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Proper base change for separated locally proper maps
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ABsTRACT — We introduce and study the notion of a locally proper map between topological
spaces. We show that fundamental constructions of sheaf theory, more precisely proper
base change, projection formula, and Verdier duality, can be extended from continuous
maps between locally compact Hausdorff spaces to separated locally proper maps
between arbitrary topological spaces.
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1. Introduction

The proper direct image functor f; and its right derived functor R f; are defined
for any continuous map f:Y — X of locally compact Hausdorff spaces, see
[6, 10, 11]. Instead of f; and R f; we will use the notation f(;y and f; for these
functors. They are embedded into a whole collection of formulas known as the six-
functor-formalism of Grothendieck. Under the assumption that the proper direct
image functor f(;) has finite cohomological dimension, Verdier proved that its
derived functor f; admits a right adjoint £

In this article we introduce in 2.3 the notion of a locally proper map between
topological spaces and show that the above results even hold for arbitrary topolog-
ical spaces if all maps whose proper direct image functors are involved are locally
proper and separated. Every continuous map between locally compact Hausdorff
spaces is separated and locally proper by 2.11, and in this case our results specialize
to the classical theory.

The basic properties of locally proper maps are established in Section 2. In
particular a map from a topological space to a one point space is separated and
locally proper if and only if our space is locally compact Hausdorft. Since the
properties of being separated and locally proper are moreover stable under base
change by 9.11 and 2.7, a separated locally proper map can be interpreted as a
continuous family of locally compact Hausdorft spaces.

Our main sheaf theoretic results concerning separated locally proper maps
are the proper base change 4.4, the projection formula 6.2, the derived proper
base change 5.10, the derived projection formula 6.3, and Verdier duality 7.7.
Theorem 8.3 explains how all the previous results work in the setting of unbounded
derived categories.

In the following we list three applications of our extension of the classical
theory described above.

LocaLLy cLOSED EMBEDDINGS. An embedding i: Z < X of topological
spaces is always separated, and by 2.5 it is locally proper if and only if i(Z) is
a locally closed subset of X. In this case the functor i;y = i) is the extension by
zero and the functor (?i' maps a sheaf to its p-th local cohomology sheaf.

HoMOTOPY INVARIANCE OF SHEAF COHOMOLOGY. Homotopy invariance of
sheaf cohomology can be deduced, as explained in [6, 2.7], from the fact that given
a space X and a complex of sheaves F on X, for the projection 7: X x [0, 1] - X
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the unit of the adjunction of derived direct and inverse image is an isomorphism
F S men*F. Now for an arbitrary topological space X the map = is always
proper and separated, so proper base change in the generality of this article allows
to reduce the claim to the case when X is a one point space, which is treated in
the literature, say in [6].

EQUIVARIANT DERIVED CATEGORIES. Fix a topological group G and let X be
a G-space, i.e. a topological space with a continuous G-action G x X — X.
Let EG be a contractible space with a topologically free G-action, e.g. the
Milnor construction. Then by homotopy invariance of sheaf cohomology the map
EG — {pt}is acyclic,and sois p:EG x X — X.Letg:EG x X - EG xg X
be the quotient map. Then the bounded below equivariant derived category can
by [2, 2.9.4] be described as the full triangulated subcategory of DT(EG x¢g X)
given by

D{(X):={F e DY (EG x¢ X) | there exists § € DT (X)
such that ¢*F =~ p*G}.
Now let f: X — Y be a G-equivariant continuous map of locally compact

Hausdorff G-spaces or even a G-equivariant separated locally proper map of
arbitrary G-spaces. We obtain a diagram

EG xg X EG x X X
f f f
EG xg Y EGxY Y

whose vertical maps are induced by f. Both squares are cartesian so that f and
f are separated locally proper by 2.7, 2.9, 9.11. Note however that, given a locally
compact Hausdorft space Z, the spaces EG x Z and EG x¢g Z are, in general,
not locally compact Hausdorff. Derived proper base change 5.10 in the generality
of this article nevertheless shows that f; induces a functor fi: D ; (X)—>D g (Y)
which generalizes the proper direct image functor of [2].

In the hope that the reader is now sufficiently motivated, let us just add that
from our point of view the main new ingredients are the definition of a locally
proper map and the proof of the underived form of proper base change. Once
this is done, we just have to document that the standard arguments work in this
generality as well.



226 O. M. Schniirer — W. Soergel

2. Locally proper maps

2.1. A topological space is called compact if every open covering has a finite
subcovering. A topological space is called locally compact if every neighborhood
of any point contains a compact neighborhood of this point. We do not require the
Hausdorff property in either case.

2.2. The definitions of proper and separated maps and their basic properties
are recalled in Section 9.

2.3 DeriNiTiON. A map f:Y — X of topological spaces is called locally
proper if it is continuous and if given any point y € Y and any neighborhood V
of y there are neighborhoods A C V of y and U of f(y) such that f(A4) C U and
the induced map f: A — U is proper.

2.4. The constant map from a topological space Y to a space consisting of a
single point is locally proper if and only if Y is locally compact.

2.5 LEMMA. An embedding i:Y — X of topological spaces is locally proper
if and only if i (Y) is a locally closed subset of X.

Proor. We can assume that i is the inclusion of a subset ¥ of X with its
induced topology. Recall from 9.3 that an embedding is proper if and only if it is
closed.

Assume that i is locally proper. Given y € Y there are a neighborhood A of y
in Y and a neighborhood U of y in X with A C U such that the inclusion A C U
is closed. By replacing U with a smaller open neighborhood of y and A by its
intersection with this neighborhood we can assume that U is open in X. Since 4
is a neighborhood of y there is an open subset W C X suchthaty e WNY C A.
Then the inclusion WNA C WNU isclosedand WNA =WNY =(WnNU)NY.
This shows that Y is a locally closed subset of X.

The converse implication is obvious. O

2.6. Every composition of locally proper maps is locally proper. This follows
easily using that a composition of proper maps is proper by 9.3 and that any base
change of a proper map is proper by 9.4.
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2.7 LEMMA (LOCAL PROPERNESS AND BASE CHANGE). Local properness is
stable under base change. More precisely, let

w—2 .y

z—2 . x

4

be a cartesian diagram of topological spaces and continuous maps. If f is locally
proper so is g.

