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Q-Gorenstein smoothings of surfaces

and degenerations of curves

Giancarlo Urzúa (�)

Abstract – In this paper we mainly describe Q-Gorenstein smoothings of projective

surfaces with only Wahl singularities which have birational �bers. For instance, these

degenerations appear in normal degenerations of P2, and in boundary divisors of the

KSBA compacti�cation of the moduli space of surfaces of general type [15]. We give an

explicit description of them as smooth deformations plus 3-fold birational operations,

through the �ips and divisorial contractions in [9]. We interpret the continuous part

(smooth deformations) as degenerations of certain curves in the general �ber. At the

end, we work out examples happening in the KSBA boundary for invariants K2 D 1,

pg D 0, and �1 D 0 using plane curves.
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1. Introduction

Q-Gorenstein smoothings are interesting degenerations of nonsingular surfaces.

For instance, stable limits of nonsingular surfaces in the KSBA compacti�cation of

the moduli space of surfaces of general type [15] are Q-Gorenstein smoothings. On

the other hand, they provide a non-classical construction of nonsingular projective

surfaces with �xed invariants by means of certain singular surfaces; this is the

pioneering work of Y. Lee and J. Park [16]. They are also present in degenerations

of other type of surfaces [10], [17], [8], and [19].
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Let D be a smooth analytic germ of curve. We are interested in Q-Goren-

stein smoothings over D of irreducible projective surfaces X with only quotient

singularities. In this case the Q-Gorenstein condition means that the canonical

class of the corresponding 3-fold is Q-Cartier (see [7] for a general discussion).

The singularities of X are the so-called T-singularities [15]: they are either du Val

singularities, or cyclic quotient singularities 1
dn2 .1; dna � 1/ with gcd.n; a/ D 1.

For du Val singularities we have simultaneous resolution. For the others we have

particular partial simultaneous resolution (given by the M-resolutions of [3])

which has as special �ber a surface with only Wahl singularities, this is, non du Val

T-singularities with d D 1 [21, (5.9.1)]. We remark that Wahl singularities are the

log terminal singularities which have a rational homology disk smoothing. It turns

out that Q-Gorenstein smoothings over D of projective surfaces with only Wahl

singularities have some common characteristics with nonsingular projective sur-

faces. In §2 we make this precise, showing their MMP with explicit birational

operations as in [9], minimal and canonical models, and some numerical invari-

ants.

In general, it is not clear what produces that a nonsingular projective surface

admits a Q-Gorenstein degeneration with only Wahl singularities. This type of de-

generations have no vanishing cycles. In [10], Kawamata describes Q-Gorenstein

degenerations when the general �ber has Kodaira dimension 0 or 1, giving a rea-

son for the existence using elliptic �brations. Hacking [6] discusses it for surfaces

of general type with geometric genus 0 via exceptional vector bundles. We recall

that the Kodaira dimension of the minimal resolution of the special �ber and of the

general �ber may be di�erent. For example, the special �ber could be rational and

the general �ber could be of general type. This paper is mainly about Q-Goren-

stein smoothings over D of projective surfaces with only Wahl singularities so

that the special and general �ber are birational. (It is actually more general, see

Theorem 3.4.) These degenerations appear, for example, when studying normal

degenerations of P2 [17], [8], and when studying KSBA boundary in the moduli

space of surfaces of general type with pg D 0 (cf. [20]). In this direction, Corol-

lary 3.5 says: any birational Q-Gorenstein smoothing comes from a smooth defor-

mation (continuous part) followed by certain speci�c birational 3-fold operations

(discrete part). These operations are the explicit �ips and divisorial contractions

in [9]. A distinguished non-trivial case in this theorem is normal degenerations of

P2, which is treated separately in §3 (see Example 3.2).

In §4, we look closer at the above “continuous part.” We interpret the deforma-

tion as degeneration of certain curves. The work with curves is possible because

Q-Gorenstein smoothings with only Wahl singularities happen on a Q-factorial
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3-fold, and so we have intersection theory. This is a general property induced by

normal surface singularities with a rational homology disk smoothing [22, Propo-

sition 3.1]. Using this we will keep track of curve degenerations after each �ip or

divisorial contraction; for the precise picture see §4. In that section we show con-

ditions to produce many examples (Propositions 4.2 and 4.3), and we give two

concrete ones starting with P2 (Examples 4.4 and 4.5).

Our main motivation is to explore the KSBA boundary of the moduli space of

simply connected surfaces of general type with pg D 0. The above continuous

part gives something to work with when some boundary divisors, which param-

etrize rational singular surfaces, intersect. This continuous part gives degenera-

tions of rational plane curves. Their parameters give the moduli for the divisors,

and their further degenerations produce more divisors. In particular, this is an ex-

plicit description of the surfaces in any constructed Wahl divisor D
�

n
a

�
; cf. [20].

These plane curves may be irreducible, reducible but reduced, or reducible and

nonreduced; some degenerations could give di�erent families in the same moduli

space (so the discrete part is now varying). In §5 we show four examples which

give a �rst look at this way of describing KSBA boundary. All of them are simply

connected, K2 D 1, and pg D 0.

Notation

We use de�nitions, notations, and facts from [9], [20, Preliminaries]. As in [20],

the k1A and k2A extremal nbhds in [9] are denoted by mk1A and mk2A. Our

ground �eld is C.

2. W-surfaces and their MMP

Let X be a normal surface with only quotient singularities, and let .0 2 D/ be

a smooth analytic germ of curve. A deformation .X � X/ ! .0 2 D/ of X

is called a smoothing if its general �ber is smooth. It is Q-Gorenstein if KX is

Q-Cartier. A germ of a normal surface X is called a T-singularity if it is a quotient

singularity and admits a Q-Gorenstein smoothing. By [15, Proposition 3.10], any

T-singularity is either a du Val singularity or a cyclic quotient singularity of the

form 1
dn2 .1; dna�1/ with gcd.n; a/ D 1. A T-singularity with a one-dimensional

Q-Gorenstein versal deformation space is either a node A1 or a Wahl singularity
1

n2 .1; na � 1/. Hence Wahl singularities are precisely the T-singularities whose

Q-Gorenstein smoothing has Milnor number zero.
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Definition 2.1. A W-surface is a normal projective surface X together with a

proper deformation .X � X/ ! .0 2 D/ such that

(1) X has at most Wahl singularities;

(2) X is a normal complex 3-fold with KX Q-Cartier;

(3) the �ber X0 is reduced and isomorphic to X ;

(4) the �ber Xt is nonsingular for t ¤ 0.

The W-surface is said to be smooth if X is nonsingular.

These situation coincides with the moderate degenerations in [10]. Notice that

a W-surface has X terminal [15, Corollary 3.6] and Q-factorial. The later assertion

comes from the fact that X ! D is a Q-Gorenstein smoothing of singularities with

Milnor number zero; see [12, 2.2.7], or [22, Proposition 3.1] in more generality.

