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The Cyclic and Epicyclic Sites

ALAIN CONNES (¥) - CATERINA CONSANT (¥%)(**%)

ABSTRACT - We determine the points of the epicyclic topos which plays a key role in the
geometric encoding of cyclic homology and the lambda operations. We show that the
category of points of the epicyclic topos is equivalent to projective geometry in char-
acteristic one over algebraic extensions of the infinite semifield of “max-plus integers”
7max- An object of this category is a pair (E,K) of a semimodule E over an algebraic
extension K of Znax. The morphisms are projective classes of semilinear maps between

semimodules. The epicyclic topos sits over the arithmetic topos IN* of [6] and the fibers of
the associated geometric morphism correspond to the cyclic site. In two appendices we
review the role of the cyclic and epicyclic toposes as the geometric structures supporting
cyclic homology and the lambda operations.
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1. Introduction

The theory of topoi of Grothendieck provides the best geometric framework
to understand cyclic homology and the Z-operations using the topos associated
to the cyclic category [3] and its epicyclic refinement [5]. Given a topos 7 a
basic question is to determine the category of points of 7, i.e. of geometric
morphisms from the topos of sets to 7. In this paper we show how to describe
the category of points of the epicyclic topos in terms of projective geometry in
characteristic 1. Given a small category C, we denote by C the topos of con-
travariant functors from C to the category &et3 of sets. The epicyelic topos
(A°®)" is obtained by taking the opposite of the epicyclic category A. This
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choice is dictated by the following natural construction. A commutative ring R
determines a covariant functor () : Fin— AD from the category of finite
sets to that of abelian groups. This functor assigns to a finite set J the tensor
power R®/ = =QjcsR. As eXplalned in geometric terms here below, there is also
a natural covamant functor A — Jin. The composite of these two functors
A — b provides, for any commutative ring R, a covariant functor R" from the
epicyclic category to the category of abelian groups. In geometric terms R’ is a
sheaf of abelian groups over the topos (A°’)". Both the cyclic homology of R
and its A-operations are completely encoded by the associated sheaf R’. In [5],
we provided a conceptual understanding of the epicyclic category as projective
geometry over the semifield ' := 7.« of the tropical integers. In these terms
the functor (-)° considered above assigns to a projective space the underlying
finite set. This article pursues the relation between the epicyclic topos and
(projective) geometry in characteristic 1 in more details. Our main result is the
following (c¢f. Theorem 4.1)

THEOREM. The category of points of the epicyclic topos (A®)" is equivalent to
the category P whose objects are pairs (K, E), where K is an algebraic extension of
' = Zmax and E is an archimedean semimodule over K. The morphisms in P are
projective classes of semilinear maps and mjective semifield morphisms.

It is important to realize the relevance of the language of Grothendieck topoi to
interpret, for instance, the action of the edgewise subdivision on the points of the
simplicial topos A. The preliminary Section 2 is dedicated to this description. It is
well known (cf [10]) that the points of A correspond to intervals, 1.e. totally ordered
sets I with a smallest element b and a largest element ¢ # b. For each integer k& > 0,
the edgewise subdivision Sd;, defines an endofunctor of the simplicial category A
and one obtains in this way an action of the monoid IN* by geometric morphisms on
the topos A. We show that the action of the edgewise subdivision on the points of A
is given by the operation of concatenation of k copies of the interval I: the inter-
mediate top point ¢; of the copy /; is identified with the bottom point b;,; of the
subsequent copy /;;. Then, we form the small category A’ x N* crossed product
of AP by the transposed action Sd* of N* (i.e. Sdi(f)" = Sd,(f*), where f+— f* is
the anti-isomorphism A — A),

Section 3 gives a description of the epicyclic category in terms of oriented
groupoids. The ambiguity in the choice of a representative of a projective class
of semilinear maps in the category P of Theorem 4.1 is inconvenient when
working, for example, with colimits. In Section 3.3 we provide a description of
the cyclic and the epicyclic categories in terms of a category g of oriented
groupoids whose morphisms are no longer given by equivalence classes. There
are by now a number of equivalent descriptions of the cyclic and epicyclic cat-
egories, ranging from the most concrete i.e. given in terms of generators and
relations, to the most conceptual as in [5]. The description of these categories in
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terms of oriented groupoids turns out to be very useful to determine the points
of the epicyclic topos by considering filtering colimits, in the category g, of the
special points provided by the Yoneda embedding of the categories. It is in fact
well known that any point of a topos of the form C is obtained as a filtering
colimit, in the category of flat functors C — ®et3, of these special points. On
the other hand, there is no guarantee “a priori” that this colimit process yields
the same result as the colimit taken in the category g. This matter is solved in
two steps and in concrete terms in Section 4. In Proposition 4.3 we show how to
associate to a pair (K, £) as in the above Theorem a point of (/N\OP)A. Conversely,
in §84.2-4.4 we explain a geometric procedure that allows one to reconstruct the
structure of an oriented groupoid from the flat functor naturally associated to a
point of (A°?)". -

In §4.8 we explore the relations of (A°’)" with the arithmetic site N>, as re-
cently defined in [6]. Let N* be the small category with a single object e and whose
endomorphisms End(e) = N* form the multiplicative semigroup \N* of positive
integers. One has a canonical functor Mod : A — N* which is trivial on the
objects and associates to a semilinear map of semimodules over ' = Z.x the
corresponding injective endomorphism Fr, € End(F) (¢f. [5] for details). This
functor induces a geometric morphism of topoi Mod : (A®®)" — N*. The sub-
category of A’ which is the kernel of this morphism is the cyclic category A
(A ~ AP).

In Appendix A we view the A-operations as elements Aﬁ of the convolution
ring 7Z[A% x N*] with integral coefficients. We review their geometric meaning
and the geometric proof of their commutation (¢f [9]) with the Hochschild
boundary operator.

Appendix B is dedicated to the description of the cyclic homology of cyclic
modules (cf: [3]) and its extension to epicyclic modules [8]. We stress the nuance
between A and A’ in a hopefully clear form. An epicyclic module E is a covariant
functor A — 0. These modules correspond to sheaves of abelian groups on the
topos (A°)". At this point the nuance between the epicyclic category and its dual
plays an important role since unlike the cyclic category the epicyclic category is not
anti-isomorphic to itself. As explained earlier on in this introduction, a commu-
tative ring R gives rise naturally to an epicyclic module R? and it is well known (cf.
[8]) that the A-operations on cyclic homology of R are obtained directly through the
associated epicyclic module. We provide a simple and conceptual proof of the
commutation of the A-operations with the B operator of cyclic theory. Finally, we
point out that the extended framework of epicyclic modules involves many more
modules than those arising by composition, as explained earlier, from a covariant
functor Fin — AL. In fact, these particular (epicyclic) modules have integral
weights and the A-operations decompose their cyclic homology as direct sums of
modules on which A’fL acts by an integral power of k. This integrality property no
longer holds for general epicyclic modules as can be easily checked by applying a
twisting argument.
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2. The action of the edgewise subdivision on points of A

We recall that the simplicial category A is the small category with objects the
totally ordered sets [n] := {0, ...,n}, for each integer % > 0, and morphisms non-
decreasing maps.

In this section we study, using the formalism of topoi, the edgewise subdivision
functors Sdy, : A— A, for k € N* and their action on the points of the simplicial
topos A.

2.1 = The edgewise subdivision functors Sdy,

Let F' be a finite, totally ordered set and k € IN* a positive integer. We define
the set

1) Sdu(F) :={0,....k—1} x F

to be the cartesian product of the finite ordered set {0, ...,k — 1} with ', endowed
with the lexicographic ordering. For f € Homy(#, F') a non-decreasing map (of
finite, totally ordered sets), we let

(2) Sdi(f) :=1Id x f : Sdx(F) — Sdi(F")

ProrosiTION 2.1. For each ke N*, (1) and (2) define an endofunctor
Sdy, : A— A. They fulfill the property

Sdkk/ = Sdk o Sdkr, Vk, kK e N*.

Proor. The totally ordered sets Sdi([n]) and [k(n + 1) — 1] have the same
cardinality and are canonically isomorphic. The unique increasing bijection
Sdy([n]) — [k(n + 1) — 1]is given by

(@, )—i+am+1), Yae{0,. . . k—1}, ic{0,...,n}.

Let f € Homa([n],[m]) then by definition Sd(f) € Homa(Sdy([]), Sdi([m])) is
given by

(8) Sdp(Hi+an+1)=f@+am+1), Via 0<i<n, 0<a<k-1L1
One checks directly that Sd;, = Sdj, o Sdy,. O

We transfer the functors Sdj. to the opposite category A of finite intervals.
Recall that by definition, an interval I is a totally ordered set with a smallest
element b and a largest element ¢ # b. The morphisms between intervals are the
non-decreasing maps respecting b and t, i.e. f : [ — J, f(by) = by, f{t;) =1;.

For all » >0 we denote by n*:={0,...,n+1}. The interval »* para-
metrizes the hereditary subsets of [n]: indeed, to j€n* corresponds [j,n]:=
{x €[n] | x>j}, the latter set is empty for j = n + 1. The duality between A and
A is then provided by the contravariant functor A — A, [n]— n*, which acts
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on morphisms as follows
(4) Homa([nl,[m))>f — f* € Hompw(m*,n"), f1(j,mD) = [f*(j),nl, Vjem".

Let I be an interval, and &k € N*, then one lets Sd;,(I) to be the quotient of the totally
ordered set{0,...,k — 1} x I = Sd;(/) (with lexicographic ordering) by the equiva-
lence relation (j,t7) ~ (j + 1,by) for j € {0, ...,k — 2}. This defines an endofunctor
Sd;, of the category of intervals whose action on morphisms sends f:7 —J to
Sd;.(f) = Id x f. By restriction to finite intervals one obtains an endofunctor
Sdj, : A — AP,

In particular, the interval Sd,(n*) has k(n+2)— (k—1) =k(n+1)+1 ele-
ments and one obtains a canonical identification of Sd;(n*) with the hereditary
subsets of Sd,([»]) as follows

{0,...,k—1}xn*>(b,j)—{(a,?) €{0,... .k —1} x[n]|a>bora=b& j > i}.
Note that the right hand side of the above formula depends only upon the class
of (b,7) € Sdj,(n*).
LEMMA 2.2. Forf € Homp([n],[m]), one has (Sdi(f))" = Sd,(f*).

PRrOOF. The morphism (Sd,(f))" is defined by the equivalence
Sdi(f)@) > y <= (Sdip(f)(y) <

Let x=i+an+1),y=7+bm~+1) with 0<i<n, 0<j<m, 0<a<k-1,
0 < b <k —1. Then by (3) one has Sd;(f)(x) = f(2) + a(m + 1), thus the condition
Sd(f)(x) >y determines (Sd.(f))"(y) as follows

f@+am+1)>7+bm+1)<=a>bora=>andf(1) >}
= i+am+1)>f))+bn+1) =Sd,(f ).
This provides the required equality (Sdi(f))" = Sd;(f*). O

THEOREM 2.3. The action §i\k of the geometric morphism Sdy, (k € N*) on the
points of the topos A'is described by the endofunctor Sd;, on the category of intervals.

PROOF. One can prove this theorem using the fact that any point of A is obtained
as a filtering colimit of the points associated to the Yoneda embedding of A°? in the
category of points of A. One shows that on such points the action Sd;, coincides with
the functor Sd;, : A°® — A°P. We shall nevertheless find it more instructive to give,
in §2.3, a concrete direct proof of the equality between the following two flat
functors A — Gets associated to an interval [

(5)  Fi([n]) = Hompw (0, Sdi (1)), F2([n]) =

= (H(Hom(m*,]) x Homper (17, SdZ(m*)))) /~

m=>0
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here Fs is the inverse image functor of the point p; of A applied to the contravariant
functor Y : A — &ets, Y = X o Sdj, where X = hyy,; is the Yoneda embedding, so
that

(6)  Y(m]) = X(Sdi(m]) = Homa(Sdy([m]), [n]) = Hompw (n", Sd;,(m")).

Thus Fy corresponds to the point S/(ﬁ(pl) and the equality between F'; and Fy
(¢f. Lemma 2.7) yields the result. O

COROLLARY 2.4. The point of the simplicial topos A associated to the interval
[0,1] C R is a fixed point for the action of N* on A.

