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Existence and multiplicity of solutions

for a p.x/-Kirchho� type equation

G. A. Afrouzi (�) – M. Mirzapour (��) – Chung, N. T. (���)

Abstract – This paper is concerned with the existence and multiplicity to p.x/-Kirchho�

type problem of the following form
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div.jrujp.x/�2ru/ D f .x; u/ in �;

u D 0 on @�:

By means of a direct variational approach and the theory of the variable exponent

Sobolev spaces, we establish conditions ensuring the existence and multiplicity of

solutions for the problem.

Mathematics Subject Classification (2010). 35D05, 35J60.

Keywords. Kirchho� type problems; p.x/-Kirchho� type, boundary value problem,

mountain pass theorem, dual fountain theorem.

(�) Indirizzo dell’A.: Department of Mathematics, Faculty of Mathematical Sciences,

University of Mazandaran, Babolsar, Iran

E-mail: afrouzi@umz.ac.ir

(��) Indirizzo dell’A.: Department of Mathematics, Faculty of Mathematical Sciences,

Farhangian University, Tehran, Iran

E-mail: mirzapour@stu.umz.ac.ir

(���) Indirizzo dell’A.: Department Science Management & International Cooperation,

Quang Binh University, 312 Ly Thuong Kiet, Dong Hoi, Quang Binh, Vietnam

E-mail: ntchung82@yahoo.com

mailto:afrouzi@umz.ac.ir
mailto:mirzapour@stu.umz.ac.ir
mailto:ntchung82@yahoo.com


96 G. A. Afrouzi – M. Mirzapour – Chung, N. T.

1. Introduction

In this paper, we are concerned with the following problem

(1)

8

ˆ

<

ˆ

:

�M

� Z

�

1

p.x/
jrujp.x/dx

�

div.jrujp.x/�2ru/ D f .x; u/ in �;

u D 0 on @�;

where � � R
N is a bounded domain with smooth boundary @�, M WRC ! R

is a continuous function and f W � �R ! R satis�es the Carathéodory condition.

The operator �div.jrujp.x/�2ru/ is said to be the p.x/-Laplacian, and becomes

p-Laplacian when p.x/ � p (a constant). An essential di�erence between them

is that the p-Laplacian operator is .p � 1/-homogeneous, that is, 4p.�u/ D

�p�14pu for every � > 0, but the p.x/-Laplacian operator, when p.x/ is not a

constant, is not homogeneous. Problems involving the p.x/-Laplace operator have

been intensively studied. Lebesgue and Sobolev spaces with variable exponent

have been used in the last decades to model various phenomena. Chen, Levine, and

Rao [6] proposed a framework for image restoration based on a variable exponent

Laplacian. Another application that uses nonhomogeneous Laplace operators is

related to the modeling of electrorheological �uids. The �rst major discovery

in electrorheological �uids is due to Willis Winslow in 1949. These �uids have

the interesting property that their viscosity depends on the electric �eld in the

�uid. They can raise the viscosity by as much as �ve orders of magnitude. This

phenomenon is known as the Winslow e�ect. Electrorheological �uids have been

used in robotics and space technology. The experimental research has been done

mainly in the USA, for instance in NASA laboratories.

(1) is called a nonlocal problem because of the presence of the term M ,

which implies that the equation in (1) is no longer pointwise identities. This

provokes some mathematical di�culties which make the study of such a problem

particularly interesting. Nonlocal di�erential equations are also called Kirchho�

type equations because Kirchho� [20] has investigated an equation of the form

�
@2u

@t2
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ˇ
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ˇ
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ˇ

ˇ

ˇ

2

dx
�@2u

@x2
D 0;(2)

which extends the classical D’Alembert’s wave equation, by considering the ef-

fect of the changing in the length of the string during the vibration. A dis-

tinguishing feature of (2) is that the equation contains a nonlocal coe�cient
�0
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dx which depends on the average 1
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R L
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ˇ