Proor. Let w € W together with a neighborhood S C W be given. Let us
identify W = Z xx Y. Then w = (g(w), ¢g(w)). We find neighborhoods V C Y
of g(w)and U C Z of g(w) suchthat U xx V C S. By replacing S by U xx V
we can assume that the diagram

U———X

is cartesian. We find neighborhoods A C V of ¢(w) and N C X of f(g(w)) such
that f: A — N is proper. The same is true for the map g:¢~'(4) — p~'(N)
obtained by base change, by 9.4. U

2.8. The property of being locally proper is local on the source. Namely, let
f:Y — X be amap and let V be an open covering of Y. Then f is locally proper
if and only if its restrictions f|y:V — Y are locally proper for all V € V, as
follows easily using 2.5.

2.9. The property of being locally proper is local on the target. Namely, let
f:Y — X be amap and let U be an open covering of X. Then f is locally proper
if and only if the induced maps f~!(U) — U are locally proper for all U € U, as
follows easily using 2.7.

2.10 LemMa. Let g:Z — Y and f:Y — X be continuous maps of topo-
logical spaces. Assume that f o g is locally proper and that f is separated. Then
g is locally proper.
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Proor. Let V C Z be a given neighborhood of a point z € Z. Since f o g is
locally proper, there are neighborhoods A C V of z and U of f(g(z)) such that
f o g induces a proper map A — U. This map factors as

A5 vy Lou

where g’ and /' are induced by g and f respectively. Since f” is separated by 9.11,
Lemma 9.12 shows that g’: A — f~!(U) is proper. This shows that g is locally
proper. U

2.11 CoroLLARY. Every continuous map g:Z — Y from a locally compact
Hausdorff space Z to a Hausdor{f space Y is separated and locally proper.

Proor. Since Z is locally compact and Y is Hausdorff, g is locally proper
by 2.10. Since Z is Hausdorff, g is separated. O

2.12 ProrosiTioN. Every proper and separated map is locally proper.

2.13. This generalizes the fact that every compact Hausdorff space is locally
compact.

Proor. Let f:Y — X be aproper and separated map. Let y € Y together with
an open neighborhood V' C Y be given. Put x := f(y) and consider Z = Y \ V.
For every point z € f~!(x) N Z there is an open neighborhood W, C Y of z
and an open neighborhood B, C V of y with W; N B, = @. Finitely many of
these W, cover the compact set f~1(x) N Z. Let W be the union of these sets
and B the intersection of the corresponding sets B,. Then y € B, B is open in
V,(f"Y(x)NZ) Cc W,WisopeninY,and BN W = @. Now we find an open
neighborhood U C X of x with (f~1(U) N Z) C W, we may for example take
the complement of the closed subset f(Z N (Y \ W)) of X. Then the closure A
of BN f~Y(U)in f~1(U) has empty intersection with f~!(U) N Z and hence
is a neighborhood of y contained in V' such that the induced map f: A — U is
proper. O

3. Proper direct image

3.1. By a sheaf we mean a sheaf of abelian groups. The constant sheaf with
stalk Z on a topological space X is denoted Zy. Given a sheaf ¥ on X we
abbreviate as usual I'F = ['(F) = ['(X;F) = F(X) its set of global sections
and write F(Z) = I'(Z;F) = ['(Z; F|z) if Z C X is an arbitrary subset of X.
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We write Sh(X) for the abelian category of sheaves on X. Given a complex F
in Sh(X) we denote its p-th cohomology sheaf by H”(F). We write C(X) for
the abelian category of complexes in Sh(X), denote the corresponding homo-
topy category by K(X) and the corresponding derived category by D(X). Let
DT (X) C D(X) be the full triangulated subcategory consisting of complexes
with bounded below cohomology sheaves.

Given a continuous map f of topological spaces we use the notation f*) and
Jx) for the inverse and direct image functors of sheaves, in contrast to the usual
notation f~! and f in the literature, and denote their derived functors by f* and
f«, in contrast to the usual notation L /* and R f,.

Given a category C and objects A, B € C we denote the set of morphisms by
C(A, B) or Home(A4, B). We write Shy (A, B) instead of (Sh(X))(4, B).

3.2 DerntTiON. Let f:Y — X be a continuous map of topological spaces.
The proper direct image f(1y: Sh(Y) — Sh(X) is defined by

(foF)U) :={s € F(f~1(U)) | f:(supps) —> U is proper}.

Since by 9.5 properness is local on the target, fi)F C fx)J is a subsheaf of sets
and by 9.7 even a subsheaf of abelian groups. Obviously, f(1) is a left exact functor.
For proper f we have f1) = f) by 9.3. Given a sheaf 5 on Y we denote by

NI =T(3) =T(Y:F) = (c)yF)(X)

the abelian group of sections with compact support where c is the unique map from
Y to a space consisting of a single point. If Z C Y is any subset we abbreviate
Fy(Z;ff) = r;(Z;fﬂz).

3.3. Usually the functor fy is studied for continuous maps of locally compact
Hausdorff spaces. Our aim is to show that f() behaves well in a more general
setting, namely for separated locally proper maps f.

3.4. Leti:Y < X be an embedding of a locally closed subset. Then i) J is
the extension of ¥ € Sh(Y') by zero which is denoted by /\F in [5, Exp. I] and
by 57X in [4, Theorem 2.9.2]. The functor i¢y: Sh(Y) — Sh(X) is exact and has a
right adjoint functor i ® which is denoted ' in [5, Exp.I]. If Y is closed in X we
have i(1) = i(x). I Y is open in X we have i) =i,

3.5. Let f:Y — X be a continuous map and J a sheaf on Y. A global section
s € (fxF)(X) is the same thing as a global section s’ € F(Y). The supports of
these sections are related by f(supps’) = supps.
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3.6 THEOREM (ITERATED PROPER IMAGES). Given continuous maps g:Z — Y
and f:Y — X with [ separated, the usual identity fx) o gx) = (f 0 &) of
functors Sh(Z) — Sh(X) restricts to an identity

fmogny =(fo9q.

Proor. Let F be a sheaf on Z and U C X an open subset and let
s € (fn(gwI))(U) be a section. We can interpret s also as a section
5" € (g F)(f~1(U)) orasasection s” € F(g~'(f~1(U))), and also as a section
te((f °QwmHWU).

