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Finitely generated modules and chain rings

ULRICH ALBRECHT (%) — GREGG SCIBLE (%)

ABsTrACT — This paper investigated finitely generated singular modules over a right chain
ring R. We show that these modules behave similar to those over valuation rings
provided R is a right duo ring. We also demonstrate that the duo condition cannot be
removed from our discussion.
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1. Introduction

Although many results concerning Abelian groups carry over to modules over
integral domains, the situation is more complex in the non-commutative case since
there are several non-commutative notions of torsion-freeness. In this paper, we
focus on Goodearl’s notion of non-singularity [11]: the singular submodule of a
right R-module M which is defined as

Z(M) ={x € M | xI = 0 for some essential right ideal / of R}

takes the place of the torsion submodule in the commutative setting. The module
M is singularif Z(M) = M, and non-singularif Z(M) = 0, while R is right non-
singular if it is non-singular as a right R-module. The discussion of modules over
non-singular rings usually concentrates on non-singular modules since finitely
generated torsion modules over integral domains already behave different from
torsion Abelian groups [9].
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It is a goal of this paper to investigate finitely generated singular modules
in the non-commutative setting. Since the structure of torsion modules can be
successfully investigated for valuation rings, we consider their non-commutative
equivalent: A ring R is a right (left) chain ring if the lattice of its right (left) ideals
is linearly ordered. A right and left chain ring is simply called a chain ring. It is
easy to see that a chain ring R has no zero divisors if and only if Z(M) is a direct
summand for every finitely generated right R-module M. Moreover, M/ Z(M) is
free in this case. This reduces the discussion of finitely generated modules to the
case of singular modules.

It is not the goal of this paper simply to extend known results on finitely gen-
erated modules over valuation domains to a more general setting. Instead, we are
interested in characterizing the right chain rings for which the finitely generated
modules behave similar to finitely generated modules over a valuation domain.
We immediately realize that some additional restrictions on R are necessary to
obtain any meaningful results. For instance, although every finitely generated tor-
sion module over a domain has a non-zero annihilator, Dubrovnin gave an exam-
ple of a chain domain for which the semi-simple modules are the only ones with
a non-zero annihilators (Example 2.1 and [7]). Because of this example, annihila-
tors of finitely generated modules are the focus of Section 2. Theorem 2.3 shows
that these annihilators behave similar to the commutative case if and only if R is
a right duo ring where R is right duo if Ra C aR for every a € R. Similarly, R
is duo if aR = Ra for every a € R. Duo rings arise naturally in the discussion of
chain rings, in particular when prime and completely prime ideals are considered
as can be seen in a series of papers by Bessenroth, Brungs, and Torner ([3], [4],
[5], and [6]). These papers also provide examples of such rings. For instance, if G
is an ordered group and K is a skew field, then

R = {r = Xgk, € K[[G]] | min(supp(r)) > e}

is a duo chain domain [3, Proposition 1.24] where supp(r) = {g | ks # O0}.
Moreover, every right Noetherian right chain domain is right duo. Examples of
such rings can also be found in [3]. For further constructions of chain domains,
the reader is referred to [2]. Section 3 characterizes right duo chain rings in
terms of the existence of RD-composition series for finitely generated modules
(Theorem 3.4). This naturally extends the work of Salce and Zanardo in [12] for
commutative rings. The paper concludes with some applications of the results of
Chapters 2 and 3.
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2. Modules and annihilators

Let M be aright R-module, and S a subset of M. The annihilator of S is the right
ideal Ann(S) = {r € R | Sr = 0} of R which is a two-sided ideal whenever
S is a submodule of M. In particular, M =~ R/ Ann(x) whenever M is a cyclic
R-module generated by x. If R is not commutative, then Ann(xR) £ Ann(x) is
possible in contrast to the commutative setting:

ExampLE2.1. Let R be a nearly simple chain domain, i.e. / = J(R) is the only
proper non-zero two-sided ideal of R. Such a ring was constructed by Dubrovin
([3] and [7]). Since R is a domain, J2 = J, and J is not finitely generated by
Nakayama’s Lemma. Pick a non-zero a € J and consider the singular module
M = R/aR. Since MJ = J/aR # 0, we obtain Ann(M) = 0, while every
generator of M has a non-zero annihilator since M is singular.

To overcome this difficulty, we call an R-module M finitely annihilated if there
exist xi, ..., Xr in M such that Ann(M) = Ann(xy, ..., xx) [10]. If Ann(M) =
Ann(x) for some x € M, then M is cyclically annihilated. A finitely generated
right R-module M is strongly cyclically annihilated if, whenever M = x; R +
-+++ x, R, then Ann(M) = Ann(x;) for some i.

We begin our discussion with a technical result which will be used frequently
throughout this paper:

LemMaA 2.2. Let R be a ring.

a) If M is a right R-module, then Ann(a) = Ann(aR) for every a € M such
that Ann(a) is a two-sided ideal.

b) If M = x1R + --- + x, R such that Ann(x;) is a two-sided ideal for each
i =1,...,n, then Ann(M) = (/_, Ann(x;).