We use proper and not projective deformations since we will perform �ips on such

X which involve deformations of partial resolutions of singularities.

We point out that one produces many examples of W-surfaces in the following

way; see [21, (6.4)], [17, §1], [16, §2]. One constructs a normal projective surface

X with only Wahl singularities and H 2.X; TX/ D 0. Then local deformations glue

to global deformations of X , and we consider the ones coming from Q-Gorenstein

smoothings of the singularities. This gives a W-surface. (For technical details in

higher generality see [7, §3].)

The aim of this section is to highlight similarities between W-surfaces and

smooth projective surfaces via the general �ber. Let X be a W-surface. Then, we

have that KXt
D KXjXt

for all t . Also the invariants K2
Xt

, �top.Xt /, q.Xt / D

dimCH 1.Xt ;OXt
/ (in general, see [4]), and pg .Xt / D dimCH 2.Xt ;OXt

/ are

independent of t ; cf. [10]. A key property, which will be used frequently, is that the

3-fold is Q-factorial, which allows us to compare curves in the general and special

�bers through intersection theory.

Definition 2.2. A W-surface X is minimal if KX is nef.

Lemma 2.3. If a W-surface X is minimal, then KXt
is nef for all t .

Proof. Since KX is nef and K2
X D K2

Xt
for all t , we have K2

Xt
� 0. Notice

also that (by [4, §3]) q.X/ D q.Xt / for all t , and so b1.Xt / is even since X is

projective with Wahl (and so rational) singularities. Suppose there is a t ¤ 0 so

that KXt
is not nef. Then since K2

Xt
> 0 and b1.Xt / is even, we have that either

Xt is ruled or Xt is a surface of general type [2, p. 91].
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(I) Say that Xt is ruled: Then Xt must be rational since K2
Xt

� 0. This

is because a minimal model of Xt has canonical class with self-intersection

8.1�q.Xt // and so q.Xt / D 1; 0. But if q.Xt / D 1, then Xt is a minimal minimal

ruled surface since we must have K2
Xt

D 0. Here, we can use [1, §3] to show

that the minimal resolution zX of X must be a ruled surface as well. But then,

since q. zX/ D 1, we have that the exceptional divisor of the minimal resolution
zX ! X is contained in �bers of a �bration zX ! E, where E is a curve of

genus 1. But then, the image of the general �ber of zX ! E in X is a P1 so that

P1 � KX D �2, contradicting that KX is nef. Therefore, we are left with the case

of a rational surface Xt . But then q.X/ D pg.X/ D 0, and so the deformation

.X � X/ ! .0 2 D/ is projective [17, p. 6]. Now by [1, Lemma (1.3)], we have that

h0.X; �mKX/ � h0.Xt ; �mKXt
/ for all m > 0 divisible by the index of all Wahl

singularities in X . But h0.Xt ; �mKXt
/ D h1.Xt ; �mKXt

/C m.mC1/
2

K2
Xt

C1 > 0.

On the other hand, X is projective, and KX is nef, so �mKX cannot have global

sections.

(II) Say that Xt is of general type. Then one can prove the existence of a family

of .�1/-curves �t degenerating to some e�ective divisor �0 in X , which gives

KXt
� �t D �1 for t ¤ 0, and so in the limit KX � �0 D �1, which contradicts the

fact that KX is nef. To see this family of .�1/-curves, we �rst notice that: if Xt0

is of general type for some t0 ¤ 0, then all Xt are of general type for t ¤ 0 [2,

VI§8]. Now, by results of Kodaira and Iitaka [2, IV§4], there is a small disk D0

in D n ¹0º around t0 with a family of such .�1/-curves. We want to extend it to

the whole disk. To prove this, it is enough to show that for a smooth deformation

.W � W/ ! .0 2 D/ of a smooth projective surface of general type W there

exists a smaller disk D0 which contains 0 such that all .�1/-curves in the neighbor

�bers of .W � W0/ ! .0 2 D0/ deform to a .�1/-curve in the central �ber

W . First, to get this small disk D0, we use several times the Kodaira and Iitaka

results mentioned above to obtain a minimal model Wm for W together with a

deformation .Wm � Wm/ ! .0 2 D0/. Notice that for general type surfaces, we

have minimality if and only if h1.�K/ D 0, and so the canonical class of every

�ber in .Wm � Wm/ ! .0 2 D0/ is nef. Now restrict to the initial degeneration

but over D0: .W � W/ ! .0 2 D0/. Say that �t is a .�1/-curve in some �ber

Wt of .W � W/ ! .0 2 D0/ which does not belong to the exceptional divisor

given by the contractions used to obtain .Wm � Wm/ ! .0 2 D0/. Then, its image

� 0
t in the minimal model of Wt (which is a �ber of .W � W/ ! .0 2 D0/) has

� 02
t D �1C

P
m2

i and arithmetic genus pa.� 0
t / D

P mi .mi �1/
2

, for some integers

mi � 0, and so the intersection between � 0
t and the canonical divisor is negative

by adjunction, a contradiction. Therefore �t belongs to the exceptional divisor,

and this completes the proof. �
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If KX is not nef, we run MMP [14] in the following way. First, following

[14, Theorem 3.7] for example, there is a KX -extremal rational curve � (with

KX � � < 0). We have three options:

(I) If �2 > 0, then Pic.X/ has rank 1 and �KX is ample [13, 2.3.3].

Hence �KXt
is ample for any t [14, Proposition 1.41], and so Xt is rational for

any t . Moreover, the rank 1 condition implies that e.Xt / D 3 for all t , and

so Xt is isomorphic to P2. This type of degenerations of P2 were classi�ed

in [17, 8]. According to [8, Corollary 1.2], X is a Q-Gorenstein deformation of a

weighted projective plane P.a; b; c/ where .a; b; c/ satis�es the Markov equation

a2 C b2 C c2 D 3abc. In the next section we say more on those degenerations.

(II) If �2 D 0, then there is a �bration hW X ! B with irreducible �bers and

general �ber isomorphic to P1 [13, 2.3.3]. Let QhW QX ! T be the corresponding

�bration on the minimal resolution QX of X . Then, over a b 2 B where the �ber

has a Wahl singularity, the �ber in QX has two possible con�guration types; see

[8, Proposition 7.4]. It is a simple check that none of them is possible when the

singularities are of Wahl type. Therefore, .X � X/ ! .0 2 D/ is a smooth

deformation of a geometrically ruled surface X .

(III) If �2 < 0, then we can apply to .X � X/ ! .0 2 D/ a birational

transformation de�ned by an extremal nbhd of type mk1A or mk2A of �ipping or

divisorial type; see [9, Theorem 5.3]. After that we arrive to another W-surface

.XC � XC/ ! .0 2 D/. The �bers of X ! D have changed in one of the

following ways.

