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Proper base change for separated locally proper maps
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Abstract – We introduce and study the notion of a locally proper map between topological

spaces. We show that fundamental constructions of sheaf theory, more precisely proper

base change, projection formula, and Verdier duality, can be extended from continuous

maps between locally compact Hausdor� spaces to separated locally proper maps

between arbitrary topological spaces.
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1. Introduction

The proper direct image functor fŠ and its right derived functor RfŠ are de�ned

for any continuous map f WY ! X of locally compact Hausdor� spaces, see

[6, 10, 11]. Instead of fŠ and RfŠ we will use the notation f.Š/ and fŠ for these

functors. They are embedded into a whole collection of formulas known as the six-

functor-formalism of Grothendieck. Under the assumption that the proper direct

image functor f.Š/ has �nite cohomological dimension, Verdier proved that its

derived functor fŠ admits a right adjoint f Š.

In this article we introduce in 2.3 the notion of a locally proper map between

topological spaces and show that the above results even hold for arbitrary topolog-

ical spaces if all maps whose proper direct image functors are involved are locally

proper and separated. Every continuous map between locally compact Hausdor�

spaces is separated and locally proper by 2.11, and in this case our results specialize

to the classical theory.

The basic properties of locally proper maps are established in Section 2. In

particular a map from a topological space to a one point space is separated and

locally proper if and only if our space is locally compact Hausdor�. Since the

properties of being separated and locally proper are moreover stable under base

change by 9.11 and 2.7, a separated locally proper map can be interpreted as a

continuous family of locally compact Hausdor� spaces.

Our main sheaf theoretic results concerning separated locally proper maps

are the proper base change 4.4, the projection formula 6.2, the derived proper

base change 5.10, the derived projection formula 6.3, and Verdier duality 7.7.

Theorem 8.3 explains how all the previous results work in the setting of unbounded

derived categories.

In the following we list three applications of our extension of the classical

theory described above.

Locally closed embeddings. An embedding i WZ ,! X of topological

spaces is always separated, and by 2.5 it is locally proper if and only if i.Z/ is

a locally closed subset of X . In this case the functor i.Š/ D iŠ is the extension by

zero and the functor Hpi Š maps a sheaf to its p-th local cohomology sheaf.

Homotopy invariance of sheaf cohomology. Homotopy invariance of

sheaf cohomology can be deduced, as explained in [6, 2.7], from the fact that given

a space X and a complex of sheaves F on X , for the projection � WX � Œ0; 1�! X
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the unit of the adjunction of derived direct and inverse image is an isomorphism

F
�
�! ����F. Now for an arbitrary topological space X the map � is always

proper and separated, so proper base change in the generality of this article allows

to reduce the claim to the case when X is a one point space, which is treated in

the literature, say in [6].

Equivariant derived categories. Fix a topological group G and let X be

a G-space, i. e. a topological space with a continuous G-action G � X ! X:

Let E G be a contractible space with a topologically free G-action, e. g. the

Milnor construction. Then by homotopy invariance of sheaf cohomology the map

E G ! ¹ptº is acyclic, and so is pWE G � X ! X . Let qWE G � X ! E G �G X

be the quotient map. Then the bounded below equivariant derived category can

by [2, 2.9.4] be described as the full triangulated subcategory of DC.E G �G X/

given by

DC
G .X/ WD ¹F 2 DC.E G �G X/ j there exists G 2 DC.X/

such that q�F Š p�Gº:

Now let f WX ! Y be a G-equivariant continuous map of locally compact

Hausdor� G-spaces or even a G-equivariant separated locally proper map of

arbitrary G-spaces. We obtain a diagram

E G �G X

Nf

��

E G �Xoo

Of

��

// X

f

��
E G �G Y E G � Yoo // Y

whose vertical maps are induced by f . Both squares are cartesian so that Of and
Nf are separated locally proper by 2.7, 2.9, 9.11. Note however that, given a locally

compact Hausdor� space Z, the spaces E G � Z and E G �G Z are, in general,

not locally compact Hausdor�. Derived proper base change 5.10 in the generality

of this article nevertheless shows that NfŠ induces a functor fŠWD
C
G .X/! DC

G .Y /

which generalizes the proper direct image functor of [2].

In the hope that the reader is now su�ciently motivated, let us just add that

from our point of view the main new ingredients are the de�nition of a locally

proper map and the proof of the underived form of proper base change. Once

this is done, we just have to document that the standard arguments work in this

generality as well.
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2. Locally proper maps

2.1. A topological space is called compact if every open covering has a �nite

subcovering. A topological space is called locally compact if every neighborhood

of any point contains a compact neighborhood of this point. We do not require the

Hausdor� property in either case.

2.2. The de�nitions of proper and separated maps and their basic properties

are recalled in Section 9.

2.3 Definition. A map f WY ! X of topological spaces is called locally
proper if it is continuous and if given any point y 2 Y and any neighborhood V

of y there are neighborhoods A � V of y and U of f .y/ such that f .A/ � U and

the induced map f WA! U is proper.

2.4. The constant map from a topological space Y to a space consisting of a

single point is locally proper if and only if Y is locally compact.

2.5 Lemma. An embedding i WY ,! X of topological spaces is locally proper
if and only if i.Y / is a locally closed subset of X:

Proof. We can assume that i is the inclusion of a subset Y of X with its

induced topology. Recall from 9.3 that an embedding is proper if and only if it is

closed.

Assume that i is locally proper. Given y 2 Y there are a neighborhood A of y

in Y and a neighborhood U of y in X with A � U such that the inclusion A � U

is closed. By replacing U with a smaller open neighborhood of y and A by its

intersection with this neighborhood we can assume that U is open in X: Since A

is a neighborhood of y there is an open subset W � X such that y 2 W \Y � A:

Then the inclusion W \A � W \U is closed and W \A D W \Y D .W \U /\Y:

This shows that Y is a locally closed subset of X:

The converse implication is obvious.

2.6. Every composition of locally proper maps is locally proper. This follows

easily using that a composition of proper maps is proper by 9.3 and that any base

change of a proper map is proper by 9.4.
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2.7 Lemma (Local properness and base change). Local properness is
stable under base change. More precisely, let

W
q //

g

��

Y

f

��
Z

p // X

be a cartesian diagram of topological spaces and continuous maps. If f is locally
proper so is g.

Proof. Let w 2 W together with a neighborhood S � W be given. Let us

identify W D Z �X Y: Then w D .g.w/; q.w//: We �nd neighborhoods V � Y

of q.w/ and U � Z of g.w/ such that U �X V � S: By replacing S by U �X V

we can assume that the diagram

S
q //

g

��

V

f

��
U

p // X

is cartesian. We �nd neighborhoods A � V of q.w/ and N � X of f .q.w// such

that f WA ! N is proper. The same is true for the map gW q�1.A/ ! p�1.N /

obtained by base change, by 9.4.

2.8. The property of being locally proper is local on the source. Namely, let

f WY ! X be a map and let V be an open covering of Y . Then f is locally proper

if and only if its restrictions f jV WV ! Y are locally proper for all V 2 V, as

follows easily using 2.5.

