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Finitely generated modules and chain rings

Ulrich Albrecht (�) – Gregg Scible (��)

Abstract – This paper investigated �nitely generated singular modules over a right chain

ring R. We show that these modules behave similar to those over valuation rings

provided R is a right duo ring. We also demonstrate that the duo condition cannot be

removed from our discussion.
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1. Introduction

Although many results concerning Abelian groups carry over to modules over

integral domains, the situation is more complex in the non-commutative case since

there are several non-commutative notions of torsion-freeness. In this paper, we

focus on Goodearl’s notion of non-singularity [11]: the singular submodule of a

right R-module M which is de�ned as

Z.M/ D ¹x 2 M j xI D 0 for some essential right ideal I of Rº

takes the place of the torsion submodule in the commutative setting. The module

M is singular if Z.M/ D M , and non-singular if Z.M/ D 0, while R is right non-

singular if it is non-singular as a right R-module. The discussion of modules over

non-singular rings usually concentrates on non-singular modules since �nitely

generated torsion modules over integral domains already behave di�erent from

torsion Abelian groups [9].
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It is a goal of this paper to investigate �nitely generated singular modules

in the non-commutative setting. Since the structure of torsion modules can be

successfully investigated for valuation rings, we consider their non-commutative

equivalent: A ring R is a right (left) chain ring if the lattice of its right (left) ideals

is linearly ordered. A right and left chain ring is simply called a chain ring. It is

easy to see that a chain ring R has no zero divisors if and only if Z.M/ is a direct

summand for every �nitely generated right R-module M . Moreover, M=Z.M/ is

free in this case. This reduces the discussion of �nitely generated modules to the

case of singular modules.

It is not the goal of this paper simply to extend known results on �nitely gen-

erated modules over valuation domains to a more general setting. Instead, we are

interested in characterizing the right chain rings for which the �nitely generated

modules behave similar to �nitely generated modules over a valuation domain.

We immediately realize that some additional restrictions on R are necessary to

obtain any meaningful results. For instance, although every �nitely generated tor-

sion module over a domain has a non-zero annihilator, Dubrovnin gave an exam-

ple of a chain domain for which the semi-simple modules are the only ones with

a non-zero annihilators (Example 2.1 and [7]). Because of this example, annihila-

tors of �nitely generated modules are the focus of Section 2. Theorem 2.3 shows

that these annihilators behave similar to the commutative case if and only if R is

a right duo ring where R is right duo if Ra � aR for every a 2 R. Similarly, R

is duo if aR D Ra for every a 2 R. Duo rings arise naturally in the discussion of

chain rings, in particular when prime and completely prime ideals are considered

as can be seen in a series of papers by Bessenroth, Brungs, and Törner ([3], [4],

[5], and [6]). These papers also provide examples of such rings. For instance, if G

is an ordered group and K is a skew �eld, then

R D ¹r D †gkg 2 KŒŒG�� j min.supp.r// � eº

is a duo chain domain [3, Proposition 1.24] where supp.r/ D ¹g j kg ¤ 0º.

Moreover, every right Noetherian right chain domain is right duo. Examples of

such rings can also be found in [3]. For further constructions of chain domains,

the reader is referred to [2]. Section 3 characterizes right duo chain rings in

terms of the existence of RD-composition series for �nitely generated modules

(Theorem 3.4). This naturally extends the work of Salce and Zanardo in [12] for

commutative rings. The paper concludes with some applications of the results of

Chapters 2 and 3.



Finitely generated modules and chain rings 159

2. Modules and annihilators

Let M be a right R-module, and S a subset of M . The annihilator of S is the right

ideal Ann.S/ D ¹r 2 R j Sr D 0º of R which is a two-sided ideal whenever

S is a submodule of M . In particular, M Š R= Ann.x/ whenever M is a cyclic

R-module generated by x. If R is not commutative, then Ann.xR/ ¨ Ann.x/ is

possible in contrast to the commutative setting:

Example 2.1. Let R be a nearly simple chain domain, i.e. J D J.R/ is the only

proper non-zero two-sided ideal of R. Such a ring was constructed by Dubrovin

([3] and [7]). Since R is a domain, J 2 D J , and J is not �nitely generated by

Nakayama’s Lemma. Pick a non-zero a 2 J and consider the singular module

M D R=aR. Since MJ D J=aR ¤ 0, we obtain Ann.M/ D 0, while every

generator of M has a non-zero annihilator since M is singular.

To overcome this di�culty, we call an R-module M �nitely annihilated if there

exist x1; : : : ; xk in M such that Ann.M/ D Ann.x1; : : : ; xk/ [10]. If Ann.M/ D

Ann.x/ for some x 2 M , then M is cyclically annihilated. A �nitely generated

right R-module M is strongly cyclically annihilated if, whenever M D x1R C

� � � C xnR, then Ann.M/ D Ann.xi / for some i .

We begin our discussion with a technical result which will be used frequently

throughout this paper:

Lemma 2.2. Let R be a ring.

a) If M is a right R-module, then Ann.a/ D Ann.aR/ for every a 2 M such

that Ann.a/ is a two-sided ideal.

b) If M D x1R C � � � C xnR such that Ann.xi / is a two-sided ideal for each

i D 1; : : : ; n, then Ann.M/ D
Tn

iD1 Ann.xi /.