Proor. a) Since Ann(a) is a two-sided ideal of R,
(aR) Ann(a) = a(R Ann(a)) € a Ann(a) = 0.

b) is obvious in view of a). O
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A ring R is strongly right bounded if every non-zero right ideal of R contains
a non-zero two-sided ideal. Obviously, right duo rings are strongly right bounded.

THeOREM 2.3. The following are equivalent for a ring R:
a) R is a right duo right chain ring;

b) R is a right chain ring such that all cyclic right R-modules are cyclically
annihilated,

c) every finitely generated right R-module is strongly cyclically annihilated;

d) R isaright chain ring such that R/1 =~ R/K for right ideals I and K yields
I =K;

e) R is a right chain ring such that every finitely generated right R-module M
has the property that Ann(a) is a two-sided ideal for everya € M.

Proor. a) = c¢). Let M = xR + -+ + x, R be a finitely generated right
R-module. By a), Ann(x;) is a two-sided ideal. Since R is a right chain ring, we
may assume Ann(x;) € --- € Ann(x,). By Part b) of Lemma 2.2, Ann(M) =
?—,; Ann(x;) = Ann(x;), and M is strongly cyclically annihilated.

¢) = b). As strongly cyclically annihilated modules are obviously cyclically
annihilated, it remains to show that R is a right chain ring. Let a¢,b € R, and
consider M = R/aR@® R/bR. By c), we may assume Ann(M) = Ann(l +aR) =
aR. On the other hand, (0,0) = (1 4+ aR,1 4+ bR)x = (x + aR, x + bR) yields
x € aRNbR for all x € Ann(M). Thus,aR = Ann(M) C aRNbR C bR, and R
is a right chain ring.

b) = a). Suppose that R is a right chain ring such that every cyclic right
R-module is cyclically annihilated. If / is a two-sided ideal of R, then every cyclic
right R/I-module M can be viewed as a cyclic right R-module via the operation
mr = m(r + I). Since My is cyclically annihilated, Mg Anng(b) = 0 for some
b € M.But, bI = 0 and Anng,7(b) = Anng(b)/I show Mgp,; Anng,;(b) =
Mg Anng(b) = 0. Thus, M is cyclically annihilated as an R/I-module. There-
fore, R/1 is aright chainring such that every cyclic right R /I -module is cyclically
annihilated.

We now show that R is a strongly right bounded ring. For this, consider a non-
zero a € R. Since R is a right chain ring, aR is essential in R. Then R/aR is a
singular R-module, and Ann(y + aR) is essential in R for all y € R. In particular,
Ann(y + aR) # 0. Moreover, since R/aR is cyclically annihilated by b), we can
find x € R such that 0 # Ann(x 4+ aR) = Ann(R/aR) C Ann(l + aR) = aR.
Thus, Ann(R/aR) is a non-zero two-sided ideal of R contained in aR.
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Let K be the largest two-sided ideal contained in aR. If K # aR, then R/K
is a strongly right bounded ring by what has been already shown. Its non-zero
rightideal (¢ + K)R/K = aR /K contains a non-zero two-sided ideal of the form
N/K, where N is atwo-sided of R suchthat K N C aR. Since K is the largest
two-sided ideal of R contained in a R, we obtain a contradiction. Thus, K = aR,
and aR is a two-sided ideal of R.

a) = d). If R is right duo, consider an isomorphism ¢: R/l — R/K for
right ideals / and K of R. Observe that / and K are two-sided since R is
duo. Select r € R such that ¢(1 + 1) = r + K. For every a € K, we have
¢pa@a+ 1) =¢(1 + I)a =ra+ K = 0. Since ¢ is one-to-one, a € I, and thus
K € 1. By symmetry, I = K.

Conversely, suppose that d) holds, and let / be any right ideal of R. For a unit
u € R, define an isomorphism ¢: R/I — R/ul by ¢(r + I) = ur + ul. Hence,
I = ul by d). Since R is a right chain ring, [ is two-sided.

Since a) = e) is trivial, it remains to show that e) = c). Suppose M =
aiR+---+ayRforay,...,a, in M. We may assume Ann(a;) C --- € Ann(a,)
because R is a right chain ring. Since Ann(a;) is an ideal for every i, we have
Ann(M) = (); Ann(a;) = Ann(a,) as in the proof of Part b) of Lemma 2.2.
Thus, M is strongly cyclically annihilated. O

CoroLLARY 2.4. Let R be a right duo right chain ring. A finitely generated
right R-module M is singular if and only if Ann(M) # 0.

