1 -

Let MFE,(‘);’”] be the category whose objects (D, Fil'D, ¢,, i € 7) are the following
data:
(1) a W-module of finite type D;
(2) adecreasing filtration (FiliD)iG% by direct summands, satisfying Fil'''D =0
and Fil’D = D;
) for all i, a o-linear map ¢;: Fil'D — D, such that @il gyt = P and

> ¢, (Fil'D) = D.
=0

The morphisms of MF[V?;“”] are W-linear maps preserving the filtrations and
commuting with the ¢,’s, for all <.
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3.1.2 -

We say that an object D of MF[0 " is a strongly divisible lattice if it is free as W-
module. We denote MFV(‘),?Fee the full subcategory of MF[0 "1 of strongly divisible

lattices. We denote MF [0, 7'] the full subcategory of MFy; 011 Whose objects are finite
lenght W,-modules.

3.1.3 -

The Fontaine-Lafaille theory gives a commutative diagram of functors

Tris
NIFEIJ/?]ree + RepZ (GKO)('HJ

||

~
00, *

T
MF%OV:] cris [0,7]

RepZ/p"Z(GKO)crls

where the vertical functors are reduction modulo p"; the functors 77, and T, ar
(exact) equivalences of categories defined by

T HomW,Fﬂ’,(p, (_aAcris) and T, = HOInW.Fil’.(p (_7Acris/pnAcris)§

cris Ccris

and the quasi-inverses of 7%, and T, are given respectively by

cris Cris

D Homzp[GKo] (—,Acrjs) and D27 = Hom%/pwlz[GKO] (—,Acris/pnAcris).

We will need also covariant versions of these equivalences, defined by composing

with Dj,,, or Dy, respectively:

Teris := D?ree 0 Tois: D = Fil'(Awis @w D)~ Id

cris”

T = D0 0 T2 D v Fil (Agris /p" Ais ©w, D)1,
Deyig = Dcms o Dzree: T — (Aeris @w T(— V))GKOa

Dgis =Dy tor T = (Aeris /" Acris @w, T(— ""))GKO

Cris Cris

These covariant equivalences are compatible with reduction modulo p” as in the
diagram above for contravariant ones. In particular we will need the following: let 7'
be in Rep;, (GKO)[0 "1 To the short exact sequence 0 — T Zro T/p"T — 0 we
associate the sequence of filtered modules

(3.1.3.1) 0 — Deris(T) 5 Degis(T) — DT /p"T) — 0

Cris
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which is exact in the sense that, for every ¢ € 7, the induced sequence

0 — Fil' Degis(T) 25 Fil' Doyis(T) — Fi' DX (T/p"T) — 0

Cris

is a short exact sequence of W-modules, cf. [21, 2.2.3.1].

REMARK 3.1.4. The covariant functors Dess and DSy depend on the choice of 7,

unlike their controvariant variants D7 ;. and D_;". When we need to be precise we

shall denote them by DU := Dy 0 D, and Dyl := Dy 0 D]

cris cris eris cris tor*

tegers 0 <7 <7, <p-—2, and any representatlon T € Repy, (Gk,) 0“], the
strongly divisible lattices D'%"/(T) and D'/(T) have the same underlylng W-

Cris Cris
module but have filtrations (and Frobenii) shifted as follow: for all : € 7,

For any in-

Fil'(DY2 )y = Fil* " 2D )(7))  and (pi[o’”]:(pl[-g_’gl]._m

Ccris Ccris

In particular the breaks of the filtration of D'%: ’ZJ(T) are between r» — r; and 3. The

Cris
same formula is true for D;‘fls

3.2 — Relation with strongly divisible lattices over S
3.2.1 -

Let (D, Fil'D, ¢;,i € Z) be an object of MF[V?;T]. We define an object
M(D) = (D @w S, FiI'M(D), ¢,, V)
of "'Mod(S)" as follow:

(32.1.1) Fil'M(D) = > Fil'D @w Fil''S ¢ D @ S,
i=0
0, =00 @w ¢,_; and V = Idp ®@ d, i.e. V(m ®@w «) = m @w d(x). By using the
fact that S belongs to 'Mod(S)", it is a straightforward exercise to verify that M(D)
belongs to 'Mod(S)"; it is also clear that D — M(D) is functorial.
By the definitions of the categories MFE%T], MFE?,‘:], Mod(S)" and ModFI(S/p"S)",
we can prove that:

— if D is free over W, then M(D) belongs to Mod(S)";

— if D belongs to MF}"), then M(D) belongs to ModFI(S/p"S)’;
— we have M(D) /p"M(D) = M(D/p"D).

The only non trivial property to check is that ¢, (Fil"M(D)) generates M(D) as an S-
module. Using (3.2.1.1), it is enough to check that every element of M (D) = D ®w S of
the formv @w lisintheimageof }";  ¢; ®w ¢,_;. By hypothesisv = >~ ¢;(fi), for
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some f; € Fil'D. Put m; = f; @w Eu)"" € FiI'D @ Fil"'S. Since ¢, ;(Ew)" ") =
¢t~ in S we have

Z v m)e; 0 = Z 0i(f) @w o, (B@) e "0 = Z pi(f) @w 1 =v @ 1.

