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Berezin transform and Stratonovich—Weyl correspondence
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1. Introduction

This paper is part of a program to study Berezin transforms and Stratonovich—
Weyl correspondences associated with holomorphic representations. The notion
of Stratonovich—Weyl correspondence was introduced in [31] in order to extend the
usual Weyl correspondence between functions on R?” and operators on L2(R")
(see [1] and [21]) to the general setting of a Lie group acting on a homoge-
neous space. Stratonovich—Weyl correspondences were systematically studied by
J. M. Gracia-Bondia, J. C. Varilly, and various co-workers, see in particular [23],
[20], [18], and [22]. The following definition is taken from [22].

DEerintTION 1.1. Let G be a Lie group and 7 a unitary representation of G on a
Hilbert space H. Let M be a homogeneous G-space and u a (suitably normalized)
G-invariant measure on M. Then a Stratonovich—Weyl correspondence for the
triple (G, r, M) is an isomorphism W from a vector space of operators on H to a
vector space of (generalized) functions on M satisfying the following properties:
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(1) W maps the identity operator of H to the constant function 1;
(2) ReEALITY: the function W(A*) is the complex-conjugate of W(A);
(3) covARIANCE: we have W(n(g) An(g) ) (x) = W(A)(g™' - x);

(4) uNITARITY: We have

/M W(A)(x)W(B)(x) du(x) = Tr(AB).

In this context, M is generally a coadjoint orbit of G which is associated
with 7 by the Kirillov—Kostant method of orbits [25]. For instance, consider
the case when G is the (2n + 1)-dimensional Heisenberg group H,. Each non-
degenerate coadjoint orbit M of G is then diffeomorphic to R?" and is associated
with a Schrodinger representation  of H, on L2(R"). In this case, the classical
Weyl correspondence gives a Stratonovich—Weyl correspondence for the triple
(Hy,m, M), [21] and [22].

In the case when G is a quasi-Hermitian Lie group and = is a unitary repre-
sentation of G (on a Hilbert space J{) which is holomorphically induced from a
unitary character of a compactly embedded subgroup K of G, we can apply an
idea of [20] and we obtain a Stratonovich—Weyl correspondence by modifying
suitably the Berezin correspondence S [14] (see also [2] and [3]).

More precisely, recall that S is an isomorphism from the Hilbert space of all
Hilbert-Schmidt operators on J (endowed with the Hilbert-Schmidt norm) onto
a space of square integrable functions on a homogeneous complex domain [32].
The map S satisfies (1), (2), and (3) of Definition 1.1 but not (4). A Stratonovich—
Weyl correspondence W is then obtained by taking the isometric part in the polar
decomposition of S, that is, W := (§S*)~'/25. Let us mention that B := SS§*
is then the so-called Berezin transform which have been studied by many authors,
see in particular [19], [27], [28], [32], and [33].

In [14], we considered the case when the Lie algebra g of G is reductive. In
this case, we proved that B can be extended to a class of functions which contains
Sdn(X1X2...Xp)) for X1, X>,...,X, € g and that the restrictions to each
simple ideal of g of the mappings X — S(dn (X)) and X — W(dn(X)) are
proportional (see also [12] and [13]).

The case when g is not reductive is more delicate. In [16] we investigated the
case of the diamond group and, in [17], we studied B and W in the case of the
Jacobi group.
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The aim of the present paper is to generalize the results of [17] to the case
of the multi-dimensional Jacobi group, which is technically more complicated.
The multi-dimensional Jacobi group plays a central role in different areas of Math-
ematics and Physics and its holomorphic unitary representations were studied in-
tensively, see [26], [9], [10], [4], and [6]. In particular, the metaplectic factoriza-
tion should be used to reduce the study of the highest weight representations of a
quasi-Hermitian Lie group to that of some generalized multi-dimensional Jacobi
group [26]. Then the study of the case of the multi-dimensional Jacobi group can
be considered as a first step towards the general case.

In this paper, we begin by some generalities on the multi-dimensional
Jacobi group (Section 2) and its holomorphic representations (Section 3). Then
we introduce the Berezin correspondence S, the Berezin transform B and the
Stratonovich—Weyl correspondence W (Section 4). In Section 5, we show that,
under some technical assumptions, the Berezin transform of S(d 7 (X1 X5 ... X))
is well-defined for each X1, X»,..., X, € g. In Section 6, we identify a class of
functions which is stable under B and contains S(dx (X)) for each X € g. We
also give an expression of W(dm (X)) in terms of some integrals of Hua’s type
(see [24]).