Proor. The statement follows using the affine isomorphism

(7) SA:([0,1]) = {0,... .k —1} x [0,1] — [0,1], (a,x)+— %Jr%

2.2 — Canonical decomposition of ¢ € Hompe(n*, Sd; (1))

Let I be an interval, I/~ be the quotient of I by the identification b ~ ¢. Con-
sider the map = : Sd;(I) — I/~, (j,x)— x. For ¢ € Hompw(n*,Sd; (1)), we define
the rank of ¢ as the cardinality of the set Z = I°N Range(no ), where
1° =1\ {b,t}.

PROPOSITION 2.5. Let ¢ € Hompw(n*, Sd;,(I)) and r its rank. Then, one has a
unique decomposition

¢ =Sd;(@) o, p € Homyw(n",Sd,(r)), o € Hompo (", ).

Moreover, the morphism o € Hompw(r*, 1) is the unique increasing injection
{1,...,7} = I° which admits Z as range. The composite m, o ff is surjective, where
7+ Sdj,(r*) — 1r* /~ is the canonical surjection.

Proor. Let o € Hompw (r*, I) be the map whose restriction to {1,...,r} is the
unique increasing injection into 7° which admits Z as range. Recall that an element
x € Sd;(I) is given by a pair « = (j,%) € {0,...,k — 1} x I = Sd,(I) with the iden-
tifications (j,¢) ~ (j + 1,b) forj € {0,..., k — 2}. Similarly an element z € Sd;,(r*)is
given by a pair z = (4,u) € {0,...,k — 1} x r* = Sdj(r*) with the identifications
J,r+1D~(G+1,00 for je{0,....k—2}. Let sen"*={0,...,n+1}, then
o(s) € Sd;,(I) is given by a pair ¢(s) = (j,y) € {0,...,k — 1} x I = Sd(/) unique up
to the above identifications. If y € {b,t}, one defines fi(s) = (j,0) € Sd,,(r*) ify = b,
and f(s):=(j,r+1) € Sd,(r*) if y =¢. This definition is compatible with the
identifications. Let us now assume that y ¢ {b,t}. Then y € Z and there exists a
unique element v € {1,...,7} such that y = «(v). One then defines f(s) := (j,v) €
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Sdy,(r*). The map f : n* — Sd,(+*) so defined is non-decreasing, i.e. for s < s’ one
has f(s') > f(s) since the inequality ¢(s”) > ¢(s) shows that eitherj” > jin which case
(7,7v") > (j,v) is automatic, or j = j and in that case 3’ > y which shows that v’ > v.
Moreover since Sd (o) = Id x o one has ¢ = Sd(2) o §.

We prove the uniqueness of this decomposition. Since ¢ € Hompo (n*, Sd;,(1))
preserves the base points, Range (7 o ¢) contains the base point and its cardinality
is 7 + 1. Thus the map o € Homuw (r*, 1) is the unique map whose restriction to
{1,...,7} is the increasing injection to /° and which admits Z = I°n Range (7 o ¢)
as range. Moreover o is injective and so is Sdj(«). Thus the map f e
Homyer (2, Sdy(r*)) is uniquely determined by the equality ¢ = Sd(2) o f. Finally
m. o ff:m* — r*/~ is surjective since otherwise the range of Sd(«) o f would be
strictly smaller than the range of ¢. O

COROLLARY 2.6. For any interval I the map
Hompor (1", I) x Homper (r*, Sd;(n*)) — Hompe (n*, Sd;. (1)), (o, f) — Sd.(2) o

1S surjective.

2.3 — Explicit description of the isomorphism F1 ~ Fy

Let F; : A— ets be the flat functors defined in (5). By definition
(8) Fo([n]) = (H (Hom(m*, I) x Hompew (1", Sd,t(m*)))) /r~
m>0
where the equivalence relation is generated by
(@of,p) ~ (&, Sd;.(f) o B)

for f € Homyw (m*,7*), f € Hompw (n*, Sd;,(m*)), « € Hom(r*, I).

LEMMA 2.7. The map
@ : Fo([n]) — F1([n]) = Homye (", Sd;,(1)), (o, f)+— Sdi(2) o f

18 a bijection of sets.

Proor. The map @ is well defined since @(o o f, ) = ®(a, Sd,(f) o ). Corollary
2.6 shows that @ is surjective. To show the injectivity it is enough to prove that for
any (o, f) € Hom(m*, I) x Hompo (n*, Sd;,(m*)) one has (o, f) ~ (o, f§,) where

¢ = Sdi (o) o B, B, € Hompw(n*,8d; (1)), o € Hompo (™, 1)

is the canonical decomposition of ¢ = Sd(«) o f5.
One has the canonical decomposition f = Sd;, (o) o f, with 5, € Hompe (2%, Sd (¢*)),
1d, o f surjective. Thus (o, 5) ~ (ot o ag, fy). Since Id, o fis surjective, Range o o g C
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Range Id o ¢ = Range ., and thus . o g = o, 0 p

(o, B) ~ (20 00, By) = (e 0 p, ) ~ (ate, Sd;;(p) o o) = (o, B).

2.4 — The small category A x N*

We denote by A x N* the small category semi-direct product of A by the
action of N* implemented by the endofunctors Sd;, for k € IN*. It has the same
objects as A®® while one adjoins to the collection of morphisms of A®® the new
morphisms 7t : Sd;(n*) = (k(n + 1) — 1)"— n* such that

9) Ty © W1y = Ty € Homu oo (k€ + 1) = 1), 7%)
where 7 implements the endofunctor Sd;, i.e.
(10) wort =k oSdi(x), Voe Hompyw(n",m").

Using this set-up one checks that any morphism ¢ in AP x N* is uniquely of the
form ¢ = 7 o & with o a morphism in A°". Any such ¢ composes as follows

(11) (0 B) o (), 0 &) = wy o (SA;(B) 0 0)
where o € Hompw (", ({(n + 1) — 1)) and
Sd; (#) € Hompo((U(n + 1) — 1)", (kl(m + 1) — 1)")

so that Sd, (f) o « makes sense and belongs to Homaew (™, (k(m + 1) — 1)"). Using
Proposition 2.1 one checks that, if one takes (11) as a definition, the product is as-
sociative.

Let &in, be the category of finite pointed sets and let F be the functor which
associates to an interval I the pointed set I, = I/~ with base point the class of
b ~t. To any morphism of intervals f : I — J corresponds the quotient map f.
which preserves the base point. By restricting F to A’ one gets a covariant functor
F : A® — Fin,. The following Proposition shows that F can be extended to
A% x N,

PROPOSITION 2.8. For any n >0,k € N*, let (n’fl)* : F(Sdi(n*)) — F(n*) be
given by the residue modulo n+ 1. Then the extension of the functor F on
morphisms given by

p=ntoard, =), 0u

determines a functor F : A% x N* — Fin,.

ProoF. One checks directly that the definition of (7%), is compatible with the
rules (9) and (10) so that the required functoriality follows. O
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3. The epicyclic category and the oriented groupoids
3.1 — Generalities on groupoids

A groupoid G is a small category where the morphisms are invertible. Given a
subset X C G of a groupoid, we set X! := {371 |y € X}. Let G be the set of
objects of G and denote by 7,s : G — G the range and the source maps respec-
tively. We view G© as the subset of units of G. The following definition is a direct
generalization to groupoids of the notion of right ordered group (cf. [7])

DEFINITION 3.1. An oriented groupoid (G, G ) is a groupoid G endowed with a
subcategory G C G, such that the following relations hold

(12) G.NG'=GY G uUG'=G

Let (G,G.) be an oriented groupoid and let x € G©®. The set G,:=
{y € G | s(y) = x} is endowed with the total order defined by

(13) y<y <=y oy leq,.

This order is right invariant by construction: i.e. for any f € G, with »(f) = «,
one has
y<y == yof <y op.

In the following subsections we describe two constructions of oriented groupoids
associated to a group action.

311 - G=XxH.

Let H be a group acting on a set X. Then the semi-direct product G := X x H
is a groupoid with source, range and composition law defined respectively as
follows

s@,h) ==, v h):=he, (xh)oy,k):=y,hk).

(As in any groupoid the composition y o y’ is only defined when s(y) = 7(y’) which
holds here if and only if = ky). One has a canonical homomorphism of groupoids
p:G— H, plx,h)=h.

LemwmA 3.2. Let (H, H ) be a right ordered group. Assume that H acts on a set
X. Then the semi-direct product G = X x H with G := p~'(H.) is an oriented
groupoid .

Proor. By definition, the subset H, C H of the group H is stable under product
and fulfills the equalities: H, N H;! = {1}, H, UH_' = H.Thisimplies (12) using
pl({1}) = GO. O
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Let, in particular, (H,H.)=(7,7,) act by translation on the set
X =7/m+1)7 of integers modulo m + 1. Then one obtains the oriented
groupoid
(14) aim) := (Z/(m + 1)Z)x Z.

The oriented groupoids g(m) will play a crucial role in this article.
312 - G=X xX)/H.

Let H be a group acting freely on a set X. Let G(X,H) = (X x X)/H be the
quotient of X x X by the diagonal action of H

GX,H) = (X x X)/~ @,y) ~ (@), i(y)), Yh € H.

Let 7 and s be the two projections of G(X, H) on G := X /H defined by r(x,y) = «
and s(x,y) = y. Let y,7»" € G(X, H) be such that s(y) = 7(y’). Then, for y ~ (x,y) and
y ~(@,y"), there exists a unique h € H satisfying «' = h(y): this because
s(y) = r(y’) and H acts freely on X. Then, the pair (k(x),y’) defines an element of
G(X, H) independent of the choice of the pairs representing the elements y and y’.
We denote by y oy’ the class of (h(x),y’) in G(X, H). This construction defines a
groupoid law on G(X,H) = (X x X)/H.

LeEmMA 3.3. Let H be a group acting freely on a set X. Assume that X is totally
ordered and that H acts by order automorphisms. Then GX,H) = (X x X)/H 1is
an oriented groupoid with

(15) G, (X, H) = {(.)) € GX,H) | 2 > y}.

Proor. Since H acts by order automorphisms the condition x >y is in-
dependent of the choice of a representative (x,%) of a given ye G(X,H) =
(X x X)/H. This condition defines a subecategory G, (X, H) of G(X, H). The condi-
tions (12) then follow since X is totally ordered. O

LEmMA 3.4. Let X = 7 with the usual total order. Let m € N and let the group
7, act on X by h(x) :=x+ (m+ h, Ve € X, h € 7. Then the oriented groupoid
G = (X x X)/7 1s canonically isomorphic to the oriented groupoid g(m) of (14).

Proor. The associated oriented groupoid (G, G ) is by construction the quo-
tient of /7 x 7, by the equivalence relation: (x,y) ~ (x + £(m + 1),y + €(m + 1)),
V¢ € 7. Thus the following map defines a bijective homomorphism of groupoids

y:G— gm)=(Z/(m+1)Z)x Z, w(e,y) = (n(y),x —y)

where 7n: 7/, — 7/(m+1)7 is the natural projection. One has by restriction
74

G+ — g,.(m), since x >y <= x —y > 0, so that y is in fact an isomorphism of

oriented groupoids. O
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3.2 — The oriented groupoid associated to an archimedean set

In this section we explain how to associate an oriented groupoid to an archi-
medean set and describe the special properties of the oriented groupoids thus
obtained. We first recall from [4] the definition of an archimedean set.

DEFINITION 3.5. An archimedean set is a pair (X, 0) of a non-empty, totally
ordered set X and an order automorphism 0 € Aut X, such that 0(x) > x, Ve € X.
The automorphism 0 is also required to fulfill the following archimedean
property

Ve,y e X, In e N sty < 0"(x).

Let (X, 0) be an archimedean set and let G(X, 6) be the oriented groupoid as-
sociated by Lemma 3.3 to the action of 7 on X by integral powers of 6. Thus

GX,0):= X x X)/~, (@)~ 0" @),0"y), Vn e
and

(16) G, (X,0) == {(x,y) € GX,0) | x> y}.

Next proposition describes the properties of the pair (G(X, 0), G, (X, 0)) so obtained.

