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The local Laplace transform of
an elementary irregular meromorphic connection

MARCO HIEN (*) - CLAUDE SABBAH (¥%*)

ABSTRACT - We give a definition of the topological local Laplace transformation for a Stokes-
filtered local system on the complex affine line and we compute in a topological way the
Stokes data of the Laplace transform of a differential system of elementary type.
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tration.

1. Introduction

1.1 — Riemann-Hilbert correspondence and Laplace transformation

Let M be a holonomic C[t](d;)-module and let M be its Laplace transform,
which is a holonomic C[7'](0;)-module through the correspondence 7’ = 9; and
t = — 0y, that is, given by the kernel exp (—t7’). According to the Riemann-Hilbert
correspondence as stated by Deligne (see [Del07], [Mal91] and [Sab13a, Chap. 5]),
the holonomic C[t](d;)-module M corresponds to a Stokes-perverse sheaf on the
projective line Ptl with affine coordinate ¢, which is a Stokes-filtered local system in
the neighbourhood of ¢t = oco. Similarly, M corresponds to a Stokes-perverse sheaf
on PL, which is a Stokes-filtered local system in the neighbourhood of 7 = oc. In
the following, we will denote by 7 the coordinate of Pl, centered at oo such that
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t=1/7 on PL\{0,55}, and we continue to set 5 = {r = 0}. The topological
Laplace transformation is the corresponding transformation at the level of the
category of Stokes-perverse sheaves. We will use results of [Mocl4] to make clear
its definition. A topological Laplace transformation can also be defined in the set-
ting of enhanced ind-sheaves considered in [DK13], which corresponds, through the
Riemann-Hilbert correspondence of loc. cit., to the Laplace transformation of ho-
lonomic &-modules (see also [KS14]).

1.2 — Riemann-Hilbert correspondence and local Laplace transformation

In this article, we will consider the local Laplace transformation F®> from the
category of finite dimensional C({t})-vector spaces with connection to that of finite
dimensional C({t})-vector spaces with connection. It is defined as follows. A finite
dimensional C({¢})-vector space with connection M can be extended in a unique
way as a holonomic C[t]{(9;)-module M with a regular singularity at infinity and no
other s1ngular1ty at finite distance than ¢ = 0. Then F®(M) is by definition the
germ MA of M at 50 := = {7 = oo}. We will regard FO(M) as a C({r})-vector
space with connection. It is well-known that M has at most a regular singularity at
7 = 0 and no other singularity at finite distance. Therefore, giving F*>*(M) is
equivalent to giving the localized module C[7',7'~1] @ M.

The Deligne-Riemann-Hilbert correspondence associates to M a Stokes-fil-
tered local system (4, 4.) on S}:O (the circle with coordinate argt). Similarly, we
will denote by F; o °°)(A”,_7/.) the Stokes-filtered local system on S!_; associated
with FO (M), In this setting, we will address the following questions:

e To make explicit the topological local Laplace transformation functor F ig’pm).
e To use this topological definition to compute, in some examples, the Stokes

structure of F®*(M) in terms of that of M.

1.3 — Statement of the results

The first goal will be achieved in §3. As for the second one, we will restrict to
the family of examples consisting of elementary meromorphic connections,
denoted by El(p, —¢, R) in [Sab08]. Namely, p : u — t = u? is a ramification of
order p of the variable ¢, ¢ is a polynomial in %! without constant term, and R
is a finite dimensional C({u})-vector space with a regular connection. Setting
E¥ =(C{u}),d — dp), we define

M =Ellp,—p,R) :=p (EFDR).

If we extend R as a free C[u, u~']-module R of finite rank with a connection having a
regular singularity at 4 =0 and # = oo and no other singularity, and set
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E=% = (Clu,u"'],d — dy), the extension M of M considered above is nothing but
the free C[t,t ']-module with connection

M =El(p,—¢,R) :=p,(E ¥ @ R),

Let g be the pole order of ¢. We also encode R as a pair (V, T) of a vector space with
an automorphism (the formal monodromy). We call ¢ the exponential factor of p* M
and set Exp = Exp(p™ M) = {¢}.

AssumPTION 1.3.1. We will assume in this article that p, g are coprime.

By the stationary phase formula of [Fan09, Sab08] the formal Lgvelt—Turrittin
type of the local Laplace transform F©>(M) is that of E1(p, — 3, R), where

e the ramification p : # — 7 has order p := p+gq, i.e., p € c(p, p) + nC{n})
for some nonzero constant c(p, ¢); writing p and ¢ in the # variable, it is
expressed as p(i7) = —p'(n)/¢'(n);

e the exponential factor () = () — @' ()p()/p'(7) has pole order g;

e the regular part R corresponds to the pair (\A/’ , ’T‘) =V, (D).

Our goal is then to compute explicitly the Stokes structure of the non-ramified
meromorphic connection p+F (M), which is usually non trivial. It is of pure
level q. Stokes structures of pure level ¢ can be represented in various ways by
generalized monodromy data. We make use of the following description (see Section
2.2 for details).

To the formal data attached to p™F®(M), which consist of the family

E/]X\p = Exp(pt FOOM)) = {@E(iy) | e Upig} (4, 1s the group of n-th roots of
unity and @E = @(CA 71 + o(n))) and the pair (@fe V,®-  (=1)'T), we add:
ptq

Hpig Ceu
(1.3.2) the choice of a generic argument ¥, € 8,17:0, giving rise to a total ordering

of the set Exp, hence an order preserving numbering {0,...,p +q -1} ~ .,

.....

level q, which consists of

e a family (L/)—o__ 2,1 consisting of 2g C-vector spaces,

jeeey

e isomorphisms S/ : Ly — Ly,

e for each ne€{0,...,¢—1}, a finite exhaustive () increasing filtration
F.Ly, (resp. decreasing filtration F*Ls,1) indexed by {0,...,p+q—1},
with the property that the filtrations are mutually opposite with respect

() We say that an increasing filtration F.,L indexed by a totally ordered finite set O is
exhaustive if F,.oL = L. We then set F_;,oL = 0. For a decreasing filtration, we have
Frin01, = L and we set F>"*x0T, = 0,
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to the isomorphisms Sﬁ“, ie., for any u € {0,...,q — 1}:

ptg-1
Loy = @) (FiLay 1S (FPLay ).
k=0
(1.3.3*) ZH*‘]*I
L2ﬂ+1 = @ (FkL2ﬂ+1 mngrl (F/CLQH))7
k=0

with the convention that L_; = Lg,_;.

Note that the opposite filtrations induce uniquely determined splittings, that is,
filtered isomorphisms

{ Tou - LZ,u — ngLZ/l @p+q ! ngLZ/u
P ok Loy,

where the right hand side carries its natural increasmg (resp. decreasing) filtration.
The resulting isomorphisms 2“1 =T4108, (1o 7 L. grpLy — grply. are upper/
lower block triangular — dependlng on the parlty of ¢ — and their blocks (S¢ “)“ on
the diagonal are isomorphisms. These matrices are commonly called the Stokes
matrices or Stokes multipliers. We call the family

(1.3.5) SHHFOOM)) = (L), SED, (FLY),_,

(1.3.4)
Tourt © Ligj1 — grplioyiq =

the linear part of the Stokes data of p+F ©0.29( M), The notion of morphism between
such families is obvious.

On the other hand, we will define in § 1.4 standard linear Stokes data that we
denote by SV, T, p, ).

The main result regarding the explicit determination of the Stokes data of the
local Laplace transform of El(p, —p, R) can be stated as follows.

THEOREM 1.3.6. With the previous notation and assumptions, for a suitable
choice of 9, the linear Stokes data @(Aﬂf (O‘OO)(M)) for M =El(p, —¢,(V,T)),
are 1somorphic to the standard linear Stokes data ~Std(V, T,p,q).

REMARK 1.3.7. (1) In order to descend from this result to the linear Stokes data
of FO9(M), we would need to identify the Ky +q—action on the standard
linear Stokes data. This will not be achieved in this article.

(2) The arguments in the proof also lead to an explicit computation of the topo-
logical monodromy of F> (M) up to conjugation (see Proposition 1.4.13).

(3) Similar results were obtained by T. Mochizuki in [Mocl0, §3], by using
explicit bases of homology cycles, while we use here cohomological methods.
Also, the results of loc. cit. do not make explicit a standard model for the
linear Stokes data, although it should be in principle possible to obtain such a
model from these results.
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1.4 — The standard linear Stokes data

We will now define the set &4V ,T, p, q) attached to a finite dimensional vector

space V equipped with an automorphism T, and to a pair of coprime integers
(p,q) € (N*)*. We refer to Section 6 for a geometric motivation which leads to the
definitions below. We start by defining two orderings on .

DEeFINITION 1.4.1. For E , CA "€ Uiy, We set

(1.4.1%) C <gqq C if Re(efsi(&’ - E”’)) <0 for some ¢ such that 0 <e <« 1

and ¢ <ey ¢’ < ('<,qq (. We enumerate according to the even ordering, i.e.,
Hyiq g g

(14.1565) gty ={Cp [k =0,...,p+q—1} With C <ev - <evC prgor-

Since (p,q) =1, we also have (p+¢,q9) =1 and there exist a,b € 7 with

271

ap=1+b(p+q). Set ¢ := exp(m

) € fy+q- Then the even ordering on ., is
expressed by

(1-4-2) 1= éo <ev fa <ev fia <ev * <ev éka <ev fﬁka <ev - <ev eVZmaxy
with € [1,250), with

pt+q

R { j:exp( ari ) if p+ ¢ is odd and a is even (+) or odd (—),

ev

Cmax =
exp (am) = —1 if p + q is even.

The odd ordering is the reverse ordering.
For k € 7 we set

. qk 1}
“in(k) := | —— 4+ =|,
in(k) {p PR

. pk lw
Soutk) .=k —“ink) = | — — =|.
out (k) in(k) [erq 7

(1.4.3)

Both are increasing functions of k. If ke {0,....,p+q—1}, we have
®in(k) € {0,...,q} and ®out(k) € {0,...,p}. Furthermore, let

(144)  min®(k) := min {k’> - 7% | *in(j) = “in(k) for all j € [k’,k]}

and

out

+
(145) max® (k) := max {k” <ptq+ 1% | “out(j)=out (k) for all je[k, k”]}
p
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(see Remark 6.1.3(3) for an explanation). In a similar way we set for k € 7

oddi (o) := [ﬂ] ,
P+q

(1.4.6) s
ddout(k) := k — 1 — °Min(k) = [p— — w e{-1,...,p—1},

p+q
and if k€ {0,...,p+q—1} we have “¥in(k) € {0,...,¢ — 1} and °%out(k) €
{~1,...,p — 1}. We define min{®(k) and max?%(k) literally as in (1.4.4) and (1.4.5)
replacing “ev” by “odd”. Note that

[qk 1 gk
p+q 2'p+gq

Let V be a finite dimensional complex vector space together with an auto-
morphism T € Aut(V). Let us denote by 1; the complex vector space of rank one
with chosen basis element 1. Let us consider direct sum V”*? of p + ¢ copies of V
and let us keep track of the indices by writing

} AN = & <= “in(k) = “Yink) + 1.

ptq-1
(1.4.7) Vit = (P Vel
k=0

CONVENTION 1.4.8. For any j € 7, we will write

v® 1 :=T W) ® Lj5ptq for s € Z such that j+ s(p+¢q) € [0,p + ¢ —1].

DEFINITION 1.4.9. e Assume p + q=>3. Then:
(1) The isomorphism ¢%3¢ : @1~ l've1, — @ 'V ® 1, is defined as

(1.4.9%) v® 1y, if {%_%’M} nN=9

odd( . ) VR lminpdd(k)_l
V& 1
—v® 1max""d(mln”dd(k))

out

. qk 1 gk NT
+/U® lmaxggg(k)+l, lf |:p+q é,m} m;\\ # @

(2) The isomorphism ¢, : @4~ Vo1, — e 'V ® 1, is defined as

(1.4.9%x%) it [ ¢ 1 gk

vl i NN D

V@ Lining (-1
oS @ 1) =
& 1maxe‘t(mm$ (k)

. qk 1
+/U®1maxgzt(k)+17 lf [m—§7mi| m\ @



The local Laplace transform of an elementary irregular ete. 139

odd 3

o If p = ¢ =1, the isomorphism ¢%(° is defined as

(1.4.10) 6*¥@we1p):=—v@ 1y +dAd+ T el and M@l :=ve1,

and oty is defined as

(1.4.10%) o (v@1p):=v® 1y and o2 (v@1y):=Id+T oo lj—vel;.
We are now ready to define the following particular set of Stokes data.

~std

DEFINITION 1.4.11. The standard linear Stokes data & (V, T, p, q) are given by

(1) the vector spaces Ly := VP for £ =0,...,2q — 1,
(2) for each u=0,...,q — 1, the isomorphisms

Sy = 0% Loy1 —> Ly, (ef. (L4.9%),
Syt i= 000 Ly, S Lgupn (ef. (1.4.94)).

(3) the isomorphism qu = diag(T, ..., T) 6%, : Lyg—1 — L.
(4) the filtrations F Lo, := Py, ., VO 1y and F¥Loyq := B, VO 1.

Note that the opposedness property (1.3.3x) for the above data is not ob-
vious. We will not give a direct proof since it follows a posteriori from our main
result by which these data are the Stokes data attached to some Stokes
structure. The arguments in the proof of Theorem 1.3.6 also lead to the fol-
lowing explicit computation of the topological monodromy of p+F®>(M),
where we set

qk

(1.4.12) in(k) := “in(k) = [
p+q

1
+ 2} maxXyy (k) := maxg,, (k).

PROPOSITION 1.4.13. The topological monodromy of p+F (M) is con-
jugate to the automorphism of the vector space VP = @V 7'V @ 1, (using
the notation (1.4.7) and Convention 1.4.8) given by

0@ L if in(k + 1) = in(k),

Teop® © 1) = s .
o g { V& (lk - ]-maxout k) T+ ]-maxout (/C)+1) Zf ln(k +1) = ln(k) +1.

REMARK 1.4.14. The topological monodromy can of course be deduced from
the Stokes data by the formula

Tiop =89, 1 0S50 50+ 08} € Aut(Ly).

However, we will give a more direct computation in § 6.3. This approach is less
involved than the detour over the Stokes data and could perhaps be applied in
more general situations without having to understand the full information of the
Stokes data.
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The article is organized as follows. Section 2 recalls the notion of Stokes-filtered
local system and explains the correspondence with that of linear Stokes data —
generalized monodromy data — describing Stokes structures of pure level q. In
Section 3 the construction of the topological Laplace transformation is discussed in
general, and the main tool (Th. 3.3.1) is [Moc14, Cor. 4.7.5]. We then concentrate on
the case of an elementary meromorphic connection. A description of the Stokes
data for pt F©>(M) in cohomological terms is proved in the subsequent section —
Theorem 4.3.3.

The remaining sections provide the proof that these data are isomorphic to the
standard linear Stokes data of Definition 1.4.11. Section 5 identifies the filtered
vector spaces (L, F'L,), obtained by the cohomological computation of Theorem
4.3.3 with the filtered vector spaces entering in the standard linear Stokes data.
This is done by using Morse theory. However, the Morse-theoretic description of
the linear Stokes data expressed through Theorem 4.3.3 does not seem suitable to
compute the Stokes matrices Sf*l. This is why, in Section 6, we construct a simple
Leray covering giving rise to a basis of the cohomology space L, for each ¢, which
allows us to identify the matrices S, given by Theorem 4.3.3 to those given by the
standard linear Stokes data.

It remains to compare the Stokes filtration obtained in Theorem 4.3.3 with that
obtained from the standard linear Stokes data. The problem here is that the simple
Leray covering constructed in Section 6 may not be adapted to the Morse-theoretic
computation. In Section 7 we change the construction of the Leray covering in
order both to keep the same combinatorics to compute the matrices S;™! and to
identify the filtration of Theorem 4.3.3 with the standard Stokes filtration 1.4.11(4).
This is the contents of Corollary 7.2.5, which concludes the proof of Theorem 1.3.6.