Proor. If M is a finitely generated singular right R-module, then we can find
x € M suchthat Ann(M) = Ann(x) by Theorem 2.3. Since M is singular, Ann(x)
is essential, and thus non-zero. Conversely, because M is a finitely generated
R/ Ann(M)-module, it is an epimorphic image of [R/ Ann(M )]” for some n < .
Since R is a right chain domain and Ann(M) # 0, it is essential in R. Therefore,
R/ Ann(M) is singular, and the same holds for M. O

3. RD-submodules and composition series

A submodule N of M is an RD-submodule it Nr = N N Mr for every r € R, or
equivalently if R/rR is projective with respectto0 - N - M — M/N — 0
for all r € R. A submodule N of a right R-module M is pure if R/ is projective
with respectto0 - N — M — M/N — 0 whenever [ is a finitely generated
right ideal of R. In particular, MI N N = NI for all left ideals I of R if N is
pure in M. Since every finitely generated right ideal of a right chain ring is cyclic,
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relative divisibility and purity are equivalent for right chain rings. In the following,
J = J(R) denotes the Jacobson radical of the ring R.

ProposiTion 3.1. Let R be a left chain ring. The following are equivalent for
a right R-module M and every a € M such that Ann(a) is a two-sided ideal:

a) aR is an RD-submodule of M ;
b) if 0 # ar = zs for somer,s € Rand z € M, then Rr C Rs;
¢) Ann(x) € Ann(a) for every x € a + MJ(R).

Proor. a) = b). Let aR be an RD-submodule of M, and consider r, s € R
and z € M with 0 # ar = zs. Since aR is an RD-submodule, ar = ar’s for
some r’ € R.If Rs  Rr,thens = jr for some ; € R which cannot be a unit
of R. Thus, j € J(R) and ar = ar’s = ar’jr so thata(l —r’j)r = 0. Hence,
(1 —r'j)r € Ann(a) = Ann(aR) since Ann(a) is two-sided. But, u = 1 —r’j is
a unit of R because j € J(R).So, ar = au~'(ur) € aRur = 0, a contradiction.

b) = c¢). Suppose that (¢ + y)r = 0 butar # 0 for some y € MJ(R). Since
Risachainring, y = mj forsomem € M and j € J.ThenO0 # ar = (—m)(jr).
By b), Rr € R(jr) which implies that (1—r’j)r = 0forsomer’ € R. Thenr =0
as 1 —r’j is a unit, a contradiction.

c) = a). Suppose 0 # ar = ms for some r,s € Rand m € M. If Rr C Rs,
then r = ts for some ¢t € R. Soms = ar = ats € aRs, and we are done. So,
suppose Rs  Rr.Thens = jr for some j € J(R),and 0 # ar = ms = mjr.
Therefore, (a —mj)r = 0. Then, ar = 0 by c), a contradiction. Ol

Let M be a finitely generated right R-module. The smallest number of genera-
tors of M is denoted by gen(n). It is a direct consequence of Nakayama’s Lemma
that gen(M) is the R/J-dimension of M/MJ whenever R is a right chain ring.
An ascending chain 0 = My € --- € M,y € M, = M of submodules of a
module M is an RD-composition series if each M; is an RD-submodule of M
and is cyclic. If M;/M;_; # Ofori = 1,...,n, then n is the length of the series.
The sequence A; = Ann(M;/M;_,) of two-sided ideals of R is the annihila-
tor sequence of the RD-composition series. It is non-decreasing it A; C Aj+1
fori = 1,2,...,n — 1. Our next result reduces the discussion of modules with
R D-composition series to the case of singular modules:

ProvrosiTioN 3.2. Let R be a strongly right bounded right chain domain. If a
finitely generated right R-module M has an RD-decomposition series with non-
decreasing annihilator sequence, then M = F & Z(M) for some free module F.
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Proor. Suppose that k is the largest index for which A; = 0. For any m > k,
consider x € M,,. If 0 # r € A,,, then there is y € M,,_; with xr = yr. Since R
is aright chain ring, rR is an essential right ideal of R. Hence x —y € Z(M), and
My +Z(M) = My—1+Z(M). Thus, M = My + Z(M). It remains to show that
My is free. Since M; /M;_; is cyclic, we can find a right ideal /; of R such that
M;/M;_y = R/I;.1f I; # 0, then it contains a non-zero two-sided ideal K, and
K; € Ann(M;/M;_y). Thus, j > k, and My is a free R-module. Since R has no
zero-divisors, My N Z(M) = 0. U

As in the commutative case, one can easily show that the length of an
RD-composition series of a finitely generated right R-module M is equal to
gen(M) if R is a right duo chain ring [12]. Thus, all R D-composition series have
the same length which we denote by £(M). Finally, an RD-composition series
0=My<--C My_y C M, = M is strong if M;+,/M,; is cyclic and has a
generator with two-sided annihilator for eachi =0,...,n — 1.

Remark 3.3. Let R be a nearly simple chain domain. A finitely gener-
ated singular module M has a strong RD-composition series if and only if
M =@, R/J,wheren = {(M).