PrOPOSITION 3.6. The oriented groupoid (G,G,) = (GX,0),G.(X,0)) fulfills
the following conditions

1) Var,y € GO, Iy e G, st. s(y) =y, r(y) =

(2) For x € X, the ordered groups G% := {y | s(y) = r(y) = x} are isomorphic
to (Z,<).

() Let ye G with s(y)=y and r(y) =x. Then the map: Gy >pryo
poyt e G¥is an isomorphism of ordered groups.

ProoF. Since 0 is an order automorphism of X, the group 7 acts by order au-
tomorphisms. We check the three conditions (i)-(iii).

(1) For x,y € X, there exists n € N such that 0"(x) > y. Then y ~ (0"(x),y)
belongs to G, and s(y) =y, () = .

(72) Let & € X. The conditions s(y) = (y) = x imply that the class of y € G(X, 0)
admits a unique representative of the form (0"(x),«x). One easily checks that the
map G% — (Z, <), (6"(x),x) — n is an isomorphism of ordered groups.

(1i1) Let x,y € X with y~ (x,y). Then for p~ (0"(y),y) € Gg one gets
yopoy 1~ (0"(x),x), thus the unique isomorphism with (7, <) is preserved. [

Let (G,G.) be an oriented groupoid fulfilling the three conditions of Propo-
sition 8.6. Let x € G, consider the set G, = {y € G | s(y) = x} with the total
order defined by (13) and with the action of 7 given, for y, € G the positive
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generator of G, by
(17) 0() =70y,

When one applies this construction to the case (G,G.) = (G(X, 0),G(X, 0),), for
(X,0) an archimedean set, with x € G’ = X /0 one obtains, after choosing a lift
& € X of x, an isomorphism

(18) Ji X5 Gy, Ja(®) = (z,).

The following proposition shows that the two constructions (X, 0) — G(X, 0) and
(@,G1)— (Gg, 0) are reciprocal.

ProrosITION 3.7. Let (G,G.) be an oriented groupoid fulfilling the conditions
of Proposition 3.6 and let x € G©. Consider the set G, == {y € G |s(y) =a} =X
endowed with the total order (13) and the action of Z on it given by (17). Then (X, 0)
1s an archimedean set and one has an isomorphism of groupoids

(GX,0),6X,0),) = (G,G4).

ProOF. The implication y <y’ = 0(y) < 0(y") follows since right multiplication
preserves the order. Moreover, the condition (i:2) of Proposition 3.6 implies that
0(y) > 7,Vy € X = G,. Next we show that the archimedean property holds on (X, 0).
Let y <y’ € G, with y = () and ¢ = #(y’). By applying the condition (i) of Pro-
position 3.6, we choose ¢ € G, such that s(0) =¥’ and #(0) = y. Then y” =d oy’
fulfills s(y”) = s(y) and r(y”) = r(y) and thus there exists n € Z such that y” = y o y.
Moreover, one has y” = d oy’ > '. It follows that (X, ) is an archimedean set. If
one replaces x € G? by y € G, then the condition (i) implies that there exists
o € Gy with s(0) = y, 7(«) = «. Then the map G, — G, y+— y o« is an order iso-
morphism which satisfies

(yoyx)oa:(yoa)o(ofloyxoa).

Since condition (i77) implies o~ !

corresponding archimedean sets.

Finally, we compare the pair (G, G, ) with (G(X, 0), G (X, 0)). We define a map
f:GX,0) — G as follows: given a pair (y,7’) of elements of X = G,, one sets
f&,7") :==y07' L. One has

O, 00 =fG oy, 0p) =y0y " =f(,7".

To show that f is a groupoid homomorphism it is enough to check that
f@,y)of(@',9") =f(y,7") and this can be easily verified. Next we prove that f is
bijective. Let o € G. By applying condition (i) of Proposition 3.6, there exists y € G
such that 7(y) = »(2) and s(y) = x. Let then y’ = o~ !y. Since s(y’) = x, both y,y’
belong to X = G, and moreover f(y,y') = o showing that f is surjective. Let y;, y]f
be elements of X =G, such that f(y;,7]) =f(2,75). One then has
Y1 0 y{fl =7p50 y{l and hence 7,10y, = yé’l o 7o =y for some n € Z. It follows

07,00 =7,, one obtains an isomorphism of the
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that (y;,7;) = (0"(32),0"(y3)) which shows that f is also injective. Finally, for any
7,7' € X =G, one has y >y’ < y07' ' € G, showing that f, so defined, is an
order isomorphism. O

3.3 — The category of archimedean sets in terms of oriented groupoids

In this section we extend the above construction (X, 0) — G(X, 0) of the ori-
ented groupoid associated to an archimedean set to a functor G connecting the
category 2Arcx N of archimedean sets to that of oriented groupoids. We recall,
from [4], the definition of the category of archimedean sets.

DEFINITION 3.8. The objects of the category Arc x N* are the archimedean sets
(X, 0) as in Definition 3.5, the morphisms f : (X,0) — (X',0') in Arvcx N* are
equivalence classes of maps

(19) f:X =X, f@)>f@) Ye>y;,  Fk>0, fO@)=0"(fw), VeeX

where the equivalence relation identifies two such maps f and g if there exists an
integer m € 7. such that g(x) = 0™ (f(x)), Vo € X.

Given a morphism f : (X,0) — (X', 0) in Arcx N* as in (19), the map G(f)
sending (x,¥y) — (f(x),f(y)) is well defined since
XxX> @y~ @, y) = (f@).fy) ~ (f@),fQ)).
Moreover G(f): G(X,0) — G(X',¢) does not change if we replace f by g(x) =
0" (f(x)) since this variation does not alter the element
(f@),f@) ~ (@), 9(y) € GX',0).

PRrOPOSITION 3.9. The association (X, 0)— GX,0), f — G(f) defines a faithful
Sfunctor G from Arcx N* to the category of oriented groupoids. For any non-
trivial morphism of oriented groupoids p: GX,0) — GX',0) there exists a
(unique) morphism

f € Homy o (X, 0), X', 0))  s.t. p=G(f).
ProoF. By construction the map G(f) is a morphism of groupoids since
G(N)((x,y) o (y,2)) = (f(0),f(2)) = G(N)(x,y) o G(/) (Y, ?)).

Moreover it is a morphism of oriented groupoids since by (19), one has f(x) > f(y),
Va >y so that
(@, y) e G.(X,0) = (f(x),f(y) € G.(X,0).

We show that the functor G is faithful. Assume f, g € Homg.n n+ (X, 0), (X', 0)) are
such that G(f) = G(g9). Then for any (x,y) € X x X there exists an integer



210 Alain Connes - Caterina Consani

n = n(x,y) € 7 such that
g(x) = 0"V (f @), gly) = 0"V (F@y)).

Since ¢ acts freely on X', the integer n(x,y) is unique. The first and the second
equations prove that n(x, y) is independent of % and x respectively. Thus one derives
that f and g are in the same equivalence class, i.e. they define the same element of
Homgey - (X, 0), (X', 0)).

Let now p : G(X, 0) — G(X’, &) be a non-trivial morphism of oriented groupoids.
Letx € GV, y = p(x): the ordered group morphism p : G¥ — G,/ is non-constant and
is given by p(y,) = y’;, for some k& > 0. The map p : G, — G is non-decreasing since

y<y =0yt €G=p()op()) " €G,.

Given an archimedean set (X, 0) and an element z € X, we claim that the map
vx. X — G(X,0) defined by wy .(y) := (y,2) is an order preserving bijection of X
with G(X, 0),, where « is the class of z in X /6. Indeed, every element of G(X, 6),
admits a unique representative of the form (y, z) and one has

vy, W) <vx. W) = @, 0@y G, =1y >y.
Moreover yy , is also equivariant since one has
wx (0) = (0y),2) = (0(y), 0(z)) o (0(2),2) = wx . () © 7,

Let then & € X and € X’ be two lifts of # and y. The map f := z//)}{g opoyy;isa
non-decreasing map from X to X’ and one has, using p(y o y,) = p(y) o y’;, that

fO) = 0*(f@), v € X.

One derives by construction the equality (f(a),y) = p((a, x)), Va € X. Taking a = &
this gives f (%) = ¥ since p((Z, 2)) is a unit. This shows that p(y) = G(f)(y) Vy € G, and
the same equality holds for all y € G since both p and G(f) are homomorphisms
while any element of G is of the form y o (/)" with y, 7’ € G,. O

REMARK 3.10. The oriented groupoids associated to archimedean sets are all
equivalent, in the sense of equivalence of (small) categories, to the ordered group
(Z, 7). It follows that a morphism ¢ of oriented groupoids induces an associated
morphism Mod(¢) of totally ordered groups, i.e. an ordered group morphism
(7,7.+) — (7,7) given by multiplication by an integer Mod(¢) = k € N. Propo-
sition 3.9 suggests to refine the category g of oriented groupoids by considering
only the morphisms ¢ such that Mod(¢) # 0. In other words what one requires is
that the associated morphism of totally ordered groups, obtained by working
modulo equivalence of categories, is injective. One can then reformulate Proposi-
tion 3.9 stating that the functor G is full and faithful.

COROLLARY 3.11. The epicyclic category A (cf. Appendix B) is canonically
1somorphic to the category with objects the oriented groupoids g(m), m >0, of
equation (14) and morphisms the non-trivial morphisms of oriented groupoids.



The Cyclic and Epicyclic Sites 211

The functor which associates to a morphism of oviented groupoids its class up to
equivalence coincides with the functor Mod : A — N* which sends a semilinear
map of semimodules over ' = 7ax to the corresponding injective endomorphism
Fr, € End(F) (¢f. [5])

ProoF. By Proposition 2.8 of [5], the epicyclic category A is canonically iso-
morphic to the full subcategory of 2rcx N whose objects are the archimedean
sets m:= (Z,x—x+m+1) for m > 0. The oriented groupoid G(m) is by
Lemma 3.4 canonically isomorphic to (). The first statement then follows from
Proposition 3.9 while the last one is checked easily and directly. O

4. Points of (/N\Op)A and projective geometry in characteristic one

Let C be a small category and C the topos of contravariant functors from C to the
category of sets Get3. Yoneda’s Lemma defines an embedding of the opposite
category C* into the category of points of the topos C. More precisely, to an object ¢
of C® one associates the flat covariant functor h.(—):C— &ets, h.(—) =
Home(c, —). Then, one sees that through Yoneda’s embedding # : C® — C,cr—s he,
any point of C can be obtained as a filtering colimit of points of the form k.. We shall
apply these well known general facts to C = A°? : the opposite of the epicyclic cat-
egory A. We refer to Appendix B for the basic notations on the cyclic and epicyclic
categories. It follows from Corollary 3.11 that A is canonically isomorphic to the full
subcategory of the category g of oriented groupoids whose objects are the oriented
groupoids of the form g(m). This fact suggests that one should obtain the points of
the topos (/N\"p)A by considering filtering colimits of the objects g(m) in g. In this
section we compare the colimit procedures taken respectively in the category of
flat functors A%® — Sets and in the category g. The comparison is made directly
by reconstructing the structure of an oriented groupoid starting from a flat functor
as above. The main result is the following

THEOREM 4.1. The category of points of the epicyclic topos (/N\"p)A 18 equivalent
to the category P whose objects are pairs (K, E) where K is an algebraic extension of
F'= Zmax and E is an archimedean semimodule over K. The morphisms are
projective classes of semilinear maps and injective semifield morphisms.

One knows from [6] that an algebraic extension K of the semifield ' = 7. of
tropical integers is equivalently described by a totally ordered group (H,H.,)
isomorphic to a subgroup Z C H C Q of the rationals. An archimedean semi-
module E over K is in turn described (¢f. [5]) by a totally ordered set X on which H
acts by order automorphisms of type: (x, #)+— x + k which fulfill the property

(20) h+a>x, YheH, h#0, xcX
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and the archimedean condition
(21) Ve,ye X, 3he Hy st. h4+x>y.

It follows from [1] (cf. also [10], Theorem 2 Chapter VII §5) that a point of a topos of
the form C, where C is a small category, is described by a covariant flat functor
F : C— ®ets. Next, we overview the strategy adopted to prove Theorem 4.1.