2.9. The property of being locally proper is local on the target. Namely, let

f WY ! X be a map and let U be an open covering of X . Then f is locally proper

if and only if the induced maps f �1.U /! U are locally proper for all U 2 U, as

follows easily using 2.7.

2.10 Lemma. Let gWZ ! Y and f WY ! X be continuous maps of topo-
logical spaces. Assume that f ı g is locally proper and that f is separated. Then
g is locally proper.
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Proof. Let V � Z be a given neighborhood of a point z 2 Z: Since f ı g is

locally proper, there are neighborhoods A � V of z and U of f .g.z// such that

f ı g induces a proper map A! U: This map factors as

A
g0

�! f �1.U /
f 0

�! U

where g0 and f 0 are induced by g and f respectively. Since f 0 is separated by 9.11,

Lemma 9.12 shows that g0WA ! f �1.U / is proper. This shows that g is locally

proper.

2.11 Corollary. Every continuous map gWZ ! Y from a locally compact
Hausdor� space Z to a Hausdor� space Y is separated and locally proper.

Proof. Since Z is locally compact and Y is Hausdor�, g is locally proper

by 2.10. Since Z is Hausdor�, g is separated.

2.12 Proposition. Every proper and separated map is locally proper.

2.13. This generalizes the fact that every compact Hausdor� space is locally

compact.

Proof. Let f WY ! X be a proper and separated map. Let y 2 Y together with

an open neighborhood V � Y be given. Put x WD f .y/ and consider Z D Y n V .

For every point z 2 f �1.x/ \ Z there is an open neighborhood Wz � Y of z

and an open neighborhood Bz � V of y with Wz \ Bz D ;. Finitely many of

these Wz cover the compact set f �1.x/ \ Z. Let W be the union of these sets

and B the intersection of the corresponding sets Bz . Then y 2 B , B is open in

V , .f �1.x/ \ Z/ � W , W is open in Y , and B \W D ;. Now we �nd an open

neighborhood U � X of x with .f �1.U / \ Z/ � W , we may for example take

the complement of the closed subset f .Z \ .Y nW // of X . Then the closure A

of B \ f �1.U / in f �1.U / has empty intersection with f �1.U / \ Z and hence

is a neighborhood of y contained in V such that the induced map f WA ! U is

proper.

3. Proper direct image

3.1. By a sheaf we mean a sheaf of abelian groups. The constant sheaf with

stalk Z on a topological space X is denoted ZX : Given a sheaf F on X we

abbreviate as usual �F D �.F/ D �.X IF/ D F.X/ its set of global sections

and write F.Z/ D �.ZIF/ D �.ZIFjZ/ if Z � X is an arbitrary subset of X:
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We write Sh.X/ for the abelian category of sheaves on X . Given a complex F

in Sh.X/ we denote its p-th cohomology sheaf by Hp.F/. We write C.X/ for

the abelian category of complexes in Sh.X/, denote the corresponding homo-

topy category by K.X/ and the corresponding derived category by D.X/. Let

DC.X/ � D.X/ be the full triangulated subcategory consisting of complexes

with bounded below cohomology sheaves.

Given a continuous map f of topological spaces we use the notation f .�/ and

f.�/ for the inverse and direct image functors of sheaves, in contrast to the usual

notation f �1 and f� in the literature, and denote their derived functors by f � and

f�, in contrast to the usual notation Lf � and Rf�.

Given a category C and objects A; B 2 C we denote the set of morphisms by

C.A; B/ or HomC.A; B/: We write ShX .A; B/ instead of .Sh.X//.A; B/:

3.2 Definition. Let f WY ! X be a continuous map of topological spaces.

The proper direct image f.Š/WSh.Y /! Sh.X/ is de�ned by

.f.Š/F/.U / WD ¹s 2 F.f �1.U // j f W .supp s/ �! U is properº:

Since by 9.5 properness is local on the target, f.Š/F � f.�/F is a subsheaf of sets

and by 9.7 even a subsheaf of abelian groups. Obviously, f.Š/ is a left exact functor.

For proper f we have f.Š/ D f.�/ by 9.3. Given a sheaf F on Y we denote by

�ŠF D �Š.F/ D �Š.Y IF/ D .c.Š/F/.X/

the abelian group of sections with compact support where c is the unique map from

Y to a space consisting of a single point. If Z � Y is any subset we abbreviate

�Š.ZIF/ D �Š.ZIFjZ/:

3.3. Usually the functor f.Š/ is studied for continuous maps of locally compact

Hausdor� spaces. Our aim is to show that f.Š/ behaves well in a more general

setting, namely for separated locally proper maps f .

3.4. Let i WY ,! X be an embedding of a locally closed subset. Then i.Š/F is

the extension of F 2 Sh.Y / by zero which is denoted by iŠF in [5, Exp. I] and

by FX in [4, Theorem 2.9.2]. The functor i.Š/WSh.Y /! Sh.X/ is exact and has a

right adjoint functor i .Š/ which is denoted i Š in [5, Exp. I]. If Y is closed in X we

have i.Š/ D i.�/. If Y is open in X we have i .Š/ D i .�/.

3.5. Let f WY ! X be a continuous map and F a sheaf on Y: A global section

s 2 .f.�/F/.X/ is the same thing as a global section s0 2 F.Y /: The supports of

these sections are related by f .supp s0/ D supp s:
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3.6 Theorem (Iterated proper images). Given continuous maps gWZ ! Y

and f WY ! X with f separated, the usual identity f.�/ ı g.�/ D .f ı g/.�/ of
functors Sh.Z/! Sh.X/ restricts to an identity

f.Š/ ı g.Š/ D .f ı g/.Š/:

Proof. Let F be a sheaf on Z and U � X an open subset and let

s 2 .f.�/.g.�/F//.U / be a section. We can interpret s also as a section

s0 2 .g.�/F/.f �1.U // or as a section s00 2 F.g�1.f �1.U ///; and also as a section

t 2 ..f ı g/.�/F/.U /:

Assume that s is in .f.Š/.g.Š/F//.U /: Equivalently, this means that s0 is in

.g.Š/F/.f �1.U // with f W .supp s0/ ! U proper or, equivalently, that s00 is in

F.g�1.f �1.U /// with gW .supp s00/ ! f �1.U / proper and f W g.supp s00/ ! U

proper. Here we use 3.5 and the fact that g.supp s00/ is closed in f �1.U /. Then the

induced map gW .supp s00/! g.supp s00/ is proper by 9.12 and so is the composition

f ı gW .supp s00/! U by 9.3. This means that t 2 ..f ı g/.Š/F/.U /: We have not

yet used that f is separated.