ˇ

@u
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ˇ

ˇ

2
dx, and hence

the equation is no longer a pointwise identity. The parameters in (2) have the fol-

lowing meanings: L is the length of the string, h is the area of the cross-section,
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E is the Young modulus of the material, � is the mass density and P0 is the ini-

tial tension. Lions [22] has proposed an abstract framework for the Kirchho� type

equations. After the work of Lions [22], various equations of Kirchho� type have

been studied extensively, see e.g. [4, 5] and [8]–[13]. The study of Kirchho� type

equations has already been extended to the case involving the p-Laplacian (for

details, see [8, 9, 12, 13]) and p.x/-Laplacian (see [10, 11, 19]). For the physi-

cal and biological meaning of the nonlocal coe�cients we refer the readers to

[7, 22, 23, 24] and the references therein. In [1] and [2] the authors considered (1)

where f .x; u/ D �jujq.x/�2u and f .x; u/ D �.x/jujq.x/�2u, respectively. Com-

bining the mountain pass theorem of Ambrosetti and Rabinowitz and Ekeland’s

variational principle, they proved that under suitable conditions (1) has multiple

solutions. Our main purpose is to consider the perturbed problem (1) in general

case, we obtain conditions for the existence of in�nitely many solutions.

2. Notations and preliminaries

In this section, we recall some de�nitions and basic properties of the variable

exponent Lebesgue space Lp.�/.�/ and W
1;p.�/

0 .�/, where � is a bounded domain

in R
N . Denote

CC. x�/ D ¹h.x/I h.x/ 2 C. x�/; h.x/ > 1; for all x 2 x�º:

For any h 2 CC. x�/, we de�ne

hC D max¹h.x/I x 2 x�º; h� D min¹h.x/I x 2 x�º:

For any p 2 CC. x�/, we de�ne the variable exponent Lebesgue space

Lp.x/.�/ D

²

uI u is a measurable real-valued function such that
Z

�

ju.x/jp.x/dx < 1

³

;

endowed with the Luxemburg norm

jujLp.x/.�/ D jujp.x/ D inf
°

� > 0I

Z

�

ˇ

ˇ

ˇ

u.x/

�

ˇ

ˇ

ˇ

p.x/

dx � 1
±

:

Then .Lp.x/.�/; j � jp.x// is a Banach space, cf. [21].

Proposition 2.1 ([14]). (i) The space .Lp.x/.�/; j � jp.x// is a separable,

uniformly convex Banach space and its dual space is Lq.x/.�/, where 1=p.x/ C

1=q.x/ D 1: For any u 2 Lp.x/.�/ and v 2 Lq.x/.�/, we have
ˇ

ˇ

ˇ

ˇ

Z

�

uvdx

ˇ

ˇ

ˇ

ˇ

�
� 1

p�
C

1

q�

�

jujp.x/jvjq.x/ � 2jujp.x/jvjq.x/:
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(ii) If p1.x/; p2.x/ 2 CC. x�/; p1.x/ � p2.x/; for all x 2 x�, then we have a

continuos embedding Lp2.x/.�/ ,! Lp1.x/.�/.

An important role in manipulating the generalized Lebesgue space is played

by the p.x/-modular of the Lp.x/.�/ space, which is the mapping

�p.x/W Lp.x/.�/ �! R

de�ned by

�p.x/.u/ D

Z

�

jujp.x/dx:

Proposition 2.2 ([15]). For u 2 Lp.x/.�/ and un � Lp.x/.�/,

(1) jujp.x/ < 1 (resp. D 1; > 1) () �p.x/.u/ < 1 (resp. D 1; > 1),

(2) for u ¤ 0; jujp.x/ D � () �p.x/.
u
�

/ D 1,

(3) if jujp.x/ > 1, then juj
p�

p.x/
� �p.x/.u/ � juj

pC

p.x/
,

(4) if jujp.x/ < 1, then juj
pC

p.x/
� �p.x/.u/ � juj

p�

p.x/
,

(5) jun � ujp.x/ ! 0 (resp. ! 1) () �p.x/.un � u/ ! 0 (resp. ! 1),

since pC < 1.