Proor. We induct on n = £(M). Since J is the only non-zero proper two-
sided ideal of R, we obtain that M = xR is isomorphic to R/J whenever x has
a two-sided annihilator. Suppose that 0 = My € --- € M,y € M, = M is
a strong RD-composition series of M. By the induction hypothesis and by what
has already been shown, M,,_; = @,_, R/J and M/M,_ = R/J. Thus, M
can be viewed as a right R/J?-module. However, J2 # 0 since R is a domain.
Thus, J = J? because R is nearly simple. Hence, M is aright R/J-module, and
M =~ M,_; & R/J. The converse is obvious. U

In particular, if M is any finitely generated singular R-module over a nearly
simple chain domain with MJ # 0, then M does not have a strong RD-
composition series.

THeOREM 3.4. The following are equivalent for a chain ring R:
a) R is a right duo ring.
b) The following hold for every finitely generated right R-module M :

i) M admits a strong RD-composition series 0 = My C --- € M,_1 C
M, = M with non-decreasing annihilator sequence A, ..., Ay.
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ii) Every RD-composition series 0 = Mj € --- € M, = M of M
with non-decreasing annihilator sequence By, ..., By is strong and
Ak = kaork = 1,...,1’1.

Proor. a) = b). i) Suppose R is right duo chain ring. Let M be a finitely
generated right R-module. Since R/J is a division algebra, M/MJ is a finite
dimensional vector space over R/J. If {x; + MJ,...,x, + MJ}is a R/J-ba-
sis of M/MJ, then the x;’s generate M by Nakayama’s Lemma since M is
finitely generated. Because R is a right chain ring, we may arrange the x;’s in
such a way that Ann(x;) € Ann(x;4+;) for all i. Since R is a right duo ring,
Ann(M) = Ann(x;) by Lemma 2.2. Let | < j < n be chosen maximal with
Ann(M) = Ann(x;) = --- = Ann(x;). We show that there exists i € {1,...,j}
such that Ann(x) € Ann(x;) for every x € x; + MJ.

If, for every k < j, there exists x; € x; + MJ such that we have
Ann(xg)  Ann(x), then M is generated by {x},..., X}, xj41,..., X} by an-
other application of Nakayama’s Lemma. Using Theorem 2.3 once more, we ob-
tain Ann(M) = Ann(x;) for at least one £ < j since Ann(M) # Ann(xy) for
k > j by the choice of j. But then, Ann(x;) = Ann(M) = Ann(x,) which con-
tradicts the choice of x;. Without loss of generality, we may assume the element
obtained in this way is x;. By Proposition 3.1, M; = x; R is an RD-submodule
of M. Moreover, Ann(M;) = Ann(x;) = Ann(M), and M, is strongly cyclically
annihilated since R is a right duo chain ring.

We construct the strong RD-composition series by induction on the number
n of generators of M. By what has just been shown, the result holds for n = 1.
By induction hypothesis, we can find a chain of submodules M; € M, C --- C
M, = M of M such that 0 = My{/M; € My/M; C --- C M,/M; = M/ M,
is a strong RD-composition series of M/M; with non-decreasing annihilator
sequence because M/M; is generated by x, + My,...,x, + M;. Since M; is
an RD-submodule of M, each M; is an RD-submodule of M, and M; 4,/ M; =
(M;4+1/My)/(M; /M) is cyclic and strongly cyclically annihilated for eachi > 0
since R is a right duo chain ring. Thus,0 = My S M1 S M, C---C M, =M
is a strong R D-composition series of M. To see that the annihilator sequence is
non-decreasing, set A; = Ann(M;/M;_;) fori = 1,...,n and note

A; = Ann(M; /M;_y)
= Ann((M;/M1)/(M;—1/M))
€ Ann((Mi 1/ M)/ (M;i/ My))
= Ann(M; 1/ M;) = A;+q
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for all i > 1. Moreover, A; = Ann(M;) = Ann(M) C Ann(M,/M;) = A,.

ii) Consider an RD-composition series 0 = My C --- € M, = M of M with
non-descending annihilator sequence. By Theorem 2.3, the composition series is
strong.

We show By = Ann(M;) = Ann(M) = Ann(M;) = A;. If this is not the
case, then Ann(M)  Ann(M/). Hence, we can find r € R with M{r = 0 but
Mr # 0.Letk > 1 be chosen minimal such that M r # 0, and pick y € M, with
yr # 0. Since Ann(M{) € Ann(M; /M, _,), we have yr € M, _,. Since M, _ is
an RD-submodule of M, there is z € M; _, such that 0 # yr = zr contradicting
the minimality of k. Hence, Ann(M{) = Ann(M). Finally, observe M| = dR.
Since R is right duo, Ann(d) = Ann(dR) = Ann(M|) = Ann(M).