Conversely, assume that t 2 ..f ıg/.Š/F/.U /: This means that the composition

f ı gW .supp s00/ ! U is proper. Since f is separated, gW .supp s00/ ! f �1.U /

is proper by 9.12, so s0 is in .g.Š/F/.f �1.U // and .supp s0/ D g.supp s00/: This

and 9.6 imply that f W .supp s0/! U is proper. Hence s 2 .f.Š/.g.Š/F//.U /:

4. Proper base change

4.1. In the following we will often work with a cartesian diagram

W
q //

g

��

Y

f

��
Z

p // X

of topological spaces and continuous maps. Let us refer to it as “given a cartesian

diagram f ı q D p ı g” without mentioning the spaces involved.

4.2 Lemma. Given a cartesian diagram f ı q D p ı g of topological spaces
as in 4.1 the identity f.�/ ı q.�/ D p.�/ ı g.�/ induces a morphism

f.Š/ ı q.�/ �! p.�/ ı g.Š/

of functors Sh.W /! Sh.X/:
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Proof. Let G be a sheaf on W: It is enough to prove the claim on global

sections, i. e. that the identity �f.�/q.�/G D �p.�/g.�/G induces a morphism

�f.Š/q.�/G! �p.�/g.Š/G: Similarly as before, we interpret �f.Š/q.�/G as the group

of all s 2 �G with f W q.supp s/! X proper. The cartesian diagram

q�1.q.supp s// //

g

��

q.supp s/

f

��
Z // X

and 9.3, 9.4 show that gW .supp s/! Z is proper. Hence s 2 �p.�/g.Š/G.

4.3. Given a cartesian diagram f ı q D p ı g of topological spaces as in 4.1

there is a canonical morphism

p.�/f.Š/ �! g.Š/q
.�/

of functors obtained as follows: the adjunction .q.�/; q.�// and 4.2 provide mor-

phisms f.Š/ ! f.Š/q.�/q
.�/ ! p.�/g.Š/q

.�/ so that we can use the adjunction

.p.�/; p.�//:

4.4 Theorem (Proper base change). Let a cartesian diagram f ı q D p ı g

of topological spaces as in 4.1 be given. Assume that the vertical maps f and g are
separated locally proper. Then the morphism constructed in 4.3 is an isomorphism

p.�/ ı f.Š/

�
�! g.Š/ ı q.�/

of functors Sh.Y /! Sh.Z/.

4.5. If f and g are even separated and proper, we obtain by 2.12 an isomor-

phism p.�/f.�/

�
�! g.�/q

.�/ of functors.

Proof. We need to show that our morphism of functors evaluated at F 2

Sh.Y / is an isomorphism

p.�/f.Š/F
�
�! g.Š/q

.�/F:

A morphism of sheaves is an isomorphism if and only if it induces isomorphisms

on all stalks. Hence we can assume without loss of generality that Z consists of

a single point x 2 X: In this case the theorem claims that the obvious map is an

isomorphism

.f.Š/F/x
�
�! �Š.f

�1.x/IF/:
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Injectivity: Let U � X be an open neighborhood of x and s 2 F.f �1.U // a

section with .supp s/ ! U proper but sjf �1.x/ D 0. Then x is not in the closed

subset f .supp s/ � U . If V � U is the open complement of this subset, the

restriction of our section s 2 .f.Š/F/.U / to V alias f �1.V / is zero.

Surjectivity: Let s 2 �Š.f
�1.x/IF/: Denote by xF the étale space over Y

associated to F: We view s as a continuous section sW f �1.x/! xF with compact

support K WD supp s � f �1.x/: Since f is separated, 9.10 and 10.1 allow us

to extend sjK to a continuous section OsWC ! xF where C � Y is an open

neighborhood of K: By shrinking C we can assume in addition that Os and s

coincide on C \ f �1.x/ (the subset of C \ f �1.x/ where the restrictions of

s and Os coincide is open in C \ f �1.x/ and contains K; hence is of the form

C 0 \ C \ f �1.x/ for some open subset K � C 0 � Y ; replace C by C 0). Hence s

and Os glue to a continuous section C [ f �1.x/! xF:

We claim that there is a subset B � Y and an open subset U � X with

K � Bı � B � C and f .B/ � U such that f WB ! U is proper.

Indeed, since f is locally proper, any y 2 K has a neighborhood Ay in Y

contained in C such that there is an open neighborhood Uy � X of f .y/ D x

with f .Ay/ � Uy and f WAy ! Uy proper. Since f is separated, Ay � f �1.Uy/

is a closed subset by 9.3, 9.11, and 9.12. Finitely many Aı
y cover K; and we de�ne

U as the intersection of the corresponding sets Uy and B as the union of the

corresponding sets Ay intersected with f �1.U /. Then f WB ! U is proper by 9.7,

proving the claim.

Certainly Bı � f �1.U / is an open subset, and B � f �1.U / is closed

by 9.12. Let @B D B n Bı be the boundary of B with respect to f �1.U /: Since

.supp Os/ is closed in C; the intersection .supp Os/ \ @B is closed in B and hence

the map f W .supp Os/ \ @B ! U is proper. Its image does not contain x because

f �1.x/ \ .supp Os/ \ @B D K \ @B D ;: By replacing U with its open subset

U nf ..supp Os/\@B/ we can assume that .supp Os/\@B D ;: Hence the continuous

map OsjB WB ! xF and the zero section f �1.U / nBı! xF coincide on @B and glue

to a continuous map f �1.U /! xF alias an element of F.f �1.U // whose support

is equal to .supp Os/ \ B and hence proper over U: We deduce surjectivity.

4.6 Lemma. If f WY ! X is a separated locally proper map, the proper direct
image functor f.Š/WSh.Y /! Sh.X/ commutes with �ltered colimits.

Proof. Let FW I ! Sh.Y / be a �ltered diagram. We claim that the obvious

morphism is an isomorphism

lim
�!

.f.Š/Fi /
�
�! f.Š/.lim�!

Fi /:
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Since the inverse image functor of sheaves commutes with arbitrary colimits,

proper base change 4.4 allows to reduce to the case that X consists of a single

point. Then Y is a locally compact Hausdor� space and the claim is well known

and recalled in 10.2.

5. Derived proper direct image

5.1 Definition. Given a continuous map f WY ! X; a sheaf on Y is called

f -c-soft if its restriction to every �ber of f is c-soft in the sense of 10.3.

5.2. This de�nition seems to be useful just for separated locally proper maps.

5.3. If our map f WY ! X is separated, every �abby sheaf and in particular

every injective sheaf on Y is f -c-soft by 10.1.

5.4. Given a separated locally proper map f WY ! X; arbitrary direct sums

alias coproducts, and even �ltered colimits of f -c-soft sheaves are f -c-soft again.

In fact, the inverse image functor of sheaves commutes with arbitrary colimits, and

every �ltered colimit of c-soft sheaves on a locally compact Hausdor� space is c-

soft by 10.4.

5.5 Lemma. Let f WY ! X be a separated locally proper map. Then any
f -c-soft sheaf on Y is f.Š/-acyclic.

Proof. Let F 2 Sh.Y / be f -c-soft and F ,! I� an injective resolution.