=0 =0 =0

ProPoOSITION 3.2.2. (1) Let D be in MF%?,Wfree We have a natural isomorphism
of crystalline Z,y-representations of Gk

T ((MWD)) = (Teris(D)) G -

(2) Let D be in MFE,?,Z] We have a natural isomorphism of crystalline 7./p" 7.
representations of Gk

T WMD) = (T gDy -

ProOF. The proofs of (1) and (2) are analogue: let us prove (2) and leave (1) to the
reader. By composing with the dual functor Dy, = Homy, (—,7/p"7)(r) we are
reduced to prove the analogous statements on contravariant functors. Since
Acris /D" Aris = (Ag/p"Ag)" ", cf. [3, Lemme 8.1.2.3], we have

T2 (D) = Homw pir (D, Acris /D" Acxis)
= Homy py , (D, Agt/p"As)" ")
= Homy ri o v (D, As/p"Ast)
= Homg i v (D ®@w S Ag /p”?lst)
€ Homiyoqesy;, (D ®w S Ay /p"Ag) = T2 MD)).

Let us _prove that the inclusion in the last line is an equality. Let f: D Qw S —
flst/p’ Ay be in TH(M(D)). A priori we have f (Fi'M(D)) C FllZ(ASt /p”Aqt) and
fo; = ¢; f only for the last step of the filtration: ¢ = r; let us prove this is true
for any i. Let d be in Fil'D, for i € [0,7]. For every « € FiI'"'S and d € D, we
have of(d®1) =f(d® a) € Fil'(Ay/p"Ag) = Fil' Ay /p"Fil' Ag,. In particular
for o = E(w)" ™!, we get

E((z)(1 + ) Y f(d ® 1) € Fil' Ay /p"Fil" Ag.

We can re-write it as E’([g])’”’if(d ® 1) + af, with f € let. Since f(d ® 1) belongs to
Acris /D" Ais, We get E([n])’"fif (d®1) € Fil"(Awis /p"Adis)- Considering that E([z]) is a
generator of ker (0: W(R) — O, ), we conclude thatf(d @ 1) belongs to Fil (A s /p " A eris)-
Let us check the commutatlon of  with ¢;, for i € [0, 7]. For every « € Fil"~ S
and d € Fil'D, we have

Pr—i@f (p;(d) ® 1) = flp;(d) ® ¢,_i(0)) = f(p,(d ® 0)) = ,(f(d @ )
=9 (af([d2 1) = p@)e,(f(d®1) =p,_;@e;(f(d®1)).
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By taking o = E(u)’fi, we get ¢,_; (o) = c{’i, which is invertible; thus we have, for all
i €[0,7]and d € FilI'D, f(p;(d ® 1)) = ¢;(f(d ® 1)). This finishes the proof. O

3.3 — A double complex computing extensions

The goal of this subsection is to compute the groups of extensions of strongly
divisible modules over S by using explicit complexes.

3.3.1 -

For (M,Fil'M,p,,V) in 'Mod(S)" and 0<r<p—-2 we set Fil"'M =
{m € M|E(wym € Fi'M} and define ¢, ;:Fil"'M — M by putting, for
m e Fil" ' M,

9,_1(m) = ¢ o, (E(w)m),

where c¢; = ¢;(E(w)), cf. (2.1.2). Analogously, we define p: M — M by ¢(m) =
¢ o, (E(w) ' m).
We will need later the following.

LEMMA 3.3..2. 1) Let f €S and j > 1 be an integer. If E(w)f € Fil'S then
f e FiV 18,

(2) Letf € S/p"Sand1 <j <p—1beaninteger. If E(w)f € Fil/(S /p"8), then
f e FiV 1S /p"S).

(3) Let D be either in MFY)  or in MFY"™. Set M = M(D). If v = 0 we have
Fil'M = M and 9_1 = po; if v > 1 we have

r—1
Fil''M =Y Fil'D oy Fil" ' 'S c Dew S
=0

and g, 1 =Yg @9, Fil' M — M.

(4) Let 0 — Dy — Dy — D3 — 0 be a short exact sequence in MFE%T]. Then the
sequence 0 — Fil" 1M(Dy) — Fil" *M(D,) — Fil" *M(D3) — 0 induced by
Sfunctoriality is exact.

Proor. Letusprove (1) and (2). Everyelement f € S (resp.S/p") can be written
as f = Zizo ai(u)E(u)[i], where E(u)[i] denotes the divided power of E(u) (i.e.
i!E(u)m = E(u)i) and a;(u) are polynomials in W[u] of degree smaller than e, con-
verging to zero (for ¢ going to infinity). We have E(u)f = Zizo a;(u)(1 + DE @),
If E(u)f belongs to Fil'S (resp. Fil/(S/p"S)) then a;(u)(i + 1) = 0fori < j — 1, which
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implies a;(u) = 0 (when f € S/p"S, i+ 1 <j < p — 1 by hypothesis, so that i + 1 is
invertible).

Let us prove (3). The statement for » = 0 is clear so let us assume » > 1. Let
assume first D in MFI/(‘)/Tf]ree We recall that D is filtered free, and let (e;);<;<4 be a
base adapted to the filtration; i.e. for every i € [0, 7], (¢), <j<rkFilD is a base of Fil'D
(cf. [21, 2.2.2]). Put

r—1
“Fil'"'M =) Fil'D @y FiI'" 'S € D @w S.
=0

The inclusion *Fil' 'M C Fil""'M is obvious so let us prove the converse. Let
x € Fil' 1M, we may assume x = ¢, ® f, for some f € S and 1 < s < d. By hypoth-
esis we have E(u) = e, ® Ew)f € Fil'(M) = Y}, Fil'D @y Fil" 'S C D @y S.
We can write

E(u)x = €5 Qw E(u)f = Z m; Qw gi (mi c FlllD’ gi € Fl]riZS)
r rkFil'D

B Z Z (67 Ow h{j,i) (hj,i c Fﬂr—qs)

@w Y hji.