Proof. a) Since Ann.a/ is a two-sided ideal of R,

.aR/ Ann.a/ D a.R Ann.a// � a Ann.a/ D 0:

b) is obvious in view of a).
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A ring R is strongly right bounded if every non-zero right ideal of R contains

a non-zero two-sided ideal. Obviously, right duo rings are strongly right bounded.

Theorem 2.3. The following are equivalent for a ring R:

a) R is a right duo right chain ring;

b) R is a right chain ring such that all cyclic right R-modules are cyclically

annihilated;

c) every �nitely generated right R-module is strongly cyclically annihilated;

d) R is a right chain ring such that R=I Š R=K for right ideals I and K yields

I D K;

e) R is a right chain ring such that every �nitely generated right R-module M

has the property that Ann.a/ is a two-sided ideal for every a 2 M .

Proof. a) H) c). Let M D x1R C � � � C xnR be a �nitely generated right

R-module. By a), Ann.xi / is a two-sided ideal. Since R is a right chain ring, we

may assume Ann.x1/ � � � � � Ann.xn/. By Part b) of Lemma 2.2, Ann.M/ DTn
iD1 Ann.xi / D Ann.x1/, and M is strongly cyclically annihilated.

c) H) b). As strongly cyclically annihilated modules are obviously cyclically

annihilated, it remains to show that R is a right chain ring. Let a; b 2 R, and

consider M D R=aR˚R=bR. By c), we may assume Ann.M/ D Ann.1CaR/ D

aR. On the other hand, .0; 0/ D .1 C aR; 1 C bR/x D .x C aR; x C bR/ yields

x 2 aR \ bR for all x 2 Ann.M/. Thus, aR D Ann.M/ � aR \ bR � bR, and R

is a right chain ring.

b) H) a). Suppose that R is a right chain ring such that every cyclic right

R-module is cyclically annihilated. If I is a two-sided ideal of R, then every cyclic

right R=I -module M can be viewed as a cyclic right R-module via the operation

mr D m.r C I /. Since MR is cyclically annihilated, MR AnnR.b/ D 0 for some

b 2 M . But, bI D 0 and AnnR=I .b/ D AnnR.b/=I show MR=I AnnR=I .b/ D

MR AnnR.b/ D 0. Thus, M is cyclically annihilated as an R=I -module. There-

fore, R=I is a right chain ring such that every cyclic right R=I -module is cyclically

annihilated.

We now show that R is a strongly right bounded ring. For this, consider a non-

zero a 2 R. Since R is a right chain ring, aR is essential in R. Then R=aR is a

singular R-module, and Ann.y CaR/ is essential in R for all y 2 R. In particular,

Ann.y C aR/ ¤ 0. Moreover, since R=aR is cyclically annihilated by b), we can

�nd x 2 R such that 0 ¤ Ann.x C aR/ D Ann.R=aR/ � Ann.1 C aR/ D aR.

Thus, Ann.R=aR/ is a non-zero two-sided ideal of R contained in aR.
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Let K be the largest two-sided ideal contained in aR. If K ¤ aR, then R=K

is a strongly right bounded ring by what has been already shown. Its non-zero

right ideal .aCK/R=K D aR=K contains a non-zero two-sided ideal of the form

N=K, where N is a two-sided of R such that K   N � aR. Since K is the largest

two-sided ideal of R contained in aR, we obtain a contradiction. Thus, K D aR,

and aR is a two-sided ideal of R.

a) H) d). If R is right duo, consider an isomorphism �W R=I ! R=K for

right ideals I and K of R. Observe that I and K are two-sided since R is

duo. Select r 2 R such that �.1 C I / D r C K. For every a 2 K, we have

�.a C I / D �.1 C I /a D ra C K D 0. Since � is one-to-one, a 2 I , and thus

K � I . By symmetry, I D K.

Conversely, suppose that d) holds, and let I be any right ideal of R. For a unit

u 2 R, de�ne an isomorphism �W R=I ! R=uI by �.r C I / D ur C uI . Hence,

I D uI by d). Since R is a right chain ring, I is two-sided.

Since a) H) e) is trivial, it remains to show that e) H) c). Suppose M D

a1R C � � � C anR for a1; : : : ; an in M . We may assume Ann.a1/ � � � � � Ann.an/

because R is a right chain ring. Since Ann.ai / is an ideal for every i , we have

Ann.M/ D
T

i Ann.ai / D Ann.a1/ as in the proof of Part b) of Lemma 2.2.

Thus, M is strongly cyclically annihilated.

Corollary 2.4. Let R be a right duo right chain ring. A �nitely generated

right R-module M is singular if and only if Ann.M/ ¤ 0.

Proof. If M is a �nitely generated singular right R-module, then we can �nd

x 2 M such that Ann.M/ D Ann.x/ by Theorem 2.3. Since M is singular, Ann.x/

is essential, and thus non-zero. Conversely, because M is a �nitely generated

R= Ann.M/-module, it is an epimorphic image of ŒR= Ann.M/�n for some n < !.

Since R is a right chain domain and Ann.M/ ¤ 0, it is essential in R. Therefore,

R= Ann.M/ is singular, and the same holds for M .