We need to show that f.Š/F ,! f.Š/I
� is exact. We test this on the stalks at an

arbitrary x 2 X: Let j be the inclusion f �1.x/ ,! Y: By proper base change 4.4

it is enough to show exactness of �Š.j
.�/F/ ,! �Š.j

.�/I�/: But this follows from

5.3 and [6, Proposition 2.5.8, Corollary 2.5.9].

5.6. Let gWZ ! Y be a continuous map of locally compact Hausdor� spaces.

If F 2 Sh.Z/ is c-soft so is g.Š/F 2 Sh.Y / by [6, Proposition 2.5.7].

5.7 Lemma. Let gWZ ! Y and f WY ! X be separated locally proper maps.
If F 2 Sh.Z/ is an .f ı g/-c-soft sheaf on Z, its proper direct image g.Š/F is an
f -c-soft sheaf on Y .
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Proof. Given a point x 2 X consider the following diagram with two carte-

sian squares.

g�1.f �1.x//

v

��

�

� k // Z

g

��
f �1.x/

u

��

�

� j // Y

f

��
¹xº

�

� i // X

Proper base change 4.4 shows j .�/g.Š/F Š v.Š/k
.�/F. By assumption, the sheaf

k.�/F is c-soft and both g�1.f �1.x// and f �1.x/ are locally compact Hausdor�

spaces. Hence 5.6 shows that v.Š/k
.�/F Š j .�/g.Š/F is c-soft. This proves the

claim.

5.8 Definition. If f WY ! X is a continuous map we denote the right derived

functor Rf.Š/WD
C.Y / ! DC.X/ of the left exact proper direct image functor

f.Š/WSh.Y /! Sh.X/ by fŠ WD Rf.Š/.

5.9 Theorem (Iterated derived proper images). Let both gWZ ! Y

and f WY ! X be separated locally proper maps. Then the identity f.Š/ ı g.Š/ D

.f ı g/.Š/ from 3.6 gives rise to an isomorphism

.f ı g/Š
�
�! fŠ ı gŠ

of triangulated functors DC.Z/! DC.X/.

Proof. It is enough to show that the functor g.Š/ maps injective sheaves to

f.Š/-acyclic sheaves. Every injective sheaf I 2 Sh.Z/ is .f ı g/-c-soft by 5.3.

Then g.Š/I 2 Sh.Y / is f -c-soft by 5.7 and hence f.Š/-acyclic by 5.5.

5.10 Theorem (Derived proper base change). Let a cartesian diagram
f ı q D p ı g of topological spaces as in 4.1 be given. Assume that the vertical
maps f and g are separated and locally proper. Then, in the space of triangulated
functors DC.Y /! DC.Z/, the obvious morphisms are isomorphisms

R.p.�/ ı f.Š//
�
�! p� ı fŠ and R.g.Š/ ı q.�//

�
�! gŠ ı q�

so that proper base change 4.4 yields an isomorphism

p� ı fŠ
�
�! gŠ ı q�:
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Proof. If I is an injective sheaf on Y; it is f -c-soft by 5.3, its inverse image

q.�/I on W is g-c-soft and hence g.Š/-acyclic by 5.5. This shows that

R.g.Š/ ı q.�// �! gŠ ı q�

is an isomorphism. The rest of the proof is obvious.

6. Projection formula

6.1. Let f WY ! X be a continuous map and F 2 Sh.Y / and G 2 Sh.X/: Then

we obtain a canonical morphism

.f.�/F/˝ G �! f.�/.F˝ f .�/G/

of sheaves by adjunction from the composition

f .�/.f.�/F˝ G/
�
�! f .�/f.�/F˝ f .�/G �! F˝ f .�/G;

where the �rst morphism is the usual isomorphism encoding the compatibility

of tensor product and inverse image and the second morphism comes from the

adjunction. This morphism obviously induces a morphism

.f.Š/F/˝ G �! f.Š/.F˝ f .�/G/

on the level of proper direct images.

6.2 Theorem (Projection formula). Let f WY ! X be a separated locally
proper map and F 2 Sh.Y / and G 2 Sh.X/: If G is �at the morphism from 6.1 is
an isomorphism

.f.Š/F/˝ G
�
�! f.Š/.F˝ f .�/G/:

If F is in addition assumed to be f -c-soft, the same is true for F˝ f .�/G.

Proof. Proper base change 4.4 reduces the �rst claim to the case that X

consists of a single point which is known, see [6, Proposition 2.5.13]. The last

claim follows from [6, Proposition 2.5.12].

6.3 Theorem (Derived projection formula). Let f WY ! X be separated
locally proper. Then there is a canonical isomorphism

.fŠF/˝L G
�
�! fŠ.F˝

L f �G/

which is natural in F 2 DC.Y / and G 2 DC.X/:

Proof. We can assume thatF is a bounded below complex of injective sheaves

and thatG is a bounded below complex of �at sheaves. Then the claim follows from

the underived projection formula 6.2 and 5.5.
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7. Verdier duality

7.1. If Y is a topological space, G a sheaf on Y and j WV � Y the embedding

of an open subset we de�ne GV �Y WD j.Š/j
.�/G D j.Š/j

.Š/G 2 Sh.Y /, cf. 3.4.

Since both j.Š/ and j .�/ D j .Š/ are exact we have GV �Y WD jŠj
�G in the derived

category. We write ZV �Y instead of .ZY /V �Y D j.Š/ZV .

7.2 Lemma. Let f WY ! X be separated and locally proper. Then a sheaf
G 2 Sh.Y / is f -c-soft if and only if the sheaf GV �Y is f.Š/-acyclic for all open
subsets V � Y: In particular, if G is f -c-soft then so is GV �Y :

Proof. Denote by i D ix W ¹xº ,! X the embedding of a point x 2 X . A sheaf

F 2 Sh.Y / is f.Š/-acyclic if and only if H�i�
x fŠF ¤ 0 implies � D 0 for all � 2 Z

and x 2 X .

Let j WV � Y be the inclusion of an open subset and consider for arbitrary

x 2 X the following diagram with two cartesian squares.

V \ f �1.x/

u

��

l // V

j

��
f �1.x/

g

��

�

� k // Y

f

��
¹xº

�

� i // X

Several proper base changes 5.10 show

i�fŠGV �Y Š gŠk
�GV �Y D gŠk

�jŠj
�G Š gŠuŠl

�j �G Š gŠuŠu
�k�G:

Using the above criterion, we deduce that GV �Y is f.Š/-acyclic if and only

if the sheaf .k�G/.V \f �1.x//�f �1.x/ is �Š-acyclic for every x 2 X: Now we

use [6, Exercise II.6]. For the last claim use that proper base change 4.4 implies

that .GU �X /V �X Š GU \V �X for open subsets U and V of X:

7.3 Lemma. Let f WY ! X be a separated locally proper map with f.Š/ of
�nite cohomological dimension � d: If

G0 �! � � � �! Gd�1 �! Gd �! 0

is an exact sequence in Sh.Y / and G0;G1; : : : ;Gd�1 are f -c-soft then so is Gd .
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Proof. We use 7.2. Let V � Y be an open subset. We have to show that

.Gd /V �Y is f.Š/-acyclic. The sequence

.G0/V �Y �! � � � �! .Gd�1/V �Y �! .Gd /V �Y �! 0

is exact in Sh.Y / and all sheaves .G0/V �Y ; : : : ; .Gd�1/V �Y are f.Š/-acyclic. Let

Ki be the kernel of Gi ! GiC1 for i D 0; : : : ; d � 1: For p > 0 we obtain

isomorphisms

Rpf.Š/..G
d /V �Y /

�
�! RpC1f.Š/.K

d�1
V �Y /

�
�! : : :

�
�! RpCd f.Š/.K

0
V �Y / D 0:

This shows that .Gd /V �Y is f.Š/-acyclic.

