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Characterizations

of hypercyclically embedded subgroups

of �nite groups

Yi, Xiaolan (�)

Abstract – A normal subgroup H of a �nite group G is said to be hypercyclically em-
bedded in G if every chief factor of G below H is cyclic. Our main goal here is

to give new characterizations of hypercyclically embedded subgroups. In particular,

we prove that a normal subgroup E of a �nite group G is hypercyclically embed-

ded in G if and only if for every di�erent primes p and q and every p-element

a 2 .G0 \ F �.E//E 0, p0-element b 2 G and q-element c 2 G0 we have Œa; bp�1� D

1 D Œaq�1; c�. Some known results are generalized.
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1. Introduction

Throughout this paper, all groups are �nite and G always denotes a �nite group.

Moreover p and q are always supposed to be primes and �.G/ denotes the set of

all primes dividing jGj.

A normal subgroup A of G is said to be hypercentrally (respectivelly hyper-
cyclically) embedded in G if either A D 1 or A ¤ 1 and every chief factor of G

below A is central (respectivelly cyclic) [18, p. 217].

The hypercentrally and hypercyclically embedded subgroups essentially in-

�uence on the structure of a group and they are useful for descriptions of some

important classes of groups. For example, if all cyclic subgroups of G of prime

order or order 4 are hypercentrally embedded in G, then G is nilpotent (N. Ito).
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If all these subgroups are hypercyclically embedded in G, then G is supersoluble

(Huppert, Doerk). If all subgroups of G of prime order are normal in G, then G

is soluble (Ito and Gaschütz [14, Chapter IV, 5.7]). A group G is quasinilpotent if

and only if it has a normal hypercentrally embedded subgroup E such that G=E

is semisimple [15, Chapter X, 13.6]. A group G is quasisupersoluble (i.e. for every

non-cyclic chief factor H=K of G, every automorphism of H=K induced by an

element of G is inner) if and only if it has a normal hypercyclically embedded

subgroup E such that G=E is semisimple (Guo and Skiba [10]).

The study of hypercentrally embedded and hypercyclically embedded sub-

groups begins with the paper of Baer [2] and they have close relation to quasi-

normal subgroups. For instance, it was proved in [17] that if AG D 1 and A is a

quasinormal subgroup of G, then A is hypercentrally embedded in G; if AG D 1

and A is a modular element (in the sense of Kurosh [18, p. 43]) of the subgroup lat-

tice of G, then A is hypercyclically embedded in G [18, 5.2.5]). Some other results

related to the hypercyclically embedded subgroups are discussed in the book [24]

(see also the recent papers [20, 21, 22]).

In this paper we prove the following two results in this line research.

Theorem 1.1. Let E be a normal subgroup of G. Then the following conditions
are equivalent:

(i) E is hypercyclically embedded in G;

(ii) for every di�erent primes p and q and every p-element a 2 .G0 \F �.E//E 0,
p0-element b 2 G and q-element c 2 G0 we have

(�) Œa; bp�1� D 1 D Œaq�1; c�I

(iii) for every di�erent primes p and q, equalities (�) hold for every p-element
a 2 .G0 \ F �.E//E 0 of prime order or order 4 (if p D 2 and the Sylow
2-subgroups of E are non-abelian) and every p0-element b 2 G and q-ele-
ment c 2 G0.

A chief factor H=K of G is called Frattini if H=K � ˆ.G=K/.

Theorem 1.2. Let E be a normal subgroup of G. Then every non-Frattini chief
factor of G below E is cyclic if and only if, for every maximal subgroup M of G,
either E � M or every non-Frattini chief factor of G=E \ MG below E=E \ MG

is cyclic.
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As applications of Theorem 1.1 we get

Corollary 1.3. G is supersoluble if and only if G has a normal subgroup E

with supersoluble quotient G=E such that equalities (�) hold for every di�erent
primes p and q and every p-element a 2 .G0 \ F �.E//E 0, p0-element b 2 G and
q-element c 2 G0.

Let p1 > � � � > pt be the set of all primes dividing jGj. Then G is called

a Sylow tower group or dispersive in the sense of Ore if it has a normal series

1 D G0 � G1 � � � � � Gt D G such that Gi=Gi�1 is a Sylow pi -subgroup of

G=Gi�1, for all i D 1; : : : ; t .