=1 0<i<r
rk Fill D>}

I
~
(=
o

Therefore E(u)f = > i hsi, where the sum is taken over all 7 € [0,7] such that
rkFil'D > s. If we denote by 1 the maximum of the integers i such that rk Fil'D > s
(or equivalently e; € Fil'D), then E(u)f belongs to FiI"™™™S. By (1) we get
feFil™ ™ 'Sandx = e, @ f € Fil"D @ Fil" ™S C *Fil'" ' M.
To finish the proof of (3) for D € MF&,’éee, let us compute the Frobenius:
9, 1(@) = ¢ o, (BEww) = ;' p,(e; © BEw)f) =
Cfl(ﬂm(el) ® gor,m(E'(u)f) = ¢m(68) & (prflfm(f)-

The proof of (3) for D € MF[0 "lis similar because D admits a lifting De MFV(‘),’flee' SO

M =M®D)=DewS /p"S and we use (2) instead of (1). Finally (4) follows from (3)
and the fact that for all 2,

0 — Fil'D; — Fil'Ds — Fil'D; — 0
is exact (cf. [21, 2.2.3.1]). O

DEFINITION 8.3.3. For (M, Fil"M, ¢,, V) in'Mod(S)", we denote Fil"C**(M) the
double complex of Z,-modules



256 Adrian Iovita - Adriano Marmora

Fil"C**(M):

0—=FiI'M —Y S FilI'" "M o5 Q' —=0

@r—1Id (pr—1®@p1)—1d

0 M v M@sQ — =0

0 0

where the module Fil"M is the (0, 0)-entry of the complex, and the square is com-
mutative by (2.2.1)-(4) and the definition of ¢,_;, cf. (3.3.1). The simple complex
attached to Fil"C** (M) is

20 1
Fil"C*(M) : 0—Fil'M 5 Mo Fil" M o5 QH5M @5 Q1 — 0,
where 1°(m) = (p,(m) — m, Vy(m)) and for a € M, w € Fil' M @3 @',
M, 0) = V@) + o — ¢, 1 @ ¢y (w).
By construction H'(Fil"C*(M)) = 0 for i # 0,1,2 and
HO(Fil"C*(M)) = Hom yoqesy (1, M).
ProposITION 3.3.4. We have the following functorial isomorphisms:
(1) if M is in ModFI(S/p"S)", then
H(Fil'C* (M) 2= Extygapyes sy (1/P" 1, M) ;

(2) if M is in Mod(S)", then H'(Fil"C*(M)) = Extll\,lod(s)r(ﬂ,M );
where Ext! denotes the group of Yoneda extensions.

Proor. The proofs of (1) and (2) are analogous. We will prove them by com-
puting explicitly the group of Yoneda extensions and showing that it coincides with
H'(Fil"C*(M)). An alternative approach would have been to work in the bigger
category 'Mod(S)" and prove that H'(Fil"C*(-)) is an effacable functor. The problem
is that the category 'Mod(S)" is not abelian in general and we do not know if there
are enough injectives.

The proof takes the rest of this section. Let us start by fixing a convention in
order to treat cases (1) and (2) at the same time: for n € N U {0}, we set

1/p"l  if mel; S/p"S ifnelN;
ln = Sn =

1 if 7 = oc; S if n = oc;

M ModFI(S/p"S)" if n € N;
" Mod(S) if % = oo.
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Let M be in Mod,,, for some 7 € N U {oc}, we denote respectively by ¢p¥ and
Vs the Frobenius and the connection of M.
Let [X] be a class in Ethl\/Iodn(lnﬂ M), represented by a couple of extensions

0 M X Shn 0;

0——FlI'"M ——FilI"X ——= S, ——0.

These extensions clearly split as extensions of S,-modules (indeed if n € I,
p"X = 0 by hypothesis); therefore we can write

=M®8S,,Fi'M ® S, pX, Vy).

Let us describe more precisely the Frobenius ¢X: Fil'M,, ® S, — M @ S,, and the
regular connection Vx: M & S,, — (M & S,,) ®s, Sndu.
We have ng(O 1) = (@, 1), for a unique @ € M. For all (m,s) € FiI'M & S,,, we

get
oX(m, ) = (M (m), 0) + p(s)pX(0,1) = (p¥(m),0) + p(s)(a, 1)

= (Y (m) + p(s)a, p(s)).

(3.34.1)

We have Vx(0,1) = (g,0) ® du, for a unique g € M. For all s € S,,, we get
Vx(0,s) =sVx(0,1) 4+ (0,1) ® ds = s(g,0) ® du + (0, du) ® du

= (59, %) @ du;
thus, for all (m,s) e M ® S,,, we have

Vx(m,s) = (Vy(L)(m) + sg, %) @ du.

The elements a, g satisfy some compatibility conditions corresponding to those
satisfied by (pff and Vy (cf. 2.2.1, 2.2.3 and 2.2.4): let us write them explicitly.
Condition 2.2.1-(3): for all « in Fil"S and x in X we have (pf (o) =
;"9 (X (Ew) ). For x = (m, s), by using (3.3.4.1), we get
o1 o (X (Ew) 1) =
;"0 - (@M E@)'m) + p(Ew) s)a, p(Ew)'s)) =
(e "0, @M (EW)'m) + ¢ "p,(@)p(EW) s)a, ¢;" 9, (0)pE@)'s)).