(W-blow-down) In the divisorial type, we have a birational morphism X !XC

contracting the curve � D P1 to a Wahl singularity. The minimal resolution of

this Wahl singularity is obtained resolving minimally X for singularities on �

and contracting the proper transform of � and subsequent .�1/-curves (see [9]

or [20, §1] for the numerics). The birational morphism Xt ! XC
t for t ¤ 0 is just

the blow down of one .�1/-curve. The inverse of a W-blow-down will be called a

W-blow-up. We notice that over the Wahl singularity of XC we can have in�nitely

many W-blow-ups X . If the Wahl singularity in XC is 1
ı2 .1; ıa � 1/, then the new

Wahl singularities (one or two) appearing in XC are of the type 1

n2
i

.1; niai � 1/

where ni D ıni�1 � ni�2 and ai D ıai�1 � ai�2 where .n0; a0/ D .0; 1/ and

.n1; a1/ D .ı; a/ (see [9] or [20, §1]). When two singularities appear, then the

numbers for the Wahl singularities are .ni ; ai / and .niC1; aiC1/.
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(W-�ip) In the �ipping type, the birational transformation X Ü XC is

described in [9] (see also [20, §1]). Roughly it is a minimal resolution of X of the

singularities contained in �, followed by blow downs and ups in the total transform

of �, �nishing with a contraction of two, one or none chain of rational curves.

The numerical rules are in [9] (see also [20, §1]). Of course, the birational map

Xt ! XC
t is an isomorphism for t ¤ 0.

Remark 2.4. There are constraints for anti-W-�ips and W-blow-ups. Anti-W-

�ips for .XC � XC/ ! .0 2 D/, which locally above 0 is the deformation of

an extremal P -resolution (see [9, §4]), only exist for certain deformations. (For

the precise statement see [9, Corollary 3.23]) See Example 3.26 in [9] where the

anti-�ip is not an anti-W-�ip. One can produce a similar example in the case of

divisorial contractions, using a Z6-quotient of a simple elliptic singularity, whose

minimal resolution is a union of 4 smooth rational curves E1, E2, E3, and F so

that the Ei are disjoint, each meets the curve F transversally at a single point, and

E2
1 D �2, E2

2 D �3, E2
3 D �6, and F 2 D �2. Similarly to [9, Example 3.26],

here one attaches a .�1/-curve transversal at one point of E1 to de�ne a canonical

(nonterminal) extremal neighborhood. The Wahl singularity in XC is 1
9
.1; 2/.

When we apply (III) above, we have that either the Picard number of X , or

the indices of some of its singularities strictly decreases. Thus it ends after �nitely

many steps with a W-surface as in (I) or (II), or with KX nef.

Definition 2.5. Given a W-surface, a minimal model of it is a minimal

W-surface obtained by applying W-blow-downs and W-�ips.

Proposition 2.6. A minimal model is unique.

Proof. Assume there are two minimal models Xm1 and Xm2. We have a

birational map gWXm1 Ü Xm2. Then, since the Xmi are Q-factorial normal

analytic 3-folds with terminal singularities and KXmi
nef, we know that g can

be written as composition of analytic �ops [11, Theorem 4.9]. Let g0WXm1 Ü X0

be the �rst �op. So, we have a small contraction cWXm1 ! Y over D such that

KXm1
� C D 0 for the curves C contracted by c to y 2 Y. By [12, Theorem 2.2.2],

the singularity y 2 Y is terminal, and by [15, Theorem 5.3] we obtain that y 2 Y

is a T-singularity, where Y is the special �ber of Y ! D. Locally Xm1 ! Y gives

an M-resolution of y 2 Y and they are unique [3]. Notice that for the contraction

X0 ! Y we have the same situation, with same singularities. Therefore g0 is an

isomorphism, and so g. �
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In the previous lemma, Q-factoriality for X was crucial. For example, take

a rational elliptic surface with a multiplicity two �ber. Assume it has an I2

�ber (nodal rational curve). We blow up its two nodes and contract the two

.�4/-curves. One can show that there are Q-Gorenstein smoothings and for any

we have a minimal W-surface (a general �ber is an Enriques surface, see [20,

Section 5]). Each of the two images of the .�1/-curves from the nodes of I2 gives

two di�erent ways to contract, but these two contractions are not related by a �op.

The Q-Gorenstein smoothing of the T-singularity Œ3; 3� gives a 3-fold which is not

Q-factorial.

If the minimal model has K2
X > 0, then we also have (unique) canonical model.

(This is [20, Lemma 3.1].)

Proposition 2.7. Let X be a minimal W-surface with K2
X > 0. Then, its

canonical model .Xcan � Xcan/ ! .0 2 D/ has Xcan projective surface with only

T-singularities. This is, it has Du Val singularities or cyclic quotient singularities
1

dn2 .1; dna � 1/ with gcd.n; a/ D 1.

Proof. We know there is .Xcan � Xcan/ ! .0 2 D/; cf. [14]. We have a

birational morphism X ! Xcan over D such that KXcan is Q-Cartier and ample.

Notice that Xcan has log terminal singularities because X has [14, pp. 102–103].

The singularities of Xcan must be T-singularities by [15, §5.2]. �

3. Birational Q-Gorenstein smoothings

Let X be a W-surface. Why do these smooth projective surfaces Xt degenerate to

X? We remark that in this type of degeneration there are no vanishing cycles. One

can �nd an explanation when the general �ber has Kodaira dimension 0 and 1 in

[10, §4]. When X is indeed singular, this has to do with collisions of special �bers

on an elliptic �bration of Xt . Also, there is a general discussion for q D pg D 0

surfaces in [6] through certain exceptional vector bundles. Here we describe the

situation when a resolution of X and Xt have the same plurigenera. In particular,

when they are actually birational. This happens for example with the surfaces in

[17, 8], and also in many examples of stable surfaces in the KSBA compacti�cation

of the moduli space of surfaces of general type; see [20]. We will work with the

later at the end of this article.

The claim is: any such W-surface comes from a smooth W-surface, after

applying W-blow-downs, and W-�ips. Thanks to the MMP described in §2 and

a result of Kawamata [10, Lemma 2.4], the only nontrivial case is degenerations

of P2. We work out that now.
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Let Fm be the Hirzebruch surface with a smooth rational curve �m with

�2
m D �m. Let .0 2 D/ be a smooth analytic germ of curve. We consider three

situations m D 3; 5; 7.

(dm) A W-surface with X D Fm, Xt D F1 for t ¤ 0, and the .�1/-curve of F1

degenerates to �m C
P.m�1/=2

iD1 Fi , where Fi are distinct �bers of Fm ! P1.

Theorem 3.1. Let X be a W-surface with general �berP2. Then, after applying

one W-blow-up and �nitely many W-�ips, this W-surface becomes the W-surface

in (dm) for some m.