The space W
1;p.x/

0 .�/ is the closure of C 1
0 .�/ under the norm

kuk D jru.x/jp.x/:

Let us de�ne, for every x 2 �,

p�.x/ D

8

ˆ

<

ˆ

:

Np.x/

N � p.x/
if p.x/ < N;

1 if p.x/ � N:

Proposition 2.3 ([17]). If q 2 CC. x�/ and q.x/ � p�.x/ .q.x/ < p�.x// for

x 2 x�, then there is a continuous (compact) embedding W
1;p.x/

0 .�/ ,! Lq.x/.�/.

Lemma 2.4 (See [16]). Denote

I.u/ D

Z

�

1

p.x/
jrujp.x/dx; for all u 2 X;

then I.u/ 2 C 1.X;R/ and the derivative operator I 0 of I is

hI 0.u/; vi D

Z

�

jrujp.x/�2rurvdx; for all u; v 2 X;

and
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(1) I is a convex functional,

(2) I 0W X ! X� is a bounded homeomorphism and strictly monotone operator,

(3) I 0 is a mapping of type .SC/, namely

.un * u and lim sup
n!C1

I 0.un/.un � u// � 0 H) un ! u;

(4) I is weakly lower semi-continuous.

In this paper, we denote by X D W
1;p.x/

0 .�/; X� D .W
1;p.x/

0 .�//�, the

dual space and h�; �i, the dual pair and let “*” represent weak convergence.

For simplicity, we use ci to denote the general nonnegative or positive constant

(the exact value may change from line to line).

3. Existence and multiplicity of weak solutions

In this section, we will state and prove our main results on problem (1).

We introduce the following assumptions on the functions M and f :

(M1) there exist m2 � m1 > 0 and ˛ > 1 such that for all t 2 R
C, m1t˛�1 �

M.t/ � m2t˛�1;

(F0) f W � � R ! R satis�es the Carathéodory condition and there exist a

constant c1 � 0 such that

jf .x; t/j � c1.1 C jt j
.x/�1/;

for all .x; t / 2 ��R where 
.x/ 2 CC. x�/ and 
.x/ < p�.x/ for all x 2 x�I

(F1) there exist M > 0; � > ˛pC such that for all x 2 � and all t 2 R with

jt j � M;

0 < �F.x; t/ � tf .x; t /;

where ˛ comes from (M1) above;

(F2) f .x; t/ D o.jt j˛pC�1/ as t ! 0 uniformly with respect to x 2 �, where


� > ˛.pC/˛ > ˛pC, ˛ comes from (M1);

(F3) f .x; �t / D �f .x; t/ for all x 2 � and t 2 R;

(F4) f .x; t/ � c2jt j�.x/�1 as t ! 0, where � 2 CC.�/ and pC < �� � �C < ˛p�

for a.e. x 2 �, where ˛ comes from (M1) .
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Definition 3.1. We say that u 2 X is a weak solution of (1) if

M

� Z

�

1

p.x/
jrujp.x/ dx

� Z

�

jrujp.x/�2rurv dx D

Z

�

f .x; u/v dx;

for all v 2 X .

The Euler–Lagrange functional associated to (1) is given by

(3) J.u/ D yM

� Z

�

1

p.x/
jrujp.x/ dx

�

�

Z

�

F.x; u/ dx;

where yM.t/ D
R t

0
M.�/d� and F.x; t/ D

R t

0
f .x; s/ ds. It should be noticed that

under the condition (F0) the functional J is of class C 1.X;R/ and

hJ 0.u/; vi D M

� Z

�

1

p.x/
jrujp.x/ dx

� Z

�

jrujp.x/�2rurv dx

�

Z

�

f .x; u/v dx;

for all u; v 2 X , then we know that the weak solution of (1) corresponds to the

critical point of the functional J .