By using ¢p(Em)") = p(Em))" = (pp;(E()))" = p”cj, this is equal to
@M (@m) + ¢ (Wp"cip(s)a, plas)) =

M (om) + ¢, (@p"p(s)a, p(as)) =
(oM (am) + p(as)a, p(as)) = g2 (ax),

which gives no-condition on (a, g).
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Condition 2.2.1-(4): the regular connection Vy:X — X ®g¢ Q' satisfies the
Griffith transversality
Ew)Vx(Fil'X) C FiI'X 0g Q!

and the following diagram commutes.

Fil' X X
E(U)VX\L lﬁvx
X
Fil' X @ 0l — 2% X o0l

The first condition explicitly gives E(u)Vx(0,1) = (E(u)g,0) ® du € Fi'X ® ol
which is

(3.34.2) geFilI' M,

cf. 3.3.1 for the definition of Fil' ' M.

For the second one let us compute ¢F® p,(E@)Vx(0,1)=9¢*®
91 (E(w)g,0) @ du) = (pM(Ew)g),0) @ py(du) and  ¢;Vx(pX(0,1)) = ¢;Vx(a,1) =
c1(Vy(a) + g ® du, 0). Thus the condition is

Vi) = cr oM (Ew)g) @ ¢y(du) — g @ du
or equivalently
(3.3.4.3) V(@) = ), @ p)(g © du) — g @ du.

The last requirement is that the image of pX generates X, which is always fulfilled
because ¢pM generates M and ¢X(0,1) = (a, 1).

We have constructed a surjective map ZN(Fil"C*(M)) — Extllvlodn(lmM ),
(a,9 @ du) — [X]. The extension X is split if and only if there exists m € Fil"M,

such that m — ¢,.(m) = @ and Vy(—m) = g ® du. Indeed, the extension
O—-M—-X—1,—0

is split if and only there is a section : 1,, — X. Giving such a section is equivalent to
give 3(1) = (m, 1), with m satisfying the conditions above. Therefore, the map
(a,9) — [X]induces a bijection of set

H'\(Fil'C*(M) = Extlyoq (1/p"1, M)

To finish we have to prove that this map is a homorphism of groups. Let [X]
and [X®] be extensions associated to couples (a'?, g'V) and (a'?, g®) respectively.
We want to show that the element (aV + a®, gV + ¢®) corresponds to an exten-
sion representing the Baer sum [XD] + [X®]. This verification is straightforward:
it works essentially because ¢ and Vj; are additive. We leave the details to the
reader. O
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QUESTION 3.3.5. Are there functorial isomorphisms:
(1) for M in ModFI(S/p"S)", H*(Fil"C*(M)) = ExtMOdFI(S/an)y(Tl/p” 1, M)?
) for M in Mod(S)", H*(Fil"C*(M)) = ExtMod(S>,(1,M).

4. Proof of the main result
4.1 - Construction of H:(K, —)

LemMmaA 4.1.1. Let T be a crystalline Z,-representation of Gg. The inclusion
H }.(K .T) € H'(K, T) induces, for every integer n > 1, an injection

4.1.1.1) Hy(K,T)/p"Hy(K, T) — H'K,T/p"T).
PrOOF. The map H }(K ,T)/p"H }(K ,T) — HY (K, T/p"T) factors through
H{(K,T)/p"HN(K,T) — H'(K,T)/p"H"K,T) — H(K, T/p"T).

The second morphlsm is injective since it is part of the long exact sequence asso-
ciated to0 — 75 T — T/p"T — 0.
To show that the first one is injective we have to prove that H 1(K N
p"HY (K, T) C p"Hj L(K,T). Let h be a class of a cocycle in H 1(K TN p”Hl(K T).
By definition the image of h in HYK,T® 7, Beris) 18 trivial and since
HY K, T® 7, Bais) is a (Qp-vector space the same is true for the image of 2/p". This
exactly means that belongs to p"’H}(K , ). O

DEFINITION 4.1.2. For every integers n > 1,7 € {0,1,2} and 0 <r < p — 2 we
define functors

H(K,—):Rep,, (Gk,) ! — Mod(Z,),

H(K, -):Rep,, i (Gr,)' " — Mod(Z/p"2),

cr, ys

by putting, for every T in Rep,, (GKO) and T in Rep,, 7, (GKO)

cryq

HU(K,T) := H(Fi'C*M(Dais(T))),  HUK,T) := H'(Fil'C*(M D3, (D)),

Cris

where M(—), Duis(—) and D2 (—) are the functors defined in 3.1.3 and 3.2.1, and

Cris

Mod(Z,) denotes the category of Z,-modules.

REMARK 4.1.3. For every 7., <7 <p —2wehave H.(K,T) = Hﬁ,m (K,T)and
H.(K,T)=H. (K,T).Indeed by Remark 3.1.4, we have
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Fil"M(DY(T)) = Fil' (DT @w S)

cris cris

cris

- Z Fil/ (D7) @ Fil' 7S =
Jj=0

Cris

;
=) R0 ) @ FilTYS =
j=0

Tmax

= Y FiV@YIT) @y Fil 7S =

Ccris

J= max—""
Taax ,

— Z Fil’( D‘[z(r)é:mx](T)) QW Fil'm=J8g —
=0

= Fil"M@DYNT)),

cris
and so H\(K, T) = H/(Fil"C*(M (D" (T)))) = HI(Fil"=>M(D"*(T))) = H!

i cris cris Tmax (K7 T)
The case of T is the same.

ProPOSITION 4.1.4. Let T be in RepZP(GKO)E(j;S], with 0 < r < p — 2. The short

exact sequence P
0-T—T->T/p"T —0

nduces two long exact sequences of abelian groups connected as in the commutative
diagram below.