3. RD-submodules and composition series

A submodule N of M is an RD-submodule if Nr D N \ Mr for every r 2 R, or

equivalently if R=rR is projective with respect to 0 ! N ! M ! M=N ! 0

for all r 2 R. A submodule N of a right R-module M is pure if R=I is projective

with respect to 0 ! N ! M ! M=N ! 0 whenever I is a �nitely generated

right ideal of R. In particular, MI \ N D NI for all left ideals I of R if N is

pure in M . Since every �nitely generated right ideal of a right chain ring is cyclic,
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relative divisibility and purity are equivalent for right chain rings. In the following,

J D J.R/ denotes the Jacobson radical of the ring R.

Proposition 3.1. Let R be a left chain ring. The following are equivalent for

a right R-module M and every a 2 M such that Ann.a/ is a two-sided ideal:

a) aR is an RD-submodule of M ;

b) if 0 ¤ ar D zs for some r; s 2 R and z 2 M , then Rr � Rs;

c) Ann.x/ � Ann.a/ for every x 2 a C MJ.R/.

Proof. a) H) b). Let aR be an RD-submodule of M , and consider r; s 2 R

and z 2 M with 0 ¤ ar D zs. Since aR is an RD-submodule, ar D ar 0s for

some r 0 2 R. If Rs   Rr , then s D jr for some j 2 R which cannot be a unit

of R. Thus, j 2 J.R/ and ar D ar 0s D ar 0jr so that a.1 � r 0j /r D 0. Hence,

.1 � r 0j /r 2 Ann.a/ D Ann.aR/ since Ann.a/ is two-sided. But, u D 1 � r 0j is

a unit of R because j 2 J.R/. So, ar D au�1.ur/ 2 aRur D 0, a contradiction.

b) H) c). Suppose that .a C y/r D 0 but ar ¤ 0 for some y 2 MJ.R/. Since

R is a chain ring, y D mj for some m 2 M and j 2 J . Then 0 ¤ ar D .�m/.jr/.

By b), Rr � R.jr/ which implies that .1�r 0j /r D 0 for some r 0 2 R. Then r D 0

as 1 � r 0j is a unit, a contradiction.

c) H) a). Suppose 0 ¤ ar D ms for some r; s 2 R and m 2 M . If Rr � Rs,

then r D t s for some t 2 R. So ms D ar D ats 2 aRs, and we are done. So,

suppose Rs   Rr . Then s D jr for some j 2 J.R/, and 0 ¤ ar D ms D mjr .

Therefore, .a � mj /r D 0. Then, ar D 0 by c), a contradiction.

Let M be a �nitely generated right R-module. The smallest number of genera-

tors of M is denoted by gen.n/. It is a direct consequence of Nakayama’s Lemma

that gen.M/ is the R=J -dimension of M=MJ whenever R is a right chain ring.

An ascending chain 0 D M0 � � � � � Mn�1 � Mn D M of submodules of a

module M is an RD-composition series if each Mi is an RD-submodule of M

and is cyclic. If Mi=Mi�1 ¤ 0 for i D 1; : : : ; n, then n is the length of the series.

The sequence Ai D Ann.Mi =Mi�1/ of two-sided ideals of R is the annihila-

tor sequence of the RD-composition series. It is non-decreasing if Ai � AiC1

for i D 1; 2; : : : ; n � 1. Our next result reduces the discussion of modules with

RD-composition series to the case of singular modules:

Proposition 3.2. Let R be a strongly right bounded right chain domain. If a

�nitely generated right R-module M has an RD-decomposition series with non-

decreasing annihilator sequence, then M D F ˚ Z.M/ for some free module F .
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Proof. Suppose that k is the largest index for which Ak D 0. For any m > k,

consider x 2 Mm. If 0 ¤ r 2 Am, then there is y 2 Mm�1 with xr D yr . Since R

is a right chain ring, rR is an essential right ideal of R. Hence x � y 2 Z.M/, and

Mm C Z.M/ D Mm�1 C Z.M/. Thus, M D Mk C Z.M/. It remains to show that

Mk is free. Since Mj =Mj �1 is cyclic, we can �nd a right ideal Ij of R such that

Mj =Mj �1 Š R=Ij . If Ij ¤ 0, then it contains a non-zero two-sided ideal Kj , and

Kj � Ann.Mj =Mj �1/. Thus, j > k, and Mk is a free R-module. Since R has no

zero-divisors, Mk \ Z.M/ D 0.

As in the commutative case, one can easily show that the length of an

RD-composition series of a �nitely generated right R-module M is equal to

gen.M/ if R is a right duo chain ring [12]. Thus, all RD-composition series have

the same length which we denote by `.M/. Finally, an RD-composition series

0 D M0 � � � � � Mn�1 � Mn D M is strong if MiC1=Mi is cyclic and has a

generator with two-sided annihilator for each i D 0; : : : ; n � 1.

Remark 3.3. Let R be a nearly simple chain domain. A �nitely gener-

ated singular module M has a strong RD-composition series if and only if

M Š
L

n R=J , where n D `.M/.

Proof. We induct on n D `.M/. Since J is the only non-zero proper two-

sided ideal of R, we obtain that M D xR is isomorphic to R=J whenever x has

a two-sided annihilator. Suppose that 0 D M0 � � � � � Mn�1 � Mn D M is

a strong RD-composition series of M . By the induction hypothesis and by what

has already been shown, Mn�1 Š
L

n�1 R=J and M=Mn�1 Š R=J . Thus, M

can be viewed as a right R=J 2-module. However, J 2 ¤ 0 since R is a domain.