Theorem 3.2. If (M1) holds and f satis�es

(4) jf .x; t/j � c3.1 C jt j�/

where 1 � � < ˛p�, then (1) has a weak solution.

Proof. From (4) we have jF.x; t/j � c3.jt j C jt j�/. We can write

J.u/ D yM

� Z

�

1

p.x/
jrujp.x/ dx

�

�

Z

�

F.x; u/ dx

�
m1

˛

� Z

�

1

p.x/
jrujp.x/ dx

�˛

� c3

Z

�

jujdx � c3

Z

�

juj� dx

�
m1

˛.pC/˛
kuk˛p�

� c3kuk � c3kuk� �! C1 as kuk ! C1:

Due to the condition .M1/ and Proposition 2.3, it is easy to verify that J is weakly

lower semi continuous. So J has a minimum point u in X and u is a weak solution

of (1). �

Definition 3.3. We say that J satis�es the (PS) condition in X if any sequence

.un/ such that J.un/ is bounded and J 0.un/ ! 0 as n ! 1, has a convergent

subsequence, where (PS) means Palais–Smale.
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Lemma 3.4. If (F0), (F1), (M1), and

(5) �m1.p�/˛�1 > ˛m2.pC/˛;

hold, then J satis�es the (PS) condition.

Proof. Suppose that .un/ � X; jJ.un/j � c4 and J 0.un/ ! 0. Then

c4 C kunk � J.un/ �
1

�
hJ 0.un/; uni

D yM

� Z

�

1

p.x/
jrunjp.x/dx

�

�

Z

�

F.x; un/ dx

�
1

�

�

M

� Z

�

1

p.x/
jrunjp.x/dx

� Z

�

jrunjp.x/dx

�

Z

�

f .x; un/un dx

�

�
m1

˛

�

Z

�

1

p.x/
jrunjp.x/ dx

�˛

�
m2

�

� Z

�

1

p.x/
jrunjp.x/ dx

�˛�1� Z

�

1

p.x/
jrunjp.x/ dx

�

C

Z

�

h 1

�
f .x; un/un � F.x; un/

i

dx

�
m1

˛.pC/˛

� Z

�

jrunjp.x/ dx

�˛

�
m2

�.p�/˛�1

� Z

�

jrunjp.x/ dx

�˛

� c5

� m1

˛.pC/˛
�

m2

�.p�/˛�1

�

kunk˛p�

:

Hence, .kunk/ is bounded. Without loss of generality, we assume that un * u,

then J 0.un/.un � u/ ! 0 as n ! 1. Thus we have

hJ 0.un/; un � ui

D M

� Z

�

1

p.x/
jrunjp.x/ dx

� Z

�

jrunjp.x/�2run.run � ru/ dx

�

Z

�

f .x; un/.un � u/ dx �! 0:

From .F _0/, Proposition 2.1 and Proposition 2.3, we can easily get that

Z

�

f .x; un/.un � u/ dx �! 0 as n ! 1:
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Therefore, we have as n ! 1,

(6) M

� Z

�

1

p.x/
jrunjp.x/ dx

� Z

�

jrunjp.x/�2run.run � ru/ dx �! 0:

Since .un/ is bounded in X , passing to a subsequence, if necessary,we may assume

that

Z

�

1

p.x/
jrunjp.x/ dx �! t0 � 0 as n ! 1:

If t0 D 0 then .un/ converges strongly to u D 0 in X and the proof is �nished.

If t0 > 0 then since the function M is continuous, we get

M

� Z

�

1

p.x/
jrunjp.x/ dx

�

�! M.t0/ � 0 as n ! 1:

Thus, by (M1), for su�ciently large n, we have

(7) 0 < c6 � M

� Z

�

1

p.x/
jrunjp.x/ dx

�

� c7:

From (6) and (7), we deduce that

lim
n!1

Z

�

jrunjp.x/�2run.run � ru/ dx D 0:(8)

Using Lemma 2.4.3/, we have un ! u strongly in X as n ! 1 and the functional

J satis�es the (PS) condition. �

Theorem 3.5. If M satis�es (M1), f satis�es (F0)–(F2) and relation (5) holds,

then (1) has a nontrivial weak solution.