In §4.1 we associate to a pair (K,E) a point of (A®")". This construction is
accomplished in two steps. First, we extend the construction (X, 0)— G(X, ) of
the oriented groupoid associated to an archimedean set (as in §3.2) to a pair (K, E)
as in Theorem 4.1. Then, for any given pair (K, E), we provide a natural con-
struction of a point of (A°’)" by means of the following associated flat functor
n="Z,x—x+n+1),n>0)

(22) F:A® — Gets,  F(n) = Homy(an), GK, E)).

Here, one implements Corollary 3.11 to identify the category A with a full sub-
category of the category g of oriented groupoids with injective morphisms (up to
equivalence).

To produce the converse of the above construction, i.e. in order to show that
any point of (/N\Op)A is obtained as in (22) by means of a uniquely associated pair
(K,E), we start from a covariant flat functor F A% . Gets and deseribe in
§84.2-4.4 a procedure that allows one to reconstruct the semifield K by using the
natural geometric morphism of topoi associated to the functor Mod : A% — N,
The archimedean semimodule £ (totally ordered set) is then reconstructed by
using a suitable restriction of ' to obtain intervals from points of the simplicial
topos A.

4.1 - The flat functor A®® — Gets associated to a pair (K, E)

Let (H,H ) be a totally ordered abelian group, denoted additively and X a
totally ordered set on which the ordered group H acts preserving the order and
fulfilling (20). Let (G(X, H), G, (X, H)) be the oriented groupoid associated to the
pair (X, H) by Lemma 3.3, thus one has

(23) GX,H) = X x X)/H, G.(X,H):={(@,y) x>y}

The next lemma is used to show that the functor F : A — (et naturally asso-
ciated to a pair (K, E) is filtering.

LEMMA 4.2. Let (H, H.) be a non-trivial subgroup of (Q, Q) and assume that
the totally ordered set X on which H acts fulfills the archimedean condition (21).
Let F = {¢; | 1 <j < n} be a finite set of morphisms ¢; € Homg(g(m;), G(X, H)).

Then, there exists a cyclic subgroup Hy C H, a subset Xy C X stable under the
action of Hy, morphisms y; € Homy(g(m;), G(Xo, Ho)) and an integer m € N such
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that, denoting by 1 : G(Xy, Hy) — G(X, H) the natural morphism, one has

(24) g =1oy; Vj, G(Xo, Hy) ~ g(m).

Moreover, let w,y' € Homgy(g(n), G(Xo, Hy)) be two morphisms such that 10y =
10/, then there exists a singly generated subgroup H, with Hy C Hy C H, a subset
Xi1 C X containing Xy and stable under the action of Hi, such that the equality
1oy =1 oy holds in Homy(g(n), G(X1, Hy)), with 1 : G(Xy, Hy) — G(X1, Hy) the
natural morphism.

Proor. We denote by a(m, 1) := (i,1) € (Z/(m + 1)7) x 7. = g(m) the natural
positive generators of the oriented groupoid g(m). Let (G,G) be an oriented
groupoid. A morphism ¢ € Homy(g(m), G) is uniquely specified by the m + 1 ele-
ments y; = ¢(a(m, 1)) € G (c¢f. Figure 1) fulfilling the conditions (with y,,.; := 7)

rG) = 8Gi0), Vi,0<i<m, y,0---0p¢GY.
If G = GX, H), it follows that Homy(g(m), G) is the quotient of the subset of X2
(25) {(x()v N ,merl) S X7n+2 | xj S xj+l7vj S Ny L1 € To + H+}

by the diagonal action of H. The morphism ¢ € Homy(g(m),G) associated to
(:’U()v e 7x7)7/+1) iS given by

(26) $(a(m, 1)) = (x;11,20;) € G. Vi, 0 <@ < m.

For each ¢, € 7 we getan h; € H.,, then we choose a finite subset Z; C X such that
¢j is represented by an (m + 2)-uple (o, . . ., %p1) € X2 with all x; € Z;. Let Hy
be the subgroup of H generated by the /;’s and let X, be the H invariant subset of X
generated by the union of the Z;. Then H| is singly generated and the pair (X,, Hy)

Figure 1. One encodes a morphism ¢ of oriented groupoids from g(n) to g(m) by the
arrows y; = ¢(a(n, 1)) associated to the generators «(n,?). To each generator (in blue) one
assigns an arrow (in red) specified by its source and range and by an integer which gives the
number of additional windings.
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fulfills the archimedean condition (21). Moreover by construction one can lift the
maps ¢j € F to elements ;€ Homg(g(m;), G(Xy, Hy)) such that ¢j =10y, where
1: G(Xy,Hyp) — G(X, H) is the natural morphism.

It remains to show that G(Xy, Hy) ~ g(m) for some m € N. By construction
there exists a finite subset Z C Xj such that Xy = Z + H,. Using the archimedean
property (21) and since H, ~ 7, it follows that the pair (X, Hy) is an archimedean
set such that the quotient X,/H is finite. Thus G(Xy, Hy) ~ g(m), where m + 1 is
the cardinality of Xy/H,.

To prove the last statement, let (xg,...,%y1) € Xg’“Z (resp. (xg, ..., %, ) €
X|"™%) represent y (vesp. y'). The equality 10y = 10y’ implies that there exists
h € H such that x; = «; + & for all j. One then lets H; be the subgroup of H gen-
erated by Hy and h and X; the H; invariant subset of X generated by X. O

ProPOSITION 4.3. Let (H, H ;) be a non-trivial subgroup of (Q, Q. ) and assume
that the totally ordered set X on which H acts fulfills the archimedean condition
(21). Then the following formula defines a flat functor

27) F:A® — Gets  F(n) = Homy(g),G), G =GX,H)

where n = (7, x L, x+mn+1).

ProoF. The statement follows from Lemma 4.2 showing that the functor F is
obtained as a filtering colimit of representable, flat functors. We provide the detailed
proof for completeness and to review the basic properties of flat functors which will
be used later in this article. Corollary 3.11 provides a canonical identification of the
epicyclic category A with the full subcategory of g of oriented groupoids of the form
q(m). In particular, (27) defines a covariant functor. It remains to show that this
functor is flat. One knows from classical facts in the theory of Grothendieck topoi
(¢f. e.g. [10], Chapter VII §6, Theorem 3) that a functor F' : C — &ets (C a small
category) is flat if and only if it is filtering i.e. the category [ F' is filtering (cf. [10]

c

Chapter VII §6, Definition 2). The objects of the category [ F are pairs (j, ) wherej
c

isanobjectof Candx € F(j). The morphisms between two such objects (7, x) and (k, y)
are elementsy € Home(7, k) such that F(y)x = y. Werecall that the filtering condition
on a small category [ is equivalent to the fulfillment of the following conditions

(1) I is non empty.

(2) For any two objects 7,7 of I there exist an object k and morphisms k — 1,
k—j.

(3) For any two morphisms o,f : 4 —j, there exist an object k¥ and a
morphism y : k — ¢ such that x oy = ff o y.

For each object ¢ of the small category C one obtains a flat functor provided by
the Yoneda embedding h; : C — Gets, j— Home(i,j). Here we take C = A" and
F given by (27). The filtering property of F only involves finitely many elements of
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Hom,(g(n), G) and hence by Lemma 4.2, it follows using the filtering property of
the functors ;. The first part of Lemma 4.2 is used to prove the filtering property
(72) while the last part is implemented to prove (7). O

4.2 — The image of a flat functor F : A% — (et by the module morphism

The functor Mod : 2rex N* — N* associates to any morphism of archime-
dean sets the integer k € IN* involved in Definition 3.8 (¢f- [5]). Its restriction to the
full subcategory whose objects are archimedean sets of type (Z,6), where
0(x) = & + n + 1, defines a functor Mod : A — N, The category N * is isomorphic
to its opposite in view of the commutativity of the multiplicative monoid of positive
integers. The functor Mod : A — N* determines a geometric morphism of topoi.

We recall once again ([6]) that the category of points of the topos N¥is canonically
equivalent to the category of totally ordered groups isomorphic to non-trivial
subgroups of (O, Q.), and injective morphisms of ordered groups. This latter cat-
egory is in turn equivalent to the category of algebraic extensions of the semifield
"= Zmax te of extensions I' C K C Qpac. The morphisms are the injective
morphisms of semifields.

This section is devoted to the description of the action of the geometric
morphism Mod : (A%®)" — N* on points, in terms of the associated flat functors.
This process allows one to recover the extension K of ' = 7. involved in The-
orem 4.1 from the datum of a flat functor A” — Gets.

Given two small categories C; (j = 1,2), a functor ¢ : C; — Cz determines a
geometric morphism (also noted ¢) of topoi C; — Cs (¢f. e.g. [10], Chapter
VII §2, Theorem 2). The inverse image ¢* sends an object of Cs, i.e. a con-
travariant functor Co — ®ets to its composition with ¢ which determines a
contravariant functor C; — &et3. The geometric morphism ¢ sends points of
C1 to points of Co. In terms of the flat functors associated to points, the image
by ¢ of a flat functor F; : C; — Get3 associated to a point p; : Gets —Cy is
the flat functor Fo :Co — Gets obtained by composing the Yoneda embed-
ding Co —> Co with p; o ¢, where pj : C1 — Get5 is the inverse image functor
with respect to F;. Thus, for any object Z of C2 one obtains

(28) FoZ) = pi(X), X :CP— Gets, X(cy) := Home,(¢(c1), 2).

We apply this procedure to the functor Mod : A% — N*: i.e. we take C; =A%,
Cy = N* and ¢ = Mod. Let F be a flat functor F' : A® — (et3. The inverse image
functor with respect to F of a covariant functor X : A — (5¢t$ coincides with the
geometric realization |X|, and it is of the form

X|p = <H<F<@> X% X(@))) ~ .

n>0
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The image of the flat functor F : A — ($ets by the morphism Mod is thus the flat
functor H : N — ets obtained as the geometric realization |X |, of the covariant
functor

X:A— Gets,  X(n) = Homx-(e, Mod(n)) =2 N*  Obj(N*) = {e}.

The functor X associates to any object of A the set N* and to a morphism y of A its
module Mod (y) acting by multiplication on N*. Hence we obtain

(29) H(e)= <H(F(@) XKNX)>/~-

n>0

The equivalence relation is exploited as follows: for (z,k) € F(n) x N*, one has
(2,k) ~ (F(p)z, k) € F(0) x N* for any y € Hom (0, n), since Mod(y) = 1. Moreover
for (z,k) € F(0) x N*,onehas (z,k) ~ (F()z,1) for y € Homs (0, 0) with Mod (y) = k.
This shows that any element of H(e) is equivalent to an element of the form (z, 1) for
some z € F'(0). In particular one deduces that H(e) is a quotient of F'(0).

LEMMA 4.4. Let F ‘AP — Gets be a flat functor and (H,H.) the corre-
sponding point of N> through the morphism Mod. Then there is a canonical,
surjective N*-equivariant map

n:F) — H,, n(F(y)z)= Mod(yn(z), ¥y € Homy(0,0).

Moreover, the equivalence relation x ~ ¥’ <= n(x) = n(x’) is given by

(30) x~a = e FQ), Foo)z =2, Fo)z =1
where 9; € Homa(0,1), (j = 1,2) are the two face maps.

Proor. Let 7: F(0) — H(e), n(z) = (z,1) as in (29). As remarked above, the
map 7 is surjective. Let y € Hom;(0,0), then one derives easily: n(F(y)z) =
(F(»)z,1) ~ (2, Mod (y)) = Mod (y)n(z). Moreover, n(x) = n(x’) if and only if there
exist n € N, u € F(n) and y,y’ € Hom;(0,n) such that F(y)u =x, F(y")u =/,
Mod (y) = Mod(y’). Let k = Mod(y), and W\(n) the archimedean set obtained from
n = (7.,6) by replacing 0 with 6 (¢f Appendix B). Then one derives canonical
factorizations involving the identity map 7 — 7 viewed as the element Idi“Z €
Homy (¥4(n), ) with Mod (1) = k

y=1d ooy, ' =1df ooy, 09,01 € Homa(0, ¥r(w)).