The sequence of W-�ips is a guided process as we will see in the proof. For

the inverse construction, we remark that anti-W-�ips are not automatic from the

corresponding “local” extremal P-resolution, they only exist for certain deforma-

tions in the deformation space of this P-resolution (see [9]). Moreover, for a given

a P-resolution, there are in general in�nitely many combinatorial choices for an

anti-�ip.

First we recall Manetti’s [17, Theorem 18]. Let X be a W-surface with general

�ber P2, let ıW S ! X be its minimal resolution. Then there is a rational �bration

pW S ! P1, such that the exceptional set of ı is contained in either 0, or 1, or

2 singular �bers union one section �. Moreover, there is a birational morphism

�W S ! Fm contracting the curves in the before mentioned special 1 or 2 �bers

such that � does not intersect the exceptional loci of �, the image of � is the

negative curve of Fm, and m is either 4, 7, or 10 in correspondence to the number

of special �bers 0, 1, 2.

First W-blow-up. Let us consider a section of X ! D intersecting X at a

point which is contained in a nonsingular �ber of pW S ! P1. Blow this section

up, let X0 be this new W-surface whose general �ber is now F1. If S0 is the blow

up at the point of S , then we have created a .�1/-curve intersecting � at one point.

This is a �ipping mk1A for the Wahl singularity which includes � in its minimal

resolution. We apply the corresponding W-�ip. Notice that �2 � �4, and so for

the new W-surface X1 we have a minimal resolution ı1W S1 ! X1 with the same

properties as for ıW S ! X but now m is either 3, 6, or 9 (in correspondence to the

number of special �bers 0, 1, 2).

The birational operations we are going to use are W-�ips with �ipping curves

always in the special (singular) �bers of pW S ! P1. For this we need the

following.



120 G. Urzúa

A z type of surface will be a W-surface Xi with four distinguished rational

smooth curves A, B , C , and F so that the minimal resolution ıi W Si ! Xi has a

rational �bration pi W Si ! P1 with at most two singular �bers (as the one above),

where A is a .�1/-curve in one singular �ber, B and C are in the other, and F is

a general smooth �ber. In addition they must satisfy:

(1) B � KXi
< 0 and C � KXi

> 0;

(2) we can contract B in X and C in X to cyclic quotient singularities;

(3) the special section � of Si appears in one of the minimal resolutions of the

cyclic quotient singularities in (2) with �2 � �3.

The conditions (1) and (2) ensure the existence of an mk1A or mk2A of �ipping

type for the curve B . Notice that, in our case, it is of �ipping type since the

.�1/-curve of the general �ber F1 degenerates to an e�ective Q-divisor in X

containing F . The condition (3) says that we preserve the �bration of Si , and

so the strict transform of F after the �ip is again an F for SiC1. In particular we

are �ipping curves only in the two special �bers.

Before continuing with the proof, we run the MMP of Theorem 3.1 in an

example.

Figure 1. Running Theorem 3.1 on an example
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Example 3.2. We take the example in [17, p. 117]. There X has three Wahl

singularities 1
4
.1; 1/, 1

25
.1; 4/, and 1

292 .1; 29 � 21 � 1/. The minimal resolution

ıW S ! X gives the �bration pW S ! P1 with the exceptional divisor of ı

contained in two �bers and one section �, where �2 D �10. In the upper-half

corner of Figure 1, we have the dual graph of the exceptional curves of ı together

with two .�1/-curves (one in each of the two �bers), and a �ber. The � represent

the curves in the exceptional divisor, and the numbers are the self-intersections of

the curves (no number means �1). As in [9, 20], the graph-diagram in Figure 1

shows how we run the MMP in Theorem 3.1. First, we have the W-blow-up of

a section of the W-surface X (i.e. of the 3-fold) which intersects a point of the

distinguished �ber not in �. The �rst arrow indicates that birational transformation

on the surface S . After that, we perform seven W-�ips. The K-negative curves are

marked with a 	, the K-positive �ipped ones with a ˚. After the �rst �ip, we see

the curves A, B , C , F above as some permutation of the elements in ¹ı; ı; ˚; 	º.

Lemma 3.3. Assume that Xi is a W-surface of z type coming from W-�ips

starting with Manetti’s situation above. Then, the W-�ip of B in the W-surface Xi

produces a W-surface XiC1 of z type.

Proof. In XiC1, let A be the strict transform of A, same for C , and let B be

the �ipped B . So we know that B � KXiC1
> 0. We notice that (3) is clear from the

Manetti’s assumptions on Si ! P1 and the way a W-�ip is performed on Xi (it is

the contraction of at most two Wahl chains of a blow-up on consecutive nodes from

the minimal resolution of the corresponding cyclic quotient singularity). Now B

could be in the same singular �ber (in SiC1) than either A or C . We rename curves

so that the �ipped curve B is C , the curve in the same singular �ber than the �ipped

curve is B , and the curve in the other singular �ber is A. In this way, A has to be

a .�1/-curve in the minimal resolution SiC1.

To prove (1), we need to show B � KXiC1
< 0. For this we use that XiC1 has

Picard number 2. Notice that because of (3), F � KXiC1
< 0, and so F � uB C vC

with u; v 2 Q. We have two cases: A � B D 0 or A � C D 0. Say A � C D 0, then

A � B > 0 and so F � A D uB � A implies u > 0. Now uB2 C vC � B D F � B

implies so v > 0. Therefore B � KXiC1
< 0. For the other case A � B D 0, we do

similar intersections to obtain the same result, so (1) is true. �

Proof of Theorem 3.1. Notice that the X1 above (obtained from [17, Theo-

rem 18] applying one W-blow-up and one W-�ip) is of z type. Then we apply the

W-�ips for the W-surfaces Xi of z type applying previous lemma. They have to
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terminate on a nonsingular Fn W-surface for some n. Notice that n D 3; 5; 7 ac-

cording to the number of special �bers. Also, the .�1/-curve of the general �ber

F1 degenerates to the claimed curves in Fn. �

Let us denote by Pm.Z/ WD dimCH 0.Z; mKZ/ the plurigenera of a nonsingu-

lar projective surface Z.

Theorem 3.4. Let X be a W-surface, and let zX be a resolution of the singu-

larities of X . Assume that Pm. zX/ D Pm.Xt / for t ¤ 0 and m � 0. Then this

W-surface can be constructed from a smooth W-surface applying a �nite number

of W-blow-downs (or -ups) and anti-W-�ips.

Proof. We apply the MMP of §2 to this W-surface. If we arrive to (II), then

we are done. If we arrive to (I), then we are done by Theorem 3.1. Otherwise, after

�nitely many W-�ips or W-blow-downs, we obtain the W-minimal model X 0 of X .

