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Projection of a nonsingular plane quintic curve

and the dihedral group of order eight

T. Takahashi (�) (��)

Abstract – Let C be a nonsingular plane quintic curve over the complex number �eld C,

and let �P WC ! P
1 be a projection from P 2 C . Let LP be the Galois closure of the

�eld extension C.C /=C.P1/ induced by �P , where C.C / and C.P1/ are the rational

function �elds of C and P1, respectively. We call the point P a D4-point if the Galois

group ofLP =C.P
1/ is isomorphic to the dihedral groupD4 of order eight. In this paper,

we prove that the number of D4-points for C equals 0, 1, 3, 5, or 15, and show that the

curve with 15 D4-points is projectively equivalent to the Fermat quintic curve.

Mathematics Subject Classification (2010). 14H50, 14H05, 14H37.

Keywords. Galois group of a projection, plane quintic curve, the dihedral group of order

eight.

1. Introduction

We shall work over the complex number �eld C. Let C � P
2 be a nonsingular

plane curve of degree d � 2, and let �P WC ! P
1 be the projection from a

point P 2 P
2. The projection �P induces an extension ��

P WC.P1/ ,! C.C /;

where C.C / and C.P1/ are the rational function �elds of C and P
1, respectively.

We denote by K and KP the function �eld C.C / and its sub�eld ��

P .C.P
1//,

respectively. Let LP be the Galois closure of K=KP , and let Gal.LP =KP / be the

Galois group of the �eld extension LP=KP .

The study of the projections �P is an interesting issue of nonsingular plane

curves. Indeed, a classical theorem of Noether and later results (see e.g. [5]) assure

(�) Indirizzo dell’A.: Takeshi Takahashi, Division of General Education, Nagaoka National

College of Technology, 888 Nishikatakai, Nagaoka, Niigata 940-8532, Japan.

E-mail: takeshi@nagaoka-ct.ac.jp

(��) Indirizzo attuale.: Takeshi Takahashi, Information Engineering, Faculty of Engineer-

ing, Niigata University, Niigata 950-2181, Japan.

E-mail: takeshi@ie.niigata-u.ac.jp

mailto:takeshi@nagaoka-ct.ac.jp
mailto:takeshi@ie.niigata-u.ac.jp


40 T. Takahashi

that the minimum degree of a morphism C ! P
1 equals d � 1, and all the maps

of degree d � 1 � 2 (resp. d � 5) are projections �P WC ! P
1 from some point

P 2 C (resp. P 2 P2 n C ). Thus it is natural to investigate the Galois group

Gal.LP=KP / associated to projections �P .

Cukierman [1] has shown that if C is a general plane curve of degree d , then

for every point P 2 P
2 n C , the Galois group Gal.LP=KP / is isomorphic to the

symmetric group on d letters. Without any assumption of generality, Miura and

Yoshihara [3, 8] have shown that if P 2 C n C # (resp. P 2 P
2 n .C [ C #/), then

the Galois group Gal.LP=KP / is isomorphic to the symmetric group on d � 1

letters (resp. on d letters), where C # is the union of all multitangent lines to C .

Moreover, Pirola and Schlesinger [7] have shown that there are only �nitely many

points P 2 P
2 n C for which the Galois group Gal.LP =KP / is not isomorphic to

the symmetric group on d letters.

In [3, 8], the notion of “Galois point” has been introduced: a point P is said to

be a Galois point if the extension K=KP is Galois. Miura and Yoshihara have

shown that if P 2 C (resp. P 2 P
2 n C ) is a Galois point, then the Galois

group Gal.K=KP / is isomorphic to the cyclic group of order d � 1 (resp. d ).

Furthermore, they have determined the number and distribution of Galois points.

As an extension of these studies, we would like to treat the case in which the

Galois group LP =KP is not isomorphic to a cyclic group or a full symmetric

group. In this paper, we study points P 2 C lying on a nonsingular plane curve

C of degree d D 5, such that the Galois group Gal.LP =KP / of the projections

�P WC ! P
1 is isomorphic to the dihedral group D4 of order 8.

Definition 1.1. A point P 2 C is called a D4-point if the Galois group of

LP =KP is isomorphic to the dihedral group D4 of order 8. We denote the set of

allD4-points as�.C;D4/, and ı.C;D4/ is the number of elements in this set, i.e.,

�.C;D4/ D ¹P 2 C j P is a D4-pointº; ı.C;D4/ D #�.C;D4/:

Our main theorem is as follows.

Theorem 1.2. Let C be a nonsingular plane quintic curve. Then,

ı.C;D4/ 2 ¹0; 1; 3; 5; 15º:

Moreover,

(1) if ı.C;D4/ D 3 or 5, then all D4-points are collinear;

(2) equality ı.C;D4/ D 15 holds if and only if C is projectively equivalent to

the Fermat quintic curve; in this case C possesses three disjoint 5-tuples of

collinear D4-points.
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Furthermore, we present explicit examples showing that all the values of

ı.C;D4/ listed above occur.

In order to prove Theorem 1.2, the main techniques rely on the description of

D4-points presented in [2]. In particular, since the projection �P WC ! P
1 from a

D4-point factors through a double covering C ! C 0 of a genus two curve C 0, we

deduce that each D4-point P 2 C induces an involution �P 2 Aut.C /. Then we

achieve Theorem 1.2 by studying the action of the subgroup of Aut.C / generated

by those involutions on the points of C .

It is worth noting that, in the light of [2, 8] and Theorem 1.2, the only case

to discuss for completing the description of projections from points on plane

quintic curves is when the Galois group is isomorphic to the alternating group

A4. Unfortunately, our techniques do not apply as projections from A4-points do

not factor through intermediate curves.

The plan of the paper is the following. In Section 2, we give some preliminary

results on D4-points for a nonsingular plane quintic curve. Section 3 concerns

examples assuring that the numbers of D4-points listed in Theorem 1.2 occur.

In Section 4, we prove Theorem 1.2.

2. Preliminary results

In this section, we are aimed at presenting the preliminary results necessary to

study D4-points.

Hereafter, C � P
2 is a nonsingular curve of degree d D 5, and we use the

following notation.

Notation. We denote by Aut.C / the group of automorphisms of C , and by

idC the identity automorphism. Consider a point P 2 C and the Galois closure

LP associated to the projection �P WC ! P
1. Then, zCP is the nonsingular

projective curve having LP as rational function �eld, and g.P / denotes its genus.

We denote by TPC the tangent line to C at P . Given two plane curves A and B ,

let IP .A; B/ denote their intersection multiplicity at P . Let .X W Y W Z/ be the

homogeneous coordinates of the projective plane P2. Then we denote by fi .X; Y /

any homogeneous polynomial of degree i . Given a homogeneous polynomial

f 2 CŒX; Y; Z�, we denote by V.f / the plane curve de�ned by f D 0, and

by F.5/ WD V.X5 C Y 5 C Z5/ the Fermat quintic curve. By Aut.P2/ we mean

the group of projective linear transformation of P2, and for any T 2 Aut.P2/ we

de�ne its �xed locus Fix.T / WD ¹P 2 P
2 j T .P / D P º. Finally, we denote by #S

the number of elements of a �nite set S .
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The following theorem summarizes Miura’s results on D4-point (see [2]).