Let 6; € Homa(0,1), j=0,1, be the two face maps. One can then find
o € Homp(1, ¥W;(n)) such that o; = oo d;. Thus it follows that y= Idﬁ oo o dy,
y = Idﬁ oaoodr, and one also gets that x = F(y)z = F(éO)F(a)F(Idfl)u = F(dy)z,
z= F(cx)F(Idﬁ)u, x' = F(d1)z, which proves (30). O
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Let 1: N* — A be the functor which associates to the unique object o of
the small category N* the object 0 of A®® and to a positive integer k the
unique element (k) € Hom;(0,0) such that Mod(u«(k)) = k. There is another

natural equivalence relation on F(0) deduced from the action of \N* and ex-
plicitly given by

(31) x~ Yy <= In,mec N*, F@an)x=Fu(m))y.
We let 7’ : F(0) — @ be the map to the quotient @ := F(0)/~".

LEMMA 4.5. Let F (AP — Gets be a flat functor. Let (H,H.) be the corre-
sponding point of N* through the morphism Mod. Then, with 7' : F(0) — Q de-
fined just above, the map

(m,7): F(0) — Hy x Q

18 a bijection of sets.

Proor. We prove first that (z,7') is injective. Let x,y € F(0) be such that
x ~"y. Let m,m € N* with F(i(n))x = F@(m))y. Then the N*-equivariance of =
shows that in the ordered group H one has nn(x) = mn(y). Thus the equality
n(x) = n(y) implies that n» = m since H has no torsion and both n(x) and n(y)
are non-zero. Hence we derive F(G(n))x = FG(n))y. So far we have used
F:A® — Get3 as a contravariant functor from A to Gets. In this proof we
shall also use F' directly as a covariant functor and for clarity of exposition we
shall denote F*(x) = F(x*) for any morphism « € AP using the canonical anti-
isomorphism A — A . The flatness of F implies that there exists an object

(m,t) of [ F, with t € F(m), and two elements u,v € Homyw (12,0) such that
Ao
FV(u)t = x and F(v)t = 3. One thus obtains FV(u(n)" o u)t = FVu(n)" o v)t.
The flatness of F' provides an object (¢,s) of [ F,with s € F(¢), and a morphism in
Ao

| F, given by a w € Homgw (£,1m) such that «(n)" o u o w = 1(n)" o v o w. The fact
AP

that w is a morphism in | F connecting the object (¢,s) to (m,t) means that

Rov

FV(w)s = t. The equality (n)* ou ow = (n)" ovow in A implies that the two
elements #ow, vow of Homie (¢,0) are equal. Indeed, let us show that for
7,7" € Homge (£,0), and n € N~

(32) ) oy=1un) oy =y=y".
To prove this we pass to the opposite category using the identification

Homge (¢,0) = Homy (0,4), thus we get elements o, € Homg(g(0), g(¢)) such

that o o 1(n) = o o «(n). The oriented groupoid g(0) has a single object o and an
element o € Homgy(q(0), g(4)) is uniquely specified by the image «(o) and by its
module Mod(x). Replacing o by oo i(n) does not alter the image «(o) while it
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replaces the module by nMod(z). Thus (32) follows. This shows that
uow=vow and x = Fu ow)s = F(v ow)s = y which proves that (z,7) is
injective.

Next we show that (z,7') is also surjective. It is enough to prove that given
x,y € F(0) there exists z € F(0) such that

(33) x~z, Y~z

Again from the flatness of F' one derives that there exists an object (m, ) of [ F,

Aor
with ¢ € F(m), and two elements u,v € Homge (m2,0) such that F¥(u)t = « and
FV(v)t = y. Let then u*,v* € Homy(0,m) be the corresponding morphisms in
the dual category A. We view them as elements of Homg(g(0), g(m)). Then
there exists a unique w* € Homg(g(0), g(m2)) which has the same range object of
g(m) as u* and the same module as v*. Since w* and v* have the same module k
one can find, as in the proof of Lemma 4.4, o € Homu(1, ¥;(m)) such that
w* :IdfnoocO%, v* :Id]fnooc051.

Let z=F"(w)t, one has z = F(5)F1d", o o)t, y = F(6))FAd¥, o o)t which
shows that y ~ z. Since w* € Homg(g(0), g(m)) has the same range object of g(m)
as u*, there exist k, k' € N* such that u* o (k) = w* o «(k’). This implies that
FGak)x = F k) HF (w)t = F UK )F(w)t = F((k))z, so that &~z as
required. O

COROLLARY 4.6. Let F : A®® — &ets be a flat functor. Then, for any x € F(0)
the map = : F(0) — H induces a bijection between the commensurability class
of © under the action of N* and the positive part H, of the ordered group image
of the point F by the geometric morphism Mod : (A°?)" — N,

Figure 2. The morphism g(0) — g(n) is the unique element j, € Hompw(0*,7*) C
Homg (0, n). It gives a map F(j,) : F(n) — F(0) whose value fixes an object and the length
of the interval.
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4.3 — The interval associated to a pair F ‘AP — Gets, x € F(0)

In this section we describe a process which associates an interval F, to a pair
made by a flat functor F" : A — &e¢t3 and an element x € F(0). For each integer
n >0 we denote by j, € Hompe(0*,7*) C Hom;(0,7) the unique element of
Hom o (0%, 72%). One has j,(x) = (n + Dz, Ve € 7. We refer to Section 2 for the
notations on the category A’. We identify the opposite A of the simplicial cate-
gory A with the subcategory of the epicyclic category A with the same objects and
morphisms specified by the identification

(34) Hompw(n*,m") ~ {y € Homz(n, m) | y 0 ju = Jiu}-

Passing to the dual categories, we get j» € Homz. (12, 0) and these elements define
objects of the slice category A°’/0. More precisely one obtains

LEMMA 4.7. The simplicial category A is canonically isomorphic to the full
subcategory of the slice category A°®/0 with objects the j.

ProoF. We define a functor « : A— A°?/0 sending the object [1n] = {0,...,n}
to 7. To define the action of x on morphisms we first describe explicitly the iden-
tification (34). Given ¢ € Hompw (n*, m*) i.e. a non-decreasing map preserving the
end points from the interval n* := {0,...,% + 1} to the interval m*, one extends ¢
uniquely to the following non-decreasing map

$: 7 — 7, $@)=¢w), Vre{0,... n+1}
B + aln+1) = $@) + alm + 1), Va € 7.

One finds <~¢€ Homjy (n, m) with Mod(c}) = 1. The map ¢»—>§5 defines a faithful,
covariant functor A — A which is bijective on objects and whose range is char-
acterized by (34). To check this statement, note that the equation y o j,, = 7, implies
that Mod(y) = 1. Moreover any non-decreasing map v : 7, — 7 such that y(0) = 0
and y(x +amn + 1)) = w(x) + a(m + 1),Va € 7Z is of the form c:ﬁ for a unique
¢ € Hompw(n*, m*). Then we define x on morphisms as follows
K(y) = (7)€ Homgao(53,,5,), ¥y € Homa([n], [m]). .
LEMMA 4.8. Let F : A" — Gets be a flat functor and x € F(0). The following
equality defines a flat functor A — &ets (i.e. interval) which can be equally
mterpreted as a contravariant functor

(35) Fo: AP — Gets,  Fon')={zeFw) | F(j,)z = ).

Proor. Let X be a totally ordered set on which an ordered group H acts ful-
filling the conditions of Lemma 4.2. Assume first that the functor # is defined by

F(n) = Homy(g(n), @), G =GX,H).
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Then, by applying (25), F'(n) is the quotient by the diagonal action of H on the subset
of Xn+2
{@o, ..., 1) € X" |y < @jy1,Vj <My @1 = a0+ Hy}

Thus one derives that F(0) = X/H x H.. Let x € F(0), x = (Xo,h) € X/H x H..
After choosing a lift xp € X of ¥y € X/H, (35) provides the equality

(36) Fo(n*) = {(@o, ..., 0p41) € X" |0y < 2j11,¥ <, ®y11 =m0 +h}

which can be equivalently described as Hom(n*,I), where I is the interval
[0, 20 + k] C X. Let m € N and G = g(m), F(—) = Homy (-, g(m)). Then x € F(0)
is determined by an object of g(m) and an integer k, and it follows by the above
discussion and from the arguments developed in Section 2 that the associated in-
terval is F, = Sd,,(m*).

The general case is deduced from the above one by writing the flat functor F as a
fllterlng colimit of functors of the form Homj(—,g(m)). More precisely, let
F :A” — ®ets be a flat functor and x € F(0). We prove, for instance, the filtering
property of F,. An object o of the category [ F, is of the form « = (n,2), z € F(n),

F(ju)z = x. Given two such objects o; = (n;, zAj), Jj=1,20nehas F(j,,)z1 = F(jp,)%2
and since F is a filtering colimit of functors of the form Homy(—, g(m)) one can find
an integer m € N and elements y; € Homs (g(n), g(m)) such that y; represents z; in
the colimit and that y; o j,, = y2 o jy,. This last equality can be realized as a con-
sequence of F(jy,)z1 = F(jy,)?2 using the filtering colimit i.e. the definition of
equality in the limit. The existence of an object o = (n, z) and morphisms «; in f Fto

= (nj, 2j) then follows from the filtering property of the category f F, Where F'is
the flat functor Homy (—, g(m)) and y = y1 0 ju, = Y2 © Ju,- O

o‘o 0'0

Figure 3. The morphism 7 : (1) — ¢(2) is in Homaer (1*,2*) C Homs (1, 2). It determines
amap F(y) : F(2) — F(1) such that F(p)F,(2%) C F,(1%), since # 0 j; = jo.

4.4 — The oriented groupoid associated to a pair F : A — Gets, x € F(0)

Let F : A — Gets be a flat functor. Lemma 4.8 shows how to associate an
interval F', to an element x € F'(0). Next, we state two lemmas which will be used to
reconstruct the totally ordered set X with an action of (H,H ), where (H,H ) is
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the ordered group corresponding to F' by means of the geometric morphism

Mod : (A°%)" —>1<I’?, as a point of N¥: ¢f. Lemma 4.4. We use the notations of
Section 2.

LEMMA 4.9. Let F : A" — Gets be a flat functor and x € F(0). The following
map defines an isomorphism of intervals for any k € N*

(37) w2 SAi(Fy) — Fruge,  or,p) = FAAE, 0 p)z € Frogy(n")
V(z,p) € Fp(m*) x Hompo (n*, Sdj,(m*)).

Proor. Using the same method as in the proof of Lemma 4.8, it is enough to
check that the map is well defined and that one gets an isomorphism in the special
case where the functor F'is of the form Homyj (e, g(12)). We consider the subcategory
A% x N* C A also reviewed in Section 2.4.

In Section 2.3, Lemma 2.7, we showed that the action of the edgewise sub-
division functor Sd;, on points of the topos of simplicial sets A is described in terms
of the associated flat functors by replacing the given flat functor G : A — &ets
with the flat functor Sd;(G) : A — ets. This latter associates to the object [%] of
A the quotient set

(38) Sd,(G)([n]) = <H (G(m) x Hompe (1, Sd,i(m*)))) /~
m=>0

where the equivalence relation ~ is given, for f € Hom o (1", 7*) = Homa([], [m]),
S € Hompe (2%, Sdj.(m*)) and y € G(r) as follows

G(m) x Homyw (n", 8dy.(m"))>(G(f)y, B) ~
~ (4, 8d;(f) © B) € G(r) x Hompw (", Sd;.(r")).
We prove that the map (37) is well defined. First, one has Idf,,/ o p € Homy (n, m) and
since Idfn 0 poju =Jm oilk) one gets
F(Id" o p)z € F(n), F(j)FAA op)z = FAd" o poj)z = Fak)).

We let G(m) = F,(m*). We need to check that two equivalent elements in (38)
have the same image under ;. Let f € Homuow(m*, ") = Homu([7], [m]),
f € Hompe(n*, Sdj,(m*)) and y € G(r) = F,(r*). One then has, since f o Id]fn =
1d* o Sd;(f)

on(G(f)y. ) = F(1d;, 0 B)G(f)y = F(1dy, 0 B)F(f)y = F(f o 1d;, 0 fy =
= F(1d} o Sd;(f) o B)y.
Thus one derives wi(G(f)y,f) = F(Idf o Sd;.(f) o Py = wi(y, Sd;,(f) o f). This
shows that the map wy, is well defined. One easily checks that it is an isomorphism in

the special case when the functor F' is of the form Homj (e, g(1n)). Then, one obtains
the general case working as in the proof of Lemma 4.8. O
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Given a flat functor H : A — &et3, the set 7 := H([1]) is endowed with the total
order relation defined by

y<y <= RecH(2) |y=H0)),y = Hd)x

where o, € Hom,([2],[1]) are the two surjections. Endowed with this order re-
lation [ is an interval and one recovers the flat functor H as H([n]) = Hompo(n*, I).
We shall use this fact to organize the intervals I, = F,.([1]) associated to the pair of
a flat functor F : A® — Gets and x € F(0).