If the W-minimal model is smooth, then we are done. If not, by [10, Lemma 2.4],

there are positive integers m1 and m2 such that

Pm.Xt / > Pm. �X 0/

for t ¤ 0 holds for positive integers m with m1 dividing m and m2 < m, where �X 0

is a resolution of X 0. But Pm. zX/ D Pm. �X 0/ and Pm.Xt / D Pm.X 0
t / for t ¤ 0 and

all m, because plurigenera is a birational invariant between nonsingular varieties.

By assumption Pm. zX/ D Pm.Xt / for t ¤ 0 and m � 0, and so we have a

contradiction. Therefore X 0 must be nonsingular. �

Corollary 3.5. Let X be a W-surface such that X is birational to Xt , t ¤ 0.

Then this W-surface can be constructed from a smooth W-surface applying a �nite

number of W-blow-downs (or -ups) and anti-W-�ips.

The di�culty of the Q-Gorenstein smoothings in Theorem 3.4 relies mainly

on W-�ips and W-blow-downs. As we have noticed before, there are choices

when one performs inverses of them. Also, their description uses an intricate but

explicit combinatoric through continued fractions (cf. [9]). On the other hand, the

degenerations in Theorem 3.4 produce interesting degenerations of curves in the

general �ber Xt . This is the topic of the next two sections.

4. Degeneration of curves

Here is the situation. Let X be a W-surface. Let �t be an irreducible curve in

the general �ber Xt . This curve deforms to a divisor �0 in X . If X 0 a W-minimal
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model of X , then we want to know explicitly about the degeneration of � 0
t into

� 0
0 (the total transforms of �t and �0 respectively). Moreover, if X and Xt are

birational, we can get a nonsingular X 0 (Corollary 3.5) and typically we would

have X 0 isomorphic to X 0
t . This suggests we can think about this deformation as an

explicit degeneration of � 0
t in X 0. At the end of this section we will show examples

using curves in P2. In the next section we will see how these sort of examples

show up in the Kollár–Shepherd-Barron–Alexeev boundary of the moduli space

of surfaces of general type.

The set-up: Let X be a W-surface, and let �t be an irreducible curve in Xt ,

for t ¤ 0, degenerating to a divisor �0 in X . This is, we have a divisor � in X

such that �jXt
D �t . We write �0 D

Ps
iD0 ˛i Di where Di are distinct irreducible

curves and ˛i 2 Z�0.

Let .E� � X � X/ ! .Q 2 Y � Y/ be a mk1A or mk2A. Assume D0 D E�.

If it is of divisorial type, then the W-blow-down produces a W-surface X 0 with a

divisor � 0 image of �, such that � 0
t is an irreducible curve for t ¤ 0 (or a point if

� is the exceptional divisor), and � 0
0 D

Ps
iD1 ˛iD

0
i where D0

i is the image of Di .

If it is of �ipping type, then the W-�ip produces a W-surface X 0 with a divisor

� 0 proper transform of �, such that � 0
t is isomorphic to �t for t ¤ 0, and

� 0
0 D

Ps
iD1 ˛i D

0
i C ˇEC where D0

i is the proper transform of Di , EC is the

�ipping curve, and ˇ 2 Z�0. Since X0 is Q-factorial and this is a �ip, we have the

numerical equivalence

sX

iD1

˛i .D
0
i � KX 0/ C ˇ.EC � KX 0/ D � 0

0 � KX 0 D � 0
t � KX 0

t
D �t � KXt

from where one calculates ˇ. We notice that ˇ D 0 if and only if �0 \ E� D ;.

The following is a frequent case.

Proposition 4.1. Assume that in the situation above we have an mk1A of

�ipping type so that E� is intersecting at one point one of the ends of the minimal

resolution of the corresponding Wahl singularity. Let �0 D
Ps

iD1 ˛i Di with

Di ¤ E� for all i , D1 � E� D 1, and Di � E� D 0 for i � 2 (see Figure 2).

Then ˇ D ˛1.

D1
E�

E1 E2 Em�1
� � � Em

Figure 2. Frequent case
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Proof. Let 1
n2 .1; na � 1/ be the Wahl singularity, and let E1; E2; : : : ; Em be

the chain of exceptional curves in the minimal resolution as shown in Figure 2.

Thus E1 � E� D 1, where as always E� is the strict transform of E�, so it is a

.�1/-curve. Assume that E1; : : : ; Er are all .�2/-curves (this set may be empty).

Then either E2
m D �.r C 2/ if r ¤ m � 1, or E2

m D �.r C 4/ if r D m � 1. The W-

�ip in this case gives EC D Em with either one Wahl singularity on it if r ¤ m�1

having the Hirzebruch-Jung continued fraction Œ�E2
rC1 � 1; �E2

rC2; : : : ; �E2
m�1�,

or none [20, Proposition 2.8]. Let a and b the discrepancies (0 < a; b < 1) of ErC1

and Em�1 for the singularity of X 0 in EC. Then KX 0 � D0
1 D KX � D1 � .r C 1/ C a

and KX 0 � EC D r C b if X 0 singular, and so in this case

ˇ D
˛1.r C 1 � a/

r C b
D ˛1

because a C b D 1. When X 0 is smooth at EC, KX 0 � D0
1 D KX � D1 � .r C 1/ and

KX 0 � EC D r C 1, so ˇ D ˛1. �

We will �nish this section with two examples derived from vanishing of certain

cohomology group.

Proposition 4.2. Let Z be a nonsingular projective surface. Let W1,. . . , Wr

be r chains of P1’s in Z so that Wi is the exceptional divisor of a Wahl singularity,

and Wi \ Wj D ; for i ¤ j . Assume there is a curve �0 D P1 in Z such that

�0 \ Wi D ; for all i , and

H 2
�
Z; TZ.� log.W1 C � � � C Wr C �0//

�
D 0:

Then there is a W-surface X such that X is the contraction of all Wi ’s, and there

is a divisor � � X with �jXt
D P1 and �jX D �0.

Proof. We �rst blow-up distinct points on �0 so that �2
0 � �2, if necessary.

By the adding-deleting .�1/-curves procedure (for instance, see [18, §4]), we have

again H 2.Z0; TZ0.� log.W1 C � � � C Wr C �0/// D 0 where Z0 is the blown-up

surface, and �0 is the proper transform of �0. The con�gurations W1,. . . , Wr ,

�0 correspond to exceptional divisors of cyclic quotient singularities, and they

can be contracted to a projective surface X 0. By [16, pp. 487–488], we have that

H 2.Z0; TZ0.� log.W1 C � � � C Wr C �0/// D 0 implies H 2.X 0; TX 0/ D 0, and

that implies no-local-to-global obstructions to deform X 0. In particular, we can

glue local Q-Gorenstein smoothings for the Wahl singularities Wi , and keep the

singularity corresponding to �0. Let X0 ! D be the corresponding deformation.
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Since the deformation for the singularity given by �0 is trivial, we can resolve

it simultaneously, obtaining X00 ! D Q-Gorenstein smoothing of X 00 (which is

X 0 with the singularity associated to �0 minimally resolved). The 3-fold X00 has a

divisor � 00 de�ned by the curve �0. The .�1/-curves in X 0 corresponding to the

initial blow-up of W intersect �0 at one point. All of them are now contracted to