Thus, J D J 2 because R is nearly simple. Hence, M is a right R=J -module, and

M Š Mn�1 ˚ R=J . The converse is obvious.

In particular, if M is any �nitely generated singular R-module over a nearly

simple chain domain with MJ ¤ 0, then M does not have a strong RD-

composition series.

Theorem 3.4. The following are equivalent for a chain ring R:

a) R is a right duo ring.

b) The following hold for every �nitely generated right R-module M :

i) M admits a strong RD-composition series 0 D M0 � � � � � Mn�1 �

Mn D M with non-decreasing annihilator sequence A1; : : : ; An.
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ii) Every RD-composition series 0 D M 0
0 � � � � � M 0

n D M of M

with non-decreasing annihilator sequence B1; : : : ; Bk is strong and

Ak D Bk for k D 1; : : : ; n.

Proof. a) H) b). i) Suppose R is right duo chain ring. Let M be a �nitely

generated right R-module. Since R=J is a division algebra, M=MJ is a �nite

dimensional vector space over R=J . If ¹x1 C MJ; : : : ; xn C MJ º is a R=J -ba-

sis of M=MJ , then the xi ’s generate M by Nakayama’s Lemma since M is

�nitely generated. Because R is a right chain ring, we may arrange the xi ’s in

such a way that Ann.xi / � Ann.xiC1/ for all i . Since R is a right duo ring,

Ann.M/ D Ann.x1/ by Lemma 2.2. Let 1 � j � n be chosen maximal with

Ann.M/ D Ann.x1/ D � � � D Ann.xj /. We show that there exists i 2 ¹1; : : : ; j º

such that Ann.x/ � Ann.xi / for every x 2 xi C MJ .

If, for every k � j , there exists x0
k

2 xk C MJ such that we have

Ann.xk/   Ann.x0
k
/, then M is generated by ¹x0

1; : : : ; x0
j ; xj C1; : : : ; xnº by an-

other application of Nakayama’s Lemma. Using Theorem 2.3 once more, we ob-

tain Ann.M/ D Ann.x0
`
/ for at least one ` � j since Ann.M/ ¤ Ann.xk/ for

k > j by the choice of j . But then, Ann.x`/ D Ann.M/ D Ann.x0
`
/ which con-

tradicts the choice of x0
`
. Without loss of generality, we may assume the element

obtained in this way is x1. By Proposition 3.1, M1 D x1R is an RD-submodule

of M . Moreover, Ann.M1/ D Ann.x1/ D Ann.M/, and M1 is strongly cyclically

annihilated since R is a right duo chain ring.

We construct the strong RD-composition series by induction on the number

n of generators of M . By what has just been shown, the result holds for n D 1.

By induction hypothesis, we can �nd a chain of submodules M1 � M2 � � � � �

Mn D M of M such that 0 D M1=M1 � M2=M1 � � � � � Mn=M1 D M=M1

is a strong RD-composition series of M=M1 with non-decreasing annihilator

sequence because M=M1 is generated by x2 C M1; : : : ; xn C M1. Since M1 is

an RD-submodule of M , each Mi is an RD-submodule of M , and MiC1=Mi Š

.MiC1=M1/=.Mi=M1/ is cyclic and strongly cyclically annihilated for each i > 0

since R is a right duo chain ring. Thus, 0 D M0 � M1 � M2 � � � � � Mn D M

is a strong RD-composition series of M . To see that the annihilator sequence is

non-decreasing, set Ai D Ann.Mi=Mi�1/ for i D 1; : : : ; n and note

Ai D Ann.Mi =Mi�1/

D Ann..Mi=M1/=.Mi�1=M1//

� Ann..MiC1=M1/=.Mi=M1//

D Ann.MiC1=Mi / D AiC1
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for all i > 1. Moreover, A1 D Ann.M1/ D Ann.M/ � Ann.M2=M1/ D A2.

ii) Consider an RD-composition series 0 D M 0
0 � � � � � M 0

n D M of M with

non-descending annihilator sequence. By Theorem 2.3, the composition series is

strong.

We show B1 D Ann.M 0
1/ D Ann.M/ D Ann.M1/ D A1. If this is not the

case, then Ann.M/   Ann.M 0
1/. Hence, we can �nd r 2 R with M 0

1r D 0 but

Mr ¤ 0. Let k > 1 be chosen minimal such that M 0
k
r ¤ 0, and pick y 2 M 0

k
with

yr ¤ 0. Since Ann.M 0
1/ � Ann.M 0

k
=M 0

k�1
/, we have yr 2 M 0

k�1
. Since M 0

k�1
is

an RD-submodule of M , there is z 2 M 0
k�1

such that 0 ¤ yr D zr contradicting

the minimality of k. Hence, Ann.M 0
1/ D Ann.M/. Finally, observe M 0

1 D dR.

Since R is right duo, Ann.d/ D Ann.dR/ D Ann.M 0
1/ D Ann.M/.