Theorem 2.1. Let C be a nonsingular plane quintic curve.

(1) A point P 2 C is a D4-point if and only if P and the de�ning equation of C

can be expressed as

P D .0 W 0 W 1/ and f1.X; Y /Z
4 C f3.X; Y /Z

2 C f5.X; Y / D 0

by taking a suitable projective transformation, where fi .X; Y / ¤ 0, for

i D 1; 3; 5.

(2) IfP 2 C is aD4-point, then there exists an intermediate �eldK 0 of the exten-

sionK=KP such that the degrees ŒK W K 0� D 2 and ŒK 0 W KP � D 2. Moreover,

the nonsingular projective curve whose function �eld is isomorphic toK 0 has

genus 2.

(3) If P 2 C is aD4-point, then g.P / equals 16 or 17. Let ı16.C / (resp. ı17.C /)

be the number of D4-points satisfying g.P / D 16 (resp. g.P / D 17). Then,

5ı16.C / C 6ı17.C / � B.C/, where B.C/ is the number of lines bitangent

to C .

Remark 2.2. Every automorphism of a nonsingular plane curve C of degree

d � 4 can be extended to a projective transformation of P2 ([6, Corollary 5.3.19]),

i.e., for every � 2 Aut.C /, there exists T 2 Aut.P2/ such that T jC D � . Note

that T ¤ T 0 H) T jC ¤ T 0jC . Indeed, T jC D T 0jC H) Fix.T ı T 0�1/ � C .

Because Fix.T ı T 0�1/ is the union of some linear spaces, we have that

Fix.T ı T 0�1/ D P
2. Hence, T ı T 0�1 is the identity, and so T D T 0. In this

paper, we shall often express � 2 Aut.C / as an element of Aut.P2/, and we shall

represent it by its representation matrix in PGL.3;C/. We note that an element

A 2 PGL.3;C/ induces a projective transformation . zX W zY W zZ/ 7! .X W Y W Z/ so

that .X; Y; Z/tr D A . zX; zY; zZ/tr, where . zX; zY; zZ/tr and .X; Y; Z/tr are transposed

matrices of . zX; zY; zZ/ and of .X; Y; Z/, respectively.

Remark 2.3. For an element � 2 Aut.P2/, let A be its representation matrix.

Then, a point Q D .a W b W c/ is a �xed point of � , i.e., �.Q/ D Q, if and only if

the vector .a; b; c/ is an eigenvector of A. Hence, Fix.�/ is one of the following:

(1) Fix.�/ consists of one point, two points, or one line;

(2) Fix.�/ consists of three non-collinear points;

(3) Fix.�/ consists of one point and one line;

(4) Fix.�/ D P
2.
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In particular, if the order of � is �nite, then Fix.�/ is of type (2), (3), or (4), because

A is diagonalizable.

By Theorem 2.1, we have the following lemmas.

Lemma 2.4. If P 2 C is a D4-point for C , then IP .C; TPC/ D 3 or

IP .C; TPC/ D 5.

Proof. By Theorem 2.1 (1), we may assume that

P D .0 W 0 W 1/

and the de�ning equation of C is f1.X; Y /Z
4 C f3.X; Y /Z

2 C f5.X; Y / D 0.

Then, TPC is given by f1.X; Y / D 0. Hence, we have the conclusion.

Lemma 2.5. If P 2 C is aD4-point for C , then there exists a unique involution

�P 2 Aut.C / such that

(1) �P ¤ idC and it extends to an involution of P2, that is �2P D idP2 ;

(2) �P .P / D P and �P .`/ D ` for every line ` passing through the point P ;

(3) �P has �xed locus Fix.�P / D ¹P º [ `P , where `P is a line not passing

through P .

Proof. By Theorem 2.1 (1), we may assume that P D .0 W 0 W 1/ and the

de�ning equation of C is f1.X; Y /Z
4 C f3.X; Y /Z

2 C f5.X; Y / D 0. Then, we

put

�P W .X W Y W Z/ 7�! .�X W �Y W Z/:

Hence �P 2 Aut.C / is an involution satisfying properties (1), (2), and (3).

In particular, the line `P � Fix.�P / has equation Z D 0 and it does not pass

through P .

To check that �P is unique, we assume that there exists another involution

�0P 2 Aut.C / satisfying the same properties. Then, let G be the group generated

by �P and �0P . Both �P and �0P correspond to automorphisms of K that �x every

element of KP . Hence, we see that the order of G satis�es #G � ŒK W KP � D 4.

As K=KP is not Galois, we have #G D 2, and therefore, �P D �0P .

We call �P the involution associated to theD4-point P , and `P the line of �xed

points of �P .
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Remark 2.6. It follows from Theorem 2.1 .2/ that the projection �P WC ! P
1

factors through a double covering 'P WC ! C 0 and a hyperelliptic map

 P WC 0 ! P1, where C 0 is a curve of genus 2. Then it is easy to check that �P

is the involution associated to the map 'P , sending Q 2 C to the other point

Q0 2 C such that 'P .Q
0/ D 'P .Q/. In particular, �P �xes 6 points on C (P and

C \ `P ), and they coincide with the rami�cation points of 'P .

Lemma 2.7. Assume that P WD .0 W 0 W 1/ 2 C and

� WD

0

@

�1 0 0

0 �1 0

0 0 1

1

A 2 Aut.C /:

Then, the de�ning equation of C must be expressed as

f1.X; Y /Z
4 C f3.X; Y /Z

2 C f5.X; Y / D 0:

In particular, P is a Galois point when f3.X; Y / D 0, and P is a D4-point

otherwise.

Proof. Let the de�ning equation of C be

F.X; Y; Z/ WD
5

X

iD0

fi .X; Y /Z
5�i D 0:

Because P 2 C , P is not a singular point, and C is irreducible, we have that

f0.X; Y / D 0, f1.X; Y / ¤ 0, f5.X; Y / ¤ 0. As � 2 Aut.C /, we have that

��F D �F for some � 2 C n ¹0º. Hence,

� f1.X; Y /Z
4 C f2.X; Y /Z

3 � f3.X; Y /Z
2 C f4.X; Y /Z � f5.X; Y /

D �F.X; Y; Z/;

so that � D �1 and f2.X; Y / D f4.X; Y / D 0. By [2, Proposition 3.6] (resp.

Theorem 2.1), if f3.X; Y / D 0 (resp. f3.X; Y / ¤ 0), then P is a Galois point

(resp. a D4-point).

Lemma 2.8. Let P and Q be two D4-points for C . Then, �P .Q/ ¤ P;Q is a

D4-point, and the three points P , Q, and �P .Q/ are collinear.