�nally obtain the W-surface X with the claimed properties. �

Proposition 4.3. Let
Pn

iD1 Ci be a SNC divisor (only nodes as singularities,

Ci nonsingular curves) in a nonsingular projective surface W with H 0.W; �1
W / D

0. Assume that there is 1 < m � n such that C1 C � � � C Cm � �KW , and the

curves ¹CmC1; : : : ; Cnº are numerically independent. (m D n means no second

requirement.) Then

H 2.W; TW .� log.C1 C � � � C Cn/// D 0:

Proof. By Serre’s duality, we need to prove that

H 0.W; �1
W .log.C1 C � � � C Cn// ˝ OW .KW // D 0:

Notice that we have the natural

�1
W

�
log

� nX

iDj

Ci

��
˝ OW

� j �1X

iD1

Ci C KW

�

,�! �1
W

�
log

� nX

iDj C1

Ci

��
˝ OW

� jX

iD1

Ci C KW

�
;

and so by the hypothesis C1 C � � � C Cm � �KW , we want to show

H 0.W; �1
W .log.CmC1 C � � � C Cn/// D 0:

The long exact sequence in cohomology of the residue short exact sequence

0 �! �1
W �! �1

W .log.CmC1 C � � � C Cn// �!

nM

iDmC1

OCi
�! 0

gives the Chern class map

nM

iDmC1

H 0.Ci ;OCi
/ ! H 1.W; �1

W /

(cf. [5, pp. 454–462]), and since we are assuming that ¹CmC1; : : : ; Cnº are numer-

ically independent, this map is injective. The extra assumption H 0.W; �1
W / D 0

�nishes the proof. �
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We present two examples to illustrate.

Example 4.4. This is a way to produce a degeneration of a nodal rational

plane curve of degree d to d lines in general position. Let ¹L1; : : : ; Ldº be

d lines in general position in P2. We assume d � 6 (this allows as a short

uniform argument, this can be adapted for d < 6). We blow-up � W W ! P2

all the
�

d
2

�
intersection points of this line arrangement. Let E1, E2, E3 be the

exceptional curves over the three nodes of the triangle L1, L2, L3. Then �KW �

E1CE2CE3CL1CL2CL3 and ¹L4; : : : ; Ldº are numerically independent. Thus

by Proposition 4.3, H 2.W; TW .� log.E1CE2CE3CL1C� � �CLd /// D 0. We can

delete the .�1/-curves E1, E2, E3 to have H 2.W; TW .� log.L1 C� � �CLd /// D 0.

Notice that L2
i D 2�d � �4. Let Fi be the exceptional curve between L1 and Li ,

i D 2; : : : ; d . We blow-up d �6 times over L1 \Fi to obtain a Wahl con�guration

Wi Œ2; : : : ; 2; d � 2� for each i . Adding-deleting .�1/-curves (see [18, §4]) keeps

obstruction zero. If L1 DW �0, then we are in the situation of Proposition 4.2, and

so we have such a W-surface X . The surface X has d � 1 Wahl singularities of

the same type. The curve �0 is Di in Proposition 4.1. We perform d � 1 W-�ips

using the d � 1 .�1/-curves over the Li \ Fi ’s, obtaining a smooth W-surface X 0

with the �t D P1 degenerating to
Pd

iD1 Li . To obtain the planar degeneration, we

blow-down the .�1/-curves corresponding to the Li \ Lj with i; j di�erent than

1. There are
�

d
2

�
� .d � 1/ D .d�1/.d�2/

2
of them. Each of them intersect

Pd
iD1 Li

at two distinct points, and so the corresponding .�1/-curve and �t intersect t two

distinct points, this is, each creates a node for �t . After we blow down all of them,

we arrive to P2, and we have the degeneration we wanted.

Example 4.5. Fix an integer n � 1. In this example we degenerate a ratio-

nal curve of degree 3.n C 1/ with 9 singular points of multiplicity n C 1 and

one node to two general nodal cubics, one with multiplicity 1, and the other

with n. We start with two such nodal cubics C1; C2. We blow up the 9 base

points and the two nodes; let Z be the surface. Let Ei be the .�1/-curve from

the node of Ci . Using similar arguments as in Proposition 4.3, we can show

that H 2.Z; TZ.� log.C1 C C2/// D 0. We now blow up n � 1 times over one

point of C2 \ E2 to obtain the Wahl con�guration Œ2; : : : ; 2; n C 4� in a sur-

face Z0. Let F1 D E2; : : : ; Fn�1 be the .�2/-curves in a chain, so F1 \ C2 ¤ ;.

Then H 2.Z0; TZ0.� log.C1 C C2 C F1 C � � � C Fn�1/// D 0. We contract

C2 C F1 C � � � C Fn�1 to obtain X 0, and use Proposition 4.2 with �0 D C1 to

produce a W-surface X with the divisor �. We now W-�ip one of the 9 excep-

tional curves of the 9 base points between C1 and C2, and then we W-�ip Fn,

Fn�1,. . . , F2 using the simple �ips of Proposition 4.1 (see Figure 3).
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C1
C2

C1 C2

E1

E1

:::

:::

� � �

nine .�1/-curves

eight .�1/-curves

Fn

Fn�1F2

F1

F1

Figure 3

One can compute that �t degenerates to C1CnC2C.n�1/F1. This corresponds

to a nonreduced degeneration of �t . For a model in P2 of this deformation, we

blow-down E1, F1, and the 8 remaining .�1/-curves from the 9 base points.

Using intersection numbers, we see that E1 in Xt is a .�1/-curve intersecting

transversally at two points of �t , and for the other 9 .�1/-curves (including F1), we

obtain exceptional .�1/-curves intersecting �t with multiplicity nC1. Hence inP2

the curve �t has degree 3.nC1/ and the claimed multiplicities for its singularities.

5. Explicit rational examples of general type

We are going to give four examples where birational Q-Gorenstein deformations

appear when studying the boundary of the KSBA compacti�cation of the moduli

space xM of simply connected surfaces of general type with pg D 0 and K2 D 1.

We point out that the choice of the invariants is irrelevant for the techniques.

5.1 – Irreducible septic associated to a 1
36

.1; 5/

In this example we show how to �nd explicitly a curve in P2 associated to

a boundary divisor in xM which parametrizes rational surfaces with one �xed

Wahl singularity. For that we use a further degeneration on two or more Wahl

singularities; this is the case in all examples analyzed in [20].

Here we start with the example in [16, Fig.6]. We consider that example on

a more general elliptic �bration. Let us take the plane con�guration in Figure 4:

L1; L2; L3; L are lines with a triple point L \ L1 \ L2, and C is a conic forming

a triple point at L1 \ L3. All other intersections are general. The pencil

¹a � C � L C b � L1 � L2 � L3W Œa; b� 2 P1º
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de�nes an elliptic �bration with singular �bers I5; I2; 5I1 as shown in Figure 4.