2. Stokes-filtered local systems and Stokes data
2.1 — Reminder on Stokes-filtered local systems

We refer to [Del07], [Mal91] and [Sab13a, Chap. 2] for more details.
Let w: Al — Al be the real blowing-up of the origin in A}. Then A} =
Al U sl is homeomorphic to a semi-closed annulus, with S!_, := @ 1(0) ¢ AL

Similarly, we consider Al, and p extends as the p-fold covering 5 : SL_, — Si_-

For any ¢ € S!_, the order on % 1C[«x 1] at ¥ is the additive order defined by

=0’
211) ¢ <0<
exp (p(u)) has moderate growth in some open sector centered at .
We set
2.1.2) p<p0 <= p<y0 and p #0.



The local Laplace transform of an elementary irregular ete. 141

This is equivalent to exp(¢(u)) having rapid decay in some open sector centered
at 9.

DEFINITION 2.1.3 (see e.g. [Sab13a, Chap. 2]). A Stokes-filtered local system

with ramification p consists of alocal system .4 on St o such that p —1.% is equipped

with a family of subsheaves “Z<,C p-1% indexed by a finite subset
Exp € u 1C[u~1] with the following properties:

(1) For each ¢ € 5; 0 the germs £ <,y (¢ € Exp) form an increasing filtration
Of(P L2 = L 50)-

(2) Set L.,y = ZV/ <,»-% <y, Where the sum is taken in £ (and the sum

indexed by the empty set is zero). Then £, » is the germ at ¥ of a subsheaf
Loy of Ly

(3) The filtration is exhaustive, i.e., | Lep=p 1L and )
(4) Each quotient gr, 4 := L,/ £, is alocal system.
(5) Z¢6Exp rk gr, Y =rk L.

(6) For each ( ¢ “p and ¢ € Exp, setting pru) == o(lu), we have ¥ L <, =
v <, through the equivariant isomorphism p-1% ~ 51, where

v 25—
peExp peExp - /<¢7 =0.

: St_y — S!_, is induced by the multiplication by (.

REMARK 2.1.4. It is equivalent to start with a family of subsheaves “_, C
p~1% such that L.,y C L, if ¢ <yy, and to define £, by the formula
L <pw=y.y<,, L<yw With the convention that the intersection indexed by the
empty set is £ . The family ~_, will be simpler to obtain in our computation of
Laplace transform.

REMARK 2.1.5 (Extension of the index set). It is useful to extend the indexing
set of the filtration and to define the subsheaves £, C p~1.4 for any
w € u 'C[u~']. For such a y and for any ¢ € Exp, we denote by Sl , the open
subset of S!_, defined by

065p<,”<:}<p <.

We shall abbreviate by (£, <, ) the functor on sheaves composed of the restriction to
this open set and the extension by zero from this open set to S!_ o- Then £, is
defined by the formula

(2.15%) Fay= Bocy)Lep:

peExp

The germ of 4, at any 9 € S._, can also be written as

(215**) :y)”/‘g,/,_’qg = E ,Zg(p_ﬁ,
peExp
<oy
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with the convention that the sum indexed by the empty set is zero. Note also that,
if y is not ramified, i.e. y € t"1C[¢t71], then £, is a subsheaf of . A similar
definition holds for £, but one checks that £, = £ ¢, if w ¢ Exp. Of particular
interest will be £y C £.

2.2 — Stokes data of pure level q

In this section, we will define the notion of Stokes data attached to a given
Stokes structure (£, 4.), which — after various choices to be fixed a priori —
describes the Stokes filtration in terms of opposite filtrations on a generie stalk.
After choosing appropriate basis, the passage from one filtration to the other
could be expressed by matrices. These matrices are usually referred to as the
Stokes matrices or Stokes multipliers in different approaches to Stokes struc-
tures (see e.g. [BJL79]). In level g = 1, the following description has already
been given in [HS11], section 2.b.

We will restrict to the case of an unramified Stokes-filtered local system, i.e., we
assume that, in Definition 2.1.3, p is equal to Id, and we will work with the
variable u. We will set S' = S!_. We identify S' = R /277 and will call an element
¥ € S! an argument.

The description of these data by combinatorial means will highly depend on the
various pole orders of the factors ¢ € Exp and their differences ¢ — y as well. The
situation we have in mind as an application allows to get rid of many of these
difficulties, since we will be able to restrict to a single pole order:

DEFINITION 2.2.1. We say that a finite subset £ C %~ 1C[u1]is of pure level ¢ if

e the pole order of each p € E as well as

e the pole order of each difference ¢ — v for p,w € E, ¢ # v,

equals q. We say that an unramified Stokes structure (4, 4, ) is pure of level g if the
associated set Exp of exponential factors is pure of level q.

Let E c u 'C[u~!] be a finite subset of pure level q. In particular, there are
exactly 2¢g Stokes directions for any pair ¢ # w in E, where a Stokes direction is an
argument ¢ € S at which the two factors o,y do not satisfy one of the two in-
equalities ¢ <y or w <y p. More precisely, if

W — ) =u"-gu)
with a polynomial g(u) with g(0) # 0, the Stokes directions are
St(p,y) = {19 e S' | —qv + arg (g(0)) Eg or SEE modZn}.

At these directions, the asymptotic behaviour of exp(p — w) changes from rapid
decay to rapid growth and conversely. Let StDir(#) denote the set of all Stokes
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directions StDir(&) := U, 4,5 Stlp, ). An argument 9, € St is said to be generic
with respect to K if

2.2.2) {190 +€; Ite 4} N StDir(E) = 2.

Let us fix a generic v, and letus set ¥, := J, + fn/q (¢ =0, ...,2q — 1). Then each of
the open intervals (¥,19,,1) contains exactly one Stokes direction for each pair
p#w in E. For >0 small enough, the same holds for the intervals
I; := (9, — &,90:1 + €) with which we cover the circle S' = (J}%," I.

The category of unramified linear Stokes data of pure level ¢ indexed by the
finite set {1,...,r} over the field C is defined by (1.3.3). A morphism of two linear
Stokes data of this type is given by C-linear maps between the vector spaces which
commute with all the S| and respect the filtrations. We denote this category by
Staatalq, 7). A similar definition can be given over any field k.

We now fix a finite set £ C u 'C[u~1] of pure level q. Let Styyuet(E) be the
category of unramified Stokes structures (¥, #.) on S! with Exp = E. After
choosing an appropriate argument ¥, as above, we construct a functor

(2.2.3) D 9, Ststruct(B) — @tdata(% #E)

as follows.
We can arrange the elements in £ according to the ordering (2.1.1) with respect
to the generic direction ¥, i.e., we write

E = {p1 <o, 02 <vp 3 <vp " <0 Pym}-

We then have the same ordering at any ¥», with even index and the reverse order
for ¥g,,11. This follows from the fact that each inequality ¢; <y ¢; becomes reversed
whenever the argument 1) passes a Stokes direction for the pair ¢;, ¢;, and there is
exactly one Stokes direction for each pair inside (¢, 94,1).

We invoke the fundamental result going back to Balser, Jurkat and Lutz:

PROPOSITION 2.2.4. For each open interval 1SS! of width n/q + 2¢ for e > 0
small enough, there is a unique splitting

T:"%‘I & @gr\p%‘l

el

compatible with the filtrations.
ProOF. See [Mal83, Lem. 5.1] or [BJL79, Th. Al. O

In particular, writing gr2 := @ g gr,# for the associated graded sheaf
endowed with the Stokes filtration naturally induced by using the order (2.1.1), we
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have unique filtered isomorphisms

(2.2.5) 7 : (L, L))

I —(grs, (gr;%),)h(

over the intervals I, chosen above.
For each £ =0,...,2q — 1, we let LY := I'(I;, #) be the sections of the local
system % over I,. We have canonical isomorphisms

ay: Lo =, Zﬁe and by : Lo LM%VWJFI

between L and the corresponding stalks of #. Writing L, := £y, for the stalk
at ¥, we define

S?H = bzl oy : Lg = LZ+1~

We call this isomorphism the clockwise analytic continuation. Additionally, we de-
fine, for u =0,...,q¢ — 1,

F']'LZ/L = (:Z<99j)192ﬂ - L2/u
F7L2/4+1 = (k:%/Sgaj)ﬁng_l - L2,u+1-

Then the data
(L), (S, (F L))
define a set of linear Stokes data as in (1.3.3).

PROPOSITION 2.2.6. Given a finite set E of pure level q and a generic 9, € S,
the construction above defines an equivalence of categories

QDEJ?() : gtstruct(E) - @tdata(% #E)
between the Stokes structures with exponential factors E and the Stokes data of

pure level q indexed by {1,...,#E}.

ProoF. In the case ¢ =1, a similar statement is proved in [HS11] or [Sab13b].
The same proof holds in our situation as well. O

2.3 — Remiander on the local Riemann-Hilbert correspondence.

Let M be a finite dimensional C({t})-vector space with connection, and let
p:u— uP =t be aramification such that p* M has a formal Levelt-Turrittin de-
composition

C((u)) Rcquy piM ~ @ (€ @ Ry)s
peExp (M)

with Exp := Exp(M) C «1C[u~!] (we use an opposite signh —¢(u) with respect to
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the usual notation as it will be more convenient for the Stokes filtration). Moreover,
by the uniqueness of the Levelt-Turrittin decomposition, we have, for each € x,
(p-th root of the unity)

(2:3.1) Ry = Ry, with () := (G-

It may happen that o, = ¢ for some ¢ € Exp and { € ,,.
The Riemann-Hilbert correspondence M — (£, £,) goes as follows (see
[Del07], [BV&9], [Mal91], [Sab13a, Chap. 5]). Let us denote by .7 the local system

attached to M on a punctured neighbourhood of {¢ = 0}, that we regard as well as a
local system on the open annulus (Alt)* or on the iemi—c/lgsed annulus Alt Similarly,
extending p as a covering map (AL)* — (A" or AL, — Al we define p—.7. We also
use the notation

SL=7Fq , pLL=F

I51_g s

U= 0.
One can attach to M the family of subsheaves % <, := .77 DR™%(p" M 8*’)‘51
of 1% (p € Exp), where DR™1° denotes the de Rham complex with coefflclents

in the sheaf of holomorphic functions on A!\S!_; having moderate growth along
S,_o- The equivariance property 2.1.3(6) is obtained through the isomorphisms
{"ptM = p* M. Similarly, we can consider the family of subsheaves ¥ _, :=
.%ODerO(fM ® &%) of p-1.% (p € Exp), where DR0 denotes the de Rham
complex with coefficients in the sheaf of holomorphic functions on A} \S],_, having
rapid decay along S!_,.

REMARK 2.3.2. The equivalence of categories M«—M considered in § 1.2 reads
as follows, by introducing the notion of Stokes-filtered sheaves. A ramified Stokes-

filtered sheaf on Al is defined (in the present setting) as the pair formed by a local
system .7 on LXI and a Stokes-filtration £, of its restriction £ :=.7 51+ Since
bt o is a deformation retract of A\lt, giving .7 is equivalent to giving %, hence the

equivalence.

With this notion of Stokes-filtered sheaf, we can define a subsheaf .7 of .7,
which coincides with .7 away from S}_,, and whose restriction to S}_ is % <o (see
Remark 2.1.5). In the following, we will also consider the real blow-up space IPtl of P}
att = 0and? = oo, which is homeomorphic to a closed annulus, and we will still denote

by .7 (resp..7 <o) the push-forward of 7 (resp..7 <o) by the open inclusion Alt — 15}.

3. The topological Laplace transformation F ig’pm)
3.1 — Reminder on the local Laplace transformation F*>

We keep the notation as in the introduction, and we will focus on the coordinate 7,
so that the Laplace kernel is now exp(—t/7). Moreover, since we only want to
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deal with F <0‘01)(/\/1), we only consider the localized Laplace transform
C[7, 711 ®c1e) M, that we will denote by M from now on. We consider the fol-
lowing diagram:

Al X G r

™ b
Alt/ \G

The localized Laplace transform M is defined by the formula
M=#.G"MaE.

We can regard the C[t, 7,7 71](d,d,)-module n*M ® E~ t/T both as a holonomic
g ol Al -module and as a meromorphic bundle with connection on Pl u&l with
poles along the divisor D :=DyUD, UD. in P} x AL (with Dy = {0} x AL,
D, = {oo} x AL and D = P} x {oo}). It has irregular singularities along D. As
indicated in §1.2, the germ of Matt=0 only depends on the germ M of M att = 0,
and it is denoted by F 0.2 (M).

Let 5 : 5 — 5P = ¢ be a ramification such that 5+ M is non-ramified at infinity,
that is,

C(n) @cy pTFOOM ~ P (8”‘7('7)®7A2,/7),
¥ €Exp (M)

with ETx\p(M) C y 1Cly~ 1. Then p* FO>)(M) is obtained through the diagram

1
Ay X Gy

T T
Alt/ o |

m,n

by the formula

ﬁ+.7:(0’°°)(./\/l) (‘({,7}) 7'£+(7Z+M ® E—t/ﬁ(n))_

Clyy~1]

Moreover, by the uniqueness of the Levelt-Turrittin decomposition, we have, for
each ¢ € i (p-th root of the unity)

~

7A2(,7E =Ry, with l/ﬁg(ﬁ) = l/7(€?7177)-

The stationary phase formula of [Fan09, Sab08] makes explicit the correspondence

(p7 EXpa (Rtp)gpeEXp) = (/pv EXp, (R@)Qem)-
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3.2 — The monodromy of F > M

Let us denote by Z the local system attached to F (O'OO)M on S!_,. The local
system Y can equivalently be regarded as a local system 7 on G Let us
denote by T, the topological monodromy of M around the origin, and by Ttop the
topological monodromy of F 029 A around 7 = 0 (with the notation as in §1. 2).
Since M has no singularity except at 0, oo, Ttoé is the topological monodromy of M
around 7' = 0. Therefore, there are various ways of calculating the topological

monodromy T'p:

e either by comparing it with the monodromy at ¢ = oo of M, which is nothing,
up to changing orientation, but the topological monodromy of M at ¢t =0,
since M has no singular point on (Ay™)*, and its singular point at ¢ = oo is
regular; this will be done in Proposition 3.2.1;

e or by a direct topological computation at T = oo; this is done in § 6.3;

e lastly, by obtaining it from the Stokes data at t = oo, once we have computed
them; this is however not the most economical way.

Given an automorphism 7', we will denote by 7'; (4 € C*) the component of T
with eigenvalue /. Since M has a regular singularity at t = oo, with monodromy
equal to Ttoi), classical results give:

ProposiTION 3.2.1. For 1 # 1, we have i’top,;y = Ttop,;. Moreover, if M is a
successive extension of germs of rank-one meromorphic connections, the Jordan
blocks of size k > 2 of i’tOpJ are in one-to-one correspondence with the Jordan
blocks of size k — 1 of Tiop1.

SKETCH OF PROOF. Only for this proof, we denote by M the non localized Laplace

transform of M. It has a regular singularity at ' = 0. The monodromy Tm%) of M at

infinity is known to be equal to the monodromy of the vanishing cycles of M at
7 =0, while f’t‘o}p is the monodromy of the nearby cycles of M at 7 =0 (cf. e.g.
[Sab06, Prop. 4.1(iv)] with z = 1). The first assertion follows. For the second as-
sertion, note that, if M is a rank-one meromorphic connection, then M is irre-
ducible as a C[t](d;)-module, and thus M is also irreducible, so is a minimal exten-
sion at 7" = 0, which implies the second assertion for M. In general, note that in a
exact sequence 0 — M M- M — 0, if the extreme terms are minimal ex-
tensions at 7' = 0, then so is the middle term. This concludes the proof of the second
assertion. O

As in Remark 2.3.2, let us consider the real blowing-up map w : ]ﬁg — P} of P}
at t=0 and {= oo (so that Ptl is a closed annulus) and let us denote by

7: P} x G2 — G2 _the projection. Then we have

(3.2.2) T ~ R'Z,DR™IDP0 Do) (V1 &) F-1/7)
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and all other R*7, vanish. We note that, for t # 0, twisting with £~%/7 has no effect
near ¢t = 0. Similarly, since M is regular at co, E~/7 is the only important factor
along t = oo

Computation. Let us use the notation of Remark 2.3.2. Let us fixr, € C" and let us
compute the fibre .77, . Recall that I[~>t1 is a closed annulus with boundary components
St and S}___. Let .7 be the sheaf .72°DR™’M on the semi-closed annulus
@1 81 . We denote by (151)<T ~ the closed annulus ]Pl with the closed interval
arg t — arg 7, € [—7/2,7/2]mod 27 in 5 -, deleted. ThlS is the domain where the
function exp(t/7,) has rapid decay. We consider the inclusions

~ %y~ By ~
PSE s Pz P
We then have (similarly to [Sab13a, §7.3]):
ProposITION 3.2.3. The fibre 7. ., 1s equal to Hl(P ﬁf 100 7 <o) and the
other H* vanish. It is isomorphic to the vanishing cycle space at t =0 of the
perverse sheaf w..7 <o on r\l The monodromy of .7 with respect to t is obtained by

rotating the interval (/2, 3n/2) +arg 1, C b oo I the counterclockwise direction
with respect to t,. O

REMARK 3.2.4. We can similarly compute the fibre of 5*1.;7\ at any 7, by
replacing arg t, with p arg 7, in the formula above.