Proof. Let us show that J satis�es the conditions of mountain pass lemma

[3]. By Lemma 3.4, J satis�es (PS) condition in X . Since ˛pC < ˛.pC/˛ <


� � 
.x/ < p�.x/, X ,! L˛pC

.�/, then there exists c8 > 0 such that

juj˛pC � c8kuk; for all u 2 X:

Let � > 0 be small enough such that �c
˛pC

8 < m1=2˛.pC/˛ . By assumptions (F0)

and (F2), we have

(9) F.x; t/ � �jt j˛pC

C c.�/jt j
.x/ for all .x; t / 2 � � R:
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In view of .M1/ and (9), we have

J.u/ �
m1

˛

�

Z

�

1

p.x/
jrujp.x/ dx

�˛

� �

Z

�

juj˛pC

dx � c.�/

Z

�

juj
.x/ dx

�
m1

˛.pC/˛
kuk˛pC

� �c
˛pC

8 kuk˛pC

� c9kuk
�

�
m1

2˛.pC/˛
kuk˛pC

� c9kuk
�

:

Therefore, there exist r > 0 and ı > 0 such that J.u/ � ı > 0 for every kuk D r .

From (F1) it follows that

F.x; t/ � c10jt j� � c11;

for all x 2 � and jt j � M . For ! 2 Xn¹0º and t > 1 we have

J.t!/ D yM

� Z

�

1

p.x/
jrt!jp.x/ dx

�

�

Z

�

F.x; t!/ dx

�
m2

˛.p�/˛
t˛pC

� Z

�

jr!jp.x/ dx

�˛

� c10t�

Z

�

j!j� dx � c11j�j �! �1 as t ! C1;

due to � > ˛pC. Since J.0/ D 0, J satis�es the conditions of mountain pass

lemma[3]. So J admits at least one nontrivial critical point. �

Theorem 3.6. If M satis�es (M1) and f satis�es (F0), (F1), (F3), and


� > ˛.pC/˛ > ˛pC, then problem (1) has a sequence of weak solutions .˙uk/

such that J.˙uk/ ! C1 as k ! 1.

Theorem 3.7. If M satis�es (M1) and f satis�es (F0), and (F2)–(F4), then

problem (1) has a sequence of weak solutions .˙vk/ such that J.˙vk/ < 0,

J.˙vk/ ! 0 as k ! 1.

We will use the following fountain theorem and the dual fountain theorem to

prove Theorem 3.6 and Theorem 3.7, respectively.

Since X is a re�exive and separable Banach space, then X� is too. There exist

(see [26]) ¹ej º � X and ¹e�
j º � X� such that

X D span¹ej W j D 1; 2; : : : º; X� D span¹e�
j W j D 1; 2; : : : º;

and

hei ; e�
j i D

8

<

:

1 if i D j;

0 if i ¤ j;
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where h�; �i denote the duality product between X and X�. We de�ne

Xj D span ¹ej º; Yk D

k
M

j D1

Xj ; Zk D

1
M

j Dk

Xj :

Lemma 3.8 (fountain theorem [25]). Assume that

(A1) X is a Banach space and J 2 C 1.X;R/ is an even functional.

If for every k 2 N, there exist �k > rk > 0 such that

(A2) inf¹J.u/W u 2 Zk ; kuk D rkº ! C1 as k ! C1,

(A3) max¹J.u/W u 2 Yk; kuk D �kº � 0,

(A4) J satis�es the (PS) condition for every c > 0,

then J has an unbounded sequence of critical points.