2. The multi-dimensional Jacobi group

The material of this section and of the following section is essentially taken
from [21], Chapter 4, [26], Chapters VII and XII and [15].
Consider the symplectic form @ on C* x C" defined by

w((z,w),(Z,w)) = % 2:(ka,/c — Zp Wk).
k=1

for z, w, z/, w’ € C". The (2n + 1)-dimensional real Heisenberg group is
H :={((z,2),c):ze C",c e R}
endowed with the multiplication
((z,2),0)-((z,Z)),c) = ((z +z,24+2Z),c+c + %a)((z,f), (', ?))).
Then the complexification H¢ of H is
HC :={((z,w),c):z,we C*, c € C}

and the multiplication of H¢ is obtained by replacing (z, Z) by (z, w) and (z/, Z’)
by (z’, w’) in the preceding equality. We denote by b and h¢ the Lie algebras of H
and HC.
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Now consider the group S := Sp(n,C) N SU(n,n) ~ Sp(n,R), see [26],
p- 501, and [21], p.175. Then S consists of all matrices

h= (g %) P,Q € M,(C), PP*—QQ*=1, PQ'=QP!
and S¢ = Sp(n, C).
The group S acts on H by

h-((z,2),¢c) = (h(z.Z),¢) = (Pz+ QZ,Qz + PZ,c)

where the elements of C" and C" x C" are considered as column vectors. Then we
can form the semi-direct product G := H xS called the multi-dimensional Jacobi
group. The elements of G can be written as ((z, Z), ¢, h) where z € C", ¢ € R and
h € S. The multiplication of G is thus given by

1
(2.2, (.2 W) = (D) +hE ). et +50((. D). 2)) ).
The complexification G¢ of G is then the semi-direct product
G¢ = H® xSp(n,C)

whose elements can be written as ((z,w),c,h) where z,w € C", ¢ € C,
h € Sp(n, C) and the multiplication of G¢ is obtained by replacing z and z’ by
w and w’ in the preceding formula.

We denote by s, s¢, g and g¢ the Lie algebras of S, S¢, G and G¢. The Lie
brackets of g¢ are given by

[((z,w), ¢, 4), ((z',w), ¢, A)]
= (A, w") = A'(z,w), w((z,w), (z/,w)), [4, A]).

Let 6 denotes conjugation over the real form g of g¢. For X € g°, we set
X* = —6(X). We can easily verify that if X = ((z,w),c, (& 5,)) € g° then we
have

X* = ((—u'),—Z),—c', (_A; :(A;))

Also, we denote by g — g* the involutive anti-automorphism of G¢ which is
obtained by exponentiating X — X™* to G°.

Let K be the subgroup of G consisting of all elements ((0, 0), c, (1(; 5)) where
¢ € Rand P € U(n). Then the Lie algebra £ of K is a maximal compactly
embedded subalgebra of g and the subalgebra t of ¢ consisting of all elements
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of the form ((0,0), c, A) where A is diagonal is a compactly embedded Cartan
subalgebra of g [26], p. 250. Following [26], p. 532, we set

pt = {((y,O),O, (8 g)):y eC"Y e My(C),Y' = Y}

and

p = {((O, v),0, (3 8)):0 eC", Ve M,(C), V' = V}.

Then we have the decomposition g¢ = p™ G £ G p~.

Henceforth we denote by a(y, Y) the element ((y, 0),0, (§ ¥)) of p™. Also, we
denote by p,+, pec and py- the projections of g° onto pT, €€ and p~ associated
with the above direct decomposition.