In that �gure we drew two I1’s and �ve sections which will be used later. No-

tice that they exists with the shown intersections. We blow-up twelve times this

elliptic �bration to obtain a surface Z and the con�guration in Figure 5. The corre-

sponding exceptional divisors are E1; : : : ; E12, we blew-up in that order. The �ve

Wahl con�gurations in [16, Fig.6] correspond to S1; L1; R1; L2; L3 D Œ8; 2; 2; 2; 2�

(numbers are the corresponding minus self-intersections), F1; E3; E4 D Œ6; 2; 2�,

F2; E8; E9 D Œ6; 2; 2�, S2 D Œ4�, and C D Œ4�. Let � W Z ! X be the contraction of

these �ve con�gurations to a normal projective surface X (with �ve Wahl singu-

larities). As in [16], this surface X has no local-to-global obstructions to deform,

and X has nef canonical class. Hence W-surfaces X exist, and have general �ber

a simply connected surface of general type with K2 D 1 and pg D 0.

Figure 4. Elliptic �bration with singular �bers I5; I2; 5I1

Figure 5
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Let X 0 be the minimal resolution of the singularity Œ8; 2; 2; 2; 2� of X . Consider

a W-surface X 0 keeping the con�guration Œ8; 2; 2; 2; 2�. The contraction of this

con�guration in the general �ber gives a surface with one Wahl singularity in

the corresponding boundary divisor of xM . We now perform W-�ips on the W-

surface X 0 to �nd the minimal model of its general �ber. It turns out to be rational,

and so we instead �nd a way to blow-down enough .�1/-curves to arrive to P2,

keeping track of the con�guration Œ8; 2; 2; 2; 2�. Let �t be the .�8/-curve in this

con�guration.

We �rst �ip the curve E5 (in the threefold of the W-surface X 0). This curve

is as in Proposition 4.1, and so the �ipped W-surface X 0 (abuse of notation) has

�ipped curve F1 and X 0 has only three singularities. Now we W-�ip the curve

E10 producing an analog situation: F2 is the �ipped curve and we have two Wahl

singularities 1
4
.1; 1/. We now W-�ip E12 and then E11, the resulting W-surface X 0

is now smooth. This shows that the general �ber is indeed rational. By a repeated

use of Proposition 4.1, we compute that �t degenerates to

�0 D S1 C F1 C F2 C C C S2:

The surface X 0 has K2
X 0 D 1�5 D �4, and to get into P2 is enough to blow-down

13 times .�1/-curves. In the W-surface X 0 this corresponds to trivial divisorial

contractions driving the general �ber to P2 as well. The 13 curves we are going to

blow-down in X 0 are S5, L3, L2, R1, L1, E2, E7, S2, C , S3, S4, E1, and E6. Each

of them induces a blow-down in the general �ber, whose exceptional divisors are

shown in Figure 6, we use same letters. This is found by intersecting these curves

with �0, then we know the intersection with �t . The curves S2 and C may be as

in Figure 6 or tangent to the .�8/-curve (double points anyway).

Figure 6
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We are now in good shape to blowing down the 13 divisors. The image of the

con�guration of curves in X 0 becomes two nodal cubics F1 and F2 together with

a line S1. The two cubics are tangent at two points P and Q with multiplicity 5

and 2, and the line passes through P and Q transversally to each cubic. All other

intersections are nodes. For the image of �t we obtain an irreducible septic with 8

double points, and one D10 singular point (i.e. locally of the type ¹x.y2 C x8/ D

0º � C2).

Therefore, the degeneration in the boundary of xM gives, up to birational (dis-

crete) �ips and divisorial contractions, a degeneration (continuous) of the above

irreducible septic into the above reducible (but reduced) septic. The irreducible

septic represents (up to birational transformations) a boundary divisor (of dimen-

sion 7) in xM associated to the singularity Œ8; 2; 2; 2; 2�.

5.2 – Degree 15 curve for a 1
16

.1; 3/ and nonreduced degeneration

In the previous example, and the examples below, we will see septics showing

up. We chose those examples to put things simple, but naturally higher degree

curves appear degenerating to a reducible septics with multiplicities on certain

components. For instance, take the above example and work out the singularity

Œ6; 2; 2� (for the Œ4� we do not obtain rational surfaces but Dolgachev .2; 3/ surfaces;

see [20, Proposition 2.3]). Say Œ6; 2; 2� is F1 C E3 C E4. We do what we did above

for Œ8; 2; 2; 2; 2� but now for Œ6; 2; 2�. Then, after some �ips we get a smooth W-

surface, and if we blow-down toP2 in the same way as before, we get an irreducible

(rational) curve of degree 15. This curve, which is the image of the .�6/-curve of

Œ6; 2; 2�, degenerates to 3S1 C F1 C 3F2, this is, degenerates to the same septic

con�guration above (two nodal cubics and a line) but now with multiplicities.

5.3 – One septic degeneration for two distinct deformations

Here we produce two distinct degenerations of stable surfaces in the boundary

of xM which correspond to the same degeneration of plane curves. This is, the

continuous part could be seen as the same (but the discrete part (3-fold birational

transformations) is of course di�erent).

We start with a triangle L1; L2; L3 and a general cubic passing transversally

through L1 \ L2 as in Figure 7. The triangle and the cubic de�nes a pencil which

induces an elliptic �bration with sections whose singular �bers are I4, and 8 I1’s.

In Figure 7 we show the I4, two chosen I1’s and 7 chosen sections. We blow-up on

this con�guration in two di�erent ways, obtaining surfaces Zi with i D 1; 2. For

Z1 we blew-up 11 times, for Z2 13 times. The corresponding exceptional divisors
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are Ei and Gi respectively, the subindex i indicates the order of the blow-ups.

This is shown in Figure 8. We name other irreducible curves with Si , Fi , and R

as shown.

Figure 7

Figure 8

We now consider the Wahl con�gurations L1,R,L2,S3,E6 D Œ2; 3; 2; 6; 3�,

S2; F1; E5; E7 D Œ3; 5; 3; 2�; and F2; E9; E10 D Œ6; 2; 2�

in Z1; and S1,L1,R, L2,S3,G12 D Œ3; 2; 2; 2; 8; 2�, F1,G6,G7 D Œ6; 2; 2�, and

G4; F2; G9; G10; G11 D Œ2; 7; 2; 2; 3�

in Z2. Let �i W Zi ! Xi be the contraction of the Wahl con�gurations. Then,

one can prove using usual techniques (as in Proposition 4.3) that there are no

local-to-global obstructions to deform Xi . For both cases, we can check that

any Q-Gorenstein smoothing produces simply connected surfaces of general type

with K2 D 1 and pg D 0. Let X i
0 be the minimal resolution of the singularity

Œ2; 3; 2; 6; 3� for X1 and Œ3; 2; 2; 2; 8; 2� for X2. We consider W-surfaces X i
0 which



132 G. Urzúa

keep the corresponding exceptional divisors. Again the general �ber is the minimal

resolution of stable surfaces living in two di�erent boundary divisors of xM labeled

by the singularities Œ2; 3; 2; 6; 3� and1 Œ3; 2; 2; 2; 8; 2�.