7.4 Lemma. Let f WY ! X be a separated locally proper map with f.Š/ of
�nite cohomological dimension. Let K 2 Sh.Y / be a �at and f -c-soft sheaf. Then
G˝K is f -c-soft for any sheaf G 2 Sh.Y /.

Proof. Any sheaf G on Y has a resolution

: : : �! G�1 �! G0 �! G �! 0

where each Gj is a direct sum of sheaves of the form ZV �Y with V � Y open.

We obtain an exact sequence

: : : �! G�1 ˝K �! G0 ˝K �! G˝K �! 0:

By 7.3 it is su�cient to show that eachGj˝K is f -c-soft. ButGj˝K is isomorphic

to a direct sum of sheaves of the form ZV �Y ˝ K Š KV �Y which are f -c-soft

by 7.2, so that we can use 5.4.

7.5 Proposition. Let f WY ! X be a separated locally proper map with f.Š/

of �nite cohomological dimension, and let K 2 Sh.Y / be a �at and f -c-soft sheaf.
Then the functor

f K

.Š/ WD f.Š/.�˝K/WSh.Y / �! Sh.X/

preserves colimits and therefore by 11.3 admits a right adjoint f
.Š/
K

. Furthermore

f K

.Š/
is exact and therefore its right adjoint f

.Š/
K

maps injective sheaves to injective
sheaves.

7.6. Any morphism of functors induces a morphism in the opposite direction

between the adjoint functors, if they exist. In particular, any morphism K! L of

�at f -c-soft sheaves will lead to a morphism f
.Š/
L
! f

.Š/
K

.
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Proof. The functor .� ˝ K/ preserves colimits, is exact, and maps every

sheaf to an f -c-soft sheaf by 7.4. Then f K

.Š/
is exact by 5.5 and preserves colimits,

because it preserves �ltered colimits by 4.6, in particular direct sums, and is right

exact. Therefore, we can apply 11.3. The remaining claim is obvious.

7.7 Theorem (Verdier duality). Let f WY ! X be a separated locally
proper map with f.Š/WSh.Y / ! Sh.X/ of �nite cohomological dimension. Then
the derived proper direct image functor fŠWD

C.Y /! DC.X/ has a right adjoint
functor

f ŠWDC.X/ �! DC.Y /:

Proof. Let d be the cohomological dimension of f.Š/. Let ZY ,! K alias

0 �! ZY ,! K0 �! K1 �! : : : �! Kd �! 0

be the Godement resolution truncated in degree d : by this we mean that each Ki

for i D 0; : : : ; d � 1 is the sheaf of not necessarily continuous sections of the

cokernel of the previous map and that Kd is the cokernel of the previous map.

Then K consists of �at sheaves, by 10.5, and even of f -c-soft sheaves, by 5.3

and 7.3.

Given F 2 C C.X/ we construct a double complex with entries f
.Š/
K�p .Fq/ by

applying our functors from 7.5. We denote its total complex by f
.Š/
K

.F/: In this

way we obtain a functor

f
.Š/
K
WC C.X/ �! C C.Y /

which is right adjoint to the functor

f K

.Š/ WD f.Š/.�˝K/WC C.Y / �! C C.X/

and transforms complexes of injective sheaves to complexes of injective sheaves

by 7.5.

Let G 2 C C.Y / be arbitrary. Since K is a bounded complex of �at sheaves we

can assume that G˝L K D G˝ K in DC.Y /. Since K is a bounded complex of

�at and f -c-soft sheaves, 7.4 and 5.5 show that G ˝ K consists of f -c-soft and

hence f.Š/-acyclic sheaves. The quasi-isomorphism ZY ! K then shows that the

obvious morphisms

f K

.Š/ .G/ D f.Š/.G˝K/ �! fŠ.G˝K/ D fŠ.G˝
L K/ fŠ.G/

are isomorphisms in DC.X/. Let

f Š
K
WDC.X/ �! DC.Y /

be the right derived functor of f
.Š/
K
WKC.X/ ! DC.Y /. As usual it may be

computed using injective resolutions.
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Now let G 2 C C.Y / be arbitrary and F 2 C C.X/ a complex of injective

sheaves. Then the facts stated above show that all maps in the following diagram

are isomorphisms.

HomK.X/.f.Š/.G˝K/;F/

�

��

HomK.Y /.G; f
.Š/
K

.F//
�oo

�

��

HomD.X/.f.Š/.G˝K/;F/

HomD.X/.fŠ.G˝
L K/;F/

�

OO

�

��
HomD.X/.fŠ.G/;F/ HomD.Y /.G; f Š

K
.F//

All maps are natural in complexes G 2 C C.Y / and complexes of injective sheaves

F 2 C C.X/. This yields the desired adjunction by setting f Š D f Š
K

.

8. The case of unbounded derived categories

8.1. We �nally explain how our results generalize to unbounded derived cate-

gories as soon as the relevant involved maps f are separated locally proper with

f.Š/ of �nite cohomological dimension.

8.2. The derived functors f �, f�, RHom , ˝L all exist on the level of un-

bounded derived categories (see [7, Ch. 18]) and so does fŠ by 12.1 and 12.4.

8.3 Theorem (cf. [10, Theorem B]). Let f WY ! X be a separated locally
proper map such that f.Š/ has �nite cohomological dimension.

(a) The derived proper direct image functor fŠWD.Y / ! D.X/ has a right
adjoint functor f ŠWD.X/! D.Y /.

(b) If gWZ ! Y is another separated locally proper map such that g.Š/ has
�nite cohomological dimension then f ı g is separated locally proper with
.f ı g/.Š/ of �nite cohomological dimension and there are isomorphisms

.f ı g/Š
�
�! fŠ ı gŠ and .f ı g/Š �

 gŠ ı f Š of triangulated functors.
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(c) Let a cartesian diagram f ı q D p ı g of topological spaces as in 4.1 be
given. Then g is separated locally proper with g.Š/ of �nite cohomological
dimension and there are isomorphisms

p� ı fŠ
�
�! gŠ ı q� resp. f Š ı p�

�
 � q� ı gŠ

in the space of triangulated functors from D.Y / to D.Z/ resp. from D.Z/ to
D.Y /.