Proof. By Theorem 2.1 and Lemma 2.5, we may assume that P D .0 W 0 W 1/,

C W f1.X; Y /Z
4 C f3.X; Y /Z

2 C f5.X; Y / D 0;
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and `P WZ D 0. Because �P .P / D P , we have that �P .Q/ ¤ P . Assume that

�P .Q/ D Q. Then Q 2 `P , and so f5.Q/ D 0. Therefore, the tangent line TQC

has equation
@f5

@X
.Q/X C @f5

@Y
.Q/Y D 0;

and hence P 2 TQC . Thus IQ.C; TQC/ D 2 or 4, which contradicts Lemma 2.4.

Therefore �P .Q/ ¤ Q.

By Lemma 2.5, we see that the three points P ,Q, and �P .Q/ are collinear.

Lemma 2.9. For every line `, #.�.C;D4/ \ `/ 2 ¹0; 1; 3; 5º.

Proof. Assume that there exist two D4-points P1 and P2 on `. Then, by

Lemma 2.8, we obtain a third D4-point �P1
.P2/ on `.

Assume that there exist fourD4-points Pi (i D 1; 2; 3; 4) on `. By Lemma 2.8,

we may assume that �P1
.P2/ D P3. Then, we see that �P1

.P4/ ¤ Pi (i D 1; 2; 3; 4).

Hence, we have a �fth D4-point �P1
.P4/ on `.

Lemma 2.10. Let P1 and P2 be two D4-points for C , and let ` be the line

passing through the points P1 and P2. If #.�.C;D4/ \ `/ D 3 (resp. 5), then the

order of �P1
j` ı �P2

j` equals 3 (resp. 5).

Proof. By Lemma 2.8, we have the third D4-point P3 WD �P1
.P2/. With

a suitable projective transformation, we may assume that P1 D .0 W 0 W 1/,
P2 D .0 W 1 W 0/, P3 D .0 W 1 W 1/, and `WX D 0. By Lemmas 2.4 and 2.8, we

see that ` is not a tangent line to C at Pi , where i D 1; 2; 3. Indeed, if ` were the

tangent line to C at Pi , then `would be also tangent at �Pj
.Pi /, where j ¤ i . Thus

the intersection number would be I.C; `/ > 5, which is a contradiction. Hence,

we have that #.C \ `/ D 4 or 5. Let P4 WD .0 W ˛ W 1/ 2 .C \ `/ n ¹P1; P2; P3º
and P5 WD �P1

.P4/, where ˛ 2 C n ¹0; 1º. Note that #.C \ `/ D 4 H) P4 D P5.

From �P1
.P1/ D P1, �P1

.P2/ D P3, �P1
.P3/ D P2, we infer that

�P1
j` D

�

1 0

1 �1

�

2 PGL.2;C/

and P5 D .0 W ˛ W ˛ � 1/. Here, we have two cases, �P2
.P1/ D P3 or

�P2
.P1/ 2 ¹P4; P5º.
If �P2

.P1/ D P3, we can infer from �P2
.P2/ D P2, �P2

.P1/ D P3, �P2
.P3/ D P1,

�P2
.P4/ D P5 that

�P2
j` D

�

�1 1

0 1

�

2 PGL.2;C/
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and ˛2 � ˛ C 1 D 0. Hence, we may assume that P4 D .0 W �! W 1/ and

P5 D .0 W 1 W �!/, where ! is a primitive cubic root of unity. We see now that the

order of �P1
j` ı �P2

j` equals 3. If P4 is a D4-point, then there exists the involution

�P4
such that �P4

.P4/ D P4, �P4
acts on ¹P1; P2; P3; P5º, and �2P4

D idC . However,

we see that there does not exist such an element �4j` in PGL.2;C/. Therefore,

#.�.C;D4/ \ `/ D 3.

If �P2
.P1/ 2 ¹P4; P5º, then because �P1

ı �P2
acts transitively on the �ve points

P1; : : : ; P5, we have that the order of �P1
j` ı �P2

j` equals 5, and both P4 and P5 are

D4-points.

Remark 2.11. By the proof of Lemma 2.10, if #.�.C;D4/\ `/ � 2 for a line

`, then #.C \ `/ D 5.

Proposition 2.12. Let P andQ be twoD4-points for C . Then, there exists an

automorphism � 2 Aut.C / such that �.P / D Q.

Proof. Let R WD �P .Q/, so that P , Q and R are distinct collinear points

by Lemma 2.8. If �Q.R/ D P , then �P ı �Q.P / D Q. If �Q.R/ ¤ P , then let

R0 WD �Q.R/ and R00 WD �Q.P /. In particular, P , Q, R, R0 and R00 are collinear

D4-points, and hence �P .R
0/ D R00. Thus we have that �P ı �Q ı �P ı �Q.P / D Q.

By Proposition 2.12, if there exist two D4-points P and Q for C , then zCP is

isomorphic to zCQ, and in particular g.P / D g.Q/.

We can improve the inequality stated in Theorem 2.1 (3) as follows.

Lemma 2.13. Let P be a D4-point for C . Then, we have

A2 C A3 C B1 D 6;

where A2 is the number of lines that intersect C transversally at P and meet C

with multiplicity 4 at another point, A3 is the number of lines that meet C with

multiplicity 5 at P , and B1 is the number of lines that intersect C transversally at

P and are tangent to C at two other distinct points.

Proof. Let ` be a line passing through P . By Lemma 2.4 we have that

IP .C; `/ 2 ¹1; 3; 5º. Moreover, Lemma 2.5 assures that ` ¤ `P , and that �P

permutes points on .C \ `/ n Fix.�P /. In particular, for anyQ 2 .C \ `/ n Fix.�P /

we have that IQ.C; `/ D I�P .Q/.C; `/. Thus only the following cases may occur:
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(1) the line ` intersects C transversally at P and four other distinct points that

are not on `P ;

(2) the line ` intersects C transversally at P and two other distinct points, and it

is tangent to C at another point lying on `P (let A0 be the number of these

lines);

(3) the line ` is tangent to C at P with multiplicity 3, and intersects C transver-

sally at two other distinct points that are not on `P (let A1 be the number of

these lines);

(4) the line ` intersectsC transversally atP , and is tangent toC with multiplicity

4 at another point lying on `P (let A2 be the number of these lines);

(5) The line ` is tangent to C at P with multiplicity 5 (let A3 be the number of

these lines);

(6) the line ` intersects C transversally at P , and is tangent to C at two other

distinct points that are not on `P (let B1 be the number of these lines);

(7) the line ` is tangent to C at P with multiplicity 3, and is tangent to C at

another point lying on `P (let B2 be the number of these lines).