Assume that s is in (fi)(g1F))(U). Equivalently, this means that s’ is in
(gnP(f~1(U)) with f:(supps’) — U proper or, equivalently, that s” is in
F(g~N(f~1(U))) with g: (supps”) — f~1(U) proper and f:g(supps”) — U
proper. Here we use 3.5 and the fact that g(supp s”) is closed in £ ~!(U). Then the
induced map g: (supp s”) — g(supps”) is proper by 9.12 and so is the composition
f og:(supps”) — U by 9.3. This means thatt € ((f o g)1yF)(U). We have not
yet used that f is separated.

Conversely, assume that t € ((f 0g))J)(U). This means that the composition
f o g:(supps”) — U is proper. Since f is separated, g: (supps”) — f~1(U)
is proper by 9.12, so s is in (g0yF)(f~(U)) and (supps’) = g(supps”). This
and 9.6 imply that f: (supps’) — U is proper. Hence s € (f1(gF))(U). O

4. Proper base change

4.1. In the following we will often work with a cartesian diagram
q

7?2 . x

w

g

of topological spaces and continuous maps. Let us refer to it as “given a cartesian
diagram f o q = p o g” without mentioning the spaces involved.

4.2 LEmMA. Given a cartesian diagram f o q = p o g of topological spaces
as in 4.1 the identity f(x) © ) = P(x) © &(x) induces a morphism

Joy o qe) —> P © 8@y

of functors Sh(W) — Sh(X).



Locally proper maps 231

Proor. Let G be a sheaf on W. It is enough to prove the claim on global
sections, i.e. that the identity I'f(+)¢x)G = T'P«)gx) 3G induces a morphism
Lfnq9 — T'px)g 9. Similarly as before, we interpret I'f(1q(x) G as the group
of all s € I'G with f:¢g(supps) — X proper. The cartesian diagram

g~ " (q(supps)) g(supps)

[ . [f

V4 X

and 9.3, 9.4 show that g: (supps) — Z is proper. Hence s € I'p)g(1) 9. O

4.3. Given a cartesian diagram f og = p o g of topological spaces as in 4.1
there is a canonical morphism

P foy — g™
of functors obtained as follows: the adjunction (g™, d(x)) and 4.2 provide mor-
phisms fuy — f0ydwd® — pgng™ so that we can use the adjunction

(P™, psy)-

4.4 Tueorem (Proper base change). Let a cartesian diagram f oq = po g
of topological spaces as in 4.1 be given. Assume that the vertical maps f and g are
separated locally proper. Then the morphism constructed in 4.3 is an isomorphism

p® o foy — gayoq™

of functors Sh(Y) — Sh(Z).

4.5. If f and g are even separated and proper, we obtain by 2.12 an isomor-
phism p™ f.) — gg™ of functors.

Proor. We need to show that our morphism of functors evaluated at & €
Sh(Y') is an isomorphism

P fnF — gq™7.

A morphism of sheaves is an isomorphism if and only if it induces isomorphisms
on all stalks. Hence we can assume without loss of generality that Z consists of
a single point x € X. In this case the theorem claims that the obvious map is an
isomorphism

(foyF)x — Ti(f 1 (x); F).
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Injectivity: Let U C X be an open neighborhood of x and s € F(f~1(U)) a
section with (supps) — U proper but s|s—1(,) = 0. Then x is not in the closed
subset f(supps) C U.If V C U is the open complement of this subset, the
restriction of our section s € (fiyF)(U) to V alias f~1(V) is zero.

Surjectivity: Let s € Ty(f~'(x);F). Denote by F the étale space over Y
associated to F. We view s as a continuous section s: f~'(x) — F with compact
support K := supps C f~!(x). Since f is separated, 9.10 and 10.1 allow us
to extend s|x to a continuous section §:C — F where C C Y is an open
neighborhood of K. By shrinking C we can assume in addition that § and s
coincide on C N f~1(x) (the subset of C N f~!(x) where the restrictions of
s and § coincide is open in C N f~!(x) and contains K, hence is of the form
C’'NC N f~!(x) for some open subset K C C’ C Y ; replace C by C’). Hence s
and § glue to a continuous section C U £~ (x) — 7.

We claim that there is a subset B C Y and an open subset U C X with
K C B°C BCC and f(B) C U suchthat f: B — U is proper.

Indeed, since f is locally proper, any y € K has a neighborhood A4, in Y
contained in C such that there is an open neighborhood U, C X of f(y) = x
with f(A4y) C Uy and f: Ay, — U, proper. Since f is separated, 4, C f~1(Uy)
is a closed subset by 9.3, 9.11, and 9.12. Finitely many Aj cover K, and we define
U as the intersection of the corresponding sets U, and B as the union of the
corresponding sets A, intersected with f~!(U). Then f: B — U is proper by 9.7,
proving the claim.

Certainly B® C f~1(U) is an open subset, and B C f~!(U) is closed
by 9.12. Let 3B = B\ B° be the boundary of B with respect to f~!(U). Since
(supp $) is closed in C, the intersection (supp ) N dB is closed in B and hence
the map f: (supp$§) N dB — U is proper. Its image does not contain x because
£~ Y(x) N (supps) N B = K N dB = @. By replacing U with its open subset
U\ f((supp§)NdB) we can assume that (supp §) NdB = @. Hence the continuous
map §|p: B — F and the zero section f~'(U)\ B® — F coincide on 3B and glue
to a continuous map f~'(U) — F alias an element of F( f ~'(U)) whose support
is equal to (supp §) N B and hence proper over U. We deduce surjectivity. O

4.6 LemMA. If f:Y — X is a separated locally proper map, the proper direct
image functor fuy:Sh(Y') — Sh(X) commutes with filtered colimits.

Proor. Let F:1 — Sh(Y) be a filtered diagram. We claim that the obvious
morphism is an isomorphism

lim( fiy ) —> o (lim ).
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Since the inverse image functor of sheaves commutes with arbitrary colimits,
proper base change 4.4 allows to reduce to the case that X consists of a single
point. Then Y is a locally compact Hausdorff space and the claim is well known
and recalled in 10.2. O

5. Derived proper direct image

5.1 DeriNtTiON. Given a continuous map f:Y — X, a sheaf on Y is called
f-c-soft if its restriction to every fiber of f is c-soft in the sense of 10.3.

5.2. This definition seems to be useful just for separated locally proper maps.

5.3. If our map f:Y — X is separated, every flabby sheaf and in particular
every injective sheaf on Y is f-c-soft by 10.1.