(d) For all A 2 D.Y / and B, C 2 D.X/ there are natural isomorphisms

.fŠA/˝L B
�
�! fŠ.A˝

L f �B/;

RHom .fŠA;B/
�
 � f� RHom .A; f ŠB/;

f Š RHom .B;C/
�
 � RHom .f �B; f ŠC/:

8.4. Verdier duality for unbounded derived categories has been proved in [10]

for continuous maps f between locally compact Hausdor� spaces that satisfy a

condition that is slightly weaker than our condition on the cohomological dimen-

sion of f.Š/. It is also possible to deduce it from Brown representability for well

generated triangulated categories [9, Theorem 1.17], [8, Theorem 0.2].

Proof. (a). The proof of Verdier duality in the bounded case given in 7.7

generalizes easily: When we omit all upper indicesC there, 12.4.(b) and the quasi-

isomorphism ZY ! K still show that the obvious morphisms

f K

.Š/ .G/ D f.Š/.G˝K/ �! fŠ.G˝K/ D fŠ.G˝
L K/ � fŠ.G/

are isomorphisms in D.X/. Thus f K

.Š/
maps acyclic complexes to acyclic com-

plexes, and this implies that the functor

f
.Š/
K
WC.X/ �! C.Y /

maps h-injective complexes to h-injective complexes. Apart from these additions,

the argument is the same.

It is enough to prove the �rst of the isomorphisms stated in each of the

claims (b), (c), and (d) because the remaining isomorphisms are formal conse-

quences using the Yoneda lemma and various adjunctions, most prominently the

Verdier duality adjunction .fŠ; f Š/.



Locally proper maps 241

(b). The composition f ıg is separated locally proper by 2.6 and 9.11; moreover,

.f ı g/.Š/ has �nite cohomological dimension by 5.9 and 8.5. Let F 2 C.Z/ be a

�brant object. Then all components of F are injective sheaves by 12.3. As in the

proof of 5.9 we see that all components of g.Š/F are f.Š/-acyclic. Lemma 12.4.(b)

shows that the obvious morphism

f.Š/.g.Š/F/ �! fŠ.g.Š/F/

is an isomorphism in D.X/: Since F is h-injective we have g.Š/F
�
�! gŠF in D.Y /

and f.Š/.g.Š/F/ D .f ı g/.Š/.F/
�
�! .f ı g/Š.F/ in D.X/ where 3.6 is used for the

equality.

(c). Clearly, g is separated locally proper by 9.11 and 2.7. Derived proper base

change 5.10 reduces the question whether g.Š/ has �nite cohomological dimension

to the case that Z D ¹xº for some x 2 X and W D f �1.x/: Then qWW ! Y is

an embedding and any sheaf E 2 Sh.W / satis�es E
�
�! q.�/q.�/E D q�q.�/E: This

and derived proper base change again shows gŠE
�
�! gŠq

�q.�/E
�
 p�fŠq.�/E. This

shows that g.Š/ has �nite cohomological dimension.

Let Z again be arbitrary. Let F 2 C.Y / be a �brant object. As in the proof

of 5.10 we see that q.�/F consists of g.Š/-acyclic sheaves. Then

g.Š/.q
.�/F/

�
�! gŠ.q

.�/F/
�
�! gŠ.q

�F/

in D.Z/ where the �rst isomorphism comes from 12.4.(b) and the second one from

the isomorphism q.�/F
�
�! q�F in D.W /. Now use proper base change 4.4.

(d). Following [10, Proposition 6.18] we prove the derived projection formula.

From 6.1 we obtain a natural morphism

(?) .f.Š/A/˝B �! f.Š/.A˝ f .�/B/

in C.X/: Assume that A is a complex of f -c-soft sheaves on Y and that B is

an object of P
�!

.X/ in the notation of [10, Sect. 5]. In particular, B is h-�at,

and A consists of f.Š/-acyclic sheaves by 5.5. Hence the left hand side of (?)

computes .fŠA/˝L B by 12.4.(b). On the other hand, f .�/B is certainly h-�at so

thatA˝Lf .�/B D A˝f .�/B. We claim thatA˝f .�/B has f -c-soft components.

If B0 is a bounded above complex of sheaves on X whose components are direct

sums of sheaves of the form ZU �X with U � X open, i. e. B0 2 P.X/ in the

notation of [10], then all components of A˝f .�/B0 are f -c-soft as direct sums of

f -c-soft sheaves Ap ˝ f .�/B0q , by 5.4 and 6.2. Recall that P
�!

.X/ is the closure

of P.X/ under certain �ltered colimits (see [10, 2.9]) in C.X/. Since .A ˝ �/

commutes with �ltered colimits and f .�/ commutes with all colimits, this implies
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our claim thatA˝f .�/B has f -c-soft components (using 5.4 again). Then 12.4.(b)

again shows that the right hand side of (?) computes fŠ.A˝ f �B/.

Hence it is certainly enough to show that (?) is an isomorphism. Since all the

functors f.Š/, ˝ and f .�/ commute with �ltered colimits, we can assume without

loss of generality that B 2 P.X/ and even that B D ZU �X for some open subset

U � X . But in this case (?) is an isomorphism by 6.2. This establishes the derived

projection formula.

8.5 Corollary. In the setting of 8.3 let d be the cohomological dimension
of f.Š/. Then

fŠ.D
�0.Y // � D�0.X/;

fŠ.D
�0.Y // � D�Cd .X/;

f Š.D�0.X// � D��d .Y /:

Proof. The �rst claim holds (for any continuous map f ) because any object

of D�0.X/ is isomorphic to a complex of injective sheaves whose components in

degrees < 0 are zero. We have seen in the above proof that fŠ.G/ Š f K

.Š/
.G/ in

D.X/. Hence fŠ.D
�0.X// � D�Cd .Y /. Then f Š.D�0.X// � D��d .Y / follows

from the adjunction .fŠ; f Š/ or from the explicit construction of the functor f Š.

9. Reminders from topology

9.1. A map f WY ! X of topological spaces is called proper if it is continuous

and the map f � idWY � Z ! X �Z is closed for each topological space Z: All

properties of proper maps we mention in the following can be found in [3, I.§ 10]

or [13, Section 005M].

9.2. A topological space X is compact if and only if the constant map from X

to a space consisting of a single point is proper.

9.3. An embedding is proper if and only if it is closed. Every composition of

proper maps is proper.

9.4. The property of being proper is stable under base change: given a proper

map Y ! X and an arbitrary continuous map Z ! X the map Z �X Y ! Z is

proper. In particular, a map is proper if and only if it is universally closed. There

are two other important characterizations of proper maps. A continuous map is

proper if and only if it is closed and the inverse image of every compact subset is

compact. A continuous map is proper if and only if it is closed and all its �bers

are compact.

http://stacks.math.columbia.edu/tag/005M
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9.5. Properness is local on the target: let f WY ! X be a map and U an open

covering of X . Then f is proper if and only if the induced maps f �1.U / ! U

are proper for all U 2 U. Note however that properness is not local on the source

(cf. 2.8 for our usage of this notion).

