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New existence results for the mean �eld equation

on compact surfaces via degree theory

Aleks Jevnikar (�)

Abstract – We consider the following class of equations with exponential nonlinearities

on a closed surface †:
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which arises as the mean �eld equation of the equilibrium turbulence with arbitrarily

signed vortices. Here h is a smooth positive function and �1; �2 two positive parameters.

By considering the parity of the Leray–Schauder degree associated to the problem,

we prove solvability for �i 2 .8�k; 8�.k C 1//; k 2 N. Our theorem provides a

new existence result in the case when the underlying manifold is a sphere and gives

a completely new proof for other known results.
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1. Introduction

We are concerned with the equation
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where � D �g is the Laplace-Beltrami operator, �1; �2 are two non-negative

parameters, h W † ! R is a smooth positive function and † is a compact orientable

surface without boundary with Riemannian metric g and total volume j†j. For the
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sake of simplicity, we will assume throughout this work that j†j D 1, which is no

loss of generality thanks to a trivial rescaling argument.

Problem (1) plays an important role in mathematical physics as a mean �eld

equation for the equilibrium turbulence with arbitrarily signed vortices. It was

�rst obtained by Joyce and Montgomery [19] and by Pointin and Lundgren [32]

by means of di�erent statistical arguments. Later, several authors adopted this

model; we refer for example to [9], [25], [28], and [30] and the references therein.

The case �1 D �2 is also related to the study of constant mean curvature surfaces,

see [35] and [36].

Before describing the main features of the problem and the known results, let

us �rst consider the case �2 D 0, namely the following standard Liouville-type

equation:

(2) � �u D �

�
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�

:

Equation (2) appears in conformal geometry in the problem of �nding a conformal

metric for which the Gauss curvature is a prescribed function on †, see [1], [6],

[7], [23], and [33]. Indeed, setting Qg D e2vg, the Laplace-Beltrami operator for the

deformed metric is given by � Qg D e�2v�g and the change of the Gauss curvature

is ruled by

��gv D K Qge2v � Kg ;

where Kg and K Qg are the Gauss curvatures of .†; g/ and of .†; Qg/ respectively.

Problem (2) also arises in mathematical physics as a mean �eld equation of Euler

�ows, see [5], [20]. The literature on (2) is broad, and there are many results

regarding existence, blow-up analysis, compactness of solutions, etc, see [10], [11],

[27], and [34].

As many geometric problems, also (2) carries a lack of compactness, as its

solutions might blow-up. It was proved in [4], [22], and [24] that a quantization

phenomenon occurs in this case. More precisely, taking a blow-up point p for a

sequence .un/n of solutions, we have

(3) lim
r!0

lim
n!C1

Z

Br .p/

h eundVg D 8�:

Roughly speaking, each blow-up point carries a quantized local mass. Moreover,

the limit pro�le of solutions becomes close to a bubble, namely a function U�;p

de�ned as

U�;p.y/ D log
� 4�

.1 C � d.p; y/2/2

�

;
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where y 2 †; d.p; y/ stands for the geodesic distance and � is a large parameter.

This limit function can be viewed as the logarithm of the conformal factor of the

stereographic projection from S2 onto R
2, composed with a dilation.

Combining the local quantization (3) with some further analysis, see for ex-

ample [3] and [4], we have that the set of solutions to (2) is uniformly bounded in

C 2;˛ , for any �xed ˛ 2 .0; 1/, provided � … 8�N. It follows that one can de�ne

the Leray–Schauder degree associated to problem (2) with � 2 .8k�; 8.k C 1/�/,

k 2 N. In [22] it was shown that the degree is 1 when � < 8� . By the homotopic

invariance of the degree, it is easy to see that the same is independent of the func-

tion h, the metric of † and it is constant on each interval .8k�; 8.k C 1/�/. In fact

it depends only on k 2 N and the topological structure of †, as was proved in [8],

where the authors provide the degree-counting formula

(4) deg.�/ D
1

kŠ
.��.†/ C 1/ � � � .��.†/ C k/;

where �.†/ denotes the Euler characteristic of †. The proof of this result is

carried out by analyzing the jump values of the degree after � crossing the critical

thresholds. Later, this result was rephrased in [26] with a Morse theory point of

view.