5.4. Given a separated locally proper map f:Y — X, arbitrary direct sums
alias coproducts, and even filtered colimits of f-c-soft sheaves are f-c-soft again.
In fact, the inverse image functor of sheaves commutes with arbitrary colimits, and
every filtered colimit of c-soft sheaves on a locally compact Hausdorff space is c-
soft by 10.4.

5.5 LemMA. Let f:Y — X be a separated locally proper map. Then any
f-c-soft sheaf on Y is f)-acyclic.

Proor. Let F € Sh(Y) be f-c-soft and F < J* an injective resolution.
We need to show that finF < f1)J* is exact. We test this on the stalks at an
arbitrary x € X. Let j be the inclusion f~!(x) < Y. By proper base change 4.4
it is enough to show exactness of I'(j ®F) — T'(j *J*). But this follows from
5.3 and [6, Proposition 2.5.8, Corollary 2.5.9]. Ol

5.6. Let g: Z — Y be a continuous map of locally compact Hausdorff spaces.
If § € Sh(Z) is c-soft so is g1yF € Sh(Y) by [6, Proposition 2.5.7].

5.7 LEMMA. Let g: Z — Y and f:Y — X be separated locally proper maps.
IfF € Sh(Z) is an (f o g)-c-soft sheaf on Z, its proper direct image g3 is an
f-c-soft sheafon Y.
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Proor. Given a point x € X consider the following diagram with two carte-
sian squares.

O A 09 a—/
v g
flo—Il vy

u S

{x}%X

Proper base change 4.4 shows j ™ g F =~ vq)k*F. By assumption, the sheaf
k™ F is c-soft and both g~ 1( £~ (x)) and f~!(x) are locally compact Hausdorff
spaces. Hence 5.6 shows that v)k®F =~ j® g F is c-soft. This proves the
claim. O

5.8 DEerintTION. If f:Y — X is a continuous map we denote the right derived
functor R f(1: D(Y) — D™ (X) of the left exact proper direct image functor

fi:Sh(Y) — Sh(X) by fi := R fo.

5.9 THEOREM (ITERATED DERIVED PROPER IMAGES). Let both g:Z — Y
and f:Y — X be separated locally proper maps. Then the identity fuy o gy =
(f o g)q) from 3.6 gives rise to an isomorphism

(fogh—> fiog
of triangulated functors Dt (Z) — DT (X).
Proor. It is enough to show that the functor g maps injective sheaves to

Jfw-acyclic sheaves. Every injective sheaf J € Sh(Z) is (f o g)-c-soft by 5.3.
Then gJ € Sh(Y) is f-c-soft by 5.7 and hence f(1)-acyclic by 5.5. O

5.10 THEOREM (DERIVED PROPER BASE CHANGE). Let a cartesian diagram
f oq = po g oftopological spaces as in 4.1 be given. Assume that the vertical
maps [ and g are separated and locally proper. Then, in the space of triangulated
functors DT (Y) — DT (Z), the obvious morphisms are isomorphisms

R(p™ o fu)) — p*o fi and R(gwoq™) — giog*
so that proper base change 4.4 yields an isomorphism

profi— gog*.
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Proor. If J is an injective sheaf on Y, it is f-c-soft by 5.3, its inverse image
g™3J on W is g-c-soft and hence g-acyclic by 5.5. This shows that
R(gmoq™) — giog®

is an isomorphism. The rest of the proof is obvious. O

6. Projection formula

6.1. Let f:Y — X be acontinuous map and F € Sh(Y) and § € Sh(X). Then
we obtain a canonical morphism

() ®F — fm(F & f*9)

of sheaves by adjunction from the composition
FOUnF®9 = O fF 8 fU5—F o 15,

where the first morphism is the usual isomorphism encoding the compatibility
of tensor product and inverse image and the second morphism comes from the
adjunction. This morphism obviously induces a morphism

(foH) ® S — fuy(F e fP9)

on the level of proper direct images.

6.2 THEOREM (PROJECTION FORMULA). Let f:Y — X be a separated locally
proper map and F € Sh(Y) and G € Sh(X). If G is flat the morphism from 6.1 is
an isomorphism

(fo%) ® S — f(F® fM9).
If F is in addition assumed to be f-c-soft, the same is true for ¥ @ f ™.

Proor. Proper base change 4.4 reduces the first claim to the case that X

consists of a single point which is known, see [6, Proposition 2.5.13]. The last
claim follows from [6, Proposition 2.5.12]. O

6.3 THEOREM (DERIVED PROJECTION FORMULA). Let f:Y — X be separated
locally proper. Then there is a canonical isomorphism

(i) @5 — AT & f*9)
which is natural in ¥ € DY (Y) and G € DT (X).
Proor. We can assume that F is a bounded below complex of injective sheaves

and that G is a bounded below complex of flat sheaves. Then the claim follows from
the underived projection formula 6.2 and 5.5. O
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7. Verdier duality

7.1. If Y is a topological space, G a sheafon Y and j:V C Y the embedding
of an open subset we define Gycy = j(g)j(*)9 = j(!)j(’)S € Sh(Y), cf. 3.4.
Since both j(1y and j® = ;O are exact we have Gycy := jij*G in the derived
category. We write Zy cy instead of (Zy)ycy = joZy.

7.2 LEMMA. Let f:Y — X be separated and locally proper. Then a sheaf
G € Sh(Y) is f-c-soft if and only if the sheaf Sycy is fuy-acyclic for all open
subsets V C Y. In particular, if G is f-c-soft then so is Sycy.

Proor. Denote by i = iy:{x} — X the embedding of a point x € X. A sheaf
JF e Sh(Y) is fy-acyclic if and only if H"if /1T # 0 implies v = 0 forall v € Z
and x € X.

Let j: V C Y be the inclusion of an open subset and consider for arbitrary
x € X the following diagram with two cartesian squares.

l

VN f(x) 1%
u J
S £ Y
g f
{x)C d X

Several proper base changes 5.10 show
i*fiSvey = @k Gvey = k™ jij*G = quil*j*G = g™k g.