Our final goal is in fact to show how to reconstruct an oriented groupoid
from a flat functor A — Gets. It will be enough to check that we can re-
construct the oriented groupoid G(X,H) for flat functors of the form F(m) =
Homy(g(m), G(X, H)) as in Proposition 4.3.

The k elements of =¥ (c¢f. Appendix A) determine the following elements
Wi € Homyw < (1%,1%) € Homg(g(1), g(1)), for 0 <j < k,

i 1df ooy, o € Hompw (1%, Sdp(17), o (1) = 2j + 1.

and we view them as the elements of Homg(g(1),a(1)) associated to the en-
domorphisms ¢k7j (as in Definition 3.8) of the archimedean set (7, u+— u + 2)
given by

(39) i L= Ly § @0 =2k, ¢ 20+1):=2j+1+2ke.

Note that Mod (l//k,j) = k. One lets y;, :== Vi1
Note that any w € Homy(g(1),g(1)) = Homgy(g(1),q(1)) such that yoj; =
j1 0 1(k) defines a map

(40) Fy, I, — Ireuye, Fy@) =Fy)z, Vze FQ), F(ji)z =

Indeed one has F(y)z € F(1) and F(j)F(y)z = F((k))F(j1)z = F@(k))x. Thus
F@)z € Ipqey.. This fact is used in the statement of the next proposition.

ProposiTION 4.10. Let F be a flat functor of the form F(m)=
Homy(g(m), G(X, H)) as in Proposition 4.3. Let x € F(0), x = (Zo,h) € X/H x H_
and xg € X be a lift of &y.

(@) The following equality determines the ordered set Y ={y € X |y > xo}:

(41) Jo 1= 1m (Irnes Fu,)

where the colimit is taken using the maps F,, : I, — Irqg). and the set of indices is
ordered by divisibility.

(12) The graph of the action of h on Y is given as the union in the inductive limit
of the subsets

(42) U (@&, @.F,, @)z}
0<j<k—1
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(121) The oriented groupoid G(X, H) is isomorphic to the oriented groupoid of
ordered pairs of elements of J, modulo the action of H.

Proor. By (25), (26), a morphism ¢ € Homy(g(m), GX, H)) is determined by
a non-decreasing map f:7 — X and an element h € H., h# 0 such that
fl@x+m+1)=f(x)+ h Vax € 7. Moreover, by (25), the maps f and ¢ define the
same morphism if and only if there exists an a € H such that g =f +a. In
particular the map f:7 — X associated to an element z of the interval
I, = [xg, 20 + k] of (36) is given by f(2n) = xo + nh, fCn+1) =z +nh Yn € Z.
With these notations let us determine the map F,, . It corresponds to the
composition f o qﬁw and is hence given by '

Fod 0 =fO =, fod,,(1)=r+1=z+jh,

while for any ¢ € 7 one has f o ¢k‘j(u +20)=fo ¢k$]-(u) + kth. Thus the map F'//k_j
sends z € [xg, %9 + 1] to z + jh € [xg, 29 + kh]. In particular the F,,, give the ca-
nonical inclusion of intervals [xg, 2o + k] C [x, 20 + ¢h] for k|¢ and the inductive
limit (41)is Y = {y € X | y > o }. Moreover, in the limit, the graph of the action of &
is given by the pairs (42). Finally one reconstructs in this way the action of H onthe
colimit set J,, as well as the oriented groupoid of ordered pairs of elements of J,
modulo the equivalence relation generated by the action of the semigroup H.. [

4.5 — Proof of Theorem 4.1

In Proposition 4.3 we have shown that a pair (K, E) of an algebraic extension K
of ' = Zmax and an archimedean semimodule E over K, defines a flat functor
A% — Gets as in (27). Conversely, in §4.2 and Proposition 4.10, we have proven
that a flat functor F : A% — Gets determines the data given by a totally ordered
group (H,H.) of rank one, a totally ordered set J and an action of H on J. One
easily checks that the pair (J, H) fulfills the conditions of Proposition 4.3 and that

F(n) = Homg(g(n), G), G =G(J,H).
The proof of the Theorem 4.1 is then complete.

Figure 4. The morphism y : g(1) — g(1) has module 8, it gives amap F, : Fiy — Frg). =
Sdg(F,).
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4.6 — Exotic points

In general, a colimit involves the process of taking a quotient and there is no
guarantee “a priori” that the quotient is a non-singular space, even at the set-
theoretic level. Next, we exhibit certain points of the epicyclic topos whose asso-
ciated flat functors show a singular behavior.

Consider K = Qpax and the semimodule E = Rp.x. Then the associated
functor F is such that F(n) is the quotient of the following subset of R by the
diagonal action of Q

» N2 - )
{@o, ..., 041) € R™* | X < X1, V) SNy Lypq — Xp € Q. )

One gets for instance

The units of the associated groupoid G = G(&, K) form the quotient set R/Q which
is singular. This result supports the point of view that the description of the points
of the epicyclic topos in terms of the category P as in Theorem 4.1 is more ap-
propriate than the description given in terms of oriented groupoids since the latter
interpretation involves singular quotients.

4.7 - Relation between A® and (AP)"

By a result of [11] the points of the topos A% dual to the (opposite of) the cyclic
category form the category of abstract circles and in turns by [4] this latter is
equivalent to the category 2Arc of archimedean sets with morphisms of module 1.
The inclusion of categories A® Cc A® (dual to A CA) induces a geometric
morphism of topoi: in this section we determine its behavior on the points. We start
by stating a technical lemma which will be applied in the proof of Proposition 4.12

LeEmMA 4.11. Let (X,0) be an archimedean set and ¢ € Homgy(a(w), G(X, D)),
u > 0. Denote by r + 1 the cardinality of ¢(g(u)<o)) c GX, N, Then there exists
g € Homgy(a(w), g(r)) and f € Homy, (1, (X, 0)) such that ¢ = G(f)og. This fac-
torization is unique up to the cyclic group Auty, (), i.e. the replacement

frefoal, g—G@)og, Voc Auty,).

ProoF. Let ¢ € Homgy(a(w), GX, 6)) and k = Mod(¢). Then by (25), ¢ is de-
termined by u + 2 elements x;, 0 < j <u + 1 of X such that x; < wx;,; ¥j <u and
that x, ., = Hk(xo). One has a canonical isomorphism [x, Hk(mo)] ~ Sdj, ([, O(aco)]).
Let y € Homyo (u*, Sd; ([g, 0(x9)])) be the morphism of intervals defined by
2() = 2;,¥),0 <j <u+1.Let Y = ¢(g)?”) c GX,0)” = X/0. Then the rank of
the morphism y is the cardinality of Y \ {&(} where &y € X/01is the class of & and it
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is thus equal to . By Proposition 2.5 there exists a unique decomposition
2 =8Sdi () o f, S € Hompw(u", S (r*)), o € Hompew(r*, [, O(p)]).

The map o € Homuo (", [2g, O(x9)]) is uniquely determined by its restriction to
{1,...,7} which is the unique increasing injection of {1,...,7} in (x¢, O(x¢)) Whose
range gives Y \ {®g} C X /0. Let f € Homy, (1, (X, 0)) be defined by

fGQ+ 0+ 1) =0'0), Vi,0<i<r, Ve

Moreover f§ € Homyo (u*, Sd;,(r*)) determines g = Idif o f € Homg(g(n), g(r)). One
has by construction Mod(g) = k. The equality y = Sd,(@)of shows that
¢ = G(f) o g. The uniqueness of the decomposition follows from the uniqueness of
the archimedean set (X', 0) obtained as the inverse image of Y under the canonical
projection X — X /0. This gives the uniqueness of f up to cyclic permutations and
since f is injective the uniqueness of ¢ follows. O

PROPOSITION 4.12. The geometric morphismj : AP (A" associated to the
inclusion of categories A° C AP induces on the points of the topoi the functor
producing the inclusion of F-semimodules among semimodules over algebraic
extensions of I.

ProOOF. A point p of A% is given by a flat functor of the form
P: A% — Gets, n— P(n) = Homyy(n, (X, 0))

where (X, 0) is an archimedean set and, as above, n = (Z, t"*1) is the archimedean
set given by the translation x — x +n + 1 on Z. By (28), j(p) is given by the flat
functor F : A®? — Get3

(43) F(Z) =p"X), X:A— Get3, X(n) :=Hom 3« (g(n),Z) = Homy(Z, g(n)).
The inverse image p*(X) is defined as
P = [[ P x X(w)/~ = | | Homy(n, (X, 0)) x Homy(Z, g(n))/~
where the equivalence relation ~ is the simplification with respect to A, i.e. one has
(foh,g) ~(f,G)og), Vhe Homy(n,m), f€Pm), g€ Xn).

It follows that the map y : p*(X) — Homy(Z, G(X, 0)) which sends (f,g) € P(n) x
X)) to y(f,9) = G(f) og € Homy(Z, G(X, 0)) is well defined. Next, we show that
when Z = g(u) (u > 0) this map is bijective.

First, we prove that y is surjective. Let ¢ € Hom,(g(u), G(X, 0)). By Lemma
4.11, there exists » > 0, g € Homy(g(w), a(r)) and f € Homy (7, (X, 0)) such that
¢ = G(f)og. Thus ¢ = y(f,g) is in the range of y.

We prove that y is injective. It is enough to show that for any » > 0 and any pair
(f",9') € Homy(n, (X, 0)) x Homg(g(u), g(n)) one has (f',g') ~ (f,g), where the
pair (f, g) is obtained from Lemma 4.11 applied to ¢ = ' o ¢’ € Homy(g(u), G(X, 0)).
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The element ¢’ € Homy(g(u), g(n)) satisfies Mod(g) = Mod(f” o ¢’) = k. One has
an) = G(Xy, 0y) where Xy = 7 and 0y(x) = & + n + 1. Thus by Lemma 4.11 applied
to ¢’ € Homgy(g(u), G(Xo, 6)) one obtains a decomposition

g = G(fo) 090, fo € Homy(ry, Xo,0)), go € Homg(g(w), a(rp))

One has fy € Homy,(ry, ») and thus (f',¢’) ~ (f' o fo,g0). The map gy induces by
construction a surjection g(u)«)) — g(ro)“)) and thus the range of the map induced
by fofy € Homgy(ry, (X, 0) from g()® to GX,0” =X/0 is contained in
Y = ¢gw)®) c GX, 0. Moreover Y =f(g()”) and the map f© gives an
increasing bijection of {0,...,r} with Y by construction. Thus, there exists
p € Homg (g, 7) such that f’ o fy = f o p and one gets

(f'.9") ~ (f" o fo.90) = (f © p.go) ~ (f.G(p) 0 go) = (f.9)

which gives the required equivalence.

We have shown that the map y : p*(X) — Homy(Z, G(X, 0)) is bijective, it follows
that j(p) is given by the flat functor F : A® — Gets, F(u) = Hom,(g(w), GX, 0)).
Translating this fact in terms of semifields and semimodules one obtains the re-
quired result. O

4.8 — The sections 1, of Mod and their action on points

Let » > 0 and consider, as above, the archimedean set n := (7,t"*1) given
by the translation « — « + 7+ 1 on 7. The map « — ka on 7 defines, for any
k€ IN*, an element 1,(k) € Homg.. < (12,7) and one obtains a homomorphism
of semigroups 1, : N* — Homy = (1, 7). Moreover by construction one has
Mod(1,(k)) = k Vk € N*. This defines, for any n > 0, a section 7, : N* — AP of
the functor Mod. More precisely, 7, is associated to the functor which maps the
only object e of IN* to n and sends the morphism k € Endy~(e) to z,(k) €
Homgo (7, 1) = Endy(g(n)). One has Mod o 1, = Id.