9.6. If a composition f ı g of continuous maps is proper and g is surjective,

then f is proper.

9.7. If Y ! X and Y 0 ! X are proper maps, so is .Y tY 0/! X . In particular,

given a continuous map Z ! X and subspaces Y; Y 0 � Z with Y ! X and

Y 0 ! X proper, the map Y [ Y 0 ! X is proper by 9.6.

9.8 Definition. A map f WY ! X of topological spaces is called separated
if it is continuous and the diagonal map Y ! Y �X Y is a closed embedding.

The second condition is satis�ed if and only if the diagonal is a closed subset of

Y �X Y:

9.9 Definition. A subset A of a topological space Y is called relatively
Hausdor� if any two distinct points of A have disjoint neighborhoods in Y:

9.10. A continuous map is separated if and only if all its �bers are relatively

Hausdor�.

9.11. The constant map from a topological space X to a space consisting of a

single point is separated if and only if X is a Hausdor� space. Every embedding

is separated. Every composition of separated maps is separated. The property of

being separated is stable under base change and local on the target, but not local on

the source. If a composition f ıg of continuous maps is separated, g is separated.

In particular, any continuous map whose source is a Hausdor� space is separated.

9.12 Lemma. If a composition f ı g of continuous maps is proper and f is
separated, then g is proper.

9.13. This generalizes [3, Proposition I.10.1.5.(c)].

9.14. If the target of f consists of a single point, this lemma specializes to the

fact that a continuous map from a compact space to a Hausdor� space is closed

and even proper.



244 O. M. Schnürer – W. Soergel

Proof. Let gWZ ! Y and f WY ! X . Consider the cartesian diagram

Z
g //

.id;g/

��

Y

.id;id/

��
Z �X Y

g�id // Y �X Y

of topological spaces. The diagonal map Y ,! Y �X Y is a closed embedding

and hence so is the map .id; g/WZ ! Z �X Y obtained by base change us-

ing 9.11. The morphism g is the composition of this latter map with the proper

map Z �X Y ! Y , using 9.3 and 9.4.

10. Reminders from sheaf theory

10.1 Proposition (Extension of sections on compacta). Let F be a sheaf
of sets on a topological space X: If K � X is a compact relatively Hausdor�
subset of X; any section s 2 F.K/ is the restriction of a section of F on an open
neighborhood of K in X:

Proof. Let s 2 F.K/: For any x 2 K there is an open neighborhood Ux of x

in X and a section sx 2 F.Ux/ such that sx jK\Ux
D sjK\Ux

: Since K is locally

compact as a compact Hausdor� space, there is a compact neighborhood Kx of x

in K that is contained in K\Ux: Since K is compact, �nitely many Kx1
; : : : ; Kxn

cover K: Put Ki WD Kxi
; Ui WD Uxi

and si WD sxi
: We have si jKi

D sjKi
.

If n D 1 we are done. Otherwise compactness of K1 \ K2 yields an open

neighborhood W of K1 \K2 in U1 \ U2 with s1jW D s2jW . Moreover, there are

disjoint open neighborhoods U 0
i � Ui of Ki nW for i D 1; 2. Here we use that K

is relatively Hausdor� and that Ki nW is compact. Then the three sections s1jU 0

1
;

s2jU 0

2
and s1jW D s2jW glue to a section on U 0

1[U 0
2 [W which extends sjK1[K2

:

An easy induction �nishes the proof.

10.2 Lemma. On a locally compact Hausdor� space X; taking global sections
with compact support commutes with �ltered colimits, i. e.

lim
�!

.�ŠFi /
�
�! �Š.lim

�!
Fi /

for any �ltered diagram FW I ! Sh.X/.
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Proof. We use in the proof that the colimit of a system of sheaves is the

shea��cation of the colimit in the category of presheaves and that the canonical

morphism from a presheaf to its shea��cation induces isomorphisms on all stalks.

We can assume without loss of generality that I is a partially ordered set.

Injectivity: Let s 2 �Š.X IFj / for some j 2 I . Assume that s goes to zero in

�Š.X I lim�!
Fi /: For every point x 2 X there are an open neighborhood U.x/ and an

index i.x/ with s 7! 0 2 Fi.x/.U.x//. Finitely many U.x/ cover the compact set

.supp s/: Let i be bigger than the �nitely many i.x/ involved. Then s 7! 0 2 Fi .X/

showing injectivity.

Surjectivity for X compact and Hausdor�: Let s 2 �.X I lim
�!

Fi / be given.

For every point x 2 X there are a neighborhood U.x/ in X; an index i.x/ and a

section s.x/ 2 Fi.x/.U.x// with s.x/ 7! sjU.x/. Since X is locally compact we

may assume that the neighborhoods U.x/ are compact. Since X is compact there

is a �nite subset E � X such that the U.x/ with x 2 E cover X: Injectivity proved

above shows that for any x; y 2 E there is some j 2 I such that the images of

s.x/ and s.y/ in Fj .U.x/ \ U.y// coincide. Since E is �nite we can assume that

the index j works for all x; y 2 E: But then the images of the s.x/ in Fj .U.x//

for x 2 E glue to a global section of Fj which represents the inverse image of s

we are looking for.

Surjectivity for X locally compact and Hausdor�: Let s 2 �Š.X I lim�!
Fi / be

given. Since .supp s/ is compact and X is locally compact and Hausdor� we �nd

U � X open with compact closure U and .supp s/ � U . We have already proved

surjectivity of lim
�!

�

�.U IFi

�

! �
�

U I lim
�!

Fi

�

: Hence there is an index j and a

section Qs 2 �.U IFj / with Qs 7! sjU . Then Qsj@U 7! 0 2 �.@U I lim
�!

Fi / and

injectivity proved above shows that Qsj@U 7! 0 2 �.@U IFl/ for some l � j .

Hence the image of Qs in �.U IFl/ and the zero section 0 2 �.X n U IFl/ glue to

a global section Os 2 �Š.X IFl/ with compact support and Os 7! s: This proves the

lemma.

10.3 Definition. A sheaf is called c-soft (for compact-soft) if any section over

a compact set comes from a global section.

10.4 Lemma (filtered colimits of c-soft sheaves). On a locally compact
Hausdor� space X; any �ltered colimit of c-soft sheaves is c-soft.

Proof. Let FW I ! Sh.X/ be a �ltered diagram of c-soft sheaves. The inverse

image functor of sheaves commutes with arbitrary colimits because it has a right

adjoint functor. Let uWK ,! X be the embedding of a compact subset. Hence

the obvious morphism is an isomorphism lim
�!

u.�/Fi
�
�! u.�/ lim

�!
Fi . This and 10.2
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provide isomorphisms

lim
�!

�.KIu.�/Fi /
�
�! �.KI lim

�!
u.�/Fi /

�
�! �.KIu.�/ lim

�!
Fi /

or concisely an isomorphism

lim
�!