Consider an arbitrary RD-submodule U of M , and a 2 R. To see that

UaR is an RD-submodule of MaR, observe that aR is a two-sided ideal of R

since R is a right duo ring. If s is any element of R, then I D aRs is a left

ideal of R. However, since R is right chain ring, every RD-submodule of M

is pure. Hence, UaRs � MaRs \ UaR � MaRs \ U D UaRs, and UaR is

an RD-submodule of MaR. Now assume in addition that M=U is cyclic, say

M D xR C U . Then, MaR D xRaR C UaR � .xa/R C UaR � MaR as

Ra � aR since R is right duo. Hence, 0 D M0aR � � � � � MnaR D MaR and

0 D M 0
0aR � � � � � M 0

naR D MaR are two RD-composition series of MaR.

Suppose that we have shown that A1 D B1; : : : ; Ak D Bk for some k < n,

and assume that AkC1 ¤ BkC1. Without loss of generality, we may assume

BkC1 ¨ AkC1. Pick a 2 AkC1 n BkC1. Since a 2 AkC1 � � � � � An, we have

Ma D Mka. Moreover, .Mi=Mi�1/a ¤ 0 for i D 1; : : : ; k. By the last paragraph,

`.MaR/ D k. If a … Bi for any i , then 0 D M 0
0aR � � � � � M 0

naR D MaR is

a composition series of MaR of length n, which contradicts the choice k < n.

Thus, a 2 Bm for some smallest m > k C 1. Thus, MaR D M 0
maR, and MaR

has a decomposition series of length m � 1 > k, a contradiction. Therefore,

AkC1 D BkC1.

b) H) a). Consider a proper right ideal I of R, and the right R-module

M D R=I . Clearly, y D 1 C I 2 M is a generator of M with Ann.y/ D I .

Since 0 � R=I is an RD-composition series of M D R=I with non-decreasing

annihilator sequence, it is strong. Thus, M D xR such that Ann.x/ is a two-sided

ideal, and there are r; s 2 R with x D yr and y D xs. Then, x D xsr . If r or s

are in J D J.R/, then we obtain xR � xRJ � xsrR D xR, and xRJ D xR.

By Nakayama’s Lemma, xR D 0, a contradiction. Thus, r and s are units of R.

If t 2 Ann.y/, then 0 D yt D x.st/, and s Ann.y/ � Ann.x/. On the other hand,

if t 0 2 Ann.x/, then 0 D xt 0 D y.rt 0/, and r Ann.x/ � Ann.y/. Since Ann.x/ is
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a two-sided ideal and r and s are units of R, we have Ann.y/ � s�1 Ann.x/ D

Ann.x/ D r Ann.x/ � Ann.y/. Thus, I D Ann.y/ D Ann.x/ is two-sided, and

R is duo.

We now address the question whether the RD-composition series in Theo-

rem 2.3 is unique if R is a right and left duo chain ring thus extending results by

Fuchs, Salce and Zanardo in ([9] and [12]) to the non-commutative setting.

Proposition 3.5. Let R be a right duo, right chain ring and M a right

R-module. If N is an RD-submodule of M such that M=N D .a C N /R and

Ann.M=N / � Ann.N /, then M D aR ˚ N .

Proof. Clearly M D aRCN . Suppose ar 2 N . Since N is an RD-submodule

of M , ar D nr for some n 2 N . Then .a � n/r D 0 and r 2 Ann.a � n/ D

Ann..a � n/R/ since R is right duo. Once we have shown r 2 Ann.M=N /, then

Nr D 0 and therefore ar D 0. If mC N 2 M=N , then mC N D as C N for some

s 2 R. Since r 2 Ann..a � n/R/, we obtain Œ.a � n/s�r D 0, and asr 2 N . Thus,

.m C N /r D .as C N /r D asr C N D N , and r 2 Ann.M=N /.

Corollary 3.6. Let R be a right duo chain ring and M a �nitely gener-

ated right R-module. Suppose that 0 D M0 � � � � � Mn�1 � Mn D M

is an RD-composition series of M with non-decreasing annihilator sequence

A1 � � � � � An. If Mk=Mk�1 D .xk C Mk�1/R and A1 D � � � D Ak for

some k � n, then Mk D
Lk

iD1 xiR. In particular, if all terms of the annihilator

sequence of 0 D M0 � � � � � Mn�1 � Mn D M are equal to Ann.M/, then M is

the direct sum of cyclic submodules.

Proof. The result is trivial for k D 1 as M1 D x1R is cyclic. We show

that Mk is a direct sum of cyclic modules using Proposition 3.5. By assump-

tion, Ann.M/ D Ann.x1R/ D Ann.M1/ D A1 D A2 D � � � D Ak. Since

Mk�1 is an RD-submodule of M , Mk=Mk�1 D .xk C Mk�1/R is cyclic,

and Ann.Mk=Mk�1/ D Ak D A1 D Ann.M/ � Ann.Mk�1/, we obtain

Mk D Mk�1 ˚ x2R. Since Mk�1 is a direct sum of cyclic modules by induc-

tion hypotheses, the result follows.

Lemma 3.7. Let R be a right duo chain ring. Every RD-composition series

of a �nitely generated right R-module M is isomorphic to one whose annihilator

sequence is non-decreasing.