3.3 — The Stokes structure of F %> M

Let us denote by . the Stokes filtration of T/:, regarded as a family of

subsheaves of 5*1(/7\") Due to the ramification p, we now work with the variable 7.

Let PP} x Al be the real oriented blowing-up of ]P H&l along the components
DO,DOO,DA of D regarded now in Pl X ﬁ\l We have a snmlar diagram (see e.g.
[Sab13a, Chap. 8]):

S~

P} x AL

‘%/ X
P! A, DG
t n m,n

We note that Py x Al,] is the product ]152 x A, of the closed annulus ]ﬁtl by the semi-

closed annulus A',. One defines on such a real blown-up space the sheaf of holo-
morphic functions with rapid decay near the boundary (i.e., the inverse image by the
real blow-up map of the divisor D). There is a corresponding de Rham complex that
we denote by DR™?? (see loc. cit.).
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THEOREM 3.3.1 (Mochizuki, [Mocl4, Cor. 4.7.5]). For each en 1Cly1] the
natural morphism

DRmod@(ﬁ+]_—(0,oo)(M) ® g@(ﬂ)) — R7,DR™2 (s M @ EV-1/P0))[1]
18 a quast-isomorphism and the natural morphism
R'Z.DR™P (" M @ VWP —, 5 R17, DR™ PP (7} i E1/7)
18 injective.
REMARKSE.&Z (1) The result of [Moc14, Cor. 4.7.5] refers to the real blow-up

Py x A, along D, not along all the components of D. The above statement

is obtained by using that, with respect to @ : P} x 4\1,7 — P} x Al,, we have

Rw.DR™P(n' M @ E-//?®) = DR™P=(n" M @ E-1/?®).

This follows from the identification Reo.. //Tlﬁd\% = ‘I*jf‘“)?( DyuUD.),
t X

as in [Sab13a, Prop. 8.9].
(2) Setp(y) = cnﬁ(l + o(#)) and let us choose a p-th root ¢!/ P+ o(n) of p(n)/ ;75.

Then the j-th roots of 5(y) are written 5./2(p) = Cyp- ¢/P(1 + o(n) € € 15)-

Now, for i € 57 C[ 1], we set '/75('7) = 1/7@61/75(”))_

The uj-equivariance is then induced by the isomorphism

CTEVW-P0 — Fozo0—t/pn,
where we still denote by ¢ the map 7 — pA VP @p).

The theorem expresses therefore the Stokes filtration as the push-forward by 7
of a family of complexes indexed by Exp. The questions stated in the introduction
reduce now to

o expressing, for any i € Exp, the complex DR™2(z™M @ EV®~t/7®), to-

gether with the isomorphisms

E—lDRmodD(n+M ® E@(n)—t/ﬁ(ﬂ)) ~ DRmOdD(n+M ® Eu?g(n)—t/ﬁ(n))7

in terms of the Stokes-filtered local system attached to M,

e computing in a topological way the push-forward by 7 once this complex is well
understood.

While .72°DR™? ig easy to compute from the data (77, %), it happens in
general that the complex DR™? has higher cohomology, whlch is not easy to
express in terms of (77, 4, ). The main reason is that the meromorphic connection
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M @ EV-t/P%) may not be good (in the sense of [Sab00]) at (0, 30), due to in-
determinacy 0/0 of the functions

(33.3) w5, 1) = () — pw) /p() — pu)

for u — 0 and y — 0 (p € Exp, 7 € Exp).

PROPOSITION 3.3.4. There exists a projective modification e : Z — P} x Al
which consists of a succession of point blowing-ups above (0, 0), such that for each
y € BExp, the pull-back ntM @ EVW-tP" s good along the mormal crossing
divisor Dy := e 1(D). O

This result is a particular case of a general result due to Kedlaya [Ked10]
and Mochizuki [Moc09a] (see also [Moc09b]), but can be proved in a much easier
way in the present setting, since it essentially reduces to resolving the
indeterminacy 0/0 of the rational functions 60%,,7(%77) for ¢ € Exp(M) and

RS Exp(]ﬁ), and to using [Sab00, Lem. IT1.1.3.3]. A particular case will be
made precise in §3.4. The results below do not depend on the choice of Z
satisfying the conclusion of Theorem 3.3.5. We decompose Dy as the union of
the strict transforms of Dy, D, D5 that we denote by the same letters, and the
exceptional divisor .

The main tool is then the higher dimensional Hukuhara-Turrittin theorem
(originally due to Majima [Maj84], see also [Sab93, Proof of Th. 7.2], [Mocl}v,
Chap. 20], [Sab13a, Th. 12.5 & Cor. 12.7]). We consider the real blow-up space Z

of Z along the components of D; and the natural lift ¢ Z —>]Pt1 X Alq of
e:Z — P} x A1,7.

THEOREM 3.3.5. If Z is as in Proposition 3.3.4, then the complex
DRmOdDZe+(n+M ® El/?(’])—t/ﬁ(’l))
has cohomology in degree zero only. O

We can then use a particular case [Sabl13a, Prop. 8.9] of [Moc14, Cor. 4.7.5],
which is easier to prove because e is a projective modification, to get:

Reé, DR™Pz¢* (M @ EVOW~1/7") = DR™P(n* M @ EV-1/P0),

We will apply Theorem 3.3.1 through its corollary below.

COROLLARY 3.3.6 (of Theorem 3.3.1). Let Z be as in Proposition 3.3.4. Then,
for each i € yCly~'] the natural morphism

DR™% (57 FOO(M) © &7P) — RY(7 07),. 7" DR™PZe*t (n* M @ EV®-1/70)



The local Laplace transform of an elementary irregular ete. 151

1S a quasi-isomorphism and the natural morphism
RY(7 0@),.97"DR™ P2t (nt M @ EVO-1/P0)Y _, 51 F
18 injective. O
The pull-back (7 o e)’l({iy =0}) = e‘l(Dga) is the union D U E. Its pull-back
in Z, denoted by l~)65 UE, is equal to (7o E)’I(S}?:O). We will denote by}the open
inclusion Z\(Dx UE) — Z.
Let p : u— u” =t be a ramification such that p. # is non-ramified at ¢ = 0.

Consider the fibre product 7= (]P}L X A;) X])T;&IE as a topological space:
]

~
z -
PL x AL ¢—— 2’

p/xvll i Ja

Plxalc € 7

Let us write E’Z =51 Dy) and 7" : Z'\ ?7'*1(13@ UE)< 7Z'. Note that the restric-
tion of &' to Z/\ D’Z is a homeomorphism.

Let @ : Z — Z be the oriented real blow-up map. Below we use the convention
of Remark 2.3.2, and for 7’ € Z' we set

Exp if e sl
=7 oe"H(Z) e Pu, Expa:
0 ifuePhsl_,.

and, as usual, for a point z’ € 7' over z := wo o(z') € Z and a function g(u, n):
¢ p<ye”g < Re(¢"p — €"g) < 0 in some neighb. of 7’
or ¢ — ey is bounded in some neighb. of (@ o &) '(2).

Recall that the Stokes ﬁltration(7 " F ) on thelocal system 7' = p L7 satisfies

_ 17/ 1 ﬁ/

<ot inside ™

the equivariance condition (! 7' for each { € K-

<¢

DEFINITION 3.3.7. (1) The sheaf <’ on Z' is defined as ]’ &'°, where %'° is
the subsheaf of (Nn’ o) L7 on Z'\ (a‘l(D@ UER)) Whose germ at
2 € Z'\ (671 (D4 UR)) is defined by

golo ‘,f;/ 7

g = > F o CT 5

.

peExpg;
e o<z e (—pu)/p(n)

(2) The sheaf & ! 1s the subsheaf of " which coincides with the latter away

from Dy and Whose germ &, - ateach? € 7' is defined by the formula
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(same convention as in (2.1.5%x))

. E ' 7' g
T <o I @‘uc./u.
veExp;

e p<ze*—pu)/pin)

(We note that the inclusion ¢ 7 C %" is obvious away from 5*1@@ UE)
since w plays no role there, and therefore it is also clear on this set, by the defi-
nition of &’ there.)

LEMMA AND DEFINITION 3.3.8 (Sheaves & and ¢ ;). The sheaves & <" and ‘5”<W

descend with respect to o to subsheaves ‘& and & _ A of (m 0e) L7 on Z.
Proor. Since p(u) = u”, the group p, acts transitively on the fibres of . This action
is free on the fibres over z € Dy. By definition, for any { € Ky

e o<z € W) — pw) [p(n) <> € o <z € G o) — pw) /p(n)

since the right-hand side is invariant with respect to the p,-action. By the equi-
variance property of .7 ’<, we deduce the equality of subspaces of .7 ;:

! _ § : o — E 7! =%
7 Sl//;-,gé/ - N Ss&‘,éﬂ - 3 <W§7 = ISV/; 3
pcExpz e T
e p< ez e (F—pw)/p(n) e, <ge(W—pu)/pin)

where we recall that ¢ € Expu < ¢ € Expy forall { € y,. Therefore, we can define
the subsheaf ‘¢ _; C (mo ©) L7 by requiring its stalk at Z to be & <7 = g <z
independent on the choice of the lift 2’ of z. The same works for " descending to a

subsheaf & of (7o2) L7. Obviously, fﬁga Cc . O
REMARK 3.3.9. The indexing condition in the sum defining &’ <j,» can be

o where Wy 5 is defined by (3.3.3). Let 7 € Pl be the image
of Z' by 7oe’. We will be mamly mterested in the case where 7 € S,7 o> in which

written as 0< e

case we denote it by 9. Then, when ¢ is fixed, the condition " w, <§/e’*w’ 7 is

equivalent to < 7. Therefore, v<; ' implies ¢ Gpz C oo <3 C %5. The
theorem below implies then that (R1(7r 0e).% < u/) is included in (Rl(w 0e),% A’)g
and defines a filtration of (R1(7r 0e),¢ )A.

THEOREM AND DEFINITION 3.3.10. Let (7,.7.) be a Stokes-filtered sheaf
on ]Ptl, with trivial Stokes filtration away from Sg:o and a Stokes filtration in-
dexed by Exp on bg o having mmzﬁcation p. Define Exp and p according to the
stationary phase formula, and &, <y 08 wn Definition 3.3.8.

e Then, for each y € Exp, the complexes R(7r 0¢),% and R(7r 0e), /<y7 have
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cohomology in~deg/r\ee one at most, and Rl(%oa*f§'<u7 is a subsheaf of
R\(toe), s =p~L7. This family of subsheaves, together with the natural
isommf'phismi mduced by 5‘1f§§$ ~ G <53 fory e E/Jx\p, defines a Stokes
filtration of 7.

o The Stokes-filtered sheaf obtained by the procedure of the theorem is called
the localized (0, 00)-Laplace transform of the Stokes-filtered local system

(£, £.), and denoted by fig;o>(/, £.), or simply by (/, Z).

Note that the inclusion R1(7r 0e), % <u/ C R1(7r oe),% is far from obvious from
the sheaf-theoretic point of view.

THEOREM 3.3.11. If (£, £.) is the Stokes-filtered local system attached to M,
then (/ / ) 18 the Stokes ﬂltered local system attached to F O M.

Proor orF THEOREMS 3.3.10 AND 3.3.11. Given a Stokes-filtered local system
(£, %,)we can choose a finite dimensional C({t})-vector space with connection M
such that (£, Z,) corresponds to M by the Riemann-Hilbert correspondence
recalled in §2.1. Both results are proved simultaneously, in order to apply Corollary
3.3.6, which reduces the problem to showing that there is, for each y € Ex\p, a
natural isomorphism

(3312) ggw - -,"JgODRmOdDZe-F(T("'M ® EWV)—t/ﬁ(n)).

Naturality means here the following. Let us denote by 7 the open inclusion
Z\Dy—Z. The pull-back (Foe) 2.7 of the local system .7 on 1@% satisfies
(Foe) L7 =77 X Foe) L.7. On Z\ Dy, DRe*(n™M @ EV®-1/P®) is naturally
identified with j‘l(% oe) L 7, and both sheaves considered in the isomorphism
above are naturally regarded as subsheaves of 7.7 (7 0 ¢) 1.7 The isomorphism
above is nothing but the equality as such. -

The question is therefore local on Z, and thus on P} x Al,i, and we can assume
that #* M is decomposed with respect to its Hukuhara-Turrittin decomposition in
the neighbourhood of Z. Then we are reduced to the case where Exp is reduced to
one element, and then the assertion is easy to check. O

CONCLUSION 3.3.13. Computing F** (%, £.) reduces therefore to the fol-
lowing steps:

(1) Given the subset Exp and its “Laplace transform” E/]x\p obtained through
the stationary phase formula, to compute a sequence of blowing-ups

e:7 — P} x Aln such that each et (z* M @ EV"-1/PW) is good.

(2) To compute the family of subsheaves 56’@7 of Foe) L7
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(3) To compute the push-forwards Rl(%oé')*ff"gf, as subsheaves of 5*1 7.

(4) To make explicit, in the formula thus obtained, the ,uﬁ-action induced by the

isomorphisms ¢ ‘lfﬁ’g ~ G

7 S @g :

REMARK 3.3.14 (Moderate growth versus rapid decay). One can also determine
the Stokes filtered local system (T/j, ) by computing the subsheaves z <7+ The
use of the moderate growth condition is mainly dictated by (3.2.2), in order to avoid
mixed moderate growth/rapid decay in Theorem 3.3.1. On the other hand, assume
that M is purely irregular. Then

DRmOd(DOUDOO)(n_+M ® Eft/‘r) _ DRYd(DoUDoc)(ﬂ+M ® Eft/r)'

As a consequence, with such an assumption, we can replace everywhere in §3.3 the
moderate growth property with the rapid decay property, provided we change & _
with &_; and the order <; with the strict order <; .

<)

3.4 — The Stokes structure on F % M under a simplifying assumption
The main example of this article satisfies the following assumptions.

AssumPTION 3.4.1. (1) M is purely irregular,

(2) there exists a ramification p : u — u? =t of order p and a C({u})-module N/
with connection such that M = p, N (equivalently, M = p, N) and for which
the Levelt-Turrittin decomposition of A is not ramified:

Cu)oN = P E“aR,),

peExp

where Exp is a finite subset in » 'C[u1].

Assumption 3.4.1(2) means that no Stokes phenomenon for M is produced
by the ramification. With this assumption, p*F*>)(M) is obtained through the
diagram

1
A, X Gy R

AL o

by the formula
7;+M =7, (n"N @ E-Pw/p)y,

In other words, we can work directly with the » coordinate, as if M were non-ra-
mified, and the only difference with the case where M is non-ramified is the twist
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by E—"W/P" not by E~*/P%_ For that reason, we will use the same notations for the
maps in the u-variable, and we will now denote by (£, £, ) the non-ramified Stokes-
filtered local system attached to . We regard N as a holonomic & 45 -module which
is localized at u = oo. Considering now the diagram

P, x A}

T T
P! 7N Al

we have
PTFOOM) =7, ("N ® E—PW/p)y

Let Exp ¢ 57 'C[571] be the set of exponential factors of C () @ p*FO (M) as
above.

DEFINITION 3.4.2. A proper modification e : Z — P! x Al is said to be suitable
for M if

(1) it is a succession of point blowing-ups above (0, 33) € TP}L X ﬁ\lq,

(2) the indeterminacy at (0, 50) of each function a)%f(u, n (¢ € Exp, y € Iﬁx\p),
cf. (3.3.3), is mostly resolved on Z, that is, the components of the divisors of
zeros of m,, 7, 1) which have multiplicity > 2 do not meet the divisor of poles

of w,joe along ¢~1(0, 50), and those having multiplicity <2 meet it at most
at smooth points.