Consider an arbitrary RD-submodule U of M, and a € R. To see that
UaR is an RD-submodule of MaR, observe that aR is a two-sided ideal of R
since R is a right duo ring. If s is any element of R, then / = aRs is a left
ideal of R. However, since R is right chain ring, every RD-submodule of M
is pure. Hence, UaRs € MaRs N UaR € MaRs N U = UaRs, and UaR is
an RD-submodule of MaR. Now assume in addition that M/U is cyclic, say
M = xR + U. Then, MaR = xRaR + UaR C (xa)R + UaR C MaR as
Ra C aR since R is right duo. Hence, 0 = MpaR € --- € MuaR = MaR and
0= MjaR C --- € M)aR = MaR are two RD-composition series of MaR.

Suppose that we have shown that A; = Bj,..., Ay = By for some k < n,
and assume that Ax4+; # Bry1. Without loss of generality, we may assume
Bii1 S Agyq. Picka € Agyq \ Bg41. Since a € Agyq € --- € Ay, we have
Ma = Mya. Moreover, (M;/M;_1)a # 0fori = 1,..., k. By the last paragraph,
{(MaR) = k.If a ¢ B; forany i, then 0 = MjaR C --- € M,aR = MaR is
a composition series of MaR of length n, which contradicts the choice k < n.
Thus, a € B, for some smallest m > k + 1. Thus, MaR = M, aR, and MaR
has a decomposition series of length m — 1 > k, a contradiction. Therefore,
Ag+1 = Bi+1-

b) => a). Consider a proper right ideal / of R, and the right R-module
M = R/I.Clearly, y = 1 + 1 € M is a generator of M with Ann(y) = 1.
Since 0 € R/I is an RD-composition series of M = R/I with non-decreasing
annihilator sequence, it is strong. Thus, M = xR such that Ann(x) is a two-sided
ideal, and there are r,s € R with x = yr and y = xs. Then, x = xsr.If r or s
are in J = J(R), then we obtain xR 2 xRJ D xsrR = xR, and xRJ = xR.
By Nakayama’s Lemma, xR = 0, a contradiction. Thus, r and s are units of R.
If t € Ann(y), then 0 = yt = x(st), and s Ann(y) € Ann(x). On the other hand,
if t/ € Ann(x), then 0 = xt’ = y(rt’), and r Ann(x) € Ann(y). Since Ann(x) is
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a two-sided ideal and r and s are units of R, we have Ann(y) € s~! Ann(x) =
Ann(x) = r Ann(x) € Ann(y). Thus, I = Ann(y) = Ann(x) is two-sided, and
R is duo. U

We now address the question whether the RD-composition series in Theo-
rem 2.3 is unique if R is a right and left duo chain ring thus extending results by
Fuchs, Salce and Zanardo in ([9] and [12]) to the non-commutative setting.

ProrosiTioN 3.5. Let R be a right duo, right chain ring and M a right
R-module. If N is an RD-submodule of M such that M/N = (a + N)R and
Ann(M/N) € Ann(N), then M = aR & N.

Proor. Clearly M = aR+N.Supposear € N.Since N is an R D-submodule
of M, ar = nr for somen € N. Then (¢ —n)r = 0 and r € Ann(a —n) =
Ann((a — n)R) since R is right duo. Once we have shown r € Ann(M/N), then
Nr = 0 and thereforear = 0.If m+ N € M/N,thenm+ N = as + N for some
s € R. Since r € Ann((a — n)R), we obtain [(a — n)s]r = 0, and asr € N. Thus,
(m+ N)r =(as+ N)r =asr + N = N,andr € Ann(M/N). O

CoroLLARY 3.6. Let R be a right duo chain ring and M a finitely gener-
ated right R-module. Suppose that 0 = My < --- € M,y € M, = M
is an RD-composition series of M with non-decreasing annihilator sequence
Ay C -0 C Ay If Mg /My—y = (X + Mg—1)R and Ay = --- = Ay for
some k < n, then M;, = EBf;l x;i R. In particular, if all terms of the annihilator
sequence of 0 = My C --- C M,_1 C M,, = M are equal to Ann(M), then M is
the direct sum of cyclic submodules.

Proor. The result is trivial for k = 1 as My = x;R is cyclic. We show
that My is a direct sum of cyclic modules using Proposition 3.5. By assump-
tion, Ann(M) = Ann(x;R) = Ann(M;) = A; = A, = --- = Ag. Since

My, is an RD-submodule of M, My/My—y = (xx + My_1)R is cyclic,
and Ann(My/My_1) = A = A; = Ann(M) C Ann(Mj_;), we obtain
My = My_1 ® xR. Since My_, is a direct sum of cyclic modules by induc-
tion hypotheses, the result follows. U

LemMma 3.7. Let R be a right duo chain ring. Every RD-composition series
of a finitely generated right R-module M is isomorphic to one whose annihilator
sequence is non-decreasing.