�.KIFi/
�
�! �.KI lim

�!
Fi /:

It follows that every section t of the group on the right is the image of a

section s 2 �.KIFi/ for some i 2 I . Since Fi is c-soft there is a global sec-

tion Qs 2 �.X IFi / with QsjK D s: The image of Qs in �.X I lim
�!

Fi / then restricts

to t:

10.5 Lemma. Let F be a sheaf on a topological space X and GF the sheaf of
not necessarily continuous sections of F from [4, II.4.3]. If F is �at, so are GF and
the cokernel cok.F ,! GF/ of the canonical monomorphism F ,! GF:

Proof. An abelian group is �at if and only if it is torsion-free, and these

properties are preserved under products. For x 2 X we have

.GF/x D lim
���!
x2U

.GF/.U / D lim
���!
x2U

Y

u2U

Fu

where U ranges over the open subsets of X containing x: Assume that F is �at.

Then all Fu are �at abelian groups and it is easy to see that .GF/x is torsion-

free and hence �at. Hence GF is �at. Since F ,! GF induces split injections

Fx ,! .GF/x on each stalk the cokernel has �at stalks.

11. Representability and adjoints

11.1 Lemma (Representability Lemma). Let X be a topological space. A
functor �WSh.X/! Abop is representable if and only if it preserves all colimits.

11.2. We learnt the above lemma from [12, Exp. 4, 1.0]. Our proof completes

the proof given there.

Proof. It is clear that any representable functor commutes with colimits.

Assume that � is representable, i. e. there is a sheaf C 2 Sh.X/ together with

natural isomorphisms

�.F/
�
�! ShX .F;C/

for F 2 Sh.X/. Plugging in F D ZU �X for U � X open we obtain an
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isomorphism �.ZU �X /
�
�! C.U /. If V � U is an open subset, we obtain in this

way the horizontal isomorphisms in the commutative diagram

�.ZU �X /
� //

��

C.U /

resV
U

��
�.ZV �X /

� // C.V /

whose left vertical morphism is the image under � of the obvious morphism

ZV �X ! ZU �X .

Now assume that � preserves all colimits. De�ne a presheaf C� by

C�.U / WD �.ZU �X/

with restriction maps coming from the morphisms ZV �X ! ZU �X . We �rst

claim that C� is a sheaf. Let U be an open covering of an open subset V � X .

Consider the obvious coequalizer diagram

M

.U;U 0/2U2

Z.U \U 0/�X
�!
�!

M

U 2U

ZU �X ! ZV �X :

It presents ZV �X as a colimit. Since � commutes with colimits we see that C� is

a sheaf.

Now let us show that C� represents �. Let OpX be the category of open subsets

of X with inclusions as morphisms and let J WOpX ! Sh.X/ be the functor

U 7! ZU �X . For any F 2 Sh.X/ consider the morphisms

�.F/
� // Fun.Sh.X/;Abop/.�; ShX .�;F//

ıJ

��
ShX .F;C�/ Fun.OpX ;Abop/.� ı J; ShX .J.�/;F//

�oo

The upper horizontal morphism is the isomorphism from the Yoneda lemma, the

vertical morphism is obvious, and the lower horizontal morphism comes from

� ı J D C� and the isomorphism ShX .J.�/;F/
�
�! F.�/.

We obtain a morphism 
 W� ! ShX .�;C�/ of functors Sh.X/ ! Abop.

Since 
 is an isomorphism at each object of the form ZU �X and since both

functors � and ShX .�;C�/ commute with colimits, 
 is an isomorphism and C�

represents �:
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11.3 Corollary ([12, Exp. 4, 1.1]). Let X be a topological space and B an
abelian category. A functor ƒWSh.X/ ! B has a right adjoint if and only if it
preserves colimits.

11.4. Again, if we know a right adjoint R exists, it is not di�cult to describe

it: We just need to apply the adjunction isomorphism B.ƒF; B/
�
�! ShX .F; RB/

to the sheaf F D ZU �X to �nd isomorphisms B.ƒZU �X ; B/
�
�! .RB/.U / which

describe the functor R quite explicitly.

Proof. Any left adjoint functor certainly preserves colimits. If ƒ preserves

colimits, apply Lemma 11.1 to the functor B.ƒ.�/; B/ where B 2 B is �xed.

12. Remarks on derived functors

12.1. We will apply the results of this subsection mainly to the category Sh.X/

of sheaves on a topological space X . This category is a Grothendieck (abelian)

category by [7, 18.1.6.(v)]. We do not need the full strength of Proposition 12.2

below; the results of [7] are su�cient for our purposes, cf. 12.3.

12.2 Proposition ([1, Proposition 3.13]). LetA be a Grothendieck category.
Then there is a co�brantly generated model structure on C.A/ such that the weak
equivalences are the quasi-isomorphisms and the co�brations are the monomor-
phisms. We call it the injective model structure on C.A/:

12.3. The �brant objects of this model structure on C.A/ are precisely the

objects that are h-injective and componentwise injective ([7, Proposition 14.1.6 in

the setting of Section 14.3] where the class of trivial co�brations is called QM

and the �brant objects are called QM-injective). Any bounded below complex

of injective objects is h-injective ([7, 13.2.4]) and hence �brant. The axioms of

a model structure imply that any object of C.A/ admits a trivial co�bration to a

�brant object. This is also proved in [7, Theorem 14.1.7].

12.4 Lemma. Let A be a Grothendieck category and F WA ! B a left exact
functor to an abelian category B. We also denote by F WK.A/ ! D.B/ the
composition of the induced functor K.A/ ! K.B/ on homotopy categories with
the canonical functor K.B/! D.B/:

(a) F WK.A/! D.B/ admits a right derived functor RF WD.A/! D.B/:

(b) If F WA ! B is of �nite cohomological dimension, then for all component-
wise F -acyclic complexes S 2 C.A/ the obvious morphism F.S/! RF.S/

in D.B/ is an isomorphism.
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Proof. We equip C.A/ with the injective model structure from Proposi-

tion 12.2. As mentioned in 12.3, its �brant objects are h-injective so that we get (a).

(b). Let S � C.A/ be the full subcategory of componentwise F -acyclic

complexes. Let T 2 S be acyclic. We claim that F.T / D 0 in D.B/: Let K i

be the kernel of T i ! T iC1: The short exact sequence K i�1 ,! T i�1
� K i

provides isomorphisms H p.RF.K i //
�
�! H pC1.RF.K i�1// for all p > 0: By

induction we obtain H p.RF.K i //
�
�! H pCN .RF.K i�N // for all p > 0 and all

N 2 N: Since F has �nite cohomological dimension this shows that K i is F -

acyclic. Hence we obtain short exact sequences F.K i�1/ ,! F.T i�1/ � F.K i /

and see that F.T / is acyclic.

Now let S ! I be a �brant resolution of some object S 2 S: By 12.3 any

�brant object is componentwise injective thus we have I 2 S: Hence the cone of

S ! I is an acyclic object of S and mapped to zero in D.B/ by the above claim,

so that F.S/! F.I / is a quasi-isomorphism.
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