Consider the morphism �P WC ! P
1, where the genus g.C / D 6 and

deg�P D 4. Then, by the Riemann–Hurwitz formula

2g.C / � 2 D .deg�P /.2g.P
1/ � 2/C degR;

where R is the rami�cation divisor, we have that

degR D A0 C A1 C 3A2 C 3A3 C 2B1 C 2B2 D 18:

Since the tangent line to C at P is unique, we have A1 C A3 C B2 D 1. Since

#.C \ `P / D 5 (cf. Remark 2.6), we have A0 C A2 C B2 D 5. From these three

equations, we have A2 C A3 C B1 D 6.

Lemma 2.14. ı.C;D4/ � 19.

Proof. Let a1 be the number of tangent lines that have contacts of order 3 at a

point and intersect C transversally at two other points, and let ai (i D 2; 3) be the

number of tangent lines that have contacts of order i C 2. Let b1 be the number of

bitangent lines that have contacts at two points, both of order 2, and let b2 be the

number of bitangent lines that have contacts at two points of orders 2 and 3. Let

C � be the dual curve of C . Then, the degree of C � is

d� D d.d � 1/ D 20;
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and its geometric genus equals .d � 1/.d � 2/=2 D 6 as the dual map C ! C �

is birational. Moreover, the number of double points of C � (resp. triple points,

singular points with multiplicity 4) equals a1 C b1 (resp. a2 C b2, a3), and every

singular point of C � can be resolved by one blowing up (cf. [6, Section 1.5]). By

the genus formula, we have a1 C b1 C 3.a2 C b2/ C 6a3 D 165, and by the �ex

formula ([6, Example 1.5.11]), we have a1 C b2 C 2a2 C 3a3 D 45.

By Remark 2.11 and Lemma 2.13, we have 6ı.C;D4/ � a2Ca3Cb1. Therefore,

6ı.C;D4/ � a2 C a3 C b1

� a2 C 3a3 C b1 C 2b2

D .a1 C b1 C 3.a2 C b2/C 6a3/ � .a1 C b2 C 2a2 C 3a3/

D 120;

so that ı.C;D4/ � 20.

We remark that if P and Q are distinct D4-points, then �P .P / D P and

�P .Q/ ¤ Q by Lemma 2.8. Thus ı.C;D4/ must be odd. Hence, we have

ı.C;D4/ � 19.

3. Examples

This section concerns the existence of plane quintic curves satisfying ı.C;D4/ 2
¹0; 1; 3; 5; 15º. In particular, we show that for any value of ı.C;D4/ listed above,

there exists a nonsingular plane quintic curve having the prescribed number of

D4-points.

We have the classical theorem: the general smooth plane curve of degree d > 3

has no non-trivial automorphism. Hence, by Lemma 2.5, the general plane quintic

curve does not possessD4-points, that is ı.C;D4/ D 0.

On the other hand, Miura and Yoshihara proved the following result on

D4-points on the Fermat quintic curve F.5/WX5 C Y 5 C Z5 D 0 (see [4, Theo-

rem 1]).

Theorem 3.1 ([4]). If P 2 F.5/ is not a �ex of F.5/, then the Galois group

Gal.LP=KP / is isomorphic to the symmetric group of 4 letters and g.P / D 85.

On the contrary, if P 2 F.5/ is a �ex, then P is a D4-point and g.P / D 16.

In particular, the curve F.5/ has 15 �exes, which lie on the three lines

X D 0, Y D 0 and Z D 0. For example, it is easy to check that the point

P D .0 W �1 W 1/ is aD4-point for F.5/. Indeed, by taking the projective transfor-

mation
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T W . zX W zY W zZ/ 7! .X W Y W Z/ given byX D zX , Y D zY C zZ,Z D zY � zZ, we have

that T ..0 W 0 W 1// D P and T �.F.5//W 10 zY zZ4 C 20 zY 3 zZ2 C zX5 C 2 zY 5 D 0. Thus

F.5/ satis�es ı.C;D4/ D 15, and there are three disjoint 5-tuples of collinear

D4-points.

Finally, we present three explicit examples of nonsingular plane quintic curves

satisfying ı.C;D4/ D 1, 3 and 5, respectively.

Example 3.2. Let C be the plane curve de�ned by the equation

X5 C Y 5 C Y 4Z C YZ4 CZ5 D 0

and P WD .0 W �1 W 1/. Then,C is a nonsingular plane quintic curve, ı.C;D4/ D 1

and �.C;D4/ D ¹P º.
We can prove that ı.C;D4/ D 1 as follows. First, we can show easily that

the point P is a D4-point. By taking the projective transformation T given by

X D zX , Y D zY C zZ; Z D zY � zZ, we have that T ..0 W 0 W 1// D P and

T �.C /W .4 zY / zZ4 C .24 zY 3/ zZ2 C . zX5 C 4 zY 5/ D 0. Hence, by Theorem 2.1, P is a

D4-point. Moreover, we have the involution �P as follows:

�P D

0

@

1 0 0

0 0 1

0 1 0

1

A :

From a comparison of the Hessians of the de�ning equations, we infer that C

is not projectively equivalent to F.5/. By [8, Theorem 4’ and Proposition 5’], we

have that the point Q WD .1 W 0 W 0/ is the unique outer Galois point for C . Thus

any � 2 Aut.C / satis�es �.Q/ D Q. Then, by systematic direct computations,

we can see that �P is the only non-trivial involution of C �xingQ. By Lemma 2.5,

we conclude that ı.C;D4/ D 1.

Example 3.3. Let C be the plane curve de�ned by the equation

X5 C Y 4Z C YZ4 D 0

and Pi WD .0 W �!i�1 W 1/, where i D 1; 2; 3 and ! is a primitive cubic

root of unity. Then, C is a nonsingular plane quintic curve, ı.C;D4/ D 3 and

�.C;D4/ D ¹P1; P2; P3º.
We can prove that ı.C;D4/ D 3 as follows. First, we can show easily that 3

points P1,P2,P3 areD4-points. For example, by taking the projective transforma-

tion T given byX D zX , Y D zY C zZ,Z D zY � zZ, we have that T ..0 W 0 W 1// D P1
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and T �.C /W .�6zY / zZ4 C .4 zY 3/ zZ2 C . zX5 C 2 zY 5/ D 0. Hence, by Theorem 2.1, P1

is a D4-point. Moreover, we have that the involutions �P1
and �P2

as follows:

�P1
D

0

@

1 0 0

0 0 1

0 1 0

1

A ; �P2
D

0

@

1 0 0

0 0 !

0 !2 0

1

A :

Hence, the order of �P1
j`ı�P2

j` equals 3, where `WX D 0. From a comparison of the

Hessians of the de�ning equations, we infer that C is not projectively equivalent

to F.5/. By Lemma 2.10 and Theorem 1.2, we see that ı.C;D4/ D 3.