It is known that such a suitable modification always exists. The results on
p+ FO=) M obtained in the previous subsection can be adapted in a straightfor-
ward way to the present setting, even for a suitable modification, provided that

(1) we denote by (77 ,.7.) the Stokes-filtered sheaf attached to N (in the u-
variable), N
(2) we replace t with p(u) and ¢ with % in the formulas.

With Assumption 3.4.1(2), we do not have to take care of the ramification of M.
With Assumption 3.4.1(1), we can work in the rapid decay setting. The explicit
description of the family of subsheaves f;é’q; is then simpler, due to the following
lemma.

LemwmA 3.4.3. If Z 1s suitable for M, then it satisfies the conclusion of Theorem
3.3.5 for N in the rapid decay setting.

Proor. Clearly the goodness condition holds away from the intersection of the zero
set of the funections Wy with the divisor Dz. We can then argue as in [Sab13b,
Lem. A.1] for the zeros of multiplicity <2. O
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Note that we use the convention that the inequality 0 <; e*w,, ; is not satisfied
at a point z whose image in Z is an indeterminacy point of ¢'w, ;. We also use

[Sab13b, Lem. A.1] to prove (3.3.12) at these points.

3.5 — The case of an elementary meromorphic connection

We now restrict to the case where M = El(p, —¢, R), with 0 # ¢ € u 1C[u 1],
p:u—uP =t and R is a regular connection. We thus have M =p, N with
N = £7% ® R. Assumption 3.4.1 is thus satisfied. Since R is a successive extension
of rank-one meromorphic connections, the monodromy of F®* M is given by
Proposition 3.2.1, where T, is the monodromy corresponding to p, R, that is, such
that Tfop =T, if T is the monodromy of R.

We set ¢ = ¢,u"9(1 + o(u)) with ¢, € C\ {0}. According to [Fan09, Sab08], we
have C((7)) @ F@M ~ El(p, -3, (-1)?R), with

pip) = — p—, =Ly 1 o),
¢ qe,
3.5.1) 3 = o) + 20 P g o).
p(n)
We thus have
CepFOM= @ cyeE e,
Eeﬂpw

with @E(n) =0 (E n(1+ o(n)). As a consequence,
Exp={¢} and Exp={2:0|C €}

The blowing-up ¢ : Z — P}A X A1,7 (see §3.4) is obtained by resolving the family of
rational functions

(35.2) w: ) = B ) = o) = pa) ), C € oy

Blow-up of (0, 55). Let us denote by = the single blow-up of the point (0, 55). In the
chart centered at (0, 50), the divisor D reduces to Dy U D, with Dy = {u = 0} and
D4 = {n =0} (cf. §3.1, by using the ramified coordinates u,#). We denote by the
same name their strict transforms by the blow-up map ¢, and by £ the exceptional
divisor e71(0, 30).

Figure 1. The blow-up map £ : Z — P}, x A}
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The chart (u,#) is covered by two charts with respective systems of coordinates
(x,y) and (w,2), such that e(x,y) = (xy,y) and e(w, z) = (w, wz). The strict trans-
form of Dy, defined by « = 0, is located in the first chart, and that of D, defined by
z = 0, is located in the second chart. Moreover, (x:z) forms a system of projective
coordinates on E ~ P!,

In the coordinates (x,y) we find

(8.5.3) s*wg(ac, Y) = — % Ty qaPt — (p+ @) E’qac" +p + owy)].

In these coordinates, the indeterminacy locus of w-(x, %) consists of the points with
coordinate « on the divisor £ = {y =0} which are roots of the polynomial
feX) = f(X/C) with

(3.5.4) fX) =gX"™ — (p+ QX7 +p.

LemwmA 3.5.5. Under Assumption 1.3.1, the polynomial has a single double
root at X =1 and (p + q) — 2 simple roots which are all nonzero and whose ab-
solute value is > 1 for p — 1 of them and < 1 for the remaining q — 1. O

As a consequence, the blow-up ¢ : 7 — P}L X A&ln of (0, 20) is suitable for M in
the sense of Definition 3.4.2.

4. The case of an elementary connection - cohomological description

Following Conclusion 3.3.13 together with Remark 3.3.14, we are now going to -
describe the family of subsheaves .%Q/A, of & C (7 08) L7 and their push-forwards

Rl(7oz Gy, Wheree: Z — Pl x 5\'17 is the blow-up of (0, 30).

4.1 - The sheaves & and &_; on the fibres of T

4.1.a — The real blow-up space Z. Let us first describe the map Tof:Z — IPl
It will be enough for us to understand the description of (7o) (st y—0)- This space
lies over D U E.

Over the coordinate chart (x,y) of Z (see Figure 1) is the chart of 7 with polar
coordinates (7, ¥y, 7y, v,). In this chart, the pull-back E of E is defined by , =0
and the map Tofis given by (v, 9y, 7y,9,) — (r,,9,). Therefore, in this chart,
(7r 0g)” (%n o) is the product of the annulus [0,00) x %1 _o Wwith the circle
%71/ 0= Sl . The restriction to £ of 7o & takes values in Sl _o and is given by
(1, U, 19y) — ¥ = 9, + ¥,. Therefore, it will be more convenient for us to use the
description £ = [0, 00) x Sty x b” o» With the coordinate 9= 9y, on 5,7 0= bl

Over the coordinate chart (w,z) of Z is the chart of Z with polar coordlnates
(P, O, 72, 9,). In this chart, the pull-back E UD/OS of EUDg is defined by
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7,7, = 0 and the map ZTofis given by (v, Oy, 12, 0:) — (7, 9y + 9,), wWhile the
map 7o g is given by (v, Uy, 12, 92) — (1, 9) = (1, ¥,). We can therefore identify
555 with Iﬁ’i X 8117:0 so that the restriction of the map 7 o € (resp. 7o £) is identified
with the first (resp. the second) projection.

As a consequence, D U E is obtained by gluing

win Dy = {(r,9,9) | 7, €[0,00], ¥ € 8}, ¥ €8} )} with
- E = {0, 9.0) | 7, €[0,00], 9 € 8L, 9 € 8L}
along 7, = 0 (resp. 7, = oc) by the identity on 8}_j x S} .

4.1.b — The sheaf & onE U 565. Wedenote by : B— EU 565 the inclusion of the
open subset consisting of the union of

o EN\{m:O},b@\{mzoo},
° {(0,19, 5) | qv € arg(wq)— (g,%)} C {r, =0},
° {(00719, ) | p¥ — (p+q)d € —arg (p,) + (g,%")} C {ry = oo}.

LEMMA 4.1.2. Let us still denote by 7 o¢ the projection EU 5@ — I[ND;. Then
b =BFod) T

Figure 2. The annulus ﬁa 5 U ]:775 .
PrOOF. By analyzing the map e: 7 — ]ﬁ; X Al,, in the neighbourhood of
E U Daa . O

4.1.c — The sheaves & _; on EU 563. Assume that y = @E. According to Definition
3.3.8 (in the rapid decay setting) and recalling that Exp = {¢}, we obtain:

LEMMA 4.1.3. The restrictionto E U 555 of the sheaf ?@E 1s the subsheaf of &
given by
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where ﬁ“’2>0 denotes the inclusion of the open subset

(4.1.3x%) B‘”Z>O = {E cE U 56-5 | 0<5 E*wg(u,n)} E U 555

Proor. Let us make precise the reasoning at the points z whose projection on
E U Z is an indeterminacy point for Wz On D, the factor ¢* Wz written in the co-
ordinates (w, z) reads as

N 1
IS wg(w, Z) = m . lg(w, Z)

for some holomorphlc function /1A such that /lA(w 0) = —qp,/p # 0, avalue which is
independent of C € Wpig- Hence there is no 1ndeterm1nacy point of Wz on D4. We
conclude from Lemma 3.5.5 that these points lie on £\ (Dy U D) and that, in a
suitable local coordinate v on £ vanishing at such a point, s*a)g can be Writ‘ien as
v*/y? with @ = 1 or & = 2. In any punctured neighbourhood of a point (v = 0, 1), the
argument of E*wf takes all possible values, therefore such a point cannot be inside
sz>0 (nor inside B‘”E<0)' It thus lies on the boundary of Bw€>0 and, according to a
computation similar to [Sab13b, Lem. A.1], Formula (4.1.3x) also holds at such a
point. O

In other words, we will forget the indeterminacy points in the remaining part of
this article.

4.1.d — The sheaf & _5 L on DA 5 We have

(@1.4) Boo . {@-u,qa D190~ o+l € -arg(ep+ (3.5}

This is the pull-back under the radial projection [0,00] > 7, — oo of the set
BN {ry = oo} considered before Lemma 4.1.2 and is independent of . As a con-
sequence, on D, 5§%$5|{ru:oc} is equal to & |~} and -‘5”<¢Z|{m<oc} C G <o}

4.1.e — The sheaf & /<W onE 5 From (3.5.2) and (3.5.3), the condition 0 <5 E*wf for
the point z = (v, 9,0, 0 ekl lying over (x,0) € E'\ Ef*I(O) reads

g — arg (f({ ') € arg (p,) + ( El ) (mod 27).

272
Therefore

~ 3T
(4.1.5) B“’Z>0 NE = {(m,ﬁ 19) | qv — arg(f({ L) € arg(<pq) + (2 5 ) mod2n}.
From (4.1.3 xx) it clearly follows:

(4.1.6) For each fixed 5, the fibres (ng>0 NE )g are increasing with respect to
QA € {4 ordered according to the order of the family (@E)Z at 0.
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Let us observe that for |x| > 1, we have ¢, — arg (f (CA ) ~ — Py, 80 that in
the limit |x| — oo, we have

(417 By NE N {r, = oo}

{(oo 9, 9) |p19—(p+q)19€ —arg (¢,) + (2 3;)}

which is independent of C € 1,14 and coincides with Bw>0 ﬁDA N {r, =0} (see
(4.1.4)). R
Similarly, for |x| — 0, we see that — g9, + arg (f(¢ 1)) ~ —qv, and hence

4.18) Ba) onNEN {r. =0} = {(O 9,9) | g9 € arg (¢,) + (2 3;)}

is independent on ¢ € ,up +¢» and coincides with B N {r, = 0}.
As a consequence, "<so |7 is obviously contained in &z, and coincides with &
on {r, = 0}.

4.2 — The Stokes-filtered sheaf (,0 / 2

From Theorems 3.3.10 and 3.3.11 in the rapid decay case and after the rami-
fication p, we obtain:
COROLLARY 4.2.1. The Stokes-filtered sheaf (P s 7. , L)) on S, _o 18 given by:
P‘ Y =R\Go €),C,
o foreach ¢ € ., %@Z —Rl'(7o 5)*5'9;@2.

In particular, the latter is contained in the former. O

We will simplify the topological situation in order to ease the explicit compu-
tation of these objects. We continue to restrict the sheaves to E U EA We notice
that BU,A>0 N DA defined by (4.1.4) is independent of C We thus set B° := (BN E yu
(BwA>0 ﬂ DA) (for any C ). We have, for any C the inclusions Bcu -0 C B° C B. The
f1rst inclusion is an equality on D , while the second one is so on {7, = co}. We

denote by f° the inclusion B° K ﬂﬁA and we set ¢° = (/)"’)g(?roé)*l.,7. We
thus have a sequence of inclusions f§<@ — G 9.

LEMMA 4.2.2. (1) The inclusion &° — & induces an isomorphism

R (7o02),9° R\ (702). %
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(2) The natural restriction morphisms

1,/X > 1,/ X  ~ o 1,/X ~ 1,/ X  ~ )
R(ﬂoe*f§0—>R(ﬂoe)*f§‘oE,~ and R(WOE)*,(9<@Z—>R(7TO€)*e(/(<;Q\E|E'

are 1somorphisms. O
We can thus replace in Corollary 4.2.1, the triple (ﬁ U 5 (B(0A>o) Cen ,B)
with (E (Bwl>o ﬁE)A ,B° ﬂE) and the pair ((:& /<¢ )A ) Wlth thewpmr

Hp+q

(( /<p lE)CE,u (gri;)

4.3 — Stokes data for p+t FOM - abstract version

The computation of the Stokes data can be done with the simplified model above.
Namely, we denote by A the annulus [0, o] x S;ZO with coordinates (r,1), where r
now abbreviates 7,. The open annulus A is defined as (0,00) x S!_, and the
boundary components are denoted by ™A (r = 0) and 9°A (r = o). We denote by
7 the local system on A x Sl o ™ ~FE pull-back of .77 by 7 o ¢ and we consider the
subsets Bwl>0 and B, which now denote the intersection of Bw ~o (resp. B°) with

A x b _o- We will denote by .7 7 ¥ the restriction of 7 to the flbreA X {19} (so.7 7
is canomcally equal to.7 ), and similarly for Bwl>o and B, as well as for ﬁw ~o and fi.

Let us choose an argument 9, € bn o such that the set
{0 := 0, + tn)q| L € 7}

does not contain a Stokes direction for any difference of two exponential factors @E

and 3, for .0 € pyrq Lt I = [0y, Dy ). We then define L, := H'(A, (%).7 %)
for £ =0,...,2q — Land ;™! : L, — Ly by the diagram of isomorphisms induced
by the restriction isomorphisms

H'(A x I, (B"),. %)

(4.3.1) / \
Sf+1

Hl(z’ (ﬁ{%)!ﬁe) > Hl(z, (/852+1)!ﬁl+1)

We arrange the elements of j1,, ,, identified with Exp through C — Q- e according to
the ordering (2.1.2) at 19

Hprq = {Co <l§o <1§0 Cp+q—1}'

This ordering repeats itself at @ for each even ¢ = 2u and is completely opposite for
each odd ¢ = 21+ 1. From Corollary 4.2.1 in this simplified setting, we conclude
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that the family

— 9, =3
(432) H' (A, (Bu 0T,
forms a increasing (resp. decreasing) filtration of H'(A, (ﬁ@),.%@) for ¢ even
(resp. £ odd) in {0,...,2¢g — 1}. We denote by FL, such an increasing/decreasing
filtration. We can conclude:

THEOREM 4.3.3. The Stokes structure of the de-ramified local Fourier trans-
form pTFOM of the elementary meromorphic connection M = El(p, —p, R)
can be represented by the following linear Stokes data:

e the vector spaces L, = H' (4, (ﬂ@)g %@’) -see (4.3.1)— for £ =0,...,2q — 1,
o the isomorphisms Sy from (4.3.1),
e the filtrations FL, given by (4.3.2). O

5. Topology of the support of the sheaves ‘§<36 on the annulus

In this section, we will describe the shape of the support BZOQ inside the annulus A
in order to obtain Corollary 5.1.12 below. ‘

5.1 — Morse theory on the closed annulus

In this section, it will be more convenient to use the argument arg x = ¥,, re-
lated to ¥ as follows:

(5.1.1) 9 =0, + 0.
We consider the function (cf. (3.5.4))

A\{w | f@) = 0y-Gos,

x— 0 = arg (f(x)/a?) = —qd, + arg f(x)
with f(x) given by (3.5.4). For Z € fty.q and Je ‘S}FO , we set
G?(x) = G(C ) — q(0 + argO) + arg (p,) = —qv + arg(p,) + arg F(C ).
We have
1/\ _ qA -1 T 37

(5.1.2) Bl o=@ ((5.5)):

Let us denote by b: A’ — A the real oriented blow-up of the roots of the
polynomial f(x) (where G is not defined) and let us set A’ = A\ f~1(0). We will use
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classical Morse-theoretic arguments for the extension of G to the manifold with
boundary A’ (cf. [HL73, §3]).

LEMMA 5.1.3. The function G extends to a differentiable function on A'. Its
restriction to DA’ has no critical point. The set of critical points in A', which are all
of Morse type of index one, is equal to p,,, — {1} embedded in {x | x| =1}. To
each critical point ¢ € p,,, — {1} corresponds the critical value arg(C? —1) =
5+ m mod 27 for some xk = 1,...,p + q — 1, which belongs to (3, 32” ). The cm'tical
value 5+ —q mod 27 comes from exactly one critical point, which is exp( ) for

ke {1 .,p +q— 1} such that k = axmod (p + @), with a as in (1.4.2).