Let Pt and P~ be the analytic subgroups of G¢ with Lie algebras p™ and p~.
Then we have

Pt = {((y,O),O, (I” Y)):y eC"Y e M,(C),Y" = Y}

0 I,
and
— In 0 n t
P = (0,v),0, VoI welC”,VeM, O,V =Vg.

In particular, we see that G is a group of the Harish-Chandra type [26], p. 507
(see also [30]), that is, the following properties are satisfied:

(1) g¢ = pt @ €€ @ p~ is a direct sum of vector spaces, (p*)* = p~ and
[e°, p*] C p*;
(2) the multiplication map P+ K¢ P~ — G¢,(z,k, y) — zky is abiholomorphic
diffeomorphism onto its open image;
3) GCc PTK‘P andGNK‘P™ =K.
We can easily verify that ¢ = ((zo. wo), co. (4 B)) € G hasa PTK° P~ -de-
composition

~foma (s D)(one (] a))-(omo s 1)

if and only if Det(D) # 0 and, in this case, we have y = zo — BD wy,
Y = BD7',v = D'w,, V = D7IC, P = A— BD'C = (D")! and
¢ =co— (1/4)i(zo — BD ™ wg)" wo.
We denote by
&:PtTK‘P™ — P, k:PTK°P™ — K¢, n:PTK‘P™ — P~

the projections onto P*-, K¢- and P~-components.
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We can introduce an action (defined almost everywhere) of G¢ on p* as
follows. For Z € p* and g € G¢ with gexp Z € P+ K¢ P~, we define the element
g-ZofpT by

g-Z :=logl(gexpZ).

From the above formula for the P K¢ P~-decomposition, we deduce that the

action of g = ((zo. wo). co, (& 5)) € G ona(y,Y) € p* is given by

g-a(y.Y)=a(y,Y")
where Y/ := (AY + B)(CY + D)™ ! and
y :=z9+ Ay — (AY + B)(CY + D) '(wo + Cy).
This implies that
D:=G-0={a(y,Y)ept:I,—YY >0} = C" x B.

where B :={Y € M,(C) :Y' =Y, I,—YY > 0).
Now we introduce a useful section Z — gz for the action of G on D. Let
Z =a(y,Y) € D. Define gz := ((zo. Zo), 0, (g IQg)) € G as follows. We set

Zo=U,— YY) 'y +Yy), P=U,-YY)V? O0=,-YY) %Y.

Then one has gz - 0 = Z.

From the above formula for the action of G on D, we can deduce the G-invari-
ant measure  on D. Let puz, be the Lebesgue measure on D ~ C" x B. Thus, we
easily obtain that dju(Z) = Det(I, — YY)~ "2 du; (y,Y), see for instance [5].
This result can be also deduced from the general formula for the invariant measure,
see [26], p. 538.

In the rest of the paper, we fix the normalization of the Lebesgue measure
as follows. For y € C", write y = (ay + iby,az + ibs,...,a, + ib,) with
aj,bj € Rfor j = 1,2,...n. Then we take the measure Lebesgue on C" to
be dy := da1dbidaydb, . ..da,db,. Similarly, writing Y € BasY = (yg;), we
denote by dY the Lebesgue measure on B defined by dY := [[;; dyk;. Thus we
setdur(y,Y):=dydY.

Now we aim to compute the adjoint and coadjoint actions of G€. First, we
compute the adjoint action of G¢ as follows. Let g = (vg, co, ho) € G¢ where
vg € C?",¢cop € Cand hg € S¢ = Sp(n,C) and X = (w,c,U) € g° where
we C?, ceCandU € s¢. We setexp(tX) = (w(t), c(t), exp(tU)). Then, since
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the derivatives of w(¢) and c(¢) at ¢ = 0 are w and ¢, we find that

d
Ad(g)X = —-(g exp(tX)g™")

- (how — (Ad(ho)U)vo, ¢ + w(vo. how)
——%a(vm(AdUm)U)vw,AdUM)U)-

On the other hand, let us denote by £ = (u, d, ¢), where u € C?",d € C and
@ € (s°)", the element of (g¢)* defined by

(&, (w,c,U)) = w(u,w) +dc+ {p,U).

Moreover, for u,v € C?", we denote by v x u the element of (s¢)* defined by
(vxu,U) :=w(,Uv)for U € s°.

Let £ = (u,d,p) € (g°)* and g = (vo, co,ho) € G€. Then, by using the
relation (Ad*(g)&, X) = (£, Ad(g™!)X) for X € g, we obtain

* * d
Ad*(g)E = (hou — dvo, d, Ad* (ho)p + vo x (hou — Evo))

By restriction, we also get the formula for the coadjoint action of G. The following
lemma will be needed later.