Proof. Let 0 D M0 � � � � � Mn�1 � Mn D M be an RD-composition series

of M with annihilator sequence A1; : : : ; An, and write Mi=Mi�1 D .xi CMi�1/R.
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Suppose there exists an i 2 ¹1; 2; : : : n�1º such that Ai 6� AiC1. Since R is a right

chain ring, AiC1 is properly contained in Ai . We replace Mi by an RD-submodule

M 0
i such that M 0

i =Mi�1 Š MiC1=Mi and MiC1=M 0
i Š Mi=Mi�1. Once this has

been done, we have Ann.M 0
i =Mi�1/ D AiC1 � Ai D Ann.MiC1=M 0

i / as desired.

To obtain M 0
i , consider the RD-submodule N D Mi=Mi�1 of the module

K D MiC1=Mi�1. Observe that K=N Š MiC1=Mi , so K=N is cyclic, and

K D .xiC1 C Mi�1/R C N . Moreover, Ann.K=N / D AiC1 � Ai D Ann.N /

so that K D N ˚ .xiC1 CMi�1/R by Proposition 3.5. Let M 0
i D xiC1RCMi�1 �

MiC1. Clearly, M 0
i =Mi�1 Š K=N Š MiC1=Mi is cyclic, and the same holds for

MiC1=M 0
i Š .MiC1=Mi�1/=.M 0

i =Mi�1/ D K=.M 0
i =Mi�1/ Š N D Mi=Mi�1.

Since Mi�1 is an RD-submodule of M and Mi=Mi�1 is a relatively divisible

submodule of M=Mi�1, we obtain that M 0
i is an RD-submodule of M .

The next result establishes the isomorphism of any two RD-composition series

of a �nitely generated right R module over a duo chain ring.

Theorem 3.8. If M is a �nitely generated right R-module over a right duo

chain ring R, then any two RD-composition series of M are isomorphic.

Proof. Any RD-composition series of M has length equal to gen.M/.

We may also assume, by Lemma 3.7, that the annihilator sequences Ai and Bi

are non-decreasing and have the same length. By Theorem 3.4, we are done.

4. Essential pure submodules

The goal of this section is to show that every �nitely generated right R-module

M contains an essential pure submodule of M that is the direct sum of cyclic

modules. We begin with some technical results based on the discussion of the

commutative case in [12]. However, several modi�cations are necessary to extend

them to the noncommutative setting.

Proposition 4.1. Let R be a right duo chain ring, and M be a �nitely gen-

erated right R-module. If 0 ¤ x 2 M , then there exists r 2 R such that

x 2 MrnMJr .

Proof. Let 0 ¤ x 2 M , and suppose 0 D M0 � M1 � � � � � Mn D M is

an RD-composition series of M with non-zero factors. Choose i > 0 such that

x 2 Mi n Mi�1. If i D 1, then x 2 M1 D x1R, and there exists an r 2 R

such that x D x1r 2 Mr . If x 2 MJr , then x D mjr for some j 2 J and

x 2 M1 \ Mjr D M1jr because M1 is a pure submodule of M . But, M1 D x1R
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yields x D x1sjr for some s 2 R. Because J is an ideal, sj 2 J and 1 � sj

is a unit of R with x1.1 � sj /r D 0. Since x1R is an RD-submodule of M ,

Proposition 3.1 yields AnnR.y/ � AnnR.x1/ for every y 2 x1 C MJ . Because

x1.1 � sj / 2 x1 C MJ and r 2 AnnR.x1.1 � sj //, we have r 2 AnnR.x1/. But

then x D x1r D 0 yields a contradiction.

Suppose now that i > 1. Set Nx D x C Mi�1 and xM D M=Mi�1. Then

Nx is a non-zero element of Mi=Mi�1. Since Mi =Mi�1 is cyclic with generator

xi C Mi�1, we have Nx D Nxir for some r 2 R. Hence Nx 2 xMr . We claim that

x 62 xMJr . If x 2 xMJr , then Nx D Nzjr for some z 2 m and j 2 J , and we can

write Nx D Nxi r D Nxijr . Arguing as above, noting that the purity of Mi =Mi�1

in M=Mi�1 implies that NxiR is pure in xM , we obtain r 2 Ann.xi /. Therefore

x D xi r 2 Mi�1, a contradiction. Hence, x 2 xMr n xMJr .

If x 2 Mr , then the proof is complete since x 2 MJr implies Nx 2 xMJr ,

contradicting the above. If x 62 Mr , then x D mr C y for some m 2 M

and y 2 Mi�1. By the induction hypothesis, there exists an s 2 R such that

y 2 Ms n MJs. Clearly y 62 Mr because x 62 Mr . Since R is a chain ring,

Rr � Rs or Rs � Rr . Because Rs � Rr implies y 2 Mr , we have Rr � Rs

and r D t s for some t 2 R. If t 62 J , then s D t�1r and x 2 Mr , a contradiction.

Hence x D mr C y D m.ts/ C y D .mt/s C y 2 Ms n MJs since mts 2 MJs,

and the proof is complete.

When considering MJ.R/r , the question arises whether or not aJ D Ja for

every a 2 R. This is not always the case, as the following example shows.

Let R be the 2 � 2 lower triangular matrix ring with entries from a �eld k.

By [11, Corollary 4.9], R is a right and left Artinian hereditary ring. Since R is

Artinian, the Jacobson radical is equal to the nilradical N of R. Let eij be the

standard matrix units. Then N D re21, where r 2 k. If a D e11, then a calculation

shows that aJ D 0. On the other hand, again by an easy calculation, Ja D J .