Corollary 1.4. Let F be one of the following classes:

(1) the class of all metanilpotent groups;

(2) the class of all nilpotent-by-abelian groups;

(3) the class of all dispersive in the sense of Ore groups;

(4) the class of all p-soluble groups G of p-length lp.G/ � 1.

Then G 2 F if and only if G has a normal subgroup E with G=E 2 F such
that equalities (�) hold for every di�erent primes p and q and every p-element
a 2 .G0 \ F �.E//E 0, p0-element b 2 G and q-element c 2 G0.

From Corollary 1.3 we get the following well-known Baer’s result.

Corollary 1.5 ([24, Appendix 5.1]). G is supersoluble if and only if for for
every prime p and every p-element a 2 G0 and p0-element b 2 G we have
Œa; bp�1� D 1.

From Theorem 1.1 we also get

Corollary 1.6 (Buckley [4]). Let G be a group of odd order. If all subgroups
of G of prime order are normal in G, then G is supersoluble.

From Theorem 1.2 we get

Corollary 1.7. G is supersoluble if and only if G has a soluble normal sub-
group E with supersoluble quotient G=E such that, for every maximal subgroup
M of G, either F.E/ � M or M \ F.E/ is a maximal subgroup of F.E/.
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Corollary 1.8. Let F be one of the following classes:

(1) the class of all metanilpotent groups;

(2) the class of all nilpotent-by-abelian groups;

(3) the class of all dispersive in the sense of Ore groups;

(4) the class of all p-soluble groups G of p-length lp.G/ � 1.

Then G 2 F if and only if G has a soluble normal subgroup E with G=E 2 F

such that, for every maximal subgroup M of G, either F.E/ � M or M \ F.E/

is a maximal subgroup of F.E/.

In the case when E D G from Corollary 1.7 we get the following well-known

Kramer’s result.

Corollary 1.9 ([16] or Theorem 3.3 in [24, Chapter 1]). Let G is soluble.
Then G is supersoluble if and only if, for every maximal subgroup M of G, either
F.G/ � M or M \ F.G/ is a maximal subgroup of F.G/.

All unexplained notation and terminology are standard. The reader is referred

to [1], [6], or [11] if necessary.

2. Preliminaries

We use GA.p�1/ to denote the intersection of all normal subgroups R of G such

that G=R is an abelian group of exponent dividing p � 1.

Lemma 2.1 (Lemma 2.2 in [21]). Let E be a normal p-subgroup of G. Then
E is hypercyclically embedded in G if and only if

.G=CG.E//A.p�1/ � Op.G=CG.E//:

Lemma 2.2 (Lemma 2.2 in [19]). Let H be a non-identity normal subgroups
of G. Let H1 and H2 be chief series of G below H . Then there exists a one-to-
one correspondence between the chief factors of H1 and those of H2 such that
corresponding factors are G-isomorphic and such that the Frattini (in G) chief
factors of H1 correspond to the Frattini (in G) chief factors of H2.

Lemma 2.3 ([9, Chapter 5, 3.11]). Let P be a p-group and D a Thompson
critical subgroup of P . Then D is of class at most 2 and D=Z.D/ is elementary
abelian. Moreover, D is characteristic in P and every non-trivial p0-automor-
phism of P induces a non-trivial automorphism of D.
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Let P be a p-group. If P is not a non-abelian 2-group, then we use �.P / to

denote the subgroup �1.P /. Otherwise, �.P / D �2.P /.

Lemma 2.4. Let P be a p-group of class at most 2. Suppose that exp.P=Z.P //

divides p.

(1) If p > 2, then exp.�.P // D p.

(2) If P is a non-abelian 2-group, then exp.�.P // D 4.

Proof. See p. 3 in [3].

Lemma 2.5 (Lemma 2.10 in [5]). Let P be a normal p-subgroup of G. Let D

be a characteristic subgroup of P such that every non-trivial p0-automorphism
of P induces a non-trivial automorphism of D. If D is hypercyclically embedded
in G, then P is hypercyclically embedded in G.

Lemma 2.6 (Lemma 2.12 in [5]). Let P be a normal p-subgroup of G, D

a Thompson critical subgroup of P and � D �.D/. If � is hypercyclically
embedded in G, then P is hypercyclically embedded in G.