Lemma 2.1 ([15]). The elements &y of g* fixed by K are the elements of the form
(0,d, ;) where d, A € R and @), € s* is defined by (@, (é g)) = iATr(A).

3. Holomorphic representations

The holomorphic representations of the multi-dimensional Jacobi group were
studied by many authors, see in particular [26], [9], [10], [4], [5], and [6].
We follow here the general presentation of [26], Chapter XII (see also [14]).

Let y be a unitary character of K. The extension of y to K¢ is also denoted by
x- We set Ky(Z, W) := y(xk(expW*expZ))~! for Z, W € D and J,(g,Z) :=
x(k(gexpZ)) for g € G and Z € D. We consider the Hilbert space J(, of all
holomorphic functions f on D such that

|W@=Au@mezﬁqw@w+w

where the constant ¢, is defined by

o' = /D K(Z,Z2) ' du(2).
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We shall see that, under some hypothesis on x, ¢, is well-defined and 3, # (0).
In that case, H{, contains the polynomials [26], p. 546. Moreover, the formula

w1 () f(Z2) = Iy (7. 2) f(g7! - Z)

defines a unitary representation of G on J{, which is a highest weight representa-
tion [26], p. 540.

The space J{, is a reproducing kernel Hilbert space. More precisely, if we set
ez(W) := Ky(W, Z) then we have we have the reproducing property f(Z) =
(f.ez)y foreach f € H, and each Z € D [26], p. 540. Here (-, -), denotes the
inner product on J(,.

Here we fix y as follows. Let y € R and m € Z. Then, for each k =
(0.0).c. (5 9)) € K, we set x(k) := e'7*(Det P)™.

We need the following lemma.

LemwMma 3.1 ([24]). Let A € R. The integral
Ju(A) = / Det(I, — YY)*dY
B

is convergent if A > —1 and in this case we have

i L@+ 3T@L+5). . . TQA+ 20— 1)
A 9

Jn(d) =
where
A=A+DA+2)...A+mICL+n+2)I'2A +n+3)...I'(2A + 2n).
Then we have the following result.
Prorosition 3.2. (1) Let Z = a(y,Y) e Dand W = a(v,V) € D. We set

Ey,v,Y.V) =2 (I, =VY) Yo+ y'(I,-VY) Wy +4'Y(I,-VY) 4.

Then we have

K((Z, W) = Det(I, — Y V)" exp (%E(y, v, Y, V)).

(2) We have H, # (0) ifand only if y > 0 and m +n + 1/2 < 0. In this case,
we also have c¢;;' = 2n)"y ™" Jy(—m —n —3/2).
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(3) Foreach g = ((zo. Zo), co, (g IQ;)) € GandeachZ = a(y,Y) € D, we have

J(g.Z) = e’ Det(QY + P)™" exp(%(zgio +2Z' Py +y'P'Qy
~ (Go+ Q) (PY + 0)(QY + P)'(Go + 0)))
Proor. We can verify (1) and (3) by computations based on the formula for «

given in Section 2. To prove (2), recall that, by [26], Theorem XII.5.6, we have
H, # (0) if and only if

I, ::/D K(Z,Z2)" ' du(Z) < oo.

Then we have to study the convergence of /,. By taking into account the expres-
sion of u given in Section 2, we get

Iy = /@ exp ( - %E (y.y.7, Y)) Det(l, — YY) " 2dur(y.Y)

and, by making the change of variables y — (I, — YY)'/2y whose Jacobian is
Det(I, — YY), we find that

I, = / Det(I, — Y7)™ " Lexp (—%(2)/’)7 +y' Ty + )7’Y)7)) dy dY.
C"xB
But by [21], p. 258, we have
2 _
I, = (_”)"/ Det(l, — Y 7)™ "=32 gy
14 B
for y > 0. The result then follows from Lemma 3.1 O

Note that we can deduce from (3) of Proposition 3.2 an explicit but rather
complicated expression for ,(g). Now we consider the derived representation
dm,.

Here we use the following notation. If L is a Lie group and X is an element of
the Lie algebra of L then we denote by X the right invariant vector field on L
generated by X, that is, X T (h) = %(exth)hh:o forh e L.