Proor. Let0 = My C--- € M,y € M,, = M be an RD-composition series
of M with annihilator sequence A1, ..., A,, and write M; /M;_; = (x; + Mi_1)R.
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Suppose there existsani € {1,2,...n—1} suchthat A; € A; ;. Since R is aright
chainring, A; 4, is properly contained in A;. We replace M; by an R D-submodule
M/ such that M//M;_y = M;1/M; and M; /M = M;/M;_;. Once this has
been done, we have Ann(M]/M;_;) = Aiy1 S A; = Ann(M;11/M]) as desired.

To obtain M/, consider the RD-submodule N = M;/M,_; of the module
K = M;;1/M;_;. Observe that K/N =~ M;;1/M;, so K/N is cyclic, and
K = (xj41 + M;_1)R + N. Moreover, Ann(K/N) = A;j+1 € A; = Ann(N)
sothat K = N @ (x;+1+ M;_1)R by Proposition 3.5. Let M/ = x; 1R+ M;_; C
M; 4. Clearly, M,-//Mi—1 ~ K/N = M;11/M, is cyclic, and the same holds for
Miy1/M] = (M1 /Mi—1)/(M]/M;—1) = K/(M{/M;—1) = N = M;/M;_.
Since M;_; is an RD-submodule of M and M;/M;_, is a relatively divisible
submodule of M/M;_,, we obtain that M is an RD-submodule of M. |

The next result establishes the isomorphism of any two R D-composition series
of a finitely generated right R module over a duo chain ring.

TueoreM 3.8. If M is a finitely generated right R-module over a right duo
chain ring R, then any two RD-composition series of M are isomorphic.

Proor. Any RD-composition series of M has length equal to gen(M).
We may also assume, by Lemma 3.7, that the annihilator sequences A; and B;
are non-decreasing and have the same length. By Theorem 3.4, we are done. [

4. Essential pure submodules

The goal of this section is to show that every finitely generated right R-module
M contains an essential pure submodule of M that is the direct sum of cyclic
modules. We begin with some technical results based on the discussion of the
commutative case in [12]. However, several modifications are necessary to extend
them to the noncommutative setting.

ProrposiTioN 4.1. Let R be a right duo chain ring, and M be a finitely gen-
erated right R-module. If 0 # x € M, then there exists r € R such that
xeMr\MJr.

Proor. Let0 # x € M, and suppose 0 = My C M; C --- C M, = M is
an RD-composition series of M with non-zero factors. Choose i > 0 such that
x € M\ M;_;.Ifi = 1, then x € M; = xR, and there exists an r € R
such that x = x;r € Mr.If x € MJr, then x = mjr for some j € J and
x € My N Mjr = M, jr because M is a pure submodule of M. But, M; = x; R
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yields x = xysjr for some s € R. Because J is an ideal, sj € J and 1 — s/
is a unit of R with x;(1 — sj)r = 0. Since x; R is an RD-submodule of M,
Proposition 3.1 yields Anng(y) € Anng(x;) for every y € x; + MJ. Because
x1(1 —sj) € x1 + MJ and r € Anng(x;(1 —sj)), we have r € Anng(x;). But
then x = x;r = 0 yields a contradiction.

Suppose now that i > 1. Set X = x + M;_; and M = M/M;_,. Then
X is a non-zero element of M;/M;_;. Since M;/M;_; is cyclic with generator
X; + M;_,, we have x = x;r for some r € R. Hence ¥ € Mr. We claim that
x & MJr.If x € MJr,then X = Zjr forsome z € m and j € J, and we can
write X = X;r = X;jr. Arguing as above, noting that the purity of M;/M;_,
in M/M;_; implies that X; R is pure in M, we obtain r € Ann(x;). Therefore
X = x;r € M;_y, a contradiction. Hence, x € Mr \ MJr.

If x € Mr, then the proof is complete since x € MJr implies X € MJr,
contradicting the above. If x &€ Mr, then x = mr + y for some m € M
and y € M;_,. By the induction hypothesis, there exists an s € R such that
y € Ms\ MJs. Clearly y &€ Mr because x ¢ Mr. Since R is a chain ring,
Rr € Rs or Rs C Rr.Because Rs C Rr implies y € Mr, we have Rr C Rs
andr = ts forsomet € R.Ift ¢ J, thens = t~!r and x € Mr, a contradiction.
Hence x =mr +y =m(ts)+y = (mt)s+y € Ms\ MJs since mts € MJs,
and the proof is complete. U

When considering M J(R)r, the question arises whether or not aJ = Ja for
every a € R. This is not always the case, as the following example shows.
Let R be the 2 x 2 lower triangular matrix ring with entries from a field k.
By [11, Corollary 4.9], R is a right and left Artinian hereditary ring. Since R is
Artinian, the Jacobson radical is equal to the nilradical N of R. Let e;; be the
standard matrix units. Then N = re,;, where r € k. If a = eq1, then a calculation
shows that aJ = 0. On the other hand, again by an easy calculation, Ja = J.
Hence, aJ # Ja.