PRrROPOSITION 4.13. Let p be the point of the topos N* associated to the ordered
group (H,H,). Let K = Hyax be the semifield associated to (H,H.). Then the
image 1,(p) by the section 1, is the point of (A°?)" associated by Theorem 4.1
to the pair (K, K"*V), where for m > 1, K™ denotes the semimodule over K
obtained from K by extension of scalars using the endomorphism Fr,, € End(K),
Fr,,(x) .= 2™ Ve € K.

PrOOF. By (28), 1,,(p) is given by the flat functor F : A® — ets
(44) FZ)=p'X), X:N*— ®ets, X(e):=Homyw (1,(e),2).

One has Homyo (1,(e), Z) = Homy(Z, g(n)). For any k € N* = Endx~(e) the map
X(k) : X(o) — X(e) is obtained by composition with 1,(k) € End(g(n)). The in-
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verse image part p* of the geometric morphism associated to the point p is the
tensor product which associates to any N*-space X the set

P'X) =X xn+ Hy.
For X = Homy(Z, g(n)) one gets p*(X) = Homy(Z, GH" Y, H)) where, for m > 1,
H™ is the totally ordered set H on which the ordered group H acts by
(h,x) — x +mh,Yo € H™ h € H. The flat functor F is thus given by F(Z) =

Hom,(Z, G(H™ Y, H)). By formulating this construction in terms of semifields and
semimodules one obtains the required result. O

Appendix A. The J-operations as elements of Z[A% x N*]

In this appendix we review the construction of the A-operations. We use the
notations of section 2.

A1 — The subset X¥ ¢ Hom o (n*, Sd;(n*))
For each n» > 0 and k € N*, we introduce the following set
(45) = .= {o € Hompw (0", Sd}(n")) | (), o a, is surjective} C
C Homyw (1%, Sd,(n")).
Here (7£), o . : {0,...,n} — {0,...,n} preserves the base point 0, moreover it is

surjective if and only if it is a permutation of {0, ..., n} fixing 0. One thus obtains a
canonical map to the group S,, of permutations of {1,...,n} defined as follows

(46) Perm : ¥ — 8, Perm(a) := (7), o «,.

One gets a parametrization of the set Z’fL as follows, let f:{1,...,n} —
{0,...,k — 1} be an arbitrary map of sets and consider the following subset with »
elements

@) Xp={j+m+DFG|je ... n}} {1, kn+1)—1}.

Then, as shown by the next Lemma A.1, there exists a unique element
s(f) € Homp» (n*, Sd;(n*)) whose range is X;. It is obtained by labeling the ele-
ments of Xy in the lexicographic order, with s(f)(0) = 0 and s(f)(n + 1) = k(n + 1).

LEMMA A.l. The map f—s(f) is a bijection of the set of all maps
{1,...,n} = {0,... .k — 1} with X

Proor. First the range of s(f) when taken modulo # + 1 contains all
j€{1,...,n}and thus s(f) € =*. By construction the map f + s(f) is injective since
f(7)is the only element of X; which is congruent to j modulo % + 1. Let us show that
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it is surjective. Let o € Z’,j, then since (nﬁ)* o a, is surjective there exists for each
jed{l,....,n}anf(y) € {0,...,k — 1} such thatj + f(j)(n + 1) € Range(x). One has
Range(x) = X and it follows that o = s(f). O

ProrosiTION A.2. The range of Perm : 251 — S, 1s the set of permutations
whose descent number is d =k — 1 —v < k. Moreover

#{o € 2F | Perm(o) = g} = (n N U).

n

Proor. Given a permutation o € S,, a lift of ¢ in Eﬁj is of the form

(48) a(j) = a(j) + k(j)(n + 1)
where k : {1,...,n} — {0,...,k — 1} is non-decreasing and such that
(49) o(j+1) <a() =k(j+1) > k().

By definition (cf. [8]) the descent number d of ¢ is the number of j € {1,...,n — 1}
such that o(j+ 1) < o(j). Thus (49) implies that k(n) — k(1) > d and one gets
k — 1 > d. Conversely assume that the descent number d of ¢ is d = k — 1 — v with
v > 0. Then the lifts « of o correspond to sequences (j) > 0,5 € {1,...,n},such that

YD <k—1, o(j+1) <al()=e() > 0.

Given such a sequence one lets k(y) = Z’l &(1) and one derives a lift of ¢ using
(48). Replacing () by &(j) — 1 when o(j + 1) < o(j) one gets that the number of
lifts is the number of sequences ¢(j) >0, j € {0,...,n} such that > &(j) =,

i.e. (%;L—U) O

A.2 — The elements Afi € 7[A® x N*]

Let 7Z[A®] be the ring of finite formal sums of elements of A°® with integral
coefficients, where the product law is given by the composition of morphisms in A%
whenever they are composable, otherwise is defined to be 0. One first introduces
the elements

(50) b =Y e(Perm(w)a € Z[AP].

n
s Zf,i

Then, by composing with the maps 7 one obtains the following elements of the ring
ZIAP x N*]

(51) Afl = Z e(Perm(oc))n’;L o a.

MGZI,‘;
Next, we show that these elements A’fL € 7[A® x N*] fulfill the law

(52) ARAL =AY

n-on n

Vk,0,n € IN.
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One has A*A! = 7tknl ol = 7Sd;(c%)s! where Sd; is extended to 7[A] by

n-n n-nTnTn n

linearity. Thus (52) follows from the next Lemma A.3 which shows that the map
T x %, = L (@) Sdj()p
is bijective and that the signatures are multiplicative.
LEmMMA A3. (i) Let «cXt and peXi. Then Sdj@pec=t’ and
Perm(Sd;(«)f) = Perm(x) o Perm(f).

(@) Let f: {1,...,n} = {0,...;k =1}, g:{1,...,mn} — {0,...,¢ — 1} be arbi-
trary maps of sets. Then one has

Sd (s(f) o s(g) = s(h)
wheve h: {1,....,n} — {0,... kl — 1} is given by
h(j) = () + kg(a™ (), o = Perm(s(f)).

PROOF. (i) One has o € Hompor(n*, Sd;(n*)), Sd; () € Homaer(Sd; (n*), Sdy,(n*))
and f € Homyw(n*, Sd;(n*)). Thus Sd,(2)f € Hom»(n*, Sdy,(n*)). Moreover, by
applying the functor F : A’ x N* — Fin, one derives

FASdj(0)p) = F(rnloonlp) = Frkw)F(x',f) = Perm(a) o Perm(p).

This shows that Sd, () € fo and Perm(Sd, («)f) = Perm(«) o Perm(f).

(1) We determine the range of y = Sd; (s(f)) o s(g). It is the image by Sd;(s(f))
of the range of s(g) which is by construction X, = {j +g())(n+ 1) |j € {1,...,n}}
(ignoring the base points). Now one has

Sd, (s(f )N + an + 1)) = s()@) + ka(n + 1),
and thus
Sd, (s(f N + g(Hn + 1)) = s(F)()) + kg(j)(n + 1).

Let ¢ = Perm(s(f)), then one has s(f)(j) = a(j) +f(a(7))(n + 1) and thus taking
j =0"1(2) one gets s(f)(c (1)) =1 +f(@)(n + 1) and

SA; (G + gD + 1) =i + f@O)n + 1) + kglo ' @)(n + 1)
which determines uniquely the range of y = Sd;(s(f)) o s(¢) in the required form. [

A3 — The commutation AX_ b= bAE

We define the Hochschild boundary operator b, with one component b,, for each
n > 1, as the element

(53) b, =Y (=D'd} € Z[A®],
0
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where for eachn > 1and i € {0,...,n} one lets
n * * ny v jv if .7 <1
di S HOHIAUP(% ,(n -1 ), dz (]) = . e . .
j—=1, if j>q.
One has d;od; = dj_yod;, Vi <y, and this shows that b, o b,; = 0. Next, we
provide the geometric proof ([9]) of the commutation of the -operations with the
Hochschild boundary.

PROPOSITION A.4. The elements AF e 7Z[A® x N*] commute with the Hoch-
schild boundary b i.e. one has A*_ b, = b,AF, vn > 1.
Proor. Note first that since the number of terms in the formula (50) defining

A is the cardinality k" of ¥, the expansion of the sum

A b= > (1 ePerm@) 7 ;0 dody
gexk |
0<j<n

contains (n + 1)k"! terms while the expansion of

oAl =Y (—1)e(Perm(a) df o 7 o a
szZﬁ

0<j<n

contains (n + 1)k" terms. One has

d} o =i, o Sy

i

and thus the equality to be proved is
> (~DePerm(d)dody = (—1)'a(Perm(w) Sd;(d}) o o

desk | acsk
0<j<n 0<j<n
We show geometrically that among the (n + 1)k" terms on the right hand side of
the above formula there are (n 4+ 1)k"~! terms which correspond to the left hand
side while the others cancel in pairs. Indeed, we construct a natural correspon-
dence (¢f. (56) below) between the terms Sd;;(d;?’) o o and the faces of the simplices
in the triangulation of the standard simplex A" = {(xp) |0 < < --- <, <1}
given by the edgewise subdivision into k" simplices A(«) parametrized by o € =
The faces which belong to the interior of A" appear twice and with opposite
orientations. This corresponds to the cancelation by pairs of (1 + 1)(k" — k"1)
terms. On the other hand, the faces which belong to the boundary of A" correspond
to the remaining (7 + 1)k"~! terms which correspond to the terms on the left hand
side. Consider the affine isomorphism (7), and associate to the elements
2 € Hompe (1*,[0,1]) = A" the map of intervals

Sd;.(x) € Hompe (Sdj, (%), Sd;([0, 11)) = Homer (Sdy, ("), [0, 11).
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In terms of the coordinates x(j) one has

a x(b)

(54) Sd.(x)(j) = T + % Vj=b+a(n+1) € Sd;(n).

One obtains in this way a triangulation of A" by the k" simplices
(55) A@) = {Sdy(@) oo | x € A"}, Vo € 2E.

To each simplex A(x) corresponds a permutation Perm(a):(nﬁoa)*. Geo-
metrically the map x+— Sdj(x) oo is of the form (w)— (yp), ¥y = La,0) + 51,
o = Perm(x). For each element f € Homyw(n*, Sd;((n — 1))) we consider the
subset of A" given by

(56)  F(B) ={Sdypop|y A"}, A" =Homum((n—1)",[0,1].

LEMMA A5. (2) Let B, € Homper (0", Sd;.((n — 1)) be such that the faces F(p),
F(B') are non-degenerate and equal then f = f.

(17) Let o € ZfL and A(e) the corresponding simplex as in (55). Then the faces of
A(w) are the F(Sd,(d")a) for i € {0,...,n}.

Proor. (7) This follows since the barycenter of a non-degenerate face F(f)
determines 5. More precisely since one assumes that F'(f) is non-degenerate the
map A"t — F(B), y— Sdy.(y) o f is affine and injective and thus the barycenter of
F(p) is the image Sd,(z) o f of the barycenter z € Homyo((n — 1)*,[0,1]) of AL
One has z(j) =j/n €10,1], Vj € {0,...,n}. It follows from (54) that Sd;(z)(i) =
i/(nk), Vi € {0, ... ,nk}. Thus the coordinates Sdj,(z) o f(?) of the barycenter of F'(f5)
determine f.

(12) Using (56), one has

F(Sdy(d)o) = {Sdi(y) o Sd(dMa | y € A"} = {Sdj(y o dP) | y € A"}

and the result follows since the faces of the standard simplex A" = Homuer (1", [0, 1])
are the

A" = {yod! |y € A" '} € Hompe(n*, [0, 1]).

Appendix B. Epicyclic modules and the i-operations

In this appendix we first review the definition of cyclic homology for cyclic
modules, then we give a detailed description of the action of the /-operations on the
(b, B) bicomplex in the context of epicyclic modules. Since the cyclic category is
isomorphic to its dual, we use a covariant definition of cyclic modules which turns
out to be more convenient when one discusses the epicyclic construction.
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We recall that the cyclic category A is the full subcategory of the category rc
with one object n for each non-negative integer n > 0, given by the archimedean
set n = (7,0), 0(x) = x +n + 1 Va € 7. Thus the morphisms between objects are
given by Homp (1, m) := C(n + 1,m + 1), where for each pairs of integers a,b > 0,
C(a, b) denotes the set of equivalence classes of maps f : 7. — 7, with f(x) > f(y),
Ve >y and f(x + a) = f(x) + b, Ve € Z (¢f. [4] §2.2). The equivalence relation is
defined as follows

frgeTke, g@)=f@)+kb Vre.