Hence, aJ ¤ Ja.

For the rings under consideration, we have

Proposition 4.2. If R is a chain domain, then aJ D Ja for every a 2 R if

and only if R is a duo ring.

Proof. If R is a duo ring, then aR D Ra for every non-zero a 2 R. By

symmetry, it is enough to show Ja � aJ . Observe that Ja and aJ are right

ideals of R since R is a duo ring. If Ja is not a subset of aJ , then aJ is a proper

subset of Ja since R is a right chain ring. In particular, Ja=aJ is a non-zero

submodule of aR=aJ in view of Ja � Ra D aR. Consider the epimorphism
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� W R=J ! aR=aJ de�ned by �.r C J / D ar C aJ . If �.r C J / D 0, then

ar 2 aJ which implies ar D aj for some j 2 J . Thus, a.r � j / D 0. If r … J ,

then rs D 1 for some s 2 R, and 0 D a.r � j / D a.rs � js/ D a.1 � js/, which

is a contradiction as 1 � js is a unit of R. Hence, � is an isomorphism. Since R

is a right chain ring, J is a maximal ideal and R=J is a simple R-module. Hence,

aR=aJ is simple which implies Ja=aJ D aR=aJ . We conclude Ja D aR D Ra.

Thus, there exists y 2 J such that ya D a, which implies .y � 1/a D 0. But then

a D 0 as y � 1 is a unit. Thus, Ja � aJ .

Conversely, suppose aJ D Ja for every a 2 R. Consider 0 ¤ r 2 R. By

symmetry, it su�ces to show Rr � rR. Suppose that x 2 R such that xr … rR.

If x 2 J , then xr 2 Jr D rJ � rR. Thus, x is a unit of R, and xrR � rR or

rR � xrR. Since xr … rR, we have rR ¨ xrR. Write r D xrt for some t 2 R. If

t … J , then xr D rt�1 2 rR, a contradiction. Thus, we can �nd t 0 2 J such that

rt D t r from which we get r D xrt D xt 0r . Thus, .1 � xt 0/r D 0. Since 1 � xt 0

is a unit of R, this implies r D 0, a contradiction.

The following technical result is crucial in establishing the main result. Al-

though the proof is based on ideas found in [12], modi�cations are necessary for

working in a non-commutative setting.

Theorem 4.3. Let R be a duo chain ring, and consider a �nitely generated

right R-module M . If 0 D M0 � M1 � � � � � Mn D M is an RD-composition

series of M with non-decreasing annihilator sequence A1; : : : ; An such that Mn�1

is not essential in M , then M has a non-zero cyclic summand.

Proof. Let M D x1R C � � �C xnR. Choose 0 ¤ y 2 M with yR \Mn�1 D 0,

and consider the equation

(1) y D

nX

iD1

xiai .ai 2 R/:

If y 2 MJ , then there exist r 2 R and x 2 M n MJ with y D xr by

Proposition 4.1. Since xR Š R=I for some right ideal I of R, we obtain that

xR is uniserial as R is a chain ring. Therefore, yR is an essential submodule of

xR, and xR \ Mn�1 D 0. Replacing y by x allows us to assume y 2 MnMJ .

Thus, ai … J for at least one i , and choose j to be the largest index such that

aj 62 J . Then aj is a unit so that we may assume without loss of generality that

aj D 1. If j D n, then M D yR ˚ Mn�1, and the proof is complete. Assume

j < n and set N D
P

i¤j xiR. Since M D N C yR, we need only show that
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N \ yR D 0. If N \ yR ¤ 0, then we have a relation

(2) 0 ¤ yr D
X

i¤j

xibi .bi 2 R/:

We claim that if j < h � n then there exist a relation

xhrh D

h�1X

iD1

xi ah;i(3)

with

rh 2 Jr; ah;j 2 Rr n Jr(4)

The proof is by induction on n�h. We show �rst that the claim holds for h D n.

From (1) and (2) we obtain xn.bn � anr/ D
Pn�1

iD1 xi .air � bi / 2 Mn�1, where

bj D 0. If bn 2 An D Ann.M=Mn�1/, then 0 ¤ yr D
P

i¤j xibi 2 yR \ Mn�1,

a contradiction. Similarly, anr 62 An. Since R is a chain ring, either rR � bnR or

bnR � rR. If the �rst case holds, then r D bnt for some t 2 R. Recall that an 2 J

by our assumption on j . Hence, anbn 2 J bn D bnJ by Proposition 4.2. Thus,

anbn D bna0
n for some a0

n 2 J . Then bn � anr D bn � anbnt D bn � bna0
nt D

bn.1 � a0
nt /. Since a0

n 2 J , .1 � a0
nt / is a unit of R. Hence, xnbn.1 � a0

nt / 2 Mn�1,

which implies xnbn 2 Mn�1. We conclude that bn 2 An, a contradiction. Thus,

bnR ¨ rR, and bn D rs for some non-unit s 2 R. So bn 2 rJ D Jr , and thus

an 2 J implies that bn � anr 2 Jr .

Set rn D bn � anr and note that (3) and the �rst part of (4) hold for h D n. To

establish the �nal claim in (4), recall that bj D 0 and that aj 62 J . So we have that

aj r 2 Rr . If r D aj r 2 Jr , then r D jr for some j 2 J which is not possible

since 1 � j is a unit. Setting an;j D aj r , we see that the �nal claim in (4) holds

and the result is established for h D n.