57(‘1) s
HNK,T) —— H}K,T) " H'(K,T)

pn . pn . l I)n .

HYK.T) —= > HN(K,T)— H'(K,T)

s EH)
HYK.T/p"T) = HY(K.T/p"T)
4.14.1) 5@ 5@
HY(K,T) H%(K,T)
p" p
HX(K,T) H2(K,T)
HY(K,T/p"T) H2(K,T/p"T)
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Proor. The right vertical sequence is the long exact sequence of continous Galois

cohomology. Set T = T/p"T, D = Deys(T), D = Dgfjs(T) M = M(Deyys(T)) and
M=M (Dgfjs(T)) We have a short exact sequence 0 — D 7, D —D —0,cf. (3.1.3.1),

and by applying M (—) another short exact sequence 0 — M 2o M—M — 0,cf.32.1.
Therefore, by using Lemma 3.3.2, we have a short exact sequence of complexes

(4.1.4.2) 0 — Fil"C*(M) Lt Fil"C*(M)—Fil"C*(M) — 0.

The left vertical sequence in (4.1.4.1) is the long exact sequence of cohomology as-
sociated to the short exact sequence (4.1.4.2).
To construet t°: HA(K, T) — HY(K, T /p"T) we proceed as follow.

H\(K,T) = H'(Fil'C*(M))

= Ethl\/[OdFI(S/p"S)r(T M) (by PI'Op. 334)
—>Ext}{ep// \ (Gx) [353(’7/]0 "7, T;f(M)) (by exactness of Ty, cf. 2.3.7)
— Ext! Rep// (G [o,r](Z/p "7, T|GK) (by Prop. 3.2.2)

< EXtRep// 7 (G ) (7/p 4 T\GK)
— H'(K,T/p"T)

To construct the morphism ¢y, we proceed similarly.

HNK,T) = H\(Fil"C*(M))

= Extyoqesy (1, M) (by Prop. 3.3.4)
= Extp, o (G0 Zps T M) (by Cor. 2.3.5)
_ Ext;ep ©x) Iozl(z,,,TK;K) (by Prop. 3.2.2)
= H}(K.T) (by definition)

C Exthep, (6)(Zp: Tlo) = H'(K,T)  (by definition)

We get a morphism of Z-modules ty: H (K, T) — H'(K, T) with image H }.(K ).
Finally the commutativity for the upper left square in the diagram follows from

the additivity of T, for the upper right square is evident and for the lower square

it follows from the the commutativity of the diagram (2.3.7.1). O

COROLLARY 4.1.5. The injection Hl(K T)/p”Hl(K T) — HYK,T/p"T),
¢f. 4.1.1.1), factors canonically through t3°: Hl(K T/p"T) — HYK,T/p"T). We
denote by

& H}(K, T)/p”H}(K T)— H.K,T/p"T)

the monomorphism obtained.
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PrOOF. The morphism ¢ is induced by the composition 7V o ¢3!, The factor-
isation through ¢ follows by the commutativity of the diagram (4.1.4.1). O

We now state and prove the main result of this article.

THEOREM 4.1.6. Let p > 3 be a prime integer and we fix an integer v with
0 <7 <p —2 Weconsider a crystalline Z,-representations of Gg,, T, with Hodge-
Tate weights in [0, 7] and assume e(ry.. — 1) < p — 1. Then for every integern > 1,
H}(K, T)/p“Hfl(K, T) is isomorphic to H(K, T /p"T) via e.

Proor. Let T be as in Theorem 4.1.6. To show that &: H}.(K 1) /p"H}.(K 1) —
HY(K,T/p"T)is an isomorphism we have to prove that 7" in the diagram (4.1.4.1) is
surjective. It is clear that if H2(K, T) = 0 (or more generally if H%(K, T) had not p-
torsion) then 7" would be surjective. We will prove below that H2(K,T) = 0ife = 1
orr < 1(cf. Remark 4.1.11) but in general this does not seem to be true. What we do
instead is:

(1) we prove that if HZT(K, T/p"T) =0 then nﬁ}) is surjective, see Proposition
4.1.7;

(2) we prove Hf(K ,T/p"T) =0 under the hypothesis e(r,.x(T) —1) <p—1,
see Proposition 4.1.10.

PROPOSITION 4.1.7. Let T bein Rep,, (Gx, )[gy] with r<p—2. IFH2(K, T /p"T)=0
then
D HYK, T) — H\(K, T /p"T)

1S surjective.

ProOF. Set M = M(Deis(T)) and M = M /p"M. It is enough to show that the
reduction mod p” map ZL(Fil"C*(M)) — Z'(Fil"C*(M)) on 1-cocycles is surjective.
Let @ € M and 7 € Fil" 'M ® Q' be such that

V(@) = ¥4 (),
where ¥3;(7) = ((pf?l ® @) — 7. Let ap € M, (resp. y, € Fil' 'M @ Q') be any
lifting of a (resp. ). We have Vy(ao) — Pu(yy) = p"&y, for some & € M ® oL
Denote by &, the class of ¢, in M ® Q. Since H2(K, T/p"T) = 0, there exist z; € M
and @; € Fil"'M ® Q', such that
V@) — V@) = =&

Take any lifting z; € M (resp. w; € FiI' 'M @ QY of 7 (resp. @;) and set
a1 = ao+p"z1 and y; = yy + p"w1. We have Vy(z1) — Pylwr) = =& + p"&, for
some & € M ® Q' and

Vu(a) — Pu(yy) = p'é — p'éy + p'éy = p*'és.
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Since M and Fil""'M @ Q' are p-adically complete and separated, it is clear that we
can finish by induction. O

418 -

Let us introduce some notations on the ring S/pS. We have E(u) =u° mod p.
For any integersj > 0 and 0 < 6 < ¢ — 1 we denote by u%+9) the e- partial divided
power of u (it satisfies jlul¥*9) = y%+%). We set Qs/ps =S/pS ®s Qf = S/deu
The canonical differential d:S — Q composed with the projection Qf — Q% IpS
factors through a derivation S/pS — .QS »s that we denote still by d. For any
f€8/pS we will write df = du(f) ® du.