The cyclic category has a decomposition A = AC which describes A as an extension
of the small simplicial category A by means of a new generator
T € Cpy1 := Autp(n) for each n» > 0, and fulfilling the relations (in terms of the
faces J; and degeneracies g, 2 < j < n, which describe a presentation of A: ¢f. op.cit.
for details)

n+l _
T, =1d,

T, 000 = Gy 0 T2

g} 7,007 =0j_10T41, VjE€{l,...,n}

Ty 0 09 = Oy TnO(SjZéj,lOTn,l, vie{l,...,n}.
The epicyclic category is the full subcategory of the category 2Arcx N* of archi-
medean sets whose objects are the archimedean sets 7. We recall that for (X, 0) an

archimedean set and k£ > 0 an integer, the pair (X, 0’“) is also an archimedean set
which we denote as

(57) VX, 0) = (X, 0.

The epicyclic category A is obtained (¢f- [2], Definition 1.1) by adjoining to A
new morphisms Idﬁ :Wp(n) — n for n > 0, k > 1, which fulfill the following rela-
tions

1) Id} = id,, Id, o Idf, .,y ; = I1d¥
@) «Id* = 1d" Sdy(«), for any « € Homa([m], [1])
3) 7, 1d" = 1d* 14,41) 1
where Sdj, : A— A is the edgewise subdivision functor ((1), (2)). N
The canonical inclusion A’ C A extends to an inclusion A% x N* C A which

associates to the morphisms n’; € Homyo o« (Sd;(n*),n*) the morphism Idfl €
Homy (Wi(n), n).

B.1 - Cyclic homology and cyclic modules

DEFINITION B.1. A cyclic module E is a covariant functor A — b from the
cyclic category to the category of abelian groups.

We briefly recall the construction of the normalized (b, B)-bicomplex of a cyclic
module £. We keep the notations of A.2 and A.3. For each integer n > 0, one de-
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fines the element B(n) = ByA € Z[A], for A := > e¢(Perm(r))r, where the sum-
mation is taken over v € Auty(n), while the map By € Homu (1,7 + 1) is defined as
follows

(58) Byi+amn+1)=1+1+an+2), Vi,0<i<n, aec’Z.

Let s; = s} € Hompw (0", (0 + 1)*) be the degeneracies, for 0 <j < n. They are
given by

si=1if i<j, sf@=1+11if i>]
so that the image of s]" does not contain j + 1. Note that By # s;-‘, vy, n. Forn > 0let
(59) Cu(E) :=En)/V(n), V(n):=oIm(s;)

where the s; = s]’?*l € Hompe((n — 1)*,n*) are the degeneracies for 0 <j <n — 1.
Both the operators b and B pass to the quotient and one has (cf. [3], [8D).

LEMMA B2, (i) B(91Im(s)) C (& Im(s))) V], L.

(11) The subspace W(n) := Im(By) & V(n) C E(n) is invariant under cyclic
permutations: EG)Wn) C W(n).
(121) Im(B o By) C (@ Im(sy)), V.
() b(®Im(s)) C (®Imisy)), Vj,L.
() b?> = B? =bB + Bb =0 on C,(E).

We set the (b, B)-bicomplex in negative degrees as follows
(60) C*F .= C, y(B) if «>p, 2<0, C*:.={0}, otherwise,
and one defines the cyclic homology of the cyclic module £ by

HC,(E) :== ™ (@ C*F b+ B) .

<0

B.2 — Epicyclic modules

We generalize the above set-up to the epicyclic category.

DEFINITION B.3. An epicyclic module E is a covariant functor A — Ab from
the epicyclic category to the category of abelian groups.

The inclusion of categories A — A turns the operator B into an element of the
ring 7[A] for each n > 0 (we denote it by B(n)). Moreover, the inclusion of cate-
gories AP x N~ — A allows one to view the operators A,’fL € 7[A® x N*] as ele-
ments of the ring Z[A]. In this section we give a proof of the commutation relation
Aﬁ B = kBAﬁ (c¢f. [8], [9]) at the categorical level. We use the following two vari-
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ants of the sets ¥ as in (45), obtained by replacing the category A® with A and A
respectively. We define, using the canonical inclusion A C A

(61) AF = {o € Homa([n], Sdi([n])) | (1d* o w), is bijective}
and
(62) ¥ = {o € Homp(n, ¥;(0)) | (Idﬁ/ o ), is bijective}

where it follows from (57) that W(n) = (7, t** D) is the archimedean set (7, 6%),
with 0" : 7. — 7, 0F(x) = « + k(n + 1).

LEMMA B.4. (3) The inclusion of categories A® C A induces an inclusion of
sets T T and one has

(63) % = Auta(Pp(n) k.

(11) The canowical decomposition A = AC determines an inclusion of sets
A < T* and one has

(64) I* = AF Auta(n)

(iti) For any o € 3£ | there exists a unique element o' € A¥ such that «By =
Sdi(Bo)e. Moreover the map o o defines a bijection of sets =t g Afl.

ProoF. (¢) Let o € Homyo (n*, Sd;(n*)), then it is easy to see that its image into
the cyclic category & € Homa(n, ¥j(n)) belongs to I'" if and only if « € X£. In that
case, the associated permutation of {0, ..., %} is obtained by extending Perm(x) to a
permutation of {0, 1, ..., %} by fixing 0. One has A = CA’® and every morphism ¢ in
A uniquely decomposes as ¢ = £ o J, where disin A®?. For ¢ € T onehas¢ = % 0 &
where 6 € Homyw(rn*, Sd;(n*)), thus one gets (63).

(77) By construction one has F]fL NA= Aﬁ. For o € Homp(n, ¥;(n)), the right
multiplication o+ ot by an element 7 € Auta(n) does not affect the condition:
“(Id* o ), is bijective” thus the result follows from the decomposition A = AC.

(#i1) For o € Hompw((n + 1)*, (k(n + 2) — 1)*) we let & its canonical lift to a non-
decreasing map

o:7—"7, a@)=al), Vee{0,....,n+1}, alx+n+2)=ax)+kn+2), Yee/.

By hypothesis the map Perm(x) which to « € {1,...,n + 1} associates a(x) modulo
n + 2 is a permutation of {1,...,%n+ 1}. Thus the map ¢: 7 — 7, ¢ =00 By is
increasing and fulfills the following properties:

o ¢+ an+1) =¢@) + ka(n + 2), Vo,a € Z

e &(x) # 0 modulo n + 2, Vo € 7.

We show that these conditions imply that there exists o €
Homa([n],[k(n + 1) — 1]) such that ¢ = Sdi(By)o/, i.e. the following diagram
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commutes
{0,....n,n+1} —>——=1{0,....k(n+2)-1}
Bo Sdk(Bo)
{0,....n} of 0,... . k(n+1) -1}

One has By € Homa([n], [% + 1]) € Homa(n, 7 + 1) and the morphism Sd(By)
which belongs to Hom (Sdy.([%]), Sdi([%n + 1])) is also given by (58). Thus the range
of ¢ : Z — Z is contained in the range of the injection Sd;.(By) and for each x € Z
there exists a unique y such that ¢(x) = Sd;.(Bo)(y). Set o' (x) = y, then o' : Z — 7,
is a non-decreasing map which satisfies:

o o/(x +an+1) =d@ + kan + 1), Ve,a € 7
o o (x) €{0,....k(n+1)—1}, Ve € {0,...,n}.

Thus o € Homa([n], [k(n + 1) — 1]) and the map (Idﬁ od), is the same as the
permutation Perm(x) of the set {1,...,n + 1} reindexed as {0,...,n},thus o’ € Aﬁ.
Moreover the map o o’ determines a bijection X | ~ AF since it is injective by
construction and the cardinality of =¥ ;, which is £"*! by Lemma A.1, is the same

as the cardinality of A,’fl (which is by (it) equal to 1/n x #(F’;) = k"*! using (2)). O

THEOREM B.5. For any n,k > 1 one has in 7IA]
(65) AF B(n) = kB)A®

PRrROOF. The left hand side of (65) is a sum of (n + 1)k"*! terms which, up to sign,
are of the form

Id oBot, w € T8, || 7 € Auta(n).

By Lemma B.4 one has aBy = Sd;.(By)«/, so that these terms can be rewritten as
follows

(66) 1d%, ,Sdp(Bo)e'z, o € AF, 1 € Auta(n).

The coefficient of k in the right hand side of (65) is a sum of (n + 1)k" terms which, up
to sign, are of the form B, éldﬁ B, pe EZ, ¢ € Autp(n).

One also has & Idﬁ = Idﬁ% where E € Auty(W(n)) is a lift of the cyclic permu-
tation ¢ € Auta(n). Moreover BOId’fz = Id]fL +15d;(Bp). Thus we conclude that
By ¢1dk p=1d*, | Sdi(Bo)é B. One has &ff € Auta (W ()ZF and using the coeffi-

n+
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cient k in front of the right hand side of (65) together with the equality Id’fm = Idﬁn’
for any two of the k lifts of £ one can rewrite the right hand side of (65) as a sum of
(n + 1)k"1 terms which up to sign are of the form

(67) 1d%, | Sdp(B))E B, & € Auta(¥r(w), f € =F.

Thus the validity of (65) follows from Lemma B.4 which gives AutA(‘Pk(@))ZI;L =
Fﬁ = AﬁAutA(@) and the fact that the signs in front of the terms in (66) and (67) are
always given by the signature of the associated permutations. O

B.3 — Z-operations on the cyclic homology of epicyclic modules

Let E be an epicyclic module. Then its restriction to A C A is a eyclic module
and one has the associated abelian groups (59)

CuE) := Em)/V(w), V() := & Im(s)).

The operations A’fl are meaningful on the quotient in view of the following
LeMMA B.6. Af (@ Im(s)) C (@ Im(s)), V), .

ProoF. For any ¢ € X¥ and any degeneracy sj, there exists « such that with
t = Perm(o)(j + 1), one has gos; = Sdj(si-1) o . The conclusion follows using
1d* Sdj(si_y) = s;_11d". O

LEMMA B.7. (?) The following equality defines, for any integer k > 1, an en-
domorphism of the (b, B)-bicomplex of E:
(68) 0)é =kAL_y¢, vee

(12) The translation (a,f)+— (x4 1,5+ 1) defines an endomorphism S of the
(b, B)-bicomplex and one has SO(k) = kO(k)S.

ProoF. (i) The commutation of 0(k) with b and B follows from Proposition A.4
and Theorem B.5 respectively. More precisely one has for ¢ € C*#, B¢ € C**1# and
BO(k)é = Bk ™*Al_y &= k" kBAY_y& =k *™VAL, , BE = 0(k)BE.

(12) Follows directly from the definition of (k) as in (68). O
The endomorphisms 0(k) as in (68) define, at the categorical level, the A-op-

erations in homology. Lemma B.7 immediately implies the following well-known
result (¢f. [8], Ex. 6.4.5)

Theorem B.8. Let E be an epicyclic module. The i-operations define an action
of N* on HC,(E) given by the induced action of the operators 0(k).
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‘When the epicyclic module £ factors through i one has, after tensorisation of
the abelian groups by Q, a decomposition (¢f. [8] Thm. 6.4.5)

HC,(B) = @ HCP(E)

Jj=0

which diagonalizes the action of N* as a sum of the representations given by the
characters N5 k+— /. This decomposition of an epicyclic module does not hold in
general. Let £ be an epicyclic module and p : N* — V be a representation of N*,
then the tensor product £ @ V endowed with the maps

E V() =E()@pMod(f): Em)®V — Em)®V, Yf e Homj(n,m)

is still an epicyclic module. When working with vector spaces over a field, this
construction tensors the cyclic homology by V and replaces the action of IN* on
HC,(E) by its tensor product with p. Thus this twisting process generates epicyclic
modules with arbitrary weights.
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