Recall that G is said to be a minimal non-supersoluble group if G is not

supersoluble but every its proper subgroup is supersoluble. We shall need the

following result by Doerk and Huppert.

Lemma 2.7. Let G be a minimal non-supersoluble group. The following hold:

(1) G is soluble [13].

(2) GU is the unique normal Sylow subgroup of G, see [13, 6];

(3) GU is of exponent p or of exponent 4.

Lemma 2.8 ([21, Theorem B]). Let E a normal subgroup of G. If each chief
factor of G below F �.E/ is hypercyclically embedded in G, then E is hypercycli-
cally embedded in G.

Recall that a formation is a class F of groups with the following properties:

(i) every homomorphic image of any group G 2 F belongs to F; (ii) if G=M and

G=N belong to F, then also G=.M \ N / belongs to F. The formation F is said to

be saturated if G 2 F whenever G=ˆ.G/ 2 F.
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Lemma 2.9. Let F be a saturated formation containing all supersoluble groups
and E a normal subgroup of G such that G=E 2 F. If every non-Frattini chief
factor of G below E is cyclic, then G 2 F.

Proof. Suppose that this lemma is false. Then E ¤ 1. Let R be a minimal

normal subgroup of G contained in E. The hypothesis holds for .G=R; E=R/.

Hence G=R 2 F by induction. Since F is saturated, R — ˆ.G/. Hence R is cyclic

and so G 2 F by Lemma 2.16 in [23].

Lemma 2.10 ([12, Theorem A]). Let E be a soluble normal subgroup of G.
If every non-Frattini chief factor of G below F.E/ is cyclic, then every non-Frattini
chief factor of G below E is cyclic.

3. Proofs of the results

We use GU to denote the intersection of all normal subgroups N of G such that

G=N is is supersoluble.

Proof of Theorem 1.1. First assume that E is hypercyclically embedded in G.

Then E is supersoluble, so F.E/ D E�.E/ by [15, Chapter X, 13.6], and

E 0 � F.E/ by [14, Chapter VI, 9.1]. Let a be any p-element in

.G0 \ F �.E//E 0 D G0 \ F.E/;

b any p0-element of G and c a q-element of G0 (q ¤ p). Then a 2 Op.E/.

Let C D CG.Op.E// and S=C D .G=C /A.p�1/. Then S=C is a p-group by

Lemma 2.1, and bp�1C 2 S=C , which imply that bp�1 2 C since .jS=C j; q/ D 1.

Therefore Œa; bp�1� D 1. Finally, since c 2 G0 � S and q ¤ p, c 2 C and so

Œa; c� D Œaq�1; c� D 1. Thus (i) H) (ii).

The implication (ii) H) (iii) is evident.

(iii) H) (i) Assume that this implication is false and let G be a counterexam-

ple with jGj C jEj minimal. Let F � D F �.E/, p divide jF �j and P be a Sylow

p-subgroup of F �.

(1) Case E ¤ P

Assume that E D P . Then G0 \ F �.E//E 0 D G0 \ P . Let C D CG.G0 \ P /

and S=C D .G=C /A.p�1/.
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(a) G has a normal subgroup R � P such that P=R is a non-cyclic chief factor of

G, R is hypercyclically embedded in G and V � R for any normal subgroup

V ¤ P of G contained in P .

Indeed, let V ¤ P be a normal subgroup of G contained in P . Then

.G0 \ F �.V //V 0 D G0 \ V � G0 \ P

and hence the hypothesis holds for .G; V /. Therefore V is hypercyclically

embedded in G by the choice of .G; E/ D .G; P /. Now let P=R be a chief

factor of G. Then R is hypercyclically embedded in G and so, in view of

Lemma 2.2 and the choice of .G; P /, P=R is non-cyclic. Now let W ¤ P

be any normal subgroup of G contained in P . If W — R, then in view of the

G-isomorphism

P=R D WR=R ' W=W \ R

we have P=R is cyclic. This contradiction shows that W � R.

(b) G0 \ P D P .

Assume that G0 \ P < P . Then G0 \ P � Z by Claim (a). On the other

hand, in view of the G-isomorphism P=P \ G0 ' G0P=G0 we have

P=P \ G0 � Z1.G=P \ G0/;

so P is hypercyclically embedded in G. This contradiction shows that we

have (b).

(c) P is of exponent p or exponent 4 (if p D 2 and P is a non-abelian 2-group).