Lemma 3.9 ([18]). If 
.x/ 2 CC. x�/ for all x 2 �, denote


k D sup¹jujL
.x/.�/I kuk D 1; u 2 Zkº;

then limk!1 
k D 0:

Lemma 3.10 (dual fountain theorem see [25]). Assume (A1) is satis�ed and

there is k0 > 0 so that, for each k � k0, there exist �k > rk > 0 such that

(B1) ak D inf¹J.u/W u 2 Zk; kuk D �kº � 0,

(B2) bk D max¹J.u/W u 2 Yk; kuk D rkº < 0,

(B3) dk D inf¹J.u/W u 2 Zk ; kuk � �kº ! 0 as k ! C1,

(B4) J satis�es the (PS)�
c condition for every c 2 Œdk0

; 0/I

then J has a sequence of negative critical values converging to 0.

Definition 3.11. We say that J satis�es the (PS)�
c condition (with respect

to .Yn/) if any sequence ¹unj
º � X such that nj ! C1, unj

2 Ynj
, J.unj

/ ! c

and .J jYnj
/0.unj

/ ! 0, contain a subsequence converging to a critical point of J .

Lemma 3.12. Assume that the conditions in Theorem 3.7 hold, then J satis�es

the (PS)�
c condition.
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Proof. Suppose .unj
/ � X such that

nj �! C1; unj
2 Ynj

;

and

.J jYnj
/0.unj

/ �! 0:

Similar to the process of verifying the (PS) condition in the proof of Lemma 3.4,

we can get the boundedness of kunj
k. Going if necessary to a subsequence, we

can assume unj
* u in X . As X D [nj

Ynj
, we can choose vnj

2 Ynj
such that

vnj
! u. Hence

lim
nj !C1

hJ 0.unj
/; unj

� ui

D lim
nj !C1

hJ 0.unj
/; unj

� vnj
i C lim

nj !C1
hJ 0.unj

/; vnj
� ui

D lim
nj !C1

h.J jYnj
/0.unj

/; unj
� vnj

i

D 0:

As J 0 is of type .SC/, we can conclude unj
! u, furthermore we have

J 0.unj
/ �! J 0.u/:

Let us prove J 0.u/ D 0 below. Taking !k 2 Yk, notice that when nj � k we

have

hJ 0.u/; !ki D hJ 0.u/ � J 0.unj
/; !ki C hJ 0.unj

/; !ki

D hJ 0.u/ � J 0.unj
/; !ki C h.J jYnj

/0.unj
/; !ki:

Going to the limit on the right side of the above equation reaches

hJ 0.u/; !ki D 0; for all !k 2 Yk ;

so J 0.u/ D 0, this show that J satis�es the (PS)�
c condition for every c 2 R. �

Proof of Theorem 3.6. According to (F3) and Lemma 3.4, J is an even

functional and satis�es the (PS) condition. We will prove that if k is large enough,

then there exist �k > rk > 0 such that A2 and A3 hold. Thus, Theorem 3.6 follows

from the fountain theorem.
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(A2). For any u 2 Zk,

kuk D rk D .c12
C


C

k
m�1

1 /
1

˛p��
C

and we have

J.u/ D yM

� Z

�

1

p.x/
jrujp.x/dx

�

�

Z

�

F.x; u/dx

�
m1

˛

� Z

�

1

p.x/
jrujp.x/dx

�˛

� c12

Z

�

juj
.x/dx � c12

Z

�

jujdx

�
m1

˛.pC/˛
kuk˛p�

� c12juj

.�/


.x/
� c1kuk (where � 2 �)

�

8

ˆ

ˆ

<

ˆ

ˆ

:

m1

˛.pC/˛
kuk˛p�

� c12 � c12kuk (if juj
.x/ � 1)

m1

˛.pC/˛
kuk˛p�

� c12


C

k
kuk
C

� c12kuk � c13 (if juj
.x/ > 1)

�
m1

˛.pC/˛
kuk˛p�

� c12


C

k
kuk
C

� c12kuk � c13

D m1

� 1

˛.pC/˛
�

1


C

�

r
˛p�

k
� c10:

Since 
k ! 0, rk ! 1, 
C � 
� > ˛.pC/˛ , we know J.u/ ! 1 as k ! 1.