Let � i
t be the divisor in the 3-fold corresponding to either the .�6/-curve for

i D 1 or the .�8/-curve for i D 2. Let E6;t be the divisor corresponding to E6 in

X1
0 , and let G12;t be the divisor corresponding to G12 in X2

0 . We now proceed to

apply �ips to the W-surface X i
0 to �nd some nicer model for these deformations.

We apply 3 W-�ips of the type Proposition 4.1 for each i . For X1
0 we �ip E8, E6,

E11 in that order, and for X2
0 we do it with G8, G13, G12. In both cases we obtain

smooth W-surfaces Y i
0 . We have that

�1
0 D F1 C F2 C S3 �2

0 D F1 C F2 C S3 E6;0 D S2 G12;0 D G4:

We now blow-down the 13 curves E3, E4, S2, S1, L1, S3, L2, E1, E2, S4,

S5, S6, S7 in Y 1
0 . Similarly, we blow-down the 14 curves G5, G4, G3, S4, S5,

S6, S7, G1, G2, S1, L1, S2, S3, and L2. The con�guration of these exceptional

curves (induced by the corresponding divisors) in X i
t is shown in Figure 9. Notice

that when we blow them down, in both cases we obtain for � i
t a sextic in P2

with 8 nodes and one tacnode such that two nodes and the tacnode are colinear

via the (transversal) line R. For Y i
0 we obtain two nodal cubics intersecting at two

tacnodes and 5 other points, and a line R so that the two tacnodes intersections, and

one more (nodal) intersection are colinear by R. Thus, in both cases, an irreducible

sextic plus a line degenerate to these two nodal cubics plus a line.

Figure 9

5.4 – A maximally singular stable surface via degenerations

In this example we show how to obtain a maximally degenerated surface which

has eight Wahl singularities (this is the maximum possible for an unobstructed

1 Although in general a Wahl singularity could label two distinct divisors in xM .
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surface), from a simple con�guration of two nodal cubics and a line. That con�gu-

ration ends up representing a stable surface with one Wahl singularity 1
242 .1; 119/.

The corresponding smoothing is simply connected with K2 D 1 and pg D 0. We

present this example the other way around, starting with the maximally degener-

ated surface, and then prove that a partial Q-Gorenstein smoothing keeping only

that Wahl singularity gives the simple septic above.

We start with seven lines in very special position. The lines L1,. . . ,L6 form

a complete quadrilateral, and L7 is the line passing through L2 \ L4 and

L3 \ L6. This is in Figure 10. We consider the pencil generated by L1; L2; L4

and L3; L5; L6 which gives an elliptic �bration with singular �bers: 2I5 C 2I1.

The line L7 is a particular triple section (see Figure 10); the curves T1; : : : ; T4

come from triple points as shown.

Figure 10

We now blow up 26 times obtaining a surface Z0. The 26 exceptional divi-

sors are denoted by E1; : : : ; E26 and again the subindex indicates the order of

the composition of blow-ups. This is in Figure 11. A nonsingular surface Z is

obtained by blowing down the sections S2 and S3 in Figure 11. In Z we have

eight Wahl con�gurations: L1,L5,T4,L6,T3,E11,E12,E13 D Œ5; 7; 2; 2; 3; 2; 2; 2�,

T2,E19,E20,E21,E22 D Œ8; 2; 2; 2; 2�, L4,S1,E15,E16,E17 D Œ8; 2; 2; 2; 2�, T1,E8

D Œ5; 2�, L2,E7 D Œ5; 2�, E1 D Œ4�, L3 D Œ4�, and L7 D Œ4�. Let � W Z ! X be the

contraction of these eight con�gurations.

A sketch of the proof for no local-to-global obstructions for X goes as follows.

We start with the minimal elliptic �bration Y ! P1 with singular �bers 2I5 C2I1.

Then H 2.Y; TY .� log.I5 C I5/// D 0 by Proposition 4.2. We now add-delete
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Figure 11

.�1/-curves keeping this H 2 D 0. Notice that L7 can be added as a .�1/-curve

in some stage of the blow-ups (changing the given order). Thus this follows the

usual procedure. Notice that K2
X D �26 C 2 C 25 D 1.

To see that the canonical class of KX is nef, we use the trick in [16]. We look at

the resolution f W Z0 ! X and write down f �.KX / in a Q-numerically e�ective

way. Then by intersecting with the curves in the support, one check it is nef.

The two key points in the trick are (in our case): (1) to verify that the sums of

the discrepancies of L6 and T3, and of L1 and L5 are smaller or equal than �1,

(2) to verify that the discrepancies of T1, L2, L4, T3, L1, T2, L5, T4, L6, and L3

(the curves in the original I5 �bers) have discrepancies smaller or equal than �1
2
.

Both (1) and (2) are true in our case. Therefore, the general �ber of a Q-Gorenstein

smoothing of X is a surface of general type with K2 D 1, pg D 0, and simply

connected (for this, same strategy as in [16]).

We consider a minimal resolution X 0 ! X of the singularity Œ5; 7; 2; 2; 3; 2,

2; 2�, and a W-surface X 0 keeping the con�guration Œ5; 7; 2; 2; 3; 2; 2; 2�. Let �t;1,

�t;2, and �t;3 be the divisors in the 3-fold of the curves L1, L5, and L6 in X 0

respectively. We will perform seven W-�ips of the type Proposition 4.1 through

the curves (and in that order): E9, E7, E2, E26, E23, E18, and E5. We obtain at

this point a smooth W-surface X 0 (by abuse of notation). Then we have

�0;1 D L1 C L7 C T1 C L2 C E1 �0;2 D L5 C T2 C L4 C L3 �0;3 D L6

which already says that if we continue blowing down from X 0 to arrive into the

seven special lines, then the con�guration Œ5; 7; 2; 2; 3; 2; 2; 2� in the general �ber

blows down to two nodal cubics �t;1 and �t;2, and a line �t;3. The cubics intersect

transversally at nine points and three of them are collinear via �t;3. Thus this

reducible septic gives a surface with the Wahl singularity Œ5; 7; 2; 2; 3; 2; 2; 2�, and
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degenerates maximally to a rigid con�guration of seven lines which gives a surface

with eight Wahl singularities. Finally, we observe that the surface with the one

Wahl singularity Œ5; 7; 2; 2; 3; 2; 2; 2� specializes to the example in [18, Section 6].
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