Using the above criterion, we deduce that Gycy is fy)-acyclic if and only
if the sheaf (k*SG)yns-1(x))cr-1(x) is T1-acyclic for every x € X. Now we
use [6, Exercise 11.6]. For the last claim use that proper base change 4.4 implies
that (Sucx)vcx = Sunvcx for open subsets U and V of X. O

7.3 LEMMA. Let f:Y — X be a separated locally proper map with fy of
finite cohomological dimension < d. If

90_>____>9d—1_>9d_>0

is an exact sequence in Sh(Y) and G°,G', ..., 5% " are f-c-soft then so is 2.
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Proor. We use 7.2. Let V' C Y be an open subset. We have to show that
(G%)vey is fay-acyclic. The sequence

Oyey — - — (G Hyey — (GDycy — 0

is exact in Sh(Y) and all sheaves (§%)ycy. ..., (G Vycy are fu)-acyclic. Let
X! be the kernel of G — Git! fori = 0,...,d — 1. For p > 0 we obtain
isomorphisms

R? fiy(§))vey) — R7F! fiy (K y) — ... — RPT fy (K oy) = 0.
This shows that (9d Jvcy is fuy-acyclic. O

7.4 LEMMA. Let f:Y — X be a separated locally proper map with fy of
finite cohomological dimension. Let X € Sh(Y') be a flat and f -c-soft sheaf. Then
S ® K is f-c-soft for any sheaf G € Sh(Y).

Proor. Any sheaf G on Y has a resolution
.—>G§'—g"—>g-—0

where each G/ is a direct sum of sheaves of the form Zycy with V C Y open.
We obtain an exact sequence

. — Gl 929K —9RK— 0.

By 7.3 itis sufficient to show that each §/ ® K is f-c-soft. But G/ ® K is isomorphic
to a direct sum of sheaves of the form Zycy ® X =~ Kycy which are f-c-soft
by 7.2, so that we can use 5.4. O

7.5 ProposiTION. Let f:Y — X be a separated locally proper map with f
of finite cohomological dimension, and let X € Sh(Y') be a flat and f -c-soft sheaf.
Then the functor

Iy == Jiy(— ® X):Sh(Y) —> Sh(X)

preserves colimits and therefore by 11.3 admits a right adjoint fg(cl). Furthermore
f(,gf is exact and therefore its right adjoint fJ(C!) maps injective sheaves to injective
sheaves.

7.6. Any morphism of functors induces a morphism in the opposite direction
between the adjoint functors, if they exist. In particular, any morphism X — £ of
flat f-c-soft sheaves will lead to a morphism f, L(!) — g(g).
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Proor. The functor (— ® X) preserves colimits, is exact, and maps every
sheaf to an f-c-soft sheaf by 7.4. Then f(,jf is exact by 5.5 and preserves colimits,
because it preserves filtered colimits by 4.6, in particular direct sums, and is right
exact. Therefore, we can apply 11.3. The remaining claim is obvious. U

7.7 THEOREM (VERDIER DUALITY). Let f:Y — X be a separated locally
proper map with fuy:Sh(Y) — Sh(X) of finite cohomological dimension. Then
the derived proper direct image functor fi: DY (Y) — DV (X) has a right adjoint
functor

DY (X) — DT(Y).

Proor. Let d be the cohomological dimension of f(1). Let Zy — X alias
0— Zy <> X° — K1 —. %0

be the Godement resolution truncated in degree d: by this we mean that each X’
fori = 0,...,d — 1 is the sheaf of not necessarily continuous sections of the
cokernel of the previous map and that K¢ is the cokernel of the previous map.
Then X consists of flat sheaves, by 10.5, and even of f-c-soft sheaves, by 5.3
and 7.3.

Given F € C*(X) we construct a double complex with entries fggl »(F?) by
applying our functors from 7.5. We denote its total complex by fﬂg)(fr'"). In this
way we obtain a functor

Dt (X) — CF(Y)
which is right adjoint to the functor
1E = fn(-®%):CH(EY) — CT(X)

and transforms complexes of injective sheaves to complexes of injective sheaves
by 7.5.
Let G € CT(Y) be arbitrary. Since X is a bounded complex of flat sheaves we

can assume that § ® X = G ® K in D+ (Y). Since X is a bounded complex of
flat and f'-c-soft sheaves, 7.4 and 5.5 show that § ® X consists of f-c-soft and
hence f(1)-acyclic sheaves. The quasi-isomorphism Zy — X then shows that the
obvious morphisms
IS = (S ®K) — fil§®K) = /(G R K) < fi(9)
are isomorphisms in DT (X). Let
i D¥(X) — DH(Y)

be the right derived functor of fgg): KT (X) — D™(Y). As usual it may be
computed using injective resolutions.
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Now let § € C*(Y) be arbitrary and F € CT(X) a complex of injective
sheaves. Then the facts stated above show that all maps in the following diagram
are isomorphisms.

~

Homg (x)(f1y (S ® X). F) Homky) (5. £.9(9)

Hompx) (f1(§ ® XK), )

Homp(x)(fi(G ®" X)., )

Hompx)(f1(9), F) Homp(y) (9, f5(9))

All maps are natural in complexes G € C*(Y) and complexes of injective sheaves
F € C*(X). This yields the desired adjunction by setting ' = fi\.. O

8. The case of unbounded derived categories

8.1. We finally explain how our results generalize to unbounded derived cate-
gories as soon as the relevant involved maps f are separated locally proper with
fq) of finite cohomological dimension.

8.2. The derived functors f*, f., RHom, ®L all exist on the level of un-
bounded derived categories (see [7, Ch. 18]) and so does f; by 12.1 and 12.4.

8.3 TueorewM (cF. [10, THEOREM B]). Let f:Y — X be a separated locally
proper map such that fy has finite cohomological dimension.

(a) The derived proper direct image functor fi: D(Y) — D(X) has a right
adjoint functor f': D(X) — D(Y).

(b) If g:Z — Y is another separated locally proper map such that gy has
finite cohomological dimension then f o g is separated locally proper with
(f o g)q of finite cohomological dimension and there are isomorphisms

(fogh— fiogiand (f og)' < g'o f' of triangulated functors.
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(¢) Let a cartesian diagram f o q = p o g of topological spaces as in 4.1 be
given. Then g is separated locally proper with gy of finite cohomological
dimension and there are isomorphisms

profi—>gioq* resp. flopi<—gqiog

in the space of triangulated functors from D(Y) to D(Z) resp. from D(Z) to
D(Y).

(d) Forall A€ D(Y)and B, C € D(X) there are natural isomorphisms
(fi) @B — fi(A®" f*B),
RHom (fiA, B) «— f. RHom (A, f'B),

F'RHom (B, C) «— RHom (f*B, f'€).