LeEMMA 4.1.9.  Let f:= ou'9t) be in S/pS, with j >0, 0<5<e—1 and
o € k*. Then f is integrable in S/pS, i.e. there is g € S/pS such that 2 @ =fif
and only if:

— for 0 # e — 1, p does not divide e¢j + 0 + 1;
— for 0 = e —1, p does not divide e.

Proor. Itisobvious that the conditions are sufficient. Indeed if 6 # ¢ — 1 and p
does not divide ¢j + 0 + 1, a primitive of f is %79 ***;whend = ¢ — Landp fe,
a primitive is 2201,

The conditions of the lemma are also necessary because if they are not satisfied,
we have L (u@++D) = (. O

PrOPOSITION 4.1.10. Let T be in Rep%p(GKO)[c?j;s], with 0 < r < p — 2. For every
n > 1, the 7./p"7Z-module 1’-1%(1{7 T/p"T) is of finite type and if e(rn.x(T) —1) <
p —1, then H2K,T/p"T) = 0

Proor. Thanks to Remark 4.1.3 we may assume r = 7, (7). The n =1 case
implies the case n > 2 by induction on »n and dévissage on the exact sequence

0— pnT/p'rHlT N T/pn+1T N T/pnT 0.

Let us compute H2(K,T/pT). Set T = T/pT, D = Duis(T) and D = D (T) =

Ccris

D/pD, cf. 3.1.3. By construction the smallest jump in the filtration Fil'D is
ruin(D) = 0 and the biggest jump is 1y (D) = v — ru(T), where 7y, (T) is the
smallest Hodge-Tate weight of 7. Put M := M(D)/pM(D) € ModFI(S/pS)" and
V=¥ = ((p% 1 ® ¢y) — Id. The idea is to show first that

C := Coker(¥: Fil' 'M g Q' — M @5 Q")

is a finite dimensional IF,-vector space, which implies of course that H%(K, T /pT) is



264 Adrian Iovita - Adriano Marmora

also finite. Then, we show that, under the hypothesis e(» — 1) < p — 1, every ele-
ment in this cokernel C is in the image of V3; (see the diagram below), which means
HXK,T/pT) = 0.

Fil'M ——— > Fil" "M ¢ Q!

l%_ld l\P:(%«—@w)Id
M kLl M@S Ol
_ i _ Var l
M/ (¢, —1d)(Fil"M) - C H?(K,T/pT)

In the particular case » <1, the cokernel C is zero. Indeed, in this case,
Fil"'M = M so that the operator ¢, ; ® ¢;: M © Q' — M © Q' can be iterated.
The divided Frobenius ¢,: @' — Q' is nilpotent:

m__ m__ p-1
o (d) = w" L = [ . 1]!@(1@“
therefore ¢,_; ® ¢, is also nilpotent, ¥ is invertible and C is zero.
For the rest of the proof we suppose » > 2. Let us prove

(4.1.10.1) dimy, C < e(r — 1) dimy, (T/pT).

We write
M @5 Q' =D @w S/pS @ Sdu.

Any y in M ®g @' is a finite sum of elements of the form v ® u'9* & du, where
ve€D,j>0and0 < J < e— 1. Wewant to find conditions such that y belongs to the
image of . It is enough to treat the case y = v ® 99 @ du, and v # 0. Let s be the
weight such that v € Fil*D\Fil*"'D; then y belongs to Fil" M ®g Q' if and only if
j>r—1-s.
We compute
@1 @ )0 = 0,(0) @ 0,1 W) @ uP~1du,

=0 ®1® wr,l,s(l‘?fé)upfldu

p(ej+0) 1
uP~du

=9,V ®1®

j!prflfs

[P(@.H(i)} !
= ,(0) @ uPIH) @ L d gy,

]!prflfs
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Since [@} > pj, we have

ej+0
v ) SR [ /L N S S U S
p j!pr—l—s = j!pr—l—s _]0—1 Py Tpi J % ’

where, for every m, o,, denotes the sum of p-adic digits of m. Clearly, we have

oy = gj and so [p(ejw)}'
v[L2L ) si—e—1-59).
j!prflfs

By hypothesis s > 7,,;,(D) = 0; thus if j > » then ¢,_; ® p;(») =0, and ¥(— ) = .
If j=7r—1 then (p,_; ® ¢;)(») belongs to Fil''M g Q' and the same kind of
computation shows that (p,_; ® (pl)z(y) =0. Thus Y(—y—(p,_; @ p1)(») =7. In
conclusion the element y = v ® u{9*% ® du belongs to the image of ¥ for every
j > r —1 and the inequality (4.1.10.1) follows.