On the other hand, in the general case when �2 ¤ 0, namely for equation (1),

there are fewer results: for example the re�ned blow-up analysis of solutions of (1)

is not yet fully developed. Nevertheless, it was proven in [18] and [16] that the

blow-up phenomenon yields a quantization property; for a blow-up point p and a

sequence .un/n of solutions relatively to .�1;n; �2;n/ the authors obtained

lim
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Moreover, the case of positive multiples of 8� may indeed occur, see [12] and [13].

The latter volume quantization implies that the set of solutions is compact for

.�1; �2/ … .8�N � R/ [ .R [ 8�N/.

It follows that, as before, the degree associated to (1) can still be de�ned outside

this set of parameters. However, this strategy has not been yet investigated and the

existence results mostly rely on a variational approach. After the completion of

the present paper, a degree counting formula for (1) was derived in [17] for some

range of the parameters.
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Let us now brie�y discuss the history of the problem and the previous results.

First of all, the case �1; �2 < 8� was considered in [31]. Ohtsuka and Suzuki

proved that in this regime the associated energy functional is bounded from below

and coercive and therefore solutions can be found as global minima. If �i > 8� for

some i D 1; 2; then the problem becomes subtler as the functional is not bounded

and a minimization technique is not possible any more. The �rst result in this

direction is given in [18] for �1 2 .8�; 16�/ and �2 < 8� . Via a blow-up analysis

Jost et al. proved the existence of solutions on a smooth, bounded, non-simply

connected domain in R
2 with homogeneous Dirichlet boundary condition. Later,

in [37], Zhou generalized this result to any compact surface without boundary by

reducing the problem to the one with �2 D 0 and applying min-max theory.

The next step was made in [14], where for the �rst time a doubly supercritical

regime is considered, namely �i 2 .8�; 16�/ for i D 1; 2: The existence of

solutions is proved using a min-max scheme based on a detailed description of the

low sublevels of the energy functional. Finally, this was generalized in [2] for a

generic choice of the parameters �1 2 .8k�; 8.k C1/�/ and �2 2 .8l�; 8.l C1/�/,

k; l 2 N, under the assumption that † has positive genus. Based on the latter

analysis a multiplicity result was derived in [15].

2. The main result

We attack the problem with a di�erent point of view and for the �rst time we

analyze the associated Leray–Schauder degree. This is done in the spirit of [29],

where a Toda system of Liouville equations arising from Chern–Simons theory

was analyzed. More precisely, we study its parity and we observe that when both

parameters stay in the same interval, i.e. �i 2 .8k�; 8.kC1/�/; k 2 N for i D 1; 2,

the degree is always odd. The main result is the following.

Theorem 2.1. Let h > 0 be a smooth function and let �i 2 .8k�; 8.k C 1/�/,

k 2 N for i D 1; 2. Then problem (1) has a solution.

Observe that we recover the result of [14] and some cases of [2]: when † is

homeomorphic to S2 the above theorem yields a new existence result.

Proof. For some ˛ 2 .0; 1/ let C
2;˛
0 .†/ be the class of C 2;˛ functions with

zero average. Consider now the mapping T W C
2;˛
0 .†/ ! C

2;˛
0 .†/ de�ned by

(5) T .u/ D .��/�1
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where .��/�1f; f 2 C ˛.†/, is intended as the solution v, with zero average,

of the problem ��v D f , which is unique. We are concerned with the map

‰ D Id � T and the solutions of equation (1) will correspond to zeros of ‰.

Clearly, by elliptic regularity theory the operator T is compact. Moreover, the

set of the solutions is compact for parameters .�1; �2/ … .8�N�R/ [ .R� 8�N/.

Therefore, we can consider the associated degree deg.‰.�1;�2/; Br.0/; 0/ which is

well-de�ned for r su�ciently large.

Consider now �i 2 .8k�; 8.k C 1/�/; k 2 N for i D 1; 2. Letting � D
1
2
.�1 C �2/, we perform the following homotopy which takes place in a connected

component of R2 n ..8�N � R/ [ .R � 8�N//:

h.t / D .1 � t /.�1; �2/ C t .�; �/:

From the fact that the degree is constant along homotopies we obtain that

deg.‰.�1;�2/; Br.0/; 0/ D deg.‰.�;�/; Br.0/; 0/:

Observe now that by the structure of T we deduce

‰.�;�/.�u/ D �‰.�;�/.u/:

Therefore, we conclude that ‰.�;�/ is an odd operator. By the Borsuk theorem,

see [21], it follows that the associated degree is odd an hence non zero. This

guarantees us the existence of a solution to equation (1). �
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