8.4. Verdier duality for unbounded derived categories has been proved in [10]
for continuous maps f between locally compact Hausdorft spaces that satisfy a
condition that is slightly weaker than our condition on the cohomological dimen-
sion of f(). It is also possible to deduce it from Brown representability for well
generated triangulated categories [9, Theorem 1.17], [8, Theorem 0.2].

Proor. (a). The proof of Verdier duality in the bounded case given in 7.7
generalizes easily: When we omit all upper indices + there, 12.4.(b) and the quasi-
isomorphism Zy — X still show that the obvious morphisms

fE(©) = fiy(§®K) — fG®K) = fi(S 8" K) «— £i(5)

are isomorphisms in D(X). Thus f(,g)c maps acyclic complexes to acyclic com-
plexes, and this implies that the functor

B:cx) — ()

maps h-injective complexes to h-injective complexes. Apart from these additions,
the argument is the same.

It is enough to prove the first of the isomorphisms stated in each of the
claims (b), (c), and (d) because the remaining isomorphisms are formal conse-
quences using the Yoneda lemma and various adjunctions, most prominently the
Verdier duality adjunction ( fi, f').
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(b). The composition f og is separated locally proper by 2.6 and 9.11; moreover,
(f o g)() has finite cohomological dimension by 5.9 and 8.5. Let € C(Z) be a
fibrant object. Then all components of F are injective sheaves by 12.3. As in the
proof of 5.9 we see that all components of g JF are f(y-acyclic. Lemma 12.4.(b)
shows that the obvious morphism

folend) — flgnT)

is an isomorphism in D(X). Since J is h-injective we have g JF = gFin D(Y)
and fiy(gyT) = (f o g)(F) = (f o g)1(F) in D(X) where 3.6 is used for the
equality.

(c). Clearly, g is separated locally proper by 9.11 and 2.7. Derived proper base
change 5.10 reduces the question whether g has finite cohomological dimension
to the case that Z = {x} for some x € X and W = f~!(x). Thenq: W — Y is
an embedding and any sheaf & € Sh(W) satisfies £ = q(*)q(*)E = q*qx €. This
and derived proper base change again shows g\& = 8197 q )€ < P* fig) €. This
shows that g has finite cohomological dimension.

Let Z again be arbitrary. Let ¥ € C(Y) be a fibrant object. As in the proof
of 5.10 we see that g™ J consists of g()-acyclic sheaves. Then

gn(@®F) = 21(@®F) = g1(¢*F)

in D(Z) where the first isomorphism comes from 12.4.(b) and the second one from
the isomorphism ¢™F = ¢*F in D(W). Now use proper base change 4.4.

(d). Following [10, Proposition 6.18] we prove the derived projection formula.
From 6.1 we obtain a natural morphism

(%) (foyh) @ B —> fiy(A® fPB)

in C(X). Assume that A is a complex of f-c-soft sheaves on Y and that B is
an object of P(X) in the notation of [10, Sect. 5]. In particular, B is h-flat,
—

and A consists of f1)-acyclic sheaves by 5.5. Hence the left hand side of ()
computes ( /iA) ®" B by 12.4.(b). On the other hand, f™*)B is certainly h-flat so
that AQL f B = A® f™®B. We claim that A® f *)B has f-c-soft components.
If B’ is a bounded above complex of sheaves on X whose components are direct
sums of sheaves of the form Zycx with U C X open, i.e. B" € P(X) in the
notation of [10], then all components of A ® f*) B’ are f-c-soft as direct sums of
f-c-soft sheaves A? ® f™*) B, by 5.4 and 6.2. Recall that 3 (X) is the closure

—
of P(X) under certain filtered colimits (see [10, 2.9]) in C(X). Since (A ® —)
commutes with filtered colimits and f *) commutes with all colimits, this implies
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our claim that A® B has f-c-soft components (using 5.4 again). Then 12.4.(b)
again shows that the right hand side of (x) computes fi(A ® f*B).

Hence it is certainly enough to show that (x) is an isomorphism. Since all the
functors fu), ® and f™* commute with filtered colimits, we can assume without
loss of generality that B € 3(X) and even that B = Zyx for some open subset
U C X.Butin this case (x) is an isomorphism by 6.2. This establishes the derived
projection formula. O

8.5 CoroLLARY. In the setting of 8.3 let d be the cohomological dimension
of fuy. Then

A(DE%(Y)) € D°(X),
AD=0(Y)) c D= (X),
F(D=°(x)) c D=74(Y).

Proor. The first claim holds (for any continuous map f) because any object
of DZ%(X) is isomorphic to a complex of injective sheaves whose components in
degrees < 0 are zero. We have seen in the above proof that f(G) x~ f(,?)c (9) in
D(X). Hence fi(D=°(X)) c D=*4(Y). Then f'(DZ°(X)) c DZ~4(Y) follows
from the adjunction ( 1, ') or from the explicit construction of the functor f'.

O

9. Reminders from topology

9.1. Amap f:Y — X of topological spaces is called proper if it is continuous
and the map f xid:Y x Z — X x Z is closed for each topological space Z. All
properties of proper maps we mention in the following can be found in [3, I.§ 10]
or [13, Section 005M].

9.2. A topological space X is compact if and only if the constant map from X
to a space consisting of a single point is proper.

9.3. An embedding is proper if and only if it is closed. Every composition of
proper maps is proper.

9.4. The property of being proper is stable under base change: given a proper
map ¥ — X and an arbitrary continuous map Z — X themap Z xx ¥ — Z is
proper. In particular, a map is proper if and only if it is universally closed. There
are two other important characterizations of proper maps. A continuous map is
proper if and only if it is closed and the inverse image of every compact subset is
compact. A continuous map is proper if and only if it is closed and all its fibers
are compact.
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9.5. Properness is local on the target: let f:Y — X be a map and U an open
covering of X. Then f is proper if and only if the induced maps f~'(U) — U
are proper for all U € U. Note however that properness is not local on the source
(cf. 2.8 for our usage of this notion).

9.6. If a composition f o g of continuous maps is proper and g is surjective,
then f is proper.

9.7. IfY - X and Y’ — X are proper maps, sois (Y UY’) — X.In particular,
given a continuous map Z — X and subspaces ¥, Y/ C Z with Y — X and
Y’ — X proper, the map Y UY’ — X is proper by 9.6.