To prove H2(K, T/pT) = 0 it is enough to show that every y = v ® %+ @ du
inM @ Q' withv € D,j <(r—2)and 0 < < e —1,is in the image of Vi Recall
that every v € D is a horizontal section (by definition of V3;) and e is coprime with p
(because of » > 2 and e(r — 1) < p — 1). By Lemma 4.1.9 we may assume moreover
that 0 < d <e—2andej+ J+ 1 = pm for some integer m > 1. We have

pm=¢+5+1<e(r—-2)+6+1<(p—-1—-e+5+1<p-—2,

which shows that there are no such elements. O

REMARK 4.1.11. It is clear by the proof of Proposition 4.1.10 that if e =1 or
r <1, then HE(K, T) =0. Indeed, if e =1, every element in S is integrable,
and so Vy is surjective. If » <1, then Fil' M = M, which implies that
¥y =0, 1 ®¢; — 1d is an isomorphism: the series "% (p,_; ® p)! converges
to an inverse of ¥j;. This was the idea of the proof in [13]. We do not know if
under the hypothesis of Proposition 4.1.10, we have H%K,T) = 0 or not.

End of the proof of Theorem 4.1.6. O

COROLLARY 4.1.12. Let p >3 and let Ty and Ts be two crystalline Z,-
representations of Gg, with Hodge-Tate weights in [0,7] C [0,p — 2] and assume
e(r—1) <p—1 Then for every morphism (resp. isomorphism) v:Ty/p"T1 —
T2/p"Ts of 7./p" 71Gk,1-modules, there exists a morphism (vesp. isomorphism) i
of 7./]p"Z-modules making the following diagram commutative.

H}(K7 Tl)/p"H}(K, T\)“—— HY(K,T,/p"Ty)
(4.1.12.1) lz iHl(K,L)
H}(K7 Tg)/p”H}(K, To)— HY (K, Ty /p"Ty)
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Proor. By the constructions above (cf. (4.1.4.1) and Corollary 4.1.5) we have the
following commutative diagram

HY(K,T) [ HY (K, Th) —2= HYK, T3 /p"Ty) — (K, T [p"Th)
iHi(Kw) lHl(K,L)
HY(K, Ty) [p"H} (K, Ty) —2 HA(K, Ty /p"Ty) —> H'(K,Ty/p"T)

where ¢ and & are isomorphisms by Theorem 4.1.6. Set i=¢;' o HX(K,)og;. O

4.2 — Some complements

Let us finish this section with a variant of Corollary 4.1.12 and some ex-
amples.

ProrosITION 4.2.1. Let T and T be two crystalline Z,-representations of Gg,
with Hodge-Tate weights in [0,7] C [0,p — 2] and assume er < p — 2. Then for
every morphism (resp. isomorphism) 1: T1/p"T1 — To/p"Ts of 7./p" ZIGk]-mod-
ules, there exists a morphism (resp. isomorphism) iof Z./p"Z-modules making the
Sfollowing diagram commutative.

H}(K, Tl)/p"H}(K, T\)—— HY(K,T,/p"T})
4.21.1) lz lHl(K,z,)
H}(K, Tg)/p”H}(K, Ty)—— HY (K, Ty /p"T5)

REMARK 4.2.2.

(1) The hypothesis er < p — 2 is more restrictive than that of Corollary 4.1.12
(it implies (e, p) = 1 even for r = 1), but Proposition 4.2.1 gives functoriality
for Gg-morphismes.

(2) The hypothesis er < p — 2 is necessary. Indeed consider the following
counterexample for e=p—-1 and r=1. Take K= Qp(up(@p)),
Ty =7,(1) and Ty = Z,. Clearly Ty and T2 are congruent modulo p but
H}(K, T1) ®y, F, and H}(K, T5) ®7, F, do not even have the same di-
mension over .

Proor. The proof is similar but simpler than that of Corollary 4.1.12 so we
only sketch it. For i = 1,2 set D; = D.is(T;) and M; = M(D;); we have T;/p"T; =
T M;/p"M;). Under the hypothesis er < p — 2, the functor T is fully faithful
(cf. [8, Theéoréme 1.0.4]) therefore the morphism : is induced by a unique
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morphism 7: My /p"My — Ms/p"Ms in ModFI(S/p"S)" and we have a commu-
tative diagram

1 . ty
H}(K,T1)/p" H} (K, Ty) —= H'(Fi"C*(My /p"My)) —"> H' (K, Ty /p"T1)

lHl(KﬁL)
H}(K,Ty)/p"H}(K, Ty) — H'(Fil'C* (M, /p" M,)) —> H(K, Ty /p"Ty)

lHl(Fier’(L’))

where ¢ and & are isomorphisms by Theorem 4.1.6. Set i=¢; 1 o HY(Fil"C*(/)) 0 ¢.
O

For an abelian group A we denote by A[n] the n-torsion subgroup of A.

ProprosITION 4.2.3. Let 2 < r < p — 2 be an integer and assume e > p, then:

(1) The groups HA(K, 7,(r)[p"] and HA(K, 7./p" 7(r)) are non-zero.

(2) The monomorphism & H }(K , Zip(1)) /p”H}(K () — HYK,T/p"T) de-
fined in Corollary 4.1.5 is not surjective.

Proor. The statement (2) follows from (1) by using (4.1.4.1). Let us prove (1):
it is enough to treat the case n=1. Set D = D¢uis(Zp(r)). We have D =
Dy (7= 1)) = Homy, g, (7, Aeis) = W, Fil’D = D, Fil'D = 0, and ¢ff = o.
Hence M(D) =D @w S = S, FiI"M(D) = FiI'S as S-modules, and M (D) = 1(r), cf.
2.3.6.We have H\(K, 7,,(r)) = H'(Fil"C*(1(r))) and HL(K, T,,(r)) = H (Fil"C*(1(r))),
where 1(r) = 1(r)/p"1(r). Denote by ¢ the class of uP~! ®g du in HA(Fil"C*(1(r))).
We have d(u?) = p(uP~! ®g du), so p¢ = 0. We claim that the class of u?~! ® du in
H2(Fil"C*(1(r)) is not zero, which implies at the same time & # 0, H2(K, I7,,(r)) # 0
and H%(K , Zp()Ip]l # 0. Let us prove this claim by contradiction: let a be in
1(r) = S/pS and g ® du be in FilI' ' 1(r) @ @ = Fil'"(S/pS) @5 !, such that

d
%(a) @ du— (9, 1 @ )9 @ du) +g @ du =uP! @ du,
or equivalently
d _ _
gy @~ Yo, 1) +g=u"l.