By induction, we have

(5) xhrh D

h�1X

iD1

xi ah;i

such that rh 2 Jr and ah;j 2 RrnJr .

Since rh 2 Jr , we have xhrh 2 MJr \ Mh�1 D Mh�1Jr by the purity

of Mh�1. Therefore we can write xhrh D
Ph�1

iD1 xiciqr , where q 2 J; ci 2 R.

Subtracting, we see xh�1.ah;h�1 � ch�1qr/ D
Ph�2

iD1 xi .ciqr � ahi /. By the same

argument as above, using the fact that r 62 Ah�1, we show ah;h�1 � ch�1qr 2 Jr .

Since ch�1qr 2 Jr as q 2 J , the claim is reduced to showing ah;h�1 2 Jr .

If Rah;h�1 ¨ Rr , then ah;h�1 D jr for some j 2 J and the claim follows.
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Suppose Rr � Rah;h�1. Then r D sah;h�1 for some s 2 R. Utilizing Propo-

sition 4.2 in an identical fashion as above, we obtain xhah;h�1 2 Mh�1. Hence,

ah;h�1 2 Ah�1. Thus one gets r D sah;h�1 2 Ah�1, a contradiction. Therefore,

ah;h�1 � ch�1qr 2 Jr . Moreover, ah;j 2 Rr n Jr implies cj qr � ah;j 2 Rr n Jr .

Set rh�1 D ah;h�1 � ch�1qr and ah�1;j D cj qr � ah;j for i � h � 2.

Now set h D j C 1. By the result above, we have a relation xj C1rj C1 DPj
iD1 xiaj C1;j , where rj C1 2 Jr and aj C1;j 2 Rr n Jr . Repeating the argument

above, using the fact that rj C1 2 Jr and the relative divisibility of Mj , we can

write xj .aj C1;j � dj qr/ 2 Mj �1, where dj 2 R and q 2 J . Then r 62 Aj �1

implies that aj C1;j � dj qr 2 Jr . But, q 2 J implies that dj qr 2 Jr so that

aj C1;j 2 Jr , a contradiction. Hence, N \ yR D 0.

We are now able to prove the non-commutative version of the following results

which were shown by Salce and Zanardo ([12]) in the commutative setting. Here,

the symbol dim.M/ denotes the Goldie dimension of the R-module M .

Theorem 4.4. Over a duo chain ring R, every �nitely generated right R-mod-

ule M contains an essential pure submodule which is the direct sum of cyclic

modules such that dim.B/ D dim.M/.

Proof. We induct on n D gen.M/. If n D 1, then the result is trivial, so

assume n > 1. By induction, Mn�1 has an essential pure submodule B 0 that is

the direct sum of dim.Mn�1/ non-zero cyclic submodules. If Mn�1 is essential

in M , then B 0 is essential in M . Set B D B 0 and note that B has �nite Goldie

dimension. Then B �e M implies that dim.B/ D dim.M/, and the result follows.

If Mn�1 is not essential in M , then by Theorem 4.3, there exists 0 ¤ y 2 M and

a submodule N of M such that M D yR ˚ N . Note gen.N / D n � 1, so by

the induction hypothesis, N contains an essential pure submodule B 00, which is

the direct sum of dim.N / non-zero cyclic submodules. Set B D yR ˚ B 00. Then

B is an essential pure submodule of M that is the direct sun of non-zero cyclic

submodules, and the proof is complete.

As a result of Theorem 4.4 and the observations above, we can obtain an upper

estimate on the Goldie dimension of a �nitely generated right R-module.

Corollary 4.5. If M is a �nitely generated right R-module over a duo chain

ring R, then dim.M/ � gen.M/.

Proof. Let B be an essential pure submodule which is the direct sum of non-

zero cyclic submodules. Since B is pure, we have that BJ D B \ MJ . Then
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.B C MJ /=MJ is a submodule of M=MJ , and

B=BJ D B=B \ MJ Š .B C MJ /=MJ:

Since M=MJ is a �nite dimensional vector space over the division ring R=J , we

obtain dimR=J B=BJ � dimR=J M=MJ . By the observations above, we have

dim.M/ D dim.B/ D dimR=J B=BJ � dimR=J M=MJ D gen.M/:

The �nal result of this section is a criteria for a �nitely generated right R-mod-

ule over a right duo, chain ring to be a direct sum of cyclic modules.

Corollary 4.6. A �nitely generated right R-module over a duo chain ring R

is the direct sum of cyclic modules if and only if gen.M/ D dim.M/.

Proof. If M is the direct sum of cyclic modules, the clearly we get gen.M/ D

dim.M/. Conversely, assume gen.M/ D dim.M/. By Theorem 4.4, M contains

an essential pure submodule B that is the sum of non-zero cyclic submodules and

dim.B/ D dim.M/ D gen.M/. Suppose B is a proper submodule of M and

dim.B/ D gen.M/. Then B=BJ Š B=.B \ MJ / D .B C MJ /=MJ ¨ M=MJ .

Consequently, B C MJ ¨ M , a contradiction. Hence, gen.M/ > gen.B/ D

dim.B/ D gen.M/, an obvious contradiction. Thus, M D B , and the result

follows.
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