9.8 DeriNtTION. A map f:Y — X of topological spaces is called separated
if it is continuous and the diagonal map ¥ — Y xx Y is a closed embedding.
The second condition is satisfied if and only if the diagonal is a closed subset of
Y Xx Y.

9.9 DeriNiTION. A subset A of a topological space Y is called relatively
Hausdorff if any two distinct points of A have disjoint neighborhoods in Y.

9.10. A continuous map is separated if and only if all its fibers are relatively
Hausdorft.

9.11. The constant map from a topological space X to a space consisting of a
single point is separated if and only if X is a Hausdorff space. Every embedding
is separated. Every composition of separated maps is separated. The property of
being separated is stable under base change and local on the target, but not local on
the source. If a composition f o g of continuous maps is separated, g is separated.
In particular, any continuous map whose source is a Hausdorft space is separated.

9.12 LemMma. If a composition f o g of continuous maps is proper and f is
separated, then g is proper.

9.13. This generalizes [3, Proposition 1.10.1.5.(c)].
9.14. If the target of f consists of a single point, this lemma specializes to the

fact that a continuous map from a compact space to a Hausdorff space is closed
and even proper.
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Proor. Letg:Z — Y and f:Y — X. Consider the cartesian diagram

g

V4 Y

(id,g) ] (id,id)

gxid

ZXxY YXXY

of topological spaces. The diagonal map ¥ < Y xx Y is a closed embedding
and hence so is the map (id, g): Z — Z xx Y obtained by base change us-
ing 9.11. The morphism g is the composition of this latter map with the proper
map Z xy Y — Y, using 9.3 and 9.4. O

10. Reminders from sheaf theory

10.1 ProposITION (EXTENSION OF SECTIONS ON COMPACTA). Let F be a sheaf
of sets on a topological space X. If K C X is a compact relatively Hausdorff
subset of X, any section s € F(K) is the restriction of a section of F on an open
neighborhood of K in X.

Proor. Lets € F(K). For any x € K there is an open neighborhood U, of x
in X and a section sy € JF(Uy) such that sx|xknv, = S|knv,. Since K is locally
compact as a compact Hausdorft space, there is a compact neighborhood K of x
in K that is contained in K N Uy. Since K is compact, finitely many Ky, , ..., Ky,
cover K. Put K; := Ky,, U; := Uy, and s; := s,;. We have s; |k, = s|k;.

If n = 1 we are done. Otherwise compactness of K; N K, yields an open
neighborhood W of K; N K, in U; N U, with s;|w = s»|w. Moreover, there are
disjoint open neighborhoods U/ C U; of K; \ W fori = 1, 2. Here we use that K
is relatively Hausdorft and that K; \ W is compact. Then the three sections s | s
52|U2’ and s;|w = s2|w glue to a section on U; U U; U W which extends s|g,ux,-
An easy induction finishes the proof. O

10.2 LEmMA. Onalocally compact Hausdor{f space X, taking global sections
with compact support commutes with filtered colimits, i. e.

lim(I'F;) — Ty(lim 5;)

for any filtered diagram F: 1 — Sh(X).
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Proor. We use in the proof that the colimit of a system of sheaves is the
sheafification of the colimit in the category of presheaves and that the canonical
morphism from a presheaf to its sheafification induces isomorphisms on all stalks.
We can assume without loss of generality that / is a partially ordered set.

Injectivity: Let s € I'i(X; J;) for some j € I. Assume that s goes to zero in
In(x; h_r)n F;). For every point x € X there are an open neighborhood U(x) and an
index i(x) with s = 0 € Fj(x)(U(x)). Finitely many U(x) cover the compact set
(supp s). Leti be bigger than the finitely many i (x) involved. Then s — 0 € F;(X)
showing injectivity.

Surjectivity for X compact and Hausdorft: Let s € T'(X; li_r)nfr",-) be given.
For every point x € X there are a neighborhood U(x) in X, an index i(x) and a
section s(x) € JFj(x)(U(x)) with s(x) — s|y(x). Since X is locally compact we
may assume that the neighborhoods U(x) are compact. Since X is compact there
is a finite subset £ C X such that the U(x) with x € E cover X. Injectivity proved
above shows that for any x, y € E there is some j € [ such that the images of
s(x) and s(y) in J; (U(x) N U(y)) coincide. Since E is finite we can assume that
the index j works for all x, y € E. But then the images of the s(x) in J;(U(x))
for x € E glue to a global section of J; which represents the inverse image of s
we are looking for.

Surjectivity for X locally compact and Hausdorff: Let s € I'(X; li_n)lﬁ"i) be
given. Since (supp s) is compact and X is locally compact and Hausdorff we find
U C X open with compact closure U and (supp s) C U. We have already proved
surjectivity of h_r)n (CU:;9:) - T (U; h_r)n&"i). Hence there is an index j and a
section § € I'(U;J;) with § + s|U. Then 5|0U ~ 0 € T['(3U; lim 5;) and
injectivity proved above shows that §|0U + 0 € I'(0U;J;) for some [ > ;.
Hence the image of § in I'(U; F;) and the zero section 0 € I'(X \ U; ;) glue to
a global section § € T'1(X; F;) with compact support and § — s. This proves the
lemma. O

10.3 DerintTION. A sheafis called c-soft (for compact-soft) if any section over
a compact set comes from a global section.

10.4 LEMMA (FILTERED COLIMITS OF C-SOFT SHEAVES). On a locally compact
Hausdorff space X, any filtered colimit of c-soft sheaves is c-soft.

Proor. LetF:1 — Sh(X) be a filtered diagram of c-soft sheaves. The inverse
image functor of sheaves commutes with arbitrary colimits because it has a right
adjoint functor. Let u: K — X be the embedding of a compact subset. Hence
the obvious morphism is an isomorphism lim u®gF; Sy lim ;. This and 10.2
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provide isomorphisms
lim T(K; u™F;) = I'(K:limu™F;) = T'(K;u® lim )
— — —
or concisely an isomorphism
h_I)l’l F(K; ffi) —> F(K; h_n>13”,~).

It follows that every section ¢ of the group on the right is the image of a
section s € ['(K;J;) for some i € I. Since F; is c-soft there is a global sec-
tion § € I'(X;J;) with §|xg = s. The image of § in I‘(X;li_r)niﬂ-) then restricts
to t. O

10.5 LEMMA. Let F be a sheaf on a topological space X and GF the sheaf of
not necessarily continuous sections of F from [4, 11.4.3]. If F is flat, so are §F and
the cokernel cok(F — GF) of the canonical monomorphism F — GF.