Proor. The assertion on the critical points and their values is obtained by noticing
that G is obtained as the composition of the function x — f(x)/x? from A’ to C* with
the projection to S'.

Let us consider the local behaviour of G around a root x, € A of f(x). Let S},
denote the boundary circle over x, and assume first that «x, is a simple root. The
function G then reads

G(x) = arg (f(x)/x?) = arg ((x — x,) - glx)/x?)

in a neighborhood Sl c A’ for some polynomial g(x) which does not vanish at x,.
This shows that G extends differentiably to Sl and its restriction bl — S! has
maximal rank everywhere. Locally around the double zero x =1, the situation
amounts to

G(x) = arg ((x — 1) - gla)/a?)

with g(x) non-vanishing at « = 1. The same arguments as above apply regarding the
extension of G to S. Lastly, the behaviour of G on A has been given in §4.1. [

As a consequence, we can regard G as a Morse function on the pair (A", 0A"), and
also on the pair (A\ £~1(0), 0A) (cf. [HL73, Th. 3.1.6]).

PROPOSITION 5.1.4. For each 0 € S, each connected component of the subset
B =G (0+ 3, 37”)) c A\ £710) is homeomorphic to the union of an open disc
with holes (i.e., interior closed discs deleted) and nonempty disjoint open intervals
(at least one) in its boundary. It is embedded in A in such a way that the

nonempty open intervals in the boundary are contained in dA.
Proor. We will start with the case 6 = 7.

LEMMA 5.1.5. The subset G~*( —313 2) CA\fX0) is homeomorphic to a
disjoint union of (p + q) semi-closed discs, each of them being a closed disc with a
closed interval in its boundary deleted, embedded in A in such a way that the

remaining nonempty open interval in the boundary is contained in OA.



164 Marco Hien - Claude Sabbah

Consider the annulus A = [0, oo] x S! with coordinate (r, ;). We will use the
notation

ev[m._{q,._()} (%ﬂ_ﬂ Z’ﬂ_;’_ )
(5.1.6) m=0,...,9—1

i (2m~+1). (2m+1)
Ml = =0 x (B =g T )

2 2
evpout .= {r = 0o} x (%f%,%Jr%),

(517) @nt1) @ntl) n:o,’p_l
oddyout .__ _ n+tlr 7 @utlr | 7
0% = {r = oo} x ( > o +2p)7
evauty.—-—\
odd Izl)uft\ o dd I(c):ut
: ev[]i-n muo_ddI(i)n

>eVIin
Y ev Igut

\_’/ Figure 4. The topological space G—(0).
Each of the red circles stands for a
(deleted) root of f(x). The number of

Figure 3. The intervals €'/, cddfin curves starting at S!_ is ¢, the number

m?

evout odd yout jp the chosen numbering. of curves ending in S'__ is p.
We then have
q-1 p—1
o) = U omeri () = 1o
m=0 n=0

ProoF OF LEMMA 5.1.5. By Morse theory (cf. loc. cit.), G™1((—7,2)) is diffeo-

373
morphic to the product G=1(0) x ( —Z,2). Itis therefore enough to check that G-1(0)

22
is the disjoint union of (p + ¢) semi-closed intervals with closed end points on 0A.

Since the closure G—1(0) cuts the boundary HA’ transversally, we conclude that

e in the neighbourhood of ¢/ 2y

m?
(m:0a"'7q_1)9
2nn

e in the neighbourhood of evlg“t, G~1(0) is a smooth curve abutting to (co, 2% ’
(n:07"'7p_1)9

G~1(0) is a smooth curve abutting to (0,

e in the neighbourhood of a simple root of f, G~1(0) is a smooth curve with one
end in this puncture,

e in the neighbourhood of the double root of f, G"1(0) is a smooth curve with
two ends in this puncture.
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The lemma is then a consequence of the properties claimed below. O

CrAIvs (See Figure 4). (1) The connected component of G=1(0) abutting to
(0, 2ﬂ) (m=1,...,q — 1) is a semi-closed interval with its open end at some
stmple root of f with absolute value < 1.

(2) The connected component of G=1(0) abutting to (co, 2;7’") m=1,....p—1sa
semi-closed interval with its open end at some simple root of f with absolute
value > 1.

(8) The conmected components of G1(0) abutting to (0,0) and (oo, 0) are semi-
closed intervals with open end at x = 1.

PROOF OF THE CLAIMS. Writing & = 7e¢™* with 7 € (0, 00), one has

(518  G@) e o, }<:>f ®)

€ R\{0} <= ¢’ sin (p¥,) — psin (q¥,) =
We consider a fixed argument 9. If sin (q,,) = 0 = sin (pd,) — which is the case for
¥, = 0 or 9, = n only, since we assume p,q to be co-prime — then all » > 0 are
solutions to the last equation. Since p or ¢ is odd, f(x)/x? = gxP — (p + @) + px~?is
negative for x < 0, s0 (0,00) x {1, = n} is contained in G~!(x). On the other hand,
f(@)/x%is > 00on[(0,1) U (1,00)] x {1, = 0}, hence the third claim.

In case sin (p¥,) # 0, the equation reads

(5 1 9) /rp+q p Sln (qﬂx)
o q sin(pd,)’

and has exactly one positive solution » > 0 whenever sin (p¥J,.) and sin (q¥,.) have the
same sign, and no solution otherwise.

Now, for fixed 7, we see that for small » <« 1, Equation (5.1.8) has exactly ¢
solutions ¥, contributing to G71(0), given in the limit »\,0 by the
arguments { “lm=0,. —1}. For large r > 1, it has exactly p solutions 9,

2nn

contributing to G~1(0), given in the limit » " oo by {— n=0,...,p—1}

Since 0 and 7 are the only common zeroes of sin (qq%) or sin (p¥,), i.e., at each
other zero of one of these functions, the corresponding function changes its sign
whereas the other one doesn’t. This means that locally at these arguments there
is an open sector (with the argument as a boundary of it) where equation (5.1.8)
does not admit any solution » > 0. As a consequence, between each of the
arguments

{z%ﬂm 0,. ..,q—l}U{ZZTnM@_O,...,p—l}

there is an open sector such that equation (5.1.8) has no solution » > 0 for any ar-
gument v, inside this sector.
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Lastly, for |x| =1, we get G(x) = 0 if and only if psin (¢¥,) = ¢sin (pd,) and
q cos (pvy) + p cos (@) — (p + q) > 0, which cannot occur. Therefore

(5.1.10) {x=e" |9, #0}NGH0) = T,

keeping in mind that x = 1 is a root of f(x).

Therefore, a connected component of G=1(0) meeting {r = 0} (resp. {r = co})
at a nonzero argument cannot end at another similar point, either because it cannot
cross a forbidden sector, so cannot end at {r = 0} (resp. {r = oc}), or because it
cannot cross the circle » = 1, so cannot end at {r = oo} (resp. {r =0}). Such a
component must then have an end at a simple root of f. This gives the first two
claims, according to the last part of Lemma 3.5.5. O

END OF THE PROOF OF PROPOSITION 5.1.4. The proof will be done by induction on the
number of critical points contained in B’ := G~! (9 + (g , 37” ), and Lemma 5.1.5
provides the initial step of the induction. We now consider the subset B’ for ¢
varying from z to 2z. The case from 7 to 0 is very similar. When 0 varies, no critical
point can go out from G~1(0 + g), but a critical point may enter in G~1(0 + % ). This
oceurs successively for

KTl
p+q’

0=0.=n+ k=1,....,p+q—1,

with corresponding critical point given by Lemma 5.1.3. Attaching a 1-cell at such
a 0 consists in connecting a connected component of B’ intersecting {r < 1} with
one intersecting {r > 1}.

An example with p =4 and ¢ = 5.

Figure 5. The subset B" for the starting Figure 6. The subset B’ when the first

value 7 of 6. The green circles are the critical point enters the picture

zeroes of f(x). The small yellow circles 0, =n+-2). We see the gluing of the
. . . pra

are the roots of unity x,,, i.e., the critical corresponding dises in the upper half of

points of the Morse function. the picture.

The behaviour of B? when 6 varies between 6, — ¢ and 6, + ¢ (¢ > 0 small) is
pictured in Figure 7, where the dotted lines are the part of the boundary which do not
belong to B. Indeed, for 6 < 6, the boundary of B’ is contained in 94 by induction,
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hence far from the critical point and, by Morse theoretic arguments, the properties
of B’ remain constant away from a neighbourhood of the corresponding critical
point. The assertion of the proposition is thus also satisfied for 6 € [0,, 0, +¢). O

Figure 7. Local view at the critical point C = exp(@) of the set B? at 0 = 0, — ¢ and
0 = 0,. + ¢, with dotted hnes deleted.

QOROLLARY 5.1.11. Let .7 be a local system on A. Then, for each S,
HIA, 1. 72)=0 for j # 1 and

1A p0 = -~ ~r
H'Ap7%)~ P T

E EB(?O Iup+q

Proor. For the first assertion, we note that the topological boundary of each
connected component of B intersects the component but is not contained in it,
according to Proposition 5.1.4. Therefore, /)’f’.%" has no global section, nor has its
dual sheaf, hence the conclusion by using Poincaré-Verdier duality.

The second assertion is proved by induction as in Proposition 5.1.4 on the
number of critical points contained in B’. The case 0 = n follows from Lemma 5.1.5
and [Sab13a, Lem. 7.13]. When 0 is in the neighbourhood of a critical value 0,, we
decompose B’ in two closed subsets B} U BY, so that By resp. By** are as in
Figure 7 and BH ~¢ is diffeomorphic to B(Q"Jrc by a Morse-theoretic argument. We
then have an exact sequence, according to the first part and with obvious notation,

0— H'@A,pl.7) — H'A, B, 7) & H'@A, B3, 7) — H'@A, By, 7) — 0

and H(A, ﬁl, 77) remains constant, as well as Hl(A /312, 727, when 0 varies
around 0,. The only changes come from H(A, [)’2,7[ ), which is zero for
0 € (0, — ¢, 0,] and has dimension rk.7Z for 0 € (0, 0, + ¢). O

Going back to the sets B we conclude:

w>0’

R COROLLARY 5.1.12. Let .72 be a local system on the annulus A. Then, for each
S 5,17:0 and ¢ € w,.,, we have

H'(A, (/;w )= D F
Eeﬂp+q\ {1}

C EBw >0

where we regard Mg 08 embedded in A =10, ] x S as {@,9) | 9P =1}, O
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5.2 — The family (Bg‘ )fmﬂCAe,upw and £ =0,...,2¢—1

>0
wC>

We now make precise the choice of an argument 30 IS 8,17:0, and so the set

{55 =1, —&-%ﬂ | £=0,...,2q — 1}. Due to the previous results, the choice of a base
point 9/ € S

,17:0 such that q@é — arg (p,) = n seems appropriate. However, since 5(;

is a Stokes direction for some pair in (@E) , we modify it and set Dy = 5(; +e/q

Zeﬂmq
for e > 0 small enough in such a way that 9, is not a Stokes direction. We thus have
qv, —arg(p,) = +¢. R

We now fix £ € {0, ...,2q — 1}. The order on the family (@E)E at 9, is defined by
@ES 3@5 = Re(@f - @6 ) < 0 in some neighbourhood of 3, which amounts to

Re(e~=(C? — (")) < 0 for ¢ odd, and the reverse order for ¢ even, according to

Formula (3.5.1) and to the relation qﬁg — arg ((pq) = ({ + 1) + . Therefore it

corresponds to the even (resp. odd) order of Definition 1.4.1 on Hpiq when /¢ is even

(resp. odd). Recall that, with respect to this order, the family indexed by ¢:
BZ‘2>0 = {x €A |GC 'w) e qarg ¢ + ¢V, — arg (o) + <72T,327T>}

is increasing. One can also check directly with the formula given in Lemma 5.1.3

that the order on 4, , at ¥, coincides with the order by the number of critical points
contained in BY! _,. We thus have

w6>0‘
- eVBwZ>0 ::Z -G! (qarg E+e+ (—g,g)) if ¢ is even,
(5.2.1) Bg§>0 =\ o I R © S
o sz>0 =C-G (qarg(+z—:+(§,§)) if ¢ is odd.
We will set

eV[i)r}b(E) — ein?r; _ €/q, eVI;“(E) — evI%ut + 5/[)7
(5.2.2) . _
Odd[,l;ll(f) — oddl;z _ <€/q7 oddI;;ut(a) — oddl;)lut + E/p

Then we have
(5.23) 9BV — UL, e ringe) (¢ even) [J/_}eTo) )
2. 0:>0 = -1 oddyin 1 oot =
Ui e (¢ odd) UL o)

In the following, £ > 0 will be chosen strictly smaller of any constant quantity
like 7/(p + ), ete.

6. Topological model for the standard linear Stokes data

In this section we introduce a “linear model” and we develop a computation of the
Stokes data in this model. That this model suffices for the computation of the de-
sired Stokes data will be shown in Section 7.
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6.1 — Standard filtration on a local system on the annulus

We are given two coprime integers p,q € I\. Recall that we defined two op-
posite orderings on the set of (p + q)th roots of unity in Definition 1.4.1. We define
the following two subsets related to those constructed in §4.1 (notation as in (5.1.6)
and (5.1.7)):

e

B . AU (|_| eV[m L |_| evlout) LA

(6.1.1) e
oddB —AU odd Im L odd Iout
(Lo [ovney =2

Both spaces are obtained from the closed annulus A by deleting p closed intervals in
the outer boundary and ¢ closed intervals in the inner boundary. On the other hand,
we embed ., into the circle with » = 1.

6.1.a — The even case. The combinatories which will play a role in the following is
governed by the following map (cf. (1.4.3) for the notation):

{0,...,p+q—1} —={0,...,q} x{0,...,p}

6.12)
k= (“in(k), “out(k)).

We will also consider the composition ¢'c with the projection to Z/q”Z x 7,/pZ, and
we will denote by m (resp. n) the representative of ¢'in(k) mod ¢ in {0,...,q — 1}
(resp. of ®out(k) mod pin {0, ...,p — 1}), so we also regard ¢*c : k — (m,n) as a map
{0,....,p+q—1} —-{0,...,9—1} x {0,...,p —1}.

REMARKS 6.1.3. (1) The map (6.1.2) clearly is injective. Moreover, if p and q are
# 1, ¢ is also injective. Indeed, let ky, k2 be such that (my, n1) = (mg, ng).

o If my =my#0 and ny =ne #0, then in(k;) =in(ks), “out(k;) =out(ks),
and e"out(kl) = kl — evin(kl), e"out(k2) = kz — eVin(kg), SO kl = kz.

o If my=me=0 and n; =mnz #0, then “out(k;) =out(ks) =:n €
{1,...,p— 1} and ®in(k;) = k1 — n, ®in(ks) = ks — n. It is thus enough to
consider the case eVm(l’cl) = 0 and ®in(kg) = q, which is then equivalent to
ki=mn, ks =n+q, p+q<— and %21 f%. This implies p + q > pq,
which can occur only if ¢ = 1 (since p # 1 with our starting assumption).

e The case m; = mg # 0 and ny = ng = 0 is treated similarly.

o Assume m; = mg =0 and n; = ng = 0.
— If ®in(k;) = ®in(ke) = 0, the only case to consider is “out(k;) =0
and ®out(kz) = p, which implies p + ¢ > 2pq and cannot occur.
- If “in(k;) =®in(k2) =¢q, we have k; =out(k;)+q and
ke = ®out(ks) + g with n; = 0 or p, but n; = p is not possible since
k; < p+ q, so ®out(k;) = “out(kz) = 0, and therefore k; = ko.
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— If®in(k;) = 0 and ®in(ks) = q, then k; = ®out(ky), k2 = “out(ks) + ¢,
so the only problematic cases are k; = 0, p, “out(ks) = 0 and ks = q.
But ®out(k2) =0 and ks = q imply qp/(p+q) < 1/2, which cannot occur.

e Ifqg = landpiseven (resp.odd)the pairsk; = p/2, ks = (p + 2)/2 (resp.
k1=(p—1)/2,ke=(p+1)/2) give rise to the same pair (m,n)=(0,p/2)
(resp. (m,n) = (0,(p — 1)/2)). The case p = 1 is similar.