Example 3.4. Let C be the plane curve de�ned by the equation

X5 CX3YZ C Y 5 CZ5 D 0

and Pi WD .0 W ��i�1 W 1/, where i D 1; : : : ; 5 and � is a primitive �fth

root of unity. Then, C is a nonsingular plane quintic curve, ı.C;D4/ D 5 and

�.C;D4/ D ¹P1; : : : ; P5º.
We can prove that ı.C;D4/ D 5 as follows. First, we can show easily that 5

points P1; : : : ; P5 areD4-points. For example, by the projective transformation T

given by X D zX , Y D zY C zZ, Z D zY � zZ, we have that T ..0 W 0 W 1// D P1

and T �.C /W .10 zY / zZ4 C .� zX3 C 20 zY 3/ zZ2 C . zX5 C zX3 zY 2 C 2 zY 5/ D 0. Hence, by

Theorem 2.1, P1 is a D4-point. Moreover, since P1 is an ordinary �ex and F.5/

has no ordinary �ex, C is not projectively equivalent to F.5/. By Theorem 1.2, we

see that ı.C;D4/ D 5.

4. Proof of Theorem 1.2

In this section, we prove Theorem 1.2. In particular, the proof follows almost

straightforwardly from Lemmas 2.8 and 2.9, and from the following results.

Lemma 4.1. Assume that there exist �ve collinear D4-points for C , as well

as one other D4-point. Then, C is projectively equivalent to F.5/. In particular,

ı.C;D4/ D 15.

Lemma 4.2. Assume that #.�.C;D4/ \ `/ � 3 for every line `. Then,

ı.C;D4/ � 3.

In Subsections 4.1 and 4.2, we prove Lemmas 4.1 and 4.2, respectively. Sub-

section 4.3 is devoted to conclude the proof of Theorem 1.2.
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4.1 – Proof of Lemma 4.1

Assume that there exist �ve collinearD4-points Pi (i D 1; : : : ; 5) for C , as well as

anotherD4-point P0. Taking a suitable projective transformation, we may assume

that the �ve collinear points Pi (i D 1; : : : ; 5) are on the line `WX D 0. Let

� WD �P1
ı �P2

2 Aut.C /. We will �nd other D4-points using the automorphisms

�Pi
(i D 0; : : : ; 5) and � .

Claim 4.3. The three lines `P1
, `P2

, ` are not concurrent, i.e., they do not meet

at one point.

Proof. Assume that `P1
\ `P2

\ ` D ¹Qº. Taking a suitable projective

transformation, we may assume that P1 D .0 W 0 W 1/, P2 D .0 W 1 W 0/, and

Q D .0 W 1 W 1/. Then, as �P1
.P1/ D P1, �P1

.Q/ D Q, �2P1
D id`, �P2

.P2/ D P2,

�P2
.Q/ D Q, �2P2

D id`, we have that

�P1
j` D

�

1 0

2 �1

�

and �P2
j` D

�

�1 2

0 1

�

:

Hence, the order of �P1
j` ı �P2

j` is not �nite, which contradicts Lemma 2.10.

Let Q1 be the intersection of `P1
and `P2

. Then, Q1 62 ` and Q1 2 Fix.�/.

Consider the morphism �W ` ! `=h�i, where the genera of ` and `=h�i are

g.`/ D g.`=h�i/ D 0, and deg � D 5 by Lemma 2.10. Then Riemann–Hurwitz

formula 2g.`/� 2 D .deg �/.2g.`=h�i/� 2/C degR assures that the rami�cation

divisor R consists of at least two points Q2; Q3 2 Fix.�/ \ `. Taking a suitable

projective transformation, we may assume thatQ1 D .1 W 0 W 0/, Q2 D .0 W 1 W 0/,
Q3 D .0 W 0 W 1/. Then, � 2 PGL.3;C/ is expressed as a diagonal matrix.

Let G WD h�i, H WD h�5i, Gj` WD h� j`i. Then, by Lemma 2.10, the order of

G` equals 5. Hence, we have the exact sequence 1 ! H ! G ! Gj` ! 1 and

#Gj` D 5.

Claim 4.4. #G D 5.

Proof. We show �5 D idC . Because Q1 D .1 W 0 W 0/ 2 `P1
\ `P2

, and

�P1
.`/ D `, �P2

.`/ D `, we have that the involutions �P1
and �P2

can be expressed

as matrices:

�P1
D

0

@

1 0 0

0

0 A1

1

A ; �P2
D

0

B

@

1 0 0

0

0 A2

1

C

A
;
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where A1; A2 2 GL.2;C/. We remark that �Pi
(i D 1; 2) has a 1-dimensional

eigenspace corresponding to Pi and a 2-dimensional eigenspace corresponding

to `Pi
by Remark 2.3 and Lemma 2.5. The eigenvalues of �Pi

(i D 1; 2) are equal

to 1 and �1, since

�2Pi
D

0

@

1 0 0

0

0 A2i

1

A ;

which induces idP2 , must be a unit matrix. The eigenvalue of �Pi
(i D 1; 2)

belonging to Q1 D .1 W 0 W 0/ 2 `Pi
equals 1. Thus, we infer that the eigenvalues

of Ai (i D 1; 2) are equal to 1 and �1. In particular, detAi D �1 (i D 1; 2).

Because

�5 D

0

@

1 0 0

0

0
.A1A2/

5

1

A ; �5j` D id`; det.A1A2/
5 D 1;

we have that

�5 D

0

@

1 0 0

0 1 0

0 0 1

1

A or

0

@

1 0 0

0 �1 0

0 0 �1

1

A :

Assume that �5 ¤ idC . Then, by Lemma 2.7, the de�ning equation of C can be

expressed as f1.Y; Z/X
4 C f3.Y; Z/X

2 C f5.Y; Z/ D 0. In particular, we have

that f5.P1/ D 0 as P1 2 C \ ¹X D 0º, and the line `.P1; Q1/ passing through

Q1 and P1 is given by a factor of f5. From IP1
.C; `.P1; Q1// � 2, we see that

`.P1; Q1/ D TP1
C and IP1

.C; TP1
C/ D 2 or IP1

.C; TP1
C/ D 4. This contradicts

Lemma 2.4.

Since � is represented by a diagonal matrix in PGL.3;C/ and � ¤ idP2 ,

Remark 2.3 assures that its �xed locus Fix.�/ consists either of three non-collinear

points, or of one point and one line. In the latter case we have:

Claim 4.5. If Fix.�/ consists of one point and one line, then Q2 and Q3 are

Galois points.

Proof. BecauseQ1; Q2; Q3 2 Fix.�/, we may assume that

Fix.�/ D ¹Q2º [ `.Q1; Q3/;

where `.Q1; Q3/ is the line passing through Q1 and Q3. By Claim 4.4, the

morphism C ! C=h�i is a cyclic covering of degree 5, and its rami�cation
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divisor consists of 5 total rami�cation points `.Q1; Q3/\C . From the Riemann–

Hurwitz formula, we see that the quotient C=h�i is isomorphic to P
1. Hence,

by [5, Proposition 2.3.6], the covering C ! C=h�i is obtained as a projection.