Proor. An abelian group is flat if and only if it is torsion-free, and these
properties are preserved under products. For x € X we have

(§%)x = lim (SPH(U) = lim [] T
xeU xeU ueU
where U ranges over the open subsets of X containing x. Assume that ¥ is flat.
Then all F,, are flat abelian groups and it is easy to see that (§F), is torsion-

free and hence flat. Hence G¥ is flat. Since ¥ < SGF induces split injections
Fx — (§F), on each stalk the cokernel has flat stalks. |

11. Representability and adjoints

11.1 LemmA (REPRESENTABILITY LEMMA). Let X be a topological space. A
functor u:Sh(X) — Ab®P is representable if and only if it preserves all colimits.

11.2. We learnt the above lemma from [12, Exp. 4, 1.0]. Our proof completes
the proof given there.

Proor. It is clear that any representable functor commutes with colimits.
Assume that u is representable, i.e. there is a sheaf € € Sh(X) together with
natural isomorphisms

w(T) — Shx (3.€)
for ¥ € Sh(X). Plugging in & = Zycx for U C X open we obtain an
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isomorphism w(Zycx) = C(U).If V C U is an open subset, we obtain in this
way the horizontal isomorphisms in the commutative diagram

1W(Zycx) —— C(U)

|

w(Zycx) ——C(V)

|4
resy,

whose left vertical morphism is the image under pu of the obvious morphism

Lycx — Lycx.
Now assume that p preserves all colimits. Define a presheaf €, by

CuU) := pu(Zycx)

with restriction maps coming from the morphisms Zycx — Zycx. We first
claim that €, is a sheaf. Let U be an open covering of an open subset V' C X.
Consider the obvious coequalizer diagram

P Zwovyex = P Zucx - Zvex.
wUHew? Ueu

It presents Zy cx as a colimit. Since ;1 commutes with colimits we see that €, is
a sheaf.

Now let us show that €, represents 1. Let Opy be the category of open subsets
of X with inclusions as morphisms and let J:Opy — Sh(X) be the functor
U+ Zycx. For any ¥ € Sh(X) consider the morphisms

w(d) Fun gy, x), abery (4, Shy (—, F))
oJ
Shx (3, €,) =———Fung,  aper) (it 0 J, Shy (J (=), )

The upper horizontal morphism is the isomorphism from the Yoneda lemma, the
vertical morphism is obvious, and the lower horizontal morphism comes from
noJ = €, and the isomorphism Shy (J(—), J) = F(—).

We obtain a morphism y:u — Shy(—,C,) of functors Sh(X) — Ab®.
Since y is an isomorphism at each object of the form Zycy and since both
functors p and Shy (—, €,,) commute with colimits, y is an isomorphism and C,,
represents (. O
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11.3 CoroLLaRyY ([12, Exp. 4, 1.1]). Let X be a topological space and B an
abelian category. A functor A:Sh(X) — B has a right adjoint if and only if it
preserves colimits.

11.4. Again, if we know a right adjoint R exists, it is not difficult to describe
it: We just need to apply the adjunction isomorphism B(AF, B) = Shy (7, RB)
to the sheaf F = Zy x to find isomorphisms B(AZycx, B) 5 (RB)(U) which
describe the functor R quite explicitly.

Proor. Any left adjoint functor certainly preserves colimits. If A preserves
colimits, apply Lemma 11.1 to the functor B(A(—), B) where B € B is fixed.

12. Remarks on derived functors

12.1. We will apply the results of this subsection mainly to the category Sh(X)
of sheaves on a topological space X. This category is a Grothendieck (abelian)
category by [7, 18.1.6.(v)]. We do not need the full strength of Proposition 12.2
below; the results of [7] are sufficient for our purposes, cf. 12.3.

12.2 ProposriTiON ([1, PrROPOSITION 3.13]). Let A be a Grothendieck category.
Then there is a cofibrantly generated model structure on C(A) such that the weak
equivalences are the quasi-isomorphisms and the cofibrations are the monomor-
phisms. We call it the injective model structure on C(A).

12.3. The fibrant objects of this model structure on C(A) are precisely the
objects that are h-injective and componentwise injective ([7, Proposition 14.1.6 in
the setting of Section 14.3] where the class of trivial cofibrations is called QM
and the fibrant objects are called QM-injective). Any bounded below complex
of injective objects is h-injective ([7, 13.2.4]) and hence fibrant. The axioms of
a model structure imply that any object of C(A) admits a trivial cofibration to a
fibrant object. This is also proved in [7, Theorem 14.1.7].

12.4 LEmMA. Let A be a Grothendieck category and F: A — B a left exact
functor to an abelian category B. We also denote by F: K(A) — D(B) the
composition of the induced functor K(A) — K(B) on homotopy categories with
the canonical functor K(B) — D(B).

(a) F:K(A) — D(B) admits a right derived functor RF: D(A) — D(B).
(b) If F: A — B is of finite cohomological dimension, then for all component-

wise F-acyclic complexes S € C(A) the obvious morphism F(S) — RF(S)
in D(B) is an isomorphism.
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Proor. We equip C(A) with the injective model structure from Proposi-
tion 12.2. As mentioned in 12.3, its fibrant objects are h-injective so that we get (a).

(b). Let § € C(A) be the full subcategory of componentwise F-acyclic
complexes. Let T € 8 be acyclic. We claim that F(T) = 0 in D(B). Let K*
be the kernel of 7! — T'*!. The short exact sequence K'~! < 77! — K!
provides isomorphisms H?(RF(K')) — HPtY(RF(K'™Y)) for all p > 0. By
induction we obtain H?(RF(K')) = HPTN(RF(K'=N)) for all p > 0 and all
N € IN. Since F has finite cohomological dimension this shows that K is F-
acyclic. Hence we obtain short exact sequences F(K'~!) < F(T'~!) — F(K")
and see that F(T') is acyclic.

Now let S — I be a fibrant resolution of some object S € 8. By 12.3 any
fibrant object is componentwise injective thus we have / € S. Hence the cone of
S — [ is an acyclic object of § and mapped to zero in D(B) by the above claim,
so that F(S) — F([) is a quasi-isomorphism. U
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