(2) The map ®c arises in the following way: m is the unique element in
0,...,q — 1} such that the rotation of ®7i by ¢* has non-empty intersection
0
with ®7(¢) as defined by (5.2.2):

2kn evyin evyin
(p s + &I ) NI, #< Ve > 0 small enough.
Equivalently, this condition decomposes as
o . (# 9, or
( & + EVlz)n) N EVI;?I;{ d 2kn n 2mn n de
P+ =@ and ;45 == — 5 mod2m,

and the latter case can occur only if p + ¢ is even. Similarly, » is the unique
element of {0,...,p — 1} such that

( 2k

e + eVIg“t) NI £ & Ve > 0 small enough.

(3) It will be suggestive to write k — (m,n) as
evLiqul Mfkwevlzut'

We will construet a family of curves ¢y, in Proposition 6.1.5 below such that
e, connects 7 and 7% passing through &, If ¢=>2 we can characterize
the index min{) (k) in (1.4.4) as the index k' such that ®y,, starts from 7' but
not ®y,,_; (where k' is understood mod (p + ¢)) — and similarly for max&), (k).

4) In the remaining part of this section, we will assume that p > q. Otherwise,
the same arguments hold by interchanging the roles of the inner and outer
circle of the annulus A = [0, 0o] x S with coordinates (r,9) in the following
constructions.

The following lemma is straightforward and is illustrated by Figure 8.

LEMMA 6.1.4. Assuming that ©T% ~» & > I one of the following holds:
l) eVIi”r?x/_1 e f(kfl) s evl%ut and ev]i”r% N €(k+1) N eVIoutn+1
Zl) ev]ﬂi s {(k—l) N evl%u_t1 and. eVIiyg N §<k+1) N eVI%lﬂ:l

m) evljzwg(k—l)wevl%[cl and. eVIiIVerle(k"'l)MeVI%ut.
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Moreover,
. k m 1 m 1 1
1) holds <= MG[E_E’E_%JFM)v
.. k m 1 1 m 1 1
1) holds < ME[E*EJFMvE z_qu%
k m 1 1 m 1
) holds +—= o0 € [?+E_M’E+?q)‘
In particular, #E " (n) <2foreachn € {0,...,p—1}. O

I \\\\

evIOut
n

//Ioutl
n—

Figure 8. The three possible situations for ¢c(k — 1), ¢%c(k), ¢*c(k + 1).

S S

In the following we use the convention that (p +¢—1)+1=0.

PROPOSITION 6.1.5. There exists a closed covering ("Sp)i—o. piq-1 Of A
satisfying the following properties:

(1) Each Sy, is the homeomorphic image of the unit square with edges denoted
successively by a, b, c, d.

(2) The 1mage oi a (resp. ¢) is a closed interval in the inner (resp. outer)
boundary of A.

(3) For each k, there is exactly one of the intervals “Y™ and °4°% ywhich
intersects O(Sy,), either *1[M or 941 yith (m, n) = ©e(k), and it is entirely
contained in 0(8'S;,).

(4) The itmage of b (resp. d) is a smooth curve %y, (resp. *Vy;,1) which satisfies
(@) ¥y, NOA C (),

(o) evyk N Hprq = {fk}7
(c) Yy, connects e"[ig with 1%, where (m,n) = c(k).
%) ifk#k+1,k-1,

(5) We have S NSy = { Yy ifk=k—-1,

P ey
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Proor. We will represent A as obtained from [0,c0] x [0,27] by identifying
[0, 00] x {0} with [0, c0] x {27} through the identity map. We start by cons1dering
the closed covering (°"& k) cut out by the line segments e"yk [0, oo] x { } How-
ever, Properties (3) and (4¢) are not satisfied in general by some line segments e
for k # 0. We then move the ends of the line segment ®'y; , keeping & fixed, so that the
new curve 'y, fulfills (4c). Then, if ¢ > 1, (3) is fulfilled, according to Lemma 6.1.4.

oddIout evyout
n n

eVG;C
é—O £k+1 é-k 50

eva,/ eva,/
V41 Tk

OddI’li’:L] eVI;;Ll
Figure 9. The closed covering (e"‘S;f) (example with p = 4, ¢ = 3).

oddIout evIout
n n

eVGk
§0 §k+1 gk 50

ev,

Yk
odd]in eVIin

“Yr+1

Figure 10. The closed covering (*'S;) (example with p = 4, ¢ = 3).
The case ¢ = 1, which needs a special treatment since ¢ is not injective in this

case, is checked on Figure 11. In the case ¢ =1 and p =1 mod 2, we use the
convention that the curve ®,.: is chosen as in Figure 11. O
2

PEN

Figure 11. The closed coverings (*&)), (°'&;) (p = 5, ¢ = 1).

COROLLARY 616 Let 72 be a local system on A. Then the covem’ng

.....

catzon Ho(e"yk, T ~ T, g mduces an zsomomhzsm

(6.1.65) “v:H'@A,3.7) - P T

Ceﬂmq
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Proor. The Leray property follows from Proposition 6.1.5(3) together with
[Sabl3a, Lem. 7.13]. O

Let us fix the even ordering ., = {EO <ev CAI Lev <oy Ep+q71} on ., (cf.
Definition 1.4.1).

DEFINITION 6.1.7. The even standard Stokes (increasing) filtration on
hD- Zf is defined by the even ordering F,(P- ;'E) =Djck 7/ >

Ceﬂp-q CE P q

6.1.b — The odd case. Similarly to (6.1.2), consider the map (cf. (1.4.6) for the no-
tation):

{0,....p+q—1} = {0,...,¢ -1} x {-1,...,p—1}

k— (“Yin(k), *Yout(k))

(6.1.8)

and we also consider the composition *¥¢ with the projection to 7./q7 x 7 /p7Z, and
we still denote by m (resp. n) the representative of °in(k)mod ¢ in {0,...,q — 1}
(resp. of *Yout(k)modp in {0,...,p — 1}), so we regard °¥c : k +— (m,n) as a map
{0,....p+q—1} = {0,...,¢g —1}x {0,...,p — 1}. We thus have m = °Min(k).

REMARK 6.1.9. As in Remark 6.1.3, (m, n) is characterized by the properties

2kn n 2kn
+ N oddIm @
(p+q 20°'p+q 2q> n©#
( 2kn n 2kn
+

P+q 20°p+q 2g

Ve > 0 small enough.

) N oddlout(s) 7& @

We thus have
. k m m 1
(6.1.10) oddrin_, gk, oddpout i = ¢ | = 4 =) mod 1.
' el p g {q q q)

Let us denote by ¢ = vl € 14, the minimal element with respect to
the odd ordering, which is the maximal one with respect to the even ordering.
There are two cases to be distinguished.

— éa(pﬂz)/? —

e If p+q is even, we have °d¢ —1 and we set °Mf, . =

(p+9Q)/2.

o If p+ ¢ is odd, we have °¥¢ = & *PrD/2 (cf. (1.4.2) for a). We set cor-
respondingly °4k,;, := —a(p +q — 1)/2.

REMARK 6 1.11. Although we could proceed as in the even case to define the

.....

by rotation from the even covermg already constructed.
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Forke{0,...,p+q— 1}, let us set
{0,...,p+q—1} 3k =k +°Y¥%,;, mod (p + q).

We now define

(6.1.12) MGy =0l O,

min

~

to be the rotation of ©'S, by °dd¢

min*

PropoSITION 6.1.13. If we assume that the paths 'y, satisfy the following
supplementary properties when p + q is odd:

: : T
ev, evrin evryin
STy L [ L —
k m m q(p+q)
(6.1.13%) i
ev, evyout evyout
Ve NS € ST 4 ;
k n n q(p+q)

then the odd analogue of Proposition 6.1.5 holds for (Odd@k)kzo__”’pw_l (where we
replace ©I™ and 1°" in 6.1.5(3) with the corresponding rotated intervals).

We note that since the length of €7 % (resp. ¢ g}*t) is7/q, (6.1.13%) can be realized
by moving the end points of the paths ¢'y,.

Proor. We only need to check (4¢). Assume first that p + ¢ is even (so that p and ¢

are odd, arg°¥¢ =z and Mk, = (p + ¢)/2). We will show

min

(6.1.14) OddCA min einer‘l’in(k) =4 ‘i)r‘lidin(k’)’
Oddg in - gggut(k) = Oddlgflilgouuk/)'

This amounts to showing
2 rqlk — 2) 1 21 gk
_[er_] +lE—|: g } + = mod2,
q p+q 2 qtp+ql ¢q
2 rp(k' — 2) 1 21 pk
_[w_ﬂ +1E_[ P —q +- mod2,
p pP+q 2 p'p+q

which is easily checked.
Assume now that p + ¢ is odd. Let us write ag=c(p + q) — 1 for some c€ 7
(then ¢ — agq is odd), so that

B an_ _ c—apn =
e p+tq p+tqg q9p+q
and
0ddg i - T = oddfin, 7(1(]071 ok with {0,...,q — 1} > m' := m + “% mod g,
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and therefore, since *!9™% has length n/g, *Y¢ - ¢1m) N4y, £ &5, Similarly,

o~

odd C

evout —oddpout p(p’; oo With {0 p—1} 50 =+ =L mod p.

min

Let us check that m' = *Min(k) and »’ = °dut(k), therefore proving the odd ana-
logue of 6.1.5(4c). We have

/ —1)/2 —-1)/2 11
¢ _ gk agpt+g-1/2_ ~ aqp+q-1)/ +{_§,§)modq

p+q p+g p+q p+q
1 1 11
!
= - = 4+ |—-ZZ)mod
i 2(p+q)+[ 53) Mo

!

- [m 2010 T T 210

) mod g,

which implies gk’ /(p + q) € [m/,m’ + 1), hence °Min(k’) = m’'. Similarly,
Pk 1 pk 1_ajo(p—i—q—l)/Z

ptq  p+q P+q
en—l—(w;—z(;l)/z—# (—%,%] mod p
:n/_%+2(p1+q)+ (_%%} modp
= (n/_1+2(]01+q)’n/+2(p1+q)} mod p,
hence *out(k) = . O

The obvious odd analogues of Lemma 6.1.4 and Corollary 6.1.6 hold, and we
have an isomorphism

ddyy . gglia oddg oy ™~ 7%
(6.1.15) M VA0 = D A

Cetpig

DEFINITION 6.1.16. The odd standard Stokes (decreasing) filtration on
P~ ng is defined by the odd ordering, i.e., if we number the elements of 1,

C Hp+
by thpeqeven ordering on s, = {y <ev (1 <ev -} We have Fk(@fe %Z) =

D "75@ )

Hpiq

6.2 — The topological model

We will now mimic the description of §4.3, from which we keep the notation, in
the present simplified setting. However we choose the coordinates (r,9,, ) on

the product A x S;I,:()- This will make formulas simpler. We thus introduce the
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isomorphism

[Ooo]xbuoxb}?() [0, 00] x S}_g x S)_

(7/.7 197 19) [ (7" 199% 19) - (7" ¥ — 197 19)

(6.2.1)

The subset f: B A x S! contains A andAhas its inner (resp. outer) boundary
described by (4.1.8) (resp. (4.1.7)). If we fix ¥, (¢ =0, ...,2¢ — 1) as in §5.2 but with
¢ = 0 for simplicity, we obtain

q-1 evyin : : p— 1 evyout
- if ¢ is even J ~
i m=0 m 1 9
PR — — B,
-1 oddyin : : P 1odd out
o "Ly if ¢ is odd I

With this notation, and given a local system .7 on [0, co] x bu 0> We set T = p*N
and 7" := F (5, Then (43.1) reads

HY(A x Iy, (B%) )

/ Syt \‘

(6 0 2) HI(Z, (IBZ)!E%/K) N Hl(Z, (ﬂ£+1)!€%/l+1)
v e
Oy
A _©
C€Hp+q CE€lptq

where U (resp. ') is @V or *¥ (resp. ©3 or °143) according to the parity of /.

Let (V,T) be the monodromy pair of the local system .77 on the annulus.
Then .77 can be described as the triple (V, T, Id), where T is the monodromy with
respect to S._ and Id that with respect to 8,17:0

CONVENTION 6.2.3. We fix an identification F( S\ {9, = —¢}) x S,7 0 }7)
with V, and T is recovered as usual by going in the positive direction from
¥y, =—2¢ to ¥, =0. This fixes, for each ¢, an identification P~
@'V © 1, with the notation as in (1.4.7).

T~
Cetpry €

DEFINITION 6.2.4. The data (( @&ﬂ .%g)é, (a7, F) — the last entry being

defined by 6.1.7 and 6.1.16 — will be called the topological model for the standard
Stokes structure associated to (V,T).

For each £ =0,...,2q —1, let us fix a diffeomorphism A x I, =~ A x I, by
lifting the vector field 9; to A x 8117:0 in such a way that the lift is equal to 9;
away from a small neighbourhood of 0A and such that the diffeomorphism in-
duces Bl BV x [ .. It also induces a diffeomorphism A x {J,} — A x {91}
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and the push-forward of AR isomorphic to AR Moreover, (4.1.8) and (4.1.7)
show that

e for ¢ even, T is sent to “*1 | and 79 to U,
e for ¢ odd, 71" is sent to “H7 and 79 to “HUI9M,.
The Leray covering (*'&,);, is sent to a Leray covering (ev@k)k and the curves (9 )k
are sent to curves (°*4,);. The Leray covering (°"©;.); induces the isomorphism
T A (piLy Sty 01
VEHA B = P

Cetp+g

which is transported by the previous isomorphism from ¥, and the lower part of
(6.2.2) reads

Hl(Z, (,BZ"'I)!‘%/Z'H) - Hl(Z, (ﬂ£+1)!€%/l+1)

(6.2.5) ‘I"“'l es1 l‘l’”l
@ttt —L P ot
CEptq CEttpta

6.2.a — Explicit description of aﬁ“ for £ even. Due to Proposition 6.1.5, we know

that (regarding m resp. k — m modulo g resp. p as indicated above)

. . k m m 1
L o € I if € [?7?*2?) mod 1,
(6.2.6) e
. k t . k m 1 m 1
OLn o I, i € [E +taogt 5) mod 1,

and consequently

i . k 1
627  ©5 M € IS, it S € [0+ ) mod
L. Vi -

oddyin k __, oddrout ek m 1 m 1
I}nM§ > Ik—m—l if me [E'f‘z—q,gﬂ-a mod 1.

From (6.1.10) we deduce that 1%y, and €7, show the same behaviour whenever

k m 1 m 1
ME[E+E’?+6)mOd1' .
Fixing anm € {0,...,q — 1} and considering the interval ®¥/™ we see that the

curves ®%y, with k., (m) := [%jq)] <k< [% — 1] =: kpax(m) are exactly
the ones starting at °47™2, Additionally, we define ky;q(m) := [W]. We have
Femia(m) — kypax(m — 1) =2 and k(M) — kmia(m) =1. Moreover, for fixed m, the
curves °%y, and 7,

e connect the same intervals if kyiq(m) <k <Ekna.(m) and

e connect different intervals if k,;,(m) <k < kpq(m).
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oddyin oddjyin 1
m m—

Figure 12. The curves °y, starting at °¥7" and °¥7% ; for fixed m. Exactly for
Kmia(m) <k <kmax(m), the curves ¢4, have the same behaviour as "dd'yk (we denote k
instead of ék).

Let us consider the situation between k,,..(m — 1) and k.;q(m) for a given
m € {0,...,q— 1}, as sketched on Figure 13.

Emia(m) kmax (m — ]_)

odd I;;ll odd Iin
Figure 13. The sector © and the curves °i%y, and ¢'7,, in the range [Ky.x (11 — 1), knia(m)].

We set
S = kmid(m) - kmax(m - 1)22

This picture allows us to define the matrix ®"S(m) € Mat(s1)x(s+1)(End(V)). Writing
1 = Idy, we set

11 1 1 ... 1 0
0 -1 -1 -1 ... -1 0
01 0 0 0 0
0 0 1 0 0 0

(6.2.8) “S(m) =

(=)
(=)
Ju—
S
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In case s takes its minimal value s = 2, the block with diagonal zeros disappears and
we obtain

1 1 0
“Sm)=10 -1 0
0 1 1

REMARK 6.2.9. The heuristic rule is that, on Figure 13, the red segment going
through kyox(m — 1) —1+7(j=1,...,s+ 1) oriented from in to out (jth column
of ®"S(m)) is written as a sum of black segments oriented from in to out with the
same origin and end horizontal segments. The vertical black segments are also
regarded to be red.