Assume that this is false. Let L be a Thompson critical subgroup of P

and � D �.L/. Then � is of exponent p or exponent 4 (if p D 2 and L

is a non-abelian 2-group) by Lemmata 2.3 and 2.4. Hence � < P , so � is

hypercyclically embedded in G by Claim (a). Therefore P is hypercyclically

embedded in G by Lemma 2.6, which contradicts the choice of .G; E/. Hence

� D P , so P is of exponent p or exponent 4 (if p D 2 and P is a non-abelian

2-group).

(d) P is a minimal normal subgroup of G.

Assume that this is false. Since P=R � .G=R/0 D RG0=R by Claim

(b), the hypothesis holds for .G=R; P=R/ by Claim (c) and so the choice

of .G; E/ D .G; P / implies that P=R is cyclic, contrary to Claim (a). Hence

we have (d).
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(e) Op0.G/ D 1.

Assume that D D Op0 .G/ ¤ 1: Since the hypothesis holds for the

couple .G=D; DP=D/, the choice of G implies that DP=D is hypercyclically

embedded in G=D and so from the G-isomorphism DP=D ' P we conclude

that P is hypercyclically embedded in G, a contradiction.

(f) S=CG0 is a p-group.

Since CG0=C D .G=C /0, it is enough to show that every p0-element

bCG0 of S=CG0 has order dividing p � 1. Without loss of generality we

may assume that b is a p0-element of G and that b 62 C . Let V D P hbi.

It is cleat that the hypothesis holds for .V; P /. So in the case when V ¤ G,

the choice of G implies that P is hypercyclically embedded in V and so

V=CV .P / is an abelian group of exponent dividing p � 1 by Lemma 2.1.

Hence bp�1 2 CV .P / D C \ V , which implies that jbCG0j divides p � 1.

Now assume that V D G. Then, in view of Claim (e), P D CV .P / by

the Hall–Higman lemma. Therefore, in view of Claims (b) and (d), for any

element a 2 P we have Œa; bp�1� D 1, so bp�1 2 C and so we again conclude

that jbCG0j divides p � 1.

Final contradiction for (1). In view of Claim (f) and Lemma 2.1,

G0C=C is not a p-group. Let c be a q-element of G0 such that q ¤ p and

c 62 C . Then Œa; cp�1� D 1 D Œaq�1; c� for every p-element a 2 P by Claims

(b) and (d). If q > p, then .p � 1; q/ D 1 and so hcp�1i D hci. Thus c 2 C .

Similarly, if p > q we get Œaq�1; c� D 1 D Œa; c�. Thus again we have c 2 C .

This contradiction completes the proof of (1).

(2) Case F � D E D G. Hence G is not soluble

Assume that F � ¤ E. Since F � is characteristic in E, it is normal in G.

Moreover, since .F �/0 � E 0 � G0, the hypothesis holds for .G; F �/ and for

.E; F �/, so the choice of .G; E/ implies that F � is hypercyclically embedded

in G. Hence E is hypercyclically embedded in G by Lemma 2.6, a contradiction.

Thus F �.E/ D E. Finally, suppose that E ¤ G. Then the choice of .G; E/ implies

that E is supersoluble, so E is nilpotent by [15, Chapter X, 13.6]. Since by (1) for

any Sylow subgroup P of E we have P ¤ E, the choice of .G; E/ implies that

P is hypercyclically embedded in G. Then E is hypercyclically embedded in G,

a contradiction. Hence we have (2).

Final contradiction for the implication (iii) H) (i). In view of Claim (2),

G0 is not supersoluble. Let H be a minimal non-supersoluble of G0. By Lemma 2.7,

H is soluble, Q D HU is a Sylow q-subgroup of H for some prime q dividing
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jH j and P is of exponent p or exponent 4 (if Q is a non-abelian 2-group). Hence

H ¤ G by Claim (2). Moreover, Claim (2) implies that

Q � H � G0 D .G0 \ F �.E//E 0:

Hence the hypothesis holds for .H; P /, so the choice of .G; E/ implies that P is

hypercyclically embedded in H and so H is supersoluble since H=Q is super-

soluble. This contradiction completes the proof of the implication (iii) H) (i).

The theorem is proved.