For the rings under consideration, we have

Provrosition 4.2. If R is a chain domain, then aJ = Ja for every a € R if
and only if R is a duo ring.

Proor. If R is a duo ring, then aR = Ra for every non-zero a € R. By
symmetry, it is enough to show Ja C aJ. Observe that Ja and aJ are right
ideals of R since R is a duo ring. If Ja is not a subset of aJ, then aJ is a proper
subset of Ja since R is a right chain ring. In particular, Ja/aJ is a non-zero
submodule of aR/aJ in view of Ja € Ra = aR. Consider the epimorphism
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¢ : R/J — aR/aJ defined by ¢p(r + J) = ar +aJ.If ¢(r + J) = 0, then
ar € aJ which implies ar = aj for some j € J. Thus,a(r — j) = 0.If r ¢ J,
thenrs = 1 forsome s € R,and 0 = a(r — j) = a(rs — js) = a(l — js), which
is a contradiction as 1 — js is a unit of R. Hence, ¢ is an isomorphism. Since R
is a right chain ring, J is a maximal ideal and R/J is a simple R-module. Hence,
aR/aJ is simple which implies Ja/aJ = aR/aJ. We conclude Ja = aR = Ra.
Thus, there exists y € J such that ya = a, which implies (y — 1)a = 0. But then
a =0asy—1isaunit Thus, Ja CaJ.

Conversely, suppose aJ = Ja for every a € R. Consider 0 # r € R. By
symmetry, it suffices to show Rr C rR. Suppose that x € R such that xr ¢ rR.
If x € J,then xr € Jr = rJ C rR. Thus, x is a unit of R, and xrR C rR or
rR C xrR. Since xr ¢ rR, we have rR  xrR. Write r = xrt for some ¢t € R. If
t ¢ J,then xr = rt~! € rR, a contradiction. Thus, we can find t' € J such that
rt = tr from which we get r = xrt = xt’r. Thus, (1 — xt’)r = 0. Since 1 — xt’
is a unit of R, this implies r = 0, a contradiction. O

The following technical result is crucial in establishing the main result. Al-
though the proof is based on ideas found in [12], modifications are necessary for
working in a non-commutative setting.

THEOREM 4.3. Let R be a duo chain ring, and consider a finitely generated
right R-module M. If 0 = My € M; € --- € M,, = M is an RD-composition
series of M with non-decreasing annihilator sequence Aq, ..., A, such that M,,_,
is not essential in M, then M has a non-zero cyclic summand.

Proor. Let M = x;R+---+ x, R. Choose 0 # y € M with yRNM,,_; = 0,
and consider the equation

(1) y = inai (a; € R).
i=1

If y € MJ, then there exist r € R and x € M \ MJ with y = xr by
Proposition 4.1. Since xR =~ R/I for some right ideal / of R, we obtain that
xR is uniserial as R is a chain ring. Therefore, yR is an essential submodule of
xR, and xR N M,_; = 0. Replacing y by x allows us to assume y € M\MJ.
Thus, a; ¢ J for at least one i, and choose j to be the largest index such that
aj ¢ J.Then a; is a unit so that we may assume without loss of generality that
aj = 1.If j = n,then M = yR & M,_;, and the proof is complete. Assume
j <nandset N = Zi# x;iR. Since M = N + yR, we need only show that
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N NyR =0.If N N yR # 0, then we have a relation

() 0# yr= inbi (bi € R).
i#j

We claim that if j < & < n then there exist a relation

h—1
3) Xpth =) Xidp,
i=1
with
“4) rn€Jr, apj € Rr\Jr

The proof is by induction on n —h. We show first that the claim holds for & = n.
From (1) and (2) we obtain x, (b, — a,r) = 27;11 x;(a;jr — b;) € M,_1, where
bj =0.1f b, € Ay = Ann(M/M,—_,), then 0 # yr = Zi# xib; € YR N M4,
a contradiction. Similarly, a,r ¢ A,. Since R is a chain ring, either rR C b, R or
b, R C rR. If the first case holds, then r = b, ¢t for some ¢t € R. Recall thata,, € J
by our assumption on j. Hence, a,b,, € Jb, = b,J by Proposition 4.2. Thus,
anb, = bya,, for some a, € J.Then b, — ayr = by — apbyt = by — byaj,t =
bn(1—alt).Since a, € J, (1 —a,t)is aunit of R. Hence, x,b,(1 —at) € My_1,
which implies x,b, € M,_;. We conclude that b, € A,, a contradiction. Thus,
b,R € rR, and b, = rs for some non-unit s € R. So b, € rJ = Jr, and thus
a, € J implies that b, — a,r € Jr.

Set r, = b, — a,r and note that (3) and the first part of (4) hold for 4 = n. To
establish the final claim in (4), recall that 5; = 0 and thata; ¢ J. So we have that
ajr € Rr.Ifr = ajr € Jr,thenr = jr for some j € J which is not possible
since 1 — j is a unit. Setting a, ; = a;r, we see that the final claim in (4) holds
and the result is established for 2 = n.