LEMMA 6.2.10. The isomorphism o5 : @'V e 1, — @YV @1, does
not depend on £ if { is even and is the lmew map decomposing into diagonal blocks
as follows:

@) Idtg0m)Jene oy (Maybe empty), m =0,....q —1,
@) Sk, om—1) ko) (0f Siz€ 0t least 3), m =1,...,q—1,
®3) diag(1,T,T,...,T) - “SO)k,..co 1)k - diag@, T 1T . T,

Proor. We can first replace &S, with %99S, when kyq(m) <k < Kuax () without
changing ¥, and thus identify ¢'5, with °1dy, when kpiq(m) <k </kyax(m). It follows
that the restriction of the linear isomorphism o/ to the subspace
Femax () —1
?J@rl
T
fe=kmiq(m)+1
equals the identity. Note that this block may be empty if p < 3q.
Next, let us understand the situation when k,..(m —1) < k < kyiq(m) (cf.

Figure 13). In such a case,

(6211) Odd'}/k . oddli'r; Mgkwoddlout . and ev » oddlimn_1 Mgk oddlout

—m-"

Consider the closed sector

kmid (m) kmid (m)
©m) = U oddg, — U S
k=kmax(m—1)—1 k=kmax(m—1)—1
of the closed annulus between the curves 7, ., ;) = d'Yknnx(m n=2 and
vkml 4 = odd, d(m),due to our previous identification. Our goal is to replace both

415

Leray coverlngs on uo(m) with a smgle one, in order to compute the matrix of ¢,™ in

(E )J,_l ) WlthA @knnx(m 1)+ and E wkmax(mfl)ﬂ as 11’1 Flgure 14.

.....
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Figure 14. The coverings 2 and € of the sector &, their refinements 8, D, themselves
being refinements of a common covering €.

We first pass from both coverings to individual refinements. Let us denote by
o V:={B.1,Bo,Bs} U{Bj |j=1,...,s — 1} the refinement of 2 and
o ©:={D1,D51,D;} U{D; |j=0,...,s — 2} the refinement of €

as shown on Figure 14, so that B ;=D =4S, 1,1 and B =
D, =°dd \%kmi 40 From these refinements we again pass back to a common coarser
covering € := {C; | j = —1,..., s} —in the sense of a closed covering which refines to
both B and . The construction of these can be read off Figure 14. The proof of
Lemma 6.2.10 consists in a computation of the corresponding base change. O

REMARKS 6.2.12. (1) The above computations have been carried out in the case
q < p. In the case ¢ > p, we can proceed in the same way (which amounts to
interchanging the roles of the inner and outer boundary components). The
case p = q = 1 will be studied in §6.2.c below.

(2) The isomorphism ¢! of Lemma 6.2.10 coincides with g% defined by (1.4.9%).

Let us verify this statement. Recall that ©5, N 9"A € Y&, . By definition
of kin(m), kymia(m) and k. (m), we deduce that

ke € [mia(m), kmax(m)] <= in(k) — 1 = ““in(k).
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Then o/ (v ® 1) =v® 1, = 68w ® 1;). In the other case, o/"(v @ 1) is
determined by the corresponding column of the block ¢'S(m) (different from the
first or last column). The rows with the non-vanishing entries 1, —1, 1 correspond
to the places

min?® (%), max°Mmin®(k)) and max°d(k)

respectively.

6.2.b — Explicit description for o™ for £ odd. The result in this case is similar. In
analogy to (6.2.6) and (6.2.7), we now have

oddrin k . oddyout [m 1 m
oid In@71W>£ td ka’m if MG _?—E,E>m0dl
(6.2.13) Ve _
Odd% o fk > Oddlzlitmfl if m € % = + 2_) mod 1
and consequently
i k t ['m 1 m
[ en, i pw e|2-% ,5) mod 1
(6.2.14) oddz; . ]
ol s g0l i e [ﬂ 24 5) mod 1.
odd

Hence ;. and **7, show the same behaviour whenever = +q e[g. g+ ) mod 1.

Picking up the notation from §6.2.a, we see that for fixed m € {0, ...,q — 1}, the
curves 'y, start at 7 exactly for

(6.2.15)  kygim —1) =

[(ZM—I)(erq)Wgkg[(Zerl)(erq)_

1| = kmi - 17
2q 2q W a(m)

and that among these the curves ®y, and 147,

e connect the same intervals if k;,(1m) <k <kmia(m) — 1 and

e connect different intervals if kpq(m — 1) <k < kpin(m).

evyout

’rrm. -- - - -- -.T-.

kmih (m) kmia{m — 1) —1

eVIin einn
m

m—1

Figure 15. The curves ®, starting at ®I" and I , for fixed m. Exactly for ky(m)<
ke <kmia(m) — 1, the curves °443,

7. have the same behaviour as ®'y,.
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Consequently, the situation between ky;q(m — 1) — 1 and Ky, () for a given m
gives the exact same picture as before, cf. Figure 12 and Figure 15. We now can
proceed as in the proof of Lemma 6.2.10:

Replacing *9G), with @S, when Ky (1) <k < kmia(m) — 1 and thus identifying
45, with %, for these k, we obtain that the restriction of /™! to the subspace
kmld(?n)71
0+1
k=kyin (m)

is the identity. For k;q(m — 1) — 1 < k < ky3,(m), we have

ev, . evyin k PN out oddz . evyin evyout
Ve Ly & T, and Vit Ly 1“”’5 >

Comparing with (6.2.11), we see that the appropriate sector of the annulus re-
produces the same situation as in the proof of Lemma 6.2.10, cf. Figure 16.
Defining

8 1= kpin(m) — kmia(m — 1) +1>2
the resulting matrix is the matrix *4S(m) € Mat (s i 1)x(s+ 1 (End(V)) with exactly the

same design as the one defined in (6.2.8) before. Therefore, we finally obtain the
analogous result to Lemma 6.2.10:

LEMMA 6.2.16. The isomorphism o/*' : @'V e 1, — @'V @1, does
not depend on ¢ if £ is odd and s the lmeow map decomposmg nto dzagonal blocks
as follows:

(D Tdgg,s,0m) kogatny—1) (Maybe empty), m =0,...,q -1,
@) “YSIM)gem 1)1 (OF Si2€ at least 8), m =1,...,q -1,
(3) dlag(l, ey 1, T) . OddS(O)UCmid((I*1)*1,kmin(0)] . dlag(l, Py ].7 T_l).

kmin(m) kmid(m - 1) -1

evyin einn
m m

odd

Figure 16. The sector © and the curves %, and °““5, in the range [kpig(m — 1) — 1, kyin(m)].
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REMARK 6.2.17. The case ¢ < p can again be obtained in an analogous way
interchanging the role of the inner and outer boundary (cf. Remark 6.2.12). With
the same arguments as in Remark 6.2.12 we verify that ¢/ for ¢ odd coincides with
ooy of (1.4.9%).

6.2.c — The case p = g = 1. Then the Leray coverings 'S and °1& are given as in
Figure 17. The curves ®7, and °195, obtained by the appropriate isotopy are also
given in the picture.

Figure 17. The Leray covering S (black) and the curves Odd% (red) on the left hand
side, the Leray covering °¥& (black) and the curves 5, (red) on the right hand side.

By Remark 6.2.9, the heuristic rule provides an expectation on the form of g%4¢

and o4y, (namely to be the one defined in 1.4.9). These expectations can be verified
by the analogous procedure used in the proof of Lemma 6.2.10. Let us denote by
A := (Ao, A1) the closed covering induced by the curves ¢y, and by € := (Cy, Cy)
the one induced by the curves °195,. Furthermore, let 8 be the canonical common
(ordered) refinement B = (By, By, B_, B,) (cf. Figure 17), such that A = By U B,
Ay =B UB_, Cy=ByUB_ and C; = B; U B,. This refinement allows to com-
pute the change of the basis from the Cech complex associated to 9 to the one
associated to € as we did in the proof of Lemma 6.2.10. The resulting presentation
of the base change gives the map ¢}, as in Definition 1.4.9. The same arguments
apply for ¢°%4 using the picture on the right hand side of Figure 17.

ev

6.2.d — Standard Stokes data. We have now obtained the following result:

PROPOSITION 6.2.18. Let p,q € N be two co-prime numbers and let (V,T) be a
vector space with an automorphism. The topological model of Definition 6.2.4 is
isomorphic as a set of linear Stokes data to the standard linear Stokes data of
Definition 1.4.11. O
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6.3 — Explicit computation of i’mp

We now prove Proposition 1.4.13. In principle, the topological monodromy of the
Laplace transform 5+ F%> M around 56 can be obtained once we determined its
Stokes data (see Remark 1.4.14). However, using the techniques developed above
in this section, it is possible to compute in a straightforward way the monodromy.
In particular, we can work on the space P! x A; and do not have to use the blow-up
of (0, 0) — see sections 3.4 and 3.5 for the notation.

Let HNDi be the closed annulus obtained as the real blow up of 0, oo in PL. We set
¥ = argu as in §4.1. The fiber at 7,#0 of M (cf. §1.1) is obtained as

(6.3.1) H (P!, .72 DR 00 (v /70 ) R))
where .‘/7/\'10 .= 77 DRPAO) (el /10 & BY is the extension j..7 of the
sheaf .77 (corresponding to R, i.e., defined by the monodromy T) on the open an-
nulus ), to the open part of the boundary defined by

(6.3.2)in —qV + arg ¢, € (n/2,3n/2) mod 27,
(6.3.2)out pY —argt, € (n/2,3n/2) mod 27,

and extended by zero to the remaining part of the boundary. The action of the
monodromy 7, — e2*t, consists only in moving each of the p open intervals (6.3.2)
(of length 7z/p) of the outer boundary in the positive direction to the next one. The
intervals (6.3.2);, can be written as ®/® + (arg 9)/q m=0,...,q—1, and it is
possible to choose 7, so that the intervals (6.3.2),, are the intervals e"l;’l“t +
(argo,)/q,n =0,...,p — 1. For simplicity we assume below that arg ¢, = 0. We can
therefore use the topological model of the annulus A with the subset ®B defined by
(6.1.1) and the sheaf .77’ on A, and obtain the isomorphism

H\(PL,7.,) ~ H'@, (B).%) = H:B,.70).

It will be simpler here, since we do not have to control Stokes filtrations, to work
with Borel-Moore homology, for which we refer to [BM60], [BH61] and [Bre97]. We
have an isomorphism H(®'B,.7¢) ~ H?M(°dB,.77): On the one hand, by Poincaré
duality, H.(®B,.7) ~ H.(*¥B,.72")"; on the other hand, the cap product
(cf.[Bre97, Th. V.10.4] — note that the result in loc. cit. is stated for .72 being of
rank one but generalizes to local systems of arbitrary rank) induces an isomorphism
HBMEUB .77 ~ HL(VB, .72Y)".

The elements of H ?M(OddB, .7¢) are represented by Borel-Moore cycles of the
form

loc.fin.

Z 0'®7/U(7:|

seAq(©ddp)
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where A;(°4B) denotes the set of closed simplicial 1-chains, w, € H(s,.77), and the
sum being locally finite. Note that a curve y:(0,1) — ©B such that lim; .oy (¢),
lim; 17 (t) € d(A) defines a Borel-Moore cycle y®@w € HEM(B 7)) if we
H(y,.7%). In particular, there is a well-defined morphism

ptg-1
(6.3.3) D 7 — =M B, ),
k=0

defined by w — [y, ® w] for w e .7, w- The long exact sequence for the open
embedding °¥B ¢ A ((BM60, Th. 3.8] or [Bre97, §V.5]) yields that this is a basis for
HBM4B . 77). Let us denote by

ptg-1
(6.3.4) UBM g YR g2y = D T
k=0 )

its inverse. We can therefore use the curves ©'y, to compute this homology by way of
the isomorphism WEM,

We fix an isotopy A x [0,1] — A x [0, 1] of the identity to a diffeomorphism y of
A toitself by lifting the vector field d; on [0, 1]in a way that the lift equals 9; outside
a neighbourhood of the outer boundary of A and that the diffeomorphism re-
stricted to the outer boundary maps I to ®'I%",. Let ©'5, be the images of the
curves ®y,. by the diffeomorphism w. We obtain another isomorphism

p+g—1
JBM . gBModdp oy _, %
OB pBMeddp 2 @07@

The topological monodromy is then represented by WM . (¥BM)~1,
We see that ¢y, and €', connect the boundary intervals in the following way:
evyk . evljz «wfkwe‘]]?;lt and ev;);k . ev 72 «A»Ek evI(y)llinl’

with (m,n) = (*in(k), “out(k)) as defined in (6.1.2). Fixing m € {0,...,q — 1}, we
have (cf. (6.2.15))

evil’l(k) =m<=ke [kmid(m — 1), kmid(m) — 1],

where kmld(m) _ [(Zerl)(erq)]

Therefore, 7y, and ¢, ; connect the same bound-

ary intervals ©'I™ and evI out, for all

(63.5) k € [Fmia(m — 1), kia(m) — 2]

(which is possibly empty). Note, that if p 4+ ¢ >3, there is at least one m for which
this interval is non-empty (cf. Lemma 6.1.4). The case p = ¢ = 1 was completely
determined in §6.2.c. The situation is sketched in Figure 18 and 19.
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The Borel-Moore cycles €'y, (black) and 5, (red).

ev,

evlln+1 kmid(m) ev‘[’j;; (*) ev13;11+1 evI:;: (*)
Figure 18. The case ¢ < p, the interval Figure 19. The case ¢ > p, the interval
(6.3.5) always containing at least one in- (6.3.5) containing at most one integer.
teger. Here, it is non-empty only for the values

of m where ®I" is marked with an ().

Now, the assertion of Proposition 1.4.13 can directly be read off from these
figures, the index max,y; (k) denoting the index k' >k such that out(k’) = out(k), but
out(k’ + 1) # out(k). Note, that in the case ¢ < p, we have

k if k 75 kmid(m) -1
maxoy; (k) = .
kmia(m) if k = kpia(m) — 1

with m = in(k) (cf. Figure 18).

In case ¢ > p, we have max,y (k) = k if and only if in(k + 1) = in(k) (Where k
is the lower index of the two curves starting at the marked (x) intervals in
Figure 19). O

7. Stokes data for 5~ F M

We will now prove Theorem 1.3.6 asserting that the linear Stokes data attached to
p~ F02 M are isomorphic to the standard model of §1.4. We are left to proving that
for each ¢ € {0,...,2q — 1}, the isomorphism ¥’ in (6.2.2) is compatible with the
filtrations of (4.3.2) and of Definitions 6.1.7 and 6.1.16. For that purpose, we will
modify the construction of the Leray coverings ©'S resp. °4& in such a way that the
new Leray coverings moreover induce Leray coverings on each e"BwA>0 resp.

B, €€y

7.1 — The even case

Throughout this subsection, we use the even order <., on Hpiq (cf. Definition
1.4.1) and we simply denote it by <. The key observation is the following Lemma:
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LEMMA 7.1.1. There exists a famaily {VE | (e Wpq} OF smooth curves in A with
the following properties:
1) Vg passes through 3
@) 7z € “Bo.>0,
(3) setting (= exp(M) with k € {0,...,p+ q— 1}, the end points of Ve belong

ptq
to the intervals e"ILr;(»s), e[ ‘;L“t(s) with (mmod q, n mod p) = ¢*c(k),

@) for ¢’ # ¢, we have 77, Nvp = 2.

Proor. For ¢ even, we have B(’Zﬁ<0 =B, -0, according to (5.2.1). Lemma 5.1.5

T T

shows that there exist exactly two connected components of G'((— 5:3))
containing the point & = 1 in their closure: these are the components containing
e7in and ®Ig™ (see Figures 3 and 5). Let us denote by B the union of their
closures.