Because �.`0/ D `0 for every line `0 passing throughQ2, we see that the center of

the projection C ! C=h�i is the point Q2. Therefore, Q2 is a Galois point.

From � ı �P2
.Q2/ D �P1

.Q2/ D �P1
ı�.Q2/ D �P2

.Q2/ and `P1
\`P2

\` D ;,

we infer that �P2
.Q2/ D Q3. Hence, the point Q3 is also a Galois point.

In particular, Q2; Q3 2 P
2 n C . Therefore, [8, Theorem 40 and Proposition 50]

assure that if Fix.�/ consists of one point and one line, then C is projectively

equivalent to F.5/. Hence we only need to prove the assertion of Lemma 4.1 when

Fix.�/ D ¹Q1; Q2; Q3º consists of three non-collinear points.

Claim 4.6. For a pointP 2 P
2n¹Q1; Q2; Q3º, the �ve pointsP; �.P /; �2.P /,

�3.P /; �4.P / are collinear if and only if P 2 V.XYZ/. Furthermore, if

P 62 V.XYZ/, then no three of these �ve points can be collinear.

Proof. Assume that P 2 V.XYZ/. Because Fix.�/ D ¹Q1; Q2; Q3º, we

have �.V .X// D V.X/, �.V .Y // D V.Y /, �.V .Z// D V.Z/. Hence, P; �.P /,

�2.P /, �3.P /; �4.P / are collinear.

Assume that P 62 V.XYZ/. Let P D .1 W a W b/, where ab ¤ 0. As �5 D idC

by Claim 4.4, � can be expressed as .X W Y W Z/ ! .X W �Y W �iZ/, where

i D 2; 3; 4. Then, the three points P D .1 W a W b/, �.P / D .1 W �a W �ib/,

�2.P / D .1 W �2a W �2ib/ cannot be collinear.

Claim 4.7. There exist 15 D4-points P1; : : : ; P15 such that each �ve points

PiC1; : : : ; PiC5 (i D 0; 5; 10) are collinear.

Proof. The �ve D4-points P1; : : : ; P5 are collinear by assumption. Using

the involution induced by D4-point P0 not collinear to them, we have that the

points �P0
.P1/; : : : ; �P0

.P5/ are also collinear D4-points. Let P5Ci WD �P0
.Pi/

(i D 1; : : : ; 5). Then, �P6
.P1/; : : : ; �P6

.P5/ are also collinear D4-points. Let

P10Ci WD �P6
.Pi / (i D 1; : : : ; 5). Note that P1; : : : ; P15 are distinct by Lemma 2.8

(and the point P11 is actually P0).

Claim 4.8. If ¹P6; : : : ; P15º 6� V.YZ/, then ı.C;D4/ � 30.
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Proof. We may assume that ¹P6; : : : ; P10º 6� V.YZ/. Let

Si WD ¹Pi ; �.Pi/; : : : ; �
4.Pi /º .i D 6; : : : ; 10/:

We show Si \Sj D ; for i ¤ j . Assume that S6 \S7 ¤ ;. Then, there exists a

point P 2 S6 \S7, and then ¹P; �.P /; : : : ; �4.P /º D S6 D S7. As �P6
.P6/ D P6,

we have that �P6
.S6/ D S6. Hence, �P6

.S7/ D S6 D S7 3 P6; P7; �P6
.P7/, where

the three points P6; P7; �P6
.P7/ are collinear. By Claim 4.6, P6; P7 2 V.YZ/.

Hence, S6 D C \V.Y / or S6 D C \V.Z/. Because P6; P7 2 S6 and P6; : : : ; P10

are collinear, we have that P6; : : : ; P10 2 V.YZ/, which is a contradiction. By the

same argument as above, we see that Si \ Sj D ; for i ¤ j .

The number of points in ¹P1; : : : ; P5º [ S6 [ � � � [ S10 equals 30.

By Lemma 2.14, and Claims 4.7 and 4.8, we have that theD4-pointsP1; : : : ; P15

are on V.XYZ/.

Claim 4.9. ı.C;D4/ D 15.

Proof. If ı.C;D4/ > 15, then we have 15D4-points P1; : : : ; P15 on V.XYZ/,

and anotherD4-point P16 62 V.XYZ/. By Claim 4.4 and Fix.�/ D ¹Q1; Q2; Q3º,
we have that Pi , where i D 1; : : : ; 15, and �j .P16/, where j D 0; : : : ; 4, are

distinct D4-points. This contradicts Lemma 2.14.

Claim 4.10. Taking a suitable projective transformation, we may assume that

¹P1; : : : ; P15º D F.5/ \ V.XYZ/:

Proof. We may assume that ¹P1 : : : ; P5º � V.X/, ¹P6 : : : ; P10º � V.Y /,

¹P11 : : : ; P15º � V.Z/. Moreover, we may assume that P1 D .0 W �1 W 1/ and

P6 D .�1 W 0 W 1/. Note that �Pi
.�.C;D4// D �.C;D4/, for any i 2 ¹1; : : : ; 15º

by Claim 4.9, and Q1 D .1 W 0 W 0/, Q2 D .0 W 1 W 0/, Q3 D .0 W 0 W 1/.
Thus �Pi

.¹Q1; Q2; Q3º/ D ¹Q1; Q2; Q3º for any i 2 ¹1; : : : ; 15º. Because

�Pi
.Pj / ¤ Pj for i ¤ j (i; j 2 ¹1; : : : ; 15º), and �Pi

.¹P1; : : : ; P5º/ D ¹P1; : : : ; P5º
for any i 2 ¹1; : : : ; 5º, we have that �Pi

.Q1/ D Q1 and �Pi
.Q2/ D Q3, for any

i 2 ¹1; : : : ; 5º.
Because �P1

.Q1/ D Q1, �P1
.Q2/ D Q3, �P1

.P1/ D P1, and �2P1
D idC ,

we have that

�P1
D

0

@

1 0 0

0 0 1

0 1 0

1

A or

0

@

1 0 0

0 0 �1
0 �1 0

1

A :
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By Lemma 2.5, the eigenspace corresponding P1 is 1-dimensional. Thus we have

that

�P1
D

0

@

1 0 0

0 0 1

0 1 0

1

A :

Hence, we may assume that P2 D .0 W a W 1/, P3 D .0 W 1 W a/, P4 D .0 W b W 1/,
and P5 D .0 W 1 W b/, where a; b 2 C n ¹0º and a ¤ b. Moreover, we may assume

that �P2
.P1/ D P4 and �P2

.P3/ D P5. Then, as �P2
.Q1/ D Q1, �P2

.Q2/ D Q3,

�P2
.P2/ D P2, �2P2

D idC , and �P2
.P1/ D P4, and by Lemma 2.5 (i.e., the

eigenspace corresponding to P2 is 1-dimensional), we have that

�P2
D

0

@

1 0 0

0 0 �a
0 �1=a 0

1

A

and b D �a2. Because �P2
.P3/ D P5, we have that a5 D �1. Hence, we have that

P1 D .0 W �1 W 1/, P2 D .0 W �� W 1/, P3 D .0 W ��4 W 1/, P4 D .0 W ��2 W 1/, and

P5 D .0 W ��3 W 1/, where � is a primitive �fth root of unity.