Since r—1>1 and e>p, by writing g =), ,gu“" (with gjek and
0 < 6 < e — 1), and by taking reduction modulo Fil’(S/pS), we get that there exists
o € S/(pS + Fil’S) = k[u]/uP, such that

d
- — -1
an (o) = w

which is impossible. O
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REMARK 4.2.4. Let 2 <7 <p —2 be an integer, assume ¢ > p and that the
residue field of K is finite. We have

H{(K, 7,y(r) | pH{(K, 7.(1)) z HM(K, Fp(r)) Hl(K ,(r)),

and by [1, Example 3.9, pg. 359] H 1(K Z,(r) = HY(K, 7,,(r)); in particular ¢ is
surjectlve but not injective and Hl(K 7 (r))/pH YK, 7 »(1)) can be identified to
tos (H, (K, I¥,(7))). We suspect that thls phenomenon happens more generally.

ProrosiTION 4.2.5.  Let T be a crystalline Z,-representation of Gg, with
Hodge-Tate weights in [0,7], 0 < r < p — 2. We have an isomorphism
t2: HYK, T /p"T) = (T /p"T)%.
Proor. Set D = Dis(T) and M = M(D). A direct computation shows
H)K,T/p"T) = Homuyeqesy (1/p" 1, M /p"M)
— Fil'(S/p"S)"= @y, D/p"D)"
O Fil"(D/p"D)? 1 = (T /p" T)%%o .
The last inclusion is strict in general. Indeed we have the exact sequence
0— HYK,T) 2 HO(K T) — HYK, T/p”T) LA HY(K,T) 2 HI(K T) —

induced by the short exact sequence 0 — M MM /p"*M — 0. By the theo-
rem of Liu (2.3.4) T is an equivalence of categories and therefore we have

H)K, T) = Homyoqesy (1, M) = Homygoqqsy (1, M) = T

and H (M) =~ H }(K , 1), cf. (4.1.4.1). By definition H }(K ,T) contains all the torsion of

HY(K,T),sothe kernel of H(K, T) LNy L(K, T)is equal to the p"-torsion subgroup
HYK,T)[p"] of H(K, T). As in the proof of (4.1.4.1), the exact functors T, and 7
induce the commutative diagram

ﬁltst ﬁltst ltsotc ltst
n

0 —— TG —>TCx (T/p" 1) — > H' (K, T)[p"] —0

1R

where the rows are exact. This proves the claim. O

A. The characteristic two case

In all this section we assume p = 2. We will consider only representations
with Hodge-Tate weights equal to zero (r = 0), otherwise there are counter-
examples to the question raised in the introduction (e.g. 7o and 7»(1) are con-
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gruent modulo 2 but H}(Qg, 72)/2H}(Qz, 7) and H{(Qz, Z2(1))/2H}(Qz, 7(1))
have dimension one and two respectively over [2). The statements and the
proofs given in this appendix work also for a general p > 2, but the results for
p > 3 are already a consequence of Corollary 4.1.12, thus we state them only for
p=2.

THEOREM A.1. Let K/Qg be a finite extension. Let Ty and T2 be two crystalline
Zo-representations of Gg with Hodge-Tate weights equal to zevo. Let 1: T /2" Ty —
T2/2"T5 be a morphism (resp. isomorphism) of 7./2"7|Gk]-modules. Then there
exists a morphism (vesp. isomorphism) i of 7./2"7-modules making the following
diagram commutative.

H}(K, Tl)/Q"H}(K, Ty)—— HY(K,T,/2"T})

lz lHl(K,L)

H}(K, Tg)/Q"H}(K, To)— HY (K, Ty /2"T5)

REMARK A.2. Actually from the proof it follows that Theorem 4.2.5 works for
any complete discrete valuation field K of mixed characteristic (0, 2) whose residue
field k& has cohomological dimension smaller than one.

LEMMA A.3. Let T be crystalline with Hodge-Tate weights equal to zero. We
have H}-(K, T =H'\k,T).

Proor. The Hodge-Tate weights of 7" are zero so, by a result of Sen [19,
Corollary, pg. 114], the inertia subgroup Ik of Gk acts through a finite quotient;
moreover T is crystalline, thus Ik acts trivially and T can be considered a G-
module.

Let 7" be an extension representing a class x in H'(K, T). We have x € H }(K , 1) if
and only if 7" is crystalline with Hodge-Tate weights 0, if and only if the inertia Ik
acts trivially on 7”. Thus H}(K, T) = ker(H (K, T) Res HY(K™,T)). By the Infla-
tion-Restriction short exact sequence [20, VII §6 Prop.4], we have H}(K7 T) =

HYGy, D). O

Proor oF THEOREM A.1. Apply Lemma (A.3) to the long exact sequence asso-
ciated to

0T 27 -T/2'T - 0.

Since k is finite H?(k,T) =0 by [20, XIII, §1, Prop. 2] therefore H}(K, T/
MH }(K ,T) = H'(k, T /2"T) and the statement follows. O
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