By induction, we have

h—1
&) Xpth =) Xidp,
i=1

such thatr, € Jrandap,j € Rr\Jr.
Since r, € Jr, we have xprp, € MJr N My_y = My_Jr by the purity
of My_4. Therefore we can write xpr, = Zlh;ll x;ciqr, where g € J,c; € R.
Subtracting, we see xp_1(ap p—1 — Ch—197) = Zf’;f xi(ciqr — ap;). By the same
argument as above, using the fact that r ¢ A,_;, we show ap 1 —cp—1qr € Jr.
Since c¢y_1gr € Jr as g € J, the claim is reduced to showing aj »—; € Jr.

If Rapp—1 S Rr, then app—y = jr for some j € J and the claim follows.
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Suppose Rr C Rap jp—1. Then r = say j—q for some s € R. Utilizing Propo-
sition 4.2 in an identical fashion as above, we obtain x,a, -1 € Mp_;. Hence,
app—1 € Ap—1. Thus one gets r = sap 1 € Ap—1, a contradiction. Therefore,
app—1 — ch—1qr € Jr. Moreover, a j € Rr\ Jr implies c;qr —ay ; € Rr\ Jr.
Setrp_1 = app—1 —cp—1qr and ap_yj = cjqr —ay,j fori <h—2.

Now set 1 = j + 1. By the result above, we have a relation x;irj41 =
Z{zl Xiajy1,j, where rjyy € Jrandajyi,; € Rr\ Jr. Repeating the argument
above, using the fact that r; 1 € Jr and the relative divisibility of M;, we can
write xj(ajy1,; —djqr) € Mj_;, where dj € Randgq € J. Thenr ¢ Aj_;
implies that ajy1,; — djqr € Jr. But, g € J implies that djqgr € Jr so that
ajy1,j € Jr,acontradiction. Hence, N N yR = 0. O

We are now able to prove the non-commutative version of the following results
which were shown by Salce and Zanardo ([12]) in the commutative setting. Here,
the symbol dim(M ) denotes the Goldie dimension of the R-module M .

THEOREM 4.4. Over a duo chain ring R, every finitely generated right R-mod-
ule M contains an essential pure submodule which is the direct sum of cyclic
modules such that dim(B) = dim(M ).

Proor. We induct on n = gen(M). If n = 1, then the result is trivial, so
assume n > 1. By induction, M, _; has an essential pure submodule B’ that is
the direct sum of dim(M,—_;) non-zero cyclic submodules. If M,,_; is essential
in M, then B’ is essential in M. Set B = B’ and note that B has finite Goldie
dimension. Then B <, M implies that dim(B) = dim(M), and the result follows.
If M, is not essential in M, then by Theorem 4.3, there exists 0 £ y € M and
a submodule N of M such that M = yR & N. Note gen(N) = n — 1, so by
the induction hypothesis, N contains an essential pure submodule B”, which is
the direct sum of dim(N) non-zero cyclic submodules. Set B = yR & B”. Then
B is an essential pure submodule of M that is the direct sun of non-zero cyclic
submodules, and the proof is complete. U

As aresult of Theorem 4.4 and the observations above, we can obtain an upper
estimate on the Goldie dimension of a finitely generated right R-module.

CoroLLARY 4.5. If M is a finitely generated right R-module over a duo chain
ring R, then dim(M) < gen(M).

Proor. Let B be an essential pure submodule which is the direct sum of non-
zero cyclic submodules. Since B is pure, we have that BJ = B N MJ. Then
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(B+ MJ)/MJ is a submodule of M/MJ, and
B/BJ =B/BNMJ =~ (B+MJ)/MJ.

Since M /M J is a finite dimensional vector space over the division ring R/J, we
obtain dimg,; B/BJ < dimg,;y M/MJ . By the observations above, we have

dim(M) = dim(B) = dimg,; B/BJ < dimg;; M/MJ = gen(M). U

The final result of this section is a criteria for a finitely generated right R-mod-
ule over a right duo, chain ring to be a direct sum of cyclic modules.

CoRrROLLARY 4.6. A finitely generated right R-module over a duo chain ring R
is the direct sum of cyclic modules if and only if gen(M) = dim(M).

Proor. If M is the direct sum of cyclic modules, the clearly we get gen(M) =
dim(M). Conversely, assume gen(M) = dim(M). By Theorem 4.4, M contains
an essential pure submodule B that is the sum of non-zero cyclic submodules and
dim(B) = dim(M) = gen(M). Suppose B is a proper submodule of M and
dim(B) = gen(M). Then B/BJ =~ B/(BNMJ)=(B+ MJ)/MJ S M/MJ.
Consequently, B + MJ < M, a contradiction. Hence, gen(M) > gen(B) =

dim(B) = gen(M), an obvious contradiction. Thus, M = B, and the result
follows. O
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