By the same argument as above, we have that P6 D .�1 W 0 W 1/,

P7 D .�� W 0 W 1/,P8 D .��4 W 0 W 1/,P9 D .��2 W 0 W 1/, andP10 D .��3 W 0 W 1/.
By �P1

.V .Y / \ C/ D V.Z/ \ C , we have that P11 D .�1 W 1 W 0/,

P12 D .�� W 1 W 0/, P13 D .��4 W 1 W 0/, P14 D .��2 W 1 W 0/, and

P15 D .��3 W 1 W 0/. Note that F.5/ \ V.XYZ/ is the set of these 15 points.

By a similar argument to that in the proof of Claim 4.10, we have that

�P1
D

0

@

1 0 0

0 0 1

0 1 0

1

A ; �P2
D

0

@

1 0 0

0 0 ��
0 ��4 0

1

A ; �P6
D

0

@

0 0 1

0 1 0

1 0 0

1

A :

Let the de�ning equation ofC be expressed byF.X; Y; Z/ D
P5

iD0X
5�ifi .Y; Z/.

Because Q1 D .1 W 0 W 0/ 62 C , we may assume that f0.Y; Z/ D 1. As

�Pi
.C / D C (i D 1; 2), we have that ��Pi

F D �iF , where �i 2 C n ¹0º.
Using the matrices above as a representations of �Pi

(i D 1; 2; 6), we have that

�1 D �2 D 1. Hence, each fi (i D 1; : : : ; 5) is symmetric and ��P2
fi D fi .

Therefore, F D X5 C ˛X3YZ C ˇXY 2Z2 C 
Y 5 C 
Z5, where ˛; ˇ; 
 2 C.

As P6 D .�1 W 0 W 1/ 2 C , we have 
 D 1, and because ��P6
F D �6F for some

�6 2 C n ¹0º, we have that ˛ D ˇ D 0. Namely, C is the Fermat quintic curve.

This completes the proof of Lemma 4.1.
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4.2 – Proof of Lemma 4.2

In order to prove Lemma 4.2, we assume that #.�.C;D4/ \ `/ � 3 for every line

` � P
2. Aiming for a contradiction, we assume further that ı.C;D4/ > 3.

Claim 4.11. There exists a �nite subset S � �.C;D4/ such that #S D 9 and

#.S \ `/ D 0; 1, or 3 for every line `.

Proof. Let Lijk be the line passing through the collinear points Pi ; Pj ; Pk.

We can take two D4-points P1 and P2. By Lemma 2.8, we can �nd a third

point P3 WD �P1
.P2/ such that P1, P2, P3 are collinear. By our assumption,

�.C;D4/ \ L123 D ¹P1; P2; P3º. Because ı.C;D4/ > 3, there exists a point

P0 2 �.C;D4/ n L123. Let PiC3 WD �P0
.Pi / (i D 1; 2; 3). Then, the three points

¹P4; P5; P6º (resp. the points ¹P0; P1; P4º, ¹P0; P2; P5º, and ¹P0; P3; P6º) are

collinear D4-points, and

�.C;D4/ \ L456 D ¹P4; P5; P6º

(resp. �.C;D4/ \ L014 D ¹P0; P1; P4º, �.C;D4/ \ L025 D ¹P0; P2; P5º, and

�.C;D4/ \ L036 D ¹P0; P3; P6º). Note that P0; : : : ; P6 are seven distinct points.

Let P7 WD �P5
.P1/ and P8 WD �P5

.P3/. Then, as L157 (resp. L358) ¤ L123; L456,

L014; L025; L036, we see that P7 (resp. P8) ¤ P0; : : : ; P6. Because P5 62 L123, we

see thatP7 ¤ P8. Hence,P0; : : : ; P8 are nine distinct points. LetS WD ¹P0; : : : ; P8º.
We show that each set of three points ¹P0; P7; P8º, ¹P2; P4; P8º, ¹P2; P6; P7º,

¹P1; P6; P8º, and ¹P3; P4; P7º are collinear.

Consider the three points ¹P0; P7; P8º. Because

�.C;D4/ \ L025 D ¹P0; P2; P5º;

we have that �P5
.P2/ D P0. Hence, P0; P7; P8 2 �P5

.L123/, i.e., ¹P0; P7; P8º are

collinear, and �.C;D4/ \ L078 D ¹P0; P7; P8º.
Next, consider the three points ¹P2; P4; P8º. As

�.C;D4/ \ L014 D ¹P0; P1; P4º

(resp. �.C;D4/ \ L157 D ¹P1; P5; P7º), we have that �P1
.P4/ D P0 (resp.

�P1
.P5/ D P7). Hence, �P1

.P6/ 2 �P1
.L456/ D L078, and so �P1

.P6/ D P8.

Moreover, as �P1
.P3/ D P2 and �P1

.P0/ D P4, we have that ¹P2; P4; P8º �
�P1
.L036/. Hence, ¹P2; P4; P8º are collinear, and�.C;D4/\L248 D ¹P2; P4; P8º.
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By the same argument as above, we see that ¹P2; P6; P7º D �P3
.¹P0; P1; P4º/ �

�P3
.L014/ (resp. ¹P1; P6; P8º D �P3

.¹P0; P2; P5º/ � �P3
.L025/ and ¹P3; P4; P7º D

�P1
.¹P0; P2; P5º/ � �P1

.L025/), and ¹P2; P6; P7º (resp. ¹P1; P6; P8º, ¹P3; P4; P7º)
are collinear.

Therefore, #.S \ `/ D 0; 1, or 3 for every line `.

Let P0; : : : ; P8 and Lijk be those in the proof of Claim 4.11.

Claim 4.12. The three lines L123, L456, L078 are not concurrent, i.e., they do

not meet at one point.

Proof. Assume that L123 \ L456 \ L078 D ¹Qº. Because �Pi
.L123/ D L456

and �Pi
.L456/ D L123 (i D 0; 7), we have that �P0

.Q/ D Q and �P7
.Q/ D Q.

Let C \ L078 WD ¹P0; P7; P8; Q1; Q2º. Then, as �P0
.Q1/ D Q2, we have

that Q ¤ Q1; Q2. Note that �P0
.L078/ D L078 and �P7

.L078/ D L078. Let

� WD .�P7
ı �P0

/jL078
2 PGL.2;C/. Since �P0

.Q1/ D �P7
.Q1/ D Q2, we have

Q;Q1; Q2 2 Fix.�/ WD ¹R 2 L078 j �.R/ D Rº. Hence, � D idL078
. How-

ever, we have that �.P0/ D P8, which is a contradiction.