(A3). From (F1), we have F.x; t/ � c10jt j� � c11. Therefore, for any ! 2 Yk

with k!k D 1 and 1 < t D �k , we have

J.t!/ D yM

� Z

�

1

p.x/
jrt!jp.x/dx

�

�

Z

�

F.x; t!/dx

�
m2

˛

� Z

�

1

p.x/
jrt!jp.x/dx

�˛

� c10

Z

�

jt!j�dx � c11

�
m2

˛.p�/˛
t˛pC

� Z

�

jr!jp.x/dx

�˛

� c10t�

Z

�

j!j�dx � c11:

By � > ˛pC and dim Yk < 1, it is easy to see that J.u/!�1 as kuk!C1 for

u 2 Yk. �
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Proof of Theorem 3.7. From (F3) and Lemma 3.12, we know that J satis�es

both (A1) and (B4). We prove (B1)–(B3).

(B1) For any v 2 Zk , kvk D 1 and 0 < t < 1, we have

J.tv/ D yM
�

Z

�

1

p.x/
jrtvjp.x/dx

�

�

Z

�

F.x; tv/dx

�
m1

˛

�

Z

�

1

p.x/
jrtvjp.x/dx

�˛

�

Z

�

F.x; tv/dx

�
m1

˛.pC/˛
t˛pC

�

Z

�

jrvjp.x/dx
�˛

� �t˛pC

Z

�

jvj˛pC

pCdx � c1t
�

Z

�

jvj
.x/dx

�
m1

˛.pC/˛
t˛pC

kvk˛pC

� �t˛pC

jjvjj˛pC

�

8

<

:

c1


�

k
t
�

kvk
�

(if juj
.x/ � 1)

c1


C

k
t
�

kvk
C

(if juj
.x/ > 1)

�
m1

2˛.pC/˛
t˛pC

�

8

<

:

c1


�

k
t
�

(if juj
.x/ � 1)

c1


C

k
t
�

(if juj
.x/ > 1).

(10)

Since 
� > ˛pC, taking �k D t small enough and su�ciently large k, for v 2 Zk

with kvk D 1, we have J.tv/ � 0. So for su�ciently large k

inf
u2Zk ; kukD�k

J.u/ � 0;

i.e. (B1) is satis�ed.

(B2) For v 2 Yk, kvk D 1 and 0 < t < �k < 1, we have

J.tv/ D yM

� Z

�

1

p.x/
jrtvjp.x/dx

�

�

Z

�

F.x; tv/dx

�
m2

˛.p�/˛
t˛p�

� Z

�

jrvjp.x/dx

�ˇ

� c13t �C

Z

�

jvj�.x/dx:

Condition �C < ˛p� implies that there exists a rk 2 .0; �k/ such that J.tv/ < 0

when t D rk . Hence, we get

bk WD max
u2Yk ; kukDrk

J.u/ < 0;

so B2 is satis�ed.
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(B3) Because Yk \ Zk ¤ ; and rk < �k , we have

dk D inf¹J.u/W u 2 Zk ; kuk � �kº � bk D max¹J.u/W u 2 Yk; kuk D rkº < 0:

From (10), for v 2 Zk , kvk D 1, 0 � t � �k and u D tv, we have

J.u/ D J.tv/ �
m1

2˛.pC/˛
t˛pC

�

8

<

:

c1


�

k
t
�

(if juj
.x/ � 1)

c1


C

k
t
�

(if juj
.x/ > 1)

� �

8

<

:

c1


�

k
t
�

(if juj
.x/ � 1)

c1


C

k
t
�

(if juj
.x/ > 1),

hence, dk ! 0, i.e. .B3/ is satis�ed.

Theorem 3.7 follows from the dual fountain theorem. �
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