Proof of Theorem 1.2. First assume that, for every maximal subgroup M of

G, either E � M or every non-Frattini chief factor of G=E\MG below E=E\MG

is cyclic. We shall show that in this case every non-Frattini chief factor of G below

E is cyclic. Suppose that this is false and let G be a counterexample with jGjCjEj

minimal. Let N be a minimal normal subgroup of G contained in E and M=N a

maximal subgroup of G=N such that E=N — M=N . Then

.E=N /=.E=N / \ .M=N /G=N D .E=N /=.E=N / \ .MG=N /

and so from the G-isomorphism

.E=N /=..E \ MG/N=N / ' E=E \ MG

we get that every non-Frattini chief factor of .G=N /=.E=N \ .M=N /G=N / be-

low .E=N /=.E=N / \ .M=N /G=N is cyclic. Therefore the hypothesis holds for

.G=N; E=N /, so every non-Frattini chief factor of G=N below E=N is cyclic by

the choice of G. Therefore, Lemma 2.2 and the choice of G imply that N — ˆ.G/.

Let M be a maximal subgroup of G such that N — M . Then from

N.E \ MG/=.E \ MG/ � E=E \ MG

and the G-isomorphism N.E \ MG/=.E \ MG/ ' N we get that N is cyclic.

But then every non-Frattini chief factor of G below E is cyclic by Lemma 2.2.

Finally, suppose that every non-Frattini chief factor of G below E is cyclic.

And let M be any maximal subgroup of G such that E — M . We shall show

that every non-Frattini chief factor of G=E \ MG below E=E \ MG is cyclic.

Suppose that this is false and let G be a counterexample with jGj C jEj minimal.

Then E \ MG ¤ 1. Moreover, if N a minimal normal subgroup of G contained

in E \ MG , then the hypothesis holds for .G=N; E=N / and E=N — M=N .

Therefore every non-Frattini chief factor of .G=N /=.E=N \ .M=N /G=N / below

.E=N /=.E=N / \ .M=N /G=N is cyclic by the choice of .G; E/. Thus every non-

Frattini chief factor of G=E \ MG below E=E \ MG is cyclic. The theorem is

proved.
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Proof of Corollary 1.4. It is well known that the classes of all metanilpo-

tent groups, of all nilpotent-by-abelian groups, of all dispersive in the sense of

Ore groups and of all p-soluble groups of p-length � 1 are saturated forma-

tions (see for example [7, Chapter IV]). Moreover, each of these classes contains

all supersoluble groups. Therefore Corollary 1.4 follows from Theorem 1.1 and

Lemma 2.9.

Proof of Corollary 1.5. If G is supersoluble, then G0 � F.G/ D F �.G/

and so, by Theorem 1.1, for every prime p and for every p-element

a 2 G0 D .G0 \ F �.G//G0

and every p0-element element b of G we have Œa; bp�1� D 1.

Finally, if for every p-element a 2 G0 and every p0-element element b 2 G

we have Œa; bp�1� D 1, then for every di�erent primes p and q and for every

p-element a 2 .G0 \F �.G//G0, p0-element element b 2 G and q-element c 2 G0

we have Œa; bp�1� D 1 D Œaq�1; c�. Hence G is supersoluble by Theorem 1.1.

Proof of Corollary 1.7. First assume that G is supersoluble. Take a maxi-

mal subgroup M of G such that F.E/ — M . Then

jG W M j D jF.E/ W F.E/ \ M j D p

for some prime p, and so M \ F.E/ is a maximal subgroup of F.E/.

Finally, assume that G has a soluble normal subgroup E with supersoluble

quotient G=E such that for every maximal subgroup M of G either F.E/ � M

or M \ F.E/ is a maximal subgroup of F.E/. If F.E/ — M , then G D F.E/M .

On the other hand,

F.E/ \ M < NF .E/.F.E/ \ M/

since F.E/ is nilpotent. Hence F.E/ \ M is normal in G and so

F.E/=F.E/ \ M D F.E/=F.E/ \ MG

is cyclic. Applying Theorem 1.2, we get that every non-Frattini chief factor of

G below F.E/ is cyclic. Therefore every non-Frattini chief factor of G below

E is cyclic by Lemma 2.10, so G is supersoluble by Lemma 2.9 since G=E is

supersoluble by hypothesis.

Proof of Corollary 1.8. See the proof of Corollary 1.4.
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