Claim 4.13. Taking a suitable projective transformation, we may assume the

following:

P0 D .�1 W 1 W 0/; P7 D .�!2 W 1 W 0/; P8 D .�! W 1 W 0/;

P1 D .�1 W 0 W 1/; P2 D .�! W 0 W 1/; P3 D .�!2 W 0 W 1/;

P4 D .0 W �1 W 1/; P5 D .0 W �! W 1/; P6 D .0 W �!2 W 1/;

where ! is a primitive cubic root of unity.

Proof. Let

¹Q1º WD L123 \ L456; ¹Q2º WD L456 \ L078; ¹Q3º WD L078 \ L123:

By Claim 4.12, Q1, Q2, Q3 are not collinear, distinct points. Taking a suitable

projective transformation, we may assume that

Q1 D .0 W 0 W 1/; Q2 D .0 W 1 W 0/; Q3 D .1 W 0 W 0/:

Then,

L456 D V.X/; L123 D V.Y /; L078 D V.Z/:
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Note that Qi 62 ¹P0; : : : ; P8º (i D 1; 2; 3). Let Pi D .0 W ai W 1/ (i D 4; 5; 6),

where ai 2 C n ¹0º: Taking the projective transformation

.X W Y W Z/ 7�! .X W �1=a4Y W Z/;

we may assume that a4 D �1. From �P4
.L456/ D L456, �P4

.L123/ D L078,

�2P4
D idC , �P4

.P4/ D P4, and P4 62 `P4
, we infer that

�P4
D

0

@

1 0 0

0 0 1

0 1 0

1

A :

Hence, P6 D .0 W a6 W 1/ D �P4
.P5/ D .0 W 1 W a5/, and so a5a6 D 1.

By a similar argument to that above (note that �P5
.P4/ D P6), we infer that

�P5
D

0

@

p�a6 0 0

0 0 �a6

0 1 0

1

A :

Hence, P5 D .0 W a5 W 1/ D .0 W �a6 W a5/, and so a2
5 D �a6. We have that

a3
5 D �1. Note that P5 ¤ P4, that is, a5 ¤ �1. Hence, we may put a5 D �! and

P4 D .0 W �1 W 1/; P5 D .0 W �! W 1/, P6 D .0 W �!2 W 1/.
Again, using a similar argument, we may assume that P1 D .�1 W 0 W 1/,

P2 D .�! W 0 W 1/, and P3 D .�!2 W 0 W 1/. As P0 2 L078 \ L014,

P7 2 L078 \ L267, P8 2 L078 \ L358, we have that P0 D .�1 W 1 W 0/,
P7 D .�!2 W 1 W 0/, and P8 D .�! W 1 W 0/.

Claim 4.14. Assume that P0; : : : ; P8 are the points in Claim 4.13. Then,

�P0
D

0

@

0 1 0

1 0 0

0 0 1

1

A ; �P7
D

0

@

0 !2 0

! 0 0

0 0 1

1

A ; �P8
D

0

@

0 ! 0

!2 0 0

0 0 1

1

A ;

�P1
D

0

@

0 0 1

0 1 0

1 0 0

1

A ; �P2
D

0

@

0 0 !2

0 ! 0

1 0 0

1

A ; �P3
D

0

@

0 0 !

0 !2 0

1 0 0

1

A ;

�P4
D

0

@

1 0 0

0 0 1

0 1 0

1

A ; �P5
D

0

@

! 0 0

0 0 !2

0 1 0

1

A ; �P6
D

0

@

!2 0 0

0 0 !

0 1 0

1

A :
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Proof. From �P0
.L078/ D L078, �P0

.L123/ D L456, �P0
.L456/ D L123,

�P0
.P1/ D P4, and �P0

.P4/ D P1, we infer that

�P0
D

0

@

0 1 0

1 0 0

0 0 1

1

A :

By a similar argument to that above, we can determine the other �Pi
.

Claim 4.15. Assume that P0; : : : ; P8 are the points in Claim 4.13. Then,

.0 W 0 W 1/, .0 W 1 W 0/, .1 W 0 W 0/ 2 C .

Proof. Note that #.C \ L078/ D 5 by Remark 2.11. Let

C \ L078 D ¹P0; P7; P8; Q1; Q2º:

As neither Q1 nor Q2 are D4-points, we have that �Pi
.Q1/ D Q2 (i D 0; 7; 8).

Let � WD �P7
ı �P0

. Then, Q1; Q2 2 Fix.�/ \ L078. Because

(41) � D

0

@

!2 0 0

0 ! 0

0 0 1

1

A ;

we have that Fix.�/ \ L078 D ¹.1 W 0 W 0/; .0 W 1 W 0/º. Hence

¹.1 W 0 W 0/; .0 W 1 W 0/º D ¹Q1; Q2º � C:

Thus �P4
..0 W 1 W 0// D .0 W 0 W 1/ 2 C .

In order to complete the proof of Lemma 4.2, let us consider the the points

P0; : : : ; P8 listed in Claim 4.13, and let

� WD �P7
ı �P0

2 Aut.C /

with representation matrix given by (41). Then, we obtain the cyclic Galois cov-

ering C ! C=h�i of degree 3, whose rami�cation points are the three points

.0 W 0 W 1/; .0 W 1 W 0/; .1 W 0 W 0/ 2 C . However, by the Riemann–Hurwitz

formula, this is a contradiction. Hence, we have ı.C;D4/ � 3, which concludes

Lemma 4.2.
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4.3 – Proof of Theorem 1.2

Let us prove ı.C;D4/ 2 ¹0; 1; 3; 5; 15º. Clearly, ı.C;D4/ ¤ 2 by Lemma 2.8.

If ı.C;D4/ were equal to 4, then ı.C;D4/ would consist of 4 collinear points

P1; : : : ; P4. Indeed, P1; P2 and

P3 WD �P1
.P2/

would be collinear by Lemma 2.8, and the same would hold for P1; P4 and

�P1
.P4/ 2 ¹P2; P3º. Thus we would get a contradiction as Lemma 2.9 would imply

ı.C;D4/ � 5.

Finally, if ı.C;D4/ � 6, then Lemmas 2.9 and 4.2 give that there exists a line `

passing exactly through �veD4-points. So there exists anotherD4-point not lying

on `, and Lemma 4.1 implies that ı.C;D4/ D 15 and C is projectively equivalent

to the Fermat quintic curve F.5/. Conversely, if C is projectively equivalent

to the Fermat quintic curve F.5/, by the analysis of Section 3 we deduce that

ı.C;D4/ D 15, and C possesses three disjoint 5-tuples of collinear D4-points.

In order to conclude the proof of Theorem 1.2, we only need to show that

if ı.C;D4/ D 3 or 5, then �.C;D4/ lies on a line. The case ı.C;D4/ D 3

follows straightforwardly from Lemma 2.8, whereas Lemmas 2.9 and 4.2 give

the assertion when ı.C;D4/ D 5.
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