We will construct paths y- of the form Ve = Z . 075 for some %y~ connecting *"Vlf)“
and ©'/! 8‘“ via & = 1 (so that (1) will be fulfilled) inside the region B and contained in
the fiber G1(0~) for some argument HE e(— g,g) N(qarg (E) + (- 72_z + 5,’2—Z+ )
(so that (2) will be fulfilled, according to (5.2.1); note that this intersection is not
empty). We will then have

7: NO"A CC-I) N 9" ("Bu0),
and _ - )
yE N aoutA C C .evlgut N 80ut(evaE>0);

so (3) will be fulfilled according to (5.2.3) and Remark 6.1.3(2).
We are thus reduced to find (05)5 in order to fulfill (4). In the following, we

Ellp+g

will identify the paths y and their images, and we will consider the set
arg (y) := {arg (x) | x € y}.

According to the ordering at 0, (cf. §5.2), we will inductively find 6~ with the slightly
stronger condition (preparing for a variant necessary later) that

(7.12) 056(ngre,g)ﬂ(qarg(5)+5+(fg,gfpj_q>>,

assuming that qarg ©) # 7 (in which case the intersection is non-empty). The

case garg (E ) = mappears exactly when p + ¢ is even and E =-1= Oddz max 1S the
maximal element in g, , , with respect to the even ordering. Therefore, we can also
use Condition (7.1.2) in the inductive argument in the case p + ¢ = 0mod 2 if we
apply the induction hypotheses to all Z < OddCA max O0Ly (recall that < means <y ),

and it is enough to construct an appropriate Hoddg at the end of the induction
process. e L R
Assuming we already have found y;, of the aboveA forrg for¢’ € {¢y,...,Cp_1}, the

task then is to find an argument 0 = 05 with ¢ = (,, giving rise to the path
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72 C B (whose image is then uniquely determined by © Ve = = G1(0) N B) with the
properties:

. T T 7[
(7.1.3)() 0 € qarg (C)+€+(—§ Q—m) and
. T T -1
(7.1.3) i) oe(—5tez)y U asC o).
C/E{CO ..... Ck 1}

Condition (7.1.3)(Q) ensures that G1(0) c CA -1 ~eVBwE>0 (cf. (5.2.1)) and Condition
(7.1.3)(ii) that 6 is such that ‘WCA := G1(0) N B does not intersect any of the curves
CA’lyg, =CIC e for ¢’ < C, which forces veNve = & for all these (.

To this end, consider a Z re {E 05 es E i—1t- Then by induction, we have
O'yg, = G‘l(HZ,) N B for some 95’ as desired. In particular, each x € OWCA' satisfies

Gl@) = arg (9@) = 0, € (- o+ ag) (g(2) = F@) /2", of. (3.5.4)).
Consequently, each point in ( C e & is of the form C C 'z for such an x and satisfies
(T14) G ') = arg (9(C ') = qarg () +arg (CPg@) + (p + CP — (7).

REMARK 7.1.5. Since QA’ < CA, we know that arg (E”’ — QA”) e(— 5,2] Using the

notation of Definition 1.4.1, the pairs (E ! Z ) such that Z r< Z and arg ((’p — Cp) =
n/2 are the pairs (¢, &) with k € [1,257) N N. Indeed, set ¢’ = &"“ and { = ¢

with ¥ € (-2 2907 and ke[ -29,209 N 7. Then {7 — (P =& — &k,
which has argument n/2 if and only if the condltlons above are fulfilled. We then

have parg( e (m, 2n—m]

Additionally, since x € ’y@, we know from (7.1.3)(i) that

R _rr_ T
parg(C)—i—HC,Es—i-( 5'% p—l—q)’
Notice also that if arg(@p —Zp) e(—g,g), we have more accurately

arg(@? - e |-Z4 T T
@ - -G+ oG]
In such a case, the set {C’pg(ﬂc)Jr(erq)(C’p —(P) |x € ,),C,} is contained in a

half-line starting at the point (p+q)(€’p —(P) - with fixed argument inside
[-Z +M’§_ﬁ] and having direction parg (C) + OA ce+(—35,3 _M)
Let us set

(7.1.6) @g/ = {arg (E’premf' +(p+ QP — Zp)) | 7€ Rxso}
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We deduce that there exists ¢ > 0 such that

(-5t d) Hur@ oD

¢ 2 "2 +
(7.1.7) e C
¢/ v , . S
(———&—54—5,—} if arg (¢'? — ¢P) = /2.
2 2
Let us set 6° := N @%. Now, there are two cases to distinguish. Let us con-

sider the interval

-~ T T T T T
2 = (parg(CH- (—E—FE,E)) n (E + (—E §—p+q))
Then 2 # J, and only two cases can occur for the relative position of the two in-
tervals.

Case 1. Assume that

zfa+(parg<<)f§gfpiq)

In this case we have p argf (N ) hence Remark 7.1.5 implies that there is
no C < ( such that arg (C’p — (p ) = n/2 so that the first line of (7.1.7) applies for all
C’ < C and thus there exists &/ > 0 such that

c T T T
@C cCe+ (———f—s’,————e’).
2 2 p+gq

It follows that X ¢ @6 and we can find a 0 € qarg )+ (X \@E), as desired (cf.
(7.1.3)).

Case 2. Assume that
T ~
= (—§+ e,parg(¢) +§),

that is, 7+ ¢ < pargC < 2m— pT + e. From the second line of (7.1.7) we deduce
that @C (-2 —|— e+é, ] so that X' ¢ @4 and we conclude as in Case 1.
It remains to con51der the special case when p + ¢ is even and =C max = —1.

By the first part of the proof, we can assume that 6 e satisfies (7.1.3)() and
(7.1.3) (i) for each CA I < Z . The first line of (7.1.7) applies to 6°. Now, we do not need

the stronger condition (7.1.3) to hold for CA since we do not have to continue with the
induction. Therefore, we consider the interval

T 7T mT T
@18 g Qe(—55) 0 (o (55) = )

instead of 2. We conclude again that X g @C and hence we will find HA
garg () +(Z'\6). ‘O
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REMARK 7.1.9. The case ¢ =1 and p = 1 mod 2 is covered by the special case
above. Due to (7.1.8), the resulting picture looks as the one from the topological
model in Figure 11 Gif p # 1) or Figure 17 (if p = 1).

We will now set y;, := ya for k=0,...,p+q— 1.

PROPOSITION 7.1.10.  The collection of curves {y, | k=0,....p+q—1} from
Lemma 7.1.1 decomposes A into p + q pieces, each being homeomorphic to a closed
disc. This decomposition is a Leray covering by closed subsets for each of the
0
(’)[E>0

sheaves (f§ )!.L%”@ with CA € Wpiq- It induces the isomorphism (6.1.6x).

ProoF. According to Lemma 7.1.1, it is clear that the family of curves (y,); de-
composes A into p + ¢ pieces homeomorphic to closed sectors of A. Let & be one of
these. Then © is bounded on each side by y, and ;. for some %, and additionally
bounded by an interval in the circle S}_, and one of the circle S}__ in
A={(r9,)]|r € [0,00], ¥, € S'1, see Figure 8.

Now, for any ¢ € p,,, we know the shape of eVBwZ>0 due to Proposition 5.1.4:

namely, eVBwE>0 emerged from discs with part of the boundary contained in it
(namely the intervals ¢ j;‘z and ©'/ ;’l“t(s)) which have been glued according at various
points E € /)., (depending on the relation <). The shape of eVBwE>0 NG is
therefore easily determined once we know the shape of the boundary component
Ve N e"sz>0 for & ¢ .

If & < 3, Z , it is clear that y, C eVBwi >0 C e"BwE>0. If on the other hand E <&

we proceed as in Lemma 7.1.1. For x € %y, = ffkyk, we have

(7.1.11) G(C ') = qarg ¢ + arg (& g@) + (p + Q" — 7).

The term g(x) =: re'’ has fixed argument 0;, € (—
in Lemma 7.1.1). From (5.2.1), we deduce that

(7.112)  arg (&% re + (p+ & — ) e+ (
—_——— —
@) (i)

%.3) (see the construction of %y,
T T

Ik ev
—, = = € “By->0-
D) 2) & C>0

The summand (ii) in (7.1.12) is a point with argument in (2 37I) (since Z < fk) and

22
therefore ) := (i)+(ii) describes a half-line starting from (ii) with direction
.. 2pkn
) = + 0.
p+q

Note that » — oo both for || — 0 or |x| — oo and since the starting and endpoint

of . is contained in eVBwZ>0, we see that the latter direction is contained
n

ine+( fg,é). Let t — %y, (1), t €10,2] be a regular parametrization of %y, with
(1) = 1 and consider the resulting parametrization

t i ht) == r(t) - e + (p+ )" — CP)
of the half-line ) with 7(t) := |g(%y,(®))|.
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CrLAm. The parametrization h of the half-line §) satisfies

W=+ (—gg)) = (0,%) U (t1,2)

forsome 0 <ty <1<t <2

If this claim is proved, we deduce by (7.1.12) that
oty € "B oo =t € (0,00) U (12,2),
and therefore y, N B, is homeomorphic to the union .7, U .74y of two half-

closed intervals, .7;, starting at eVP;E(s), and T,y starting at ©7%%(e) with
(mmod q,nmod p) = ¢*c(k).

PRrOOF OF THE CLAIM. Due to the construction of %y, we know that G(%,(f)) =
arg (g(*y, (1)) = 6 for all t with %y,.(t) # 1 (recall that G(x) is not defined for x = 1). We
deduce that

Im(gCy,(8)e k) =0 and Re(g(*y(®)e ) =>0
for all t. Consequently, »(t) = |g(*y, ()| = Ig("%(t))e*wﬂ _ g("yk(t))e’wk. Now

d d ! /(0 d o —il
%T(t) = %Q(O'Yk(t))eizgk =g () - % (e Or

and since ¢'(x) = 0 if and only if x € T the real function 7(?) is strictly monotone
on (0,1) and (1, 2) with lim;_¢7(t) = lim;_s7(t) = co and lim;_7(t) = 0. O

We can now finally understand the shape of B, .oN&. Let y,7,1 C S

be the boundary curves. Due to Lemma 6.1.4, we know that, up to interchanging
the inner and outer boundaries, the sector & looks as in Figure 20.

ST (E)

Ii8(e)

evIout (E)

Figure 20. The typical shape of ©.



192 Marco Hien - Claude Sabbah

We have two cases for the boundaries: either y, C eVBwZ>0 or 7, N e"sz>0 =

Tin U Tout, and the same for y,_ ;. From our knowledge of the homotopy type of
eVBwE>0, we deduce that eVBwZ>0 N © is homeomorphic to one of the three spaces

sketched in Figure 21.

ev]outl (6)

evlin(s)

evlgut (6)

Figure 21. Up to homeomorphism, the three possible shapes of G‘Bw6>o ne.

We conclude that each connected component of eVBwZ>o N & is homeomorphic
to a closed disc with a closed interval deleted in its boundary, and each connected
component of an intersection eVBwZ>0 N &N &' is homeomorphic to a closed or a
semi-closed interval. There are no triple intersections for this covering. It is thus
clear that this covering is Leray for ( /5”9‘ "4 U (¢ even).

Finally, the properties of the curves y; proven in Lemma 7.1.1 correspond to the
behaviour of the standard Leray covering S deseribed in Proposition 6.1.5, and
we obtain the final assertion. O

7.2 — The odd case

We now have BZ{ 0= OddBwE>0 (cf. (5.2.1)). In analogy to the procedure in the
c

standard case as in section 6.1.b, we deduce the odd case from the even one by
rotation by °d4¢ . as defined before (6.1.12). Note that

T if p+q = 0mod 2

(7.2.1) arg (“Y¢ ) =
aarg 7 Cin i——" ifptq = 1mod2.

p+q
The mlnlmal subset to be considered is °dB,, waz >0 which is contained in dBwA>0
for all ¢ € Hp it .

oddzmin.Gfl((_g_Fg’g-kg)) if p+¢ = 0mod 2

£ >0 odf .G (_}%q i (_g+ 57g+ g)) if p+¢ = 1mod 2.
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Since there is no critical value of G inside — i%q + (—5+¢,5+ ¢©), the subset

)

is homeomorphic to Bﬂ" o- Therefore, °B

by °dd¢ i (in the first case) or a small perturbatlon of it in the sense of applying the
flow of the gradient vector field of the Morse function considered for a time interval
without critical points. ~

Furthermore, considering arbitrary ¢ € w, ., we have

>0 is either equal to ®'B,,,, -~ rotated

wodd”\ .

~ -~ ~ ~ 3
(7.2.2) OddBwE>O =(G! (q arg( —qarg "Y¢ )+ qarg (V¢ )+ (g +e, En + 5))

)

witho = 0 if p + ¢ = 0mod 2 and ¢ = 1 otherwise. This space is again either equal to
odd > >0 or a perturbation of it in the same sense as above.

o~

. 1 =rodd 2 -1y _ T
= (67 (qarg €M, — oD

min wE(OddA

Let us define 56 — oddE

dd . .
min " gz y1 C © Bw5>o, with 7z asin Lemma 7.1.1. If

min

p + q is even, the whole situation to be considered is obtained from the one in the
even case by rotation by n. Therefore, the statements of Lemma 7.1.1 and Pro-
position 7.1.10 remain true for the curves 7~ and using °44B, °ddfin oddfout 454 odde
instead of their even counterparts. We have to verify that this is still true for p + ¢
being odd.

Properties (1) and (4) of Lemma 7.1.1 for the family (7§)§ are trivially satisfied.
Furthermore, we have

75 =" i g Cug Tt V5 ddg o1 = 7 5. 0adg Rt
Now, each z € yA is of the form z = 9 - « for some x € 'yA ©Eddg -1 and we deduce
from (7.1.2) that min
R B 3 codd D _rr_w
G(’lg Z) = G(ﬁﬁ) - 01’9\ (Oddgmin)_l cqarg (19 ( (mm) ) +e+ ( 2 2 P + q)’

and (7.2.2) yields z € OddBon This proves property (2) of Lemma 7.1.1 for the

family 7.
Property (3) of Lemma 7.1.1 follows due to the fact that (4) holds and therefore
oA oddg

evrin in codd
min I’m no' ( Bw2>0)7
and

')jg N aoutz C oddg

min

. evlzut N aout (OddBwZ>0),

with (m,n) = c(k) for 9= é together with (6.1.14).
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We also have the analogous statement to Proposition 7.1.10:

PROPOSITION 7.2.3. The collection of curves {75 | Je g} decomposes A into
D + q pieces, each being homeomorphic to a closed disc. This decomposition s a
Leray covering by closed subsets for each of the sheaves (f,) e >0)!.% e with
(j Sy It induces the isomorphism (6.1.15) (¢ odd).

Proor. We only have to consider the case p + g being odd. The proof goes along the
same lines as the one of Proposition 7.1.10 with the following changes. Again, it
suffices to understand the shape of 7. N OddBwZ>o for & ¢ e Iy g

If & s@f , then 7ék C OddBwiA.,>0 c OddBwE>0. Otherwise, we proceed in the same

way. For fkm c ék . °vék<odd5 _

G(C &) = qargC + arg (@) + (p + @ — ).

y1 = 7, we have the equality (7.1.11):

The term g(x) =: re'’ has fixed argument 0 := arg (ék(‘)ddg
deduce that

724 ik e _ ) ee— L 4 (21X
@24 arg (@ e+ @ - e -k (<5,)
) (if)

). From (7.2.2), we

InlIl

k
—&x e eVBwZ>0.

The sum (i)+(ii) again describes a half-line in the complex plane. The argument used
in the proof (Claim) of Proposition 7.1.10 shows that choosing a regular para-
metrization of the curve 7., the half-line f) inherits a parametrization [0,2] — 0,
t — (i) + r(t)e!’ with r(1) = 0 such that »(¢) is monotone on (0,1) and (1,2) and
satisfies lim;_o7(t) = lim;_27(f) = oco. Since the half-line has to be inside the region
determined by (7.2.4) for » big enough (due to the fact that the endpoints of Vek liein
"ddBwZ>0) and since (ii) cannot be inside this region, we obtain the same concluswn as

in the proof of Proposition 7.1.10. O

Since the Leray coverings of Proposition 7.1.10 (¢ even) and 7.2.3 (¢ odd)
respect the filtrations (cf. (4.3.2)) given by the subspaces eVBwE>0 (resp. odd), we fi-

nally obtain the following corollary concluding the proof of Theorem 1.3.6:

COROLLARY 7.2.5. The isomorphisms V' (6.2.2) are compatible with the fil-
tration (4.3.2) and the filtration defined in 6.1.7 for ¢ even (resp. 6.1.16 for £ odd).
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