By differentiating the multiplication map from P+ x K¢x P~ onto PT K¢ P,
we can easily prove the following result.
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LemMma 3.3. Let X € g and g = zky wherez € P, k € K°and y € P™.
We have

(1) deg(XT(g)) = (Ad(2) py+(Ad(z™1) X)) (2);
(2) dig(XT(g)) = (pec(Ad(z™") X)) * (k);
(3) dng(X*(g)) = (Ad(k™") pp-(Ad(z"H) X)) * ().

From this, we easily deduce the following proposition (see also [26], p. 515).
ProrosiTiON 3.4. For X € g¢, f € H, and Z € D, we have

dry(X) f(Z) = dx(pee(e™*% X)) f(Z) = (df)z(py+ (e ™7 X)).

In particular, we have

(1) ifX ept thendrny(X)f(Z) = —(df)z(X);

(2) if X € ¥ then dmy(X) f(Z) = dy(X) f(Z) + (df)z([Z. X]):
() if X €p™ then

A (X)f(2) = (dx o pee)(~ 2. X] + 32,12 X])) £(2)

~(dfz 0 ) (- 12, X1+ 512.12.X]).

Now we need to introduce some notation. As usual, we write Z € D as
Z =a(y,Y)wherey = (yj)i<j<n € C" and Y = (yk;)1<k,i<n € B. Define

J:={1,2,....n}U{k,]):1 <k,l <n}

and consider i € J. Then we define 9; as follows. If i € {1,2,...,n} then 0; is the
partial derivative with respect to y; and if i = (k, /) then 9; is the partial derivative
with respect to yg;. Moreover, we say that P(Z) is a polynomial of degree < ¢ if
P(a(y,Y)) is a polynomial of degree < ¢ in the variables y; and yg;.

From the preceding proposition we deduce the following result.

ProrosiTION 3.5. For each X1, X5, ..., Xy € ¢, drny(X1X2 ... Xy) is a sum
of terms of the form P(Z)0;,0;, ...0;, wherer < gq, i1,i2,...,i, € Jand P(Z) is
a polynomial of degree < 24.

Proor. By Proposition 3.4 we see that, for each X € g, dm,(X) is of the
form P%(Z)+Y_; P(Z)9d; where P°(Z), P'(Z) are polynomials of degree < 2.
The result then follows by induction on q. O
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4. Generalities on the Stratonovich—Weyl correspondence

In this section, we review some general facts about the Berezin correspondence,
the Berezin transform and the Stratonovich—Weyl correspondence.

First at all, recall that the Berezin correspondence on D is defined as follows.
Consider an operator (not necessarily bounded) A on 3, whose domain contains
ez for each Z € D. Then the Berezin symbol of 4 is the function S, (A4) defined
on D by
(A ez, eZ)x

(eZ , €Z ) X '

We can verify that each operator is determined by its Berezin symbol and that
if an operator A has adjoint A* then we have S,(4*) = m, see [7] and [8].
Moreover, for each operator A on J{, whose domain contains the coherent states
ez foreach Z € D and each g € G, the domain of 7,(g~!)Am,(g) also contains
ez for each Z € D and we have

Sy(y (&) Ay (9)(Z) = Sy(A)(g - Z),

that is, S, is G-equivariant, see [14]. We have also the following result.

Sy(A)(Z) =

ProrosiTion 4.1 ([14]). (1) For g € G and Z € D, we have
Sy(y(@)NZ) = x(k(expZ*g~  exp Z) "'k (exp Z* exp Z).
(2) For X € g° and Z € D, we have
Sy(dry(X)N(Z) = dy(pec(Ad(S(exp Z* exp Z) ™' exp Z*) X).

Let & be the linear form on g¢ defined by £ = —idy on £ and £ = 0 on
p*. Then we have £(g) C R and the restriction &, of £ to g is an element of g*.
In the notation of Section 2 we have &, = (0, y, —mgy) where ¢y € s* is defined
by (¢o. (5 3)) =i Tr(P).

We denote by O(§,) the orbit of &, in g* for the coadjoint action of G. This
orbit is said to be associated with 7, by the Kostant—Kirillov method of orbits,
see [25] and [14]. Moreover, we have the following result.

ProrosiTion 4.2 ([14]). (1) For each Z € D, let
U, (Z) := Ad*(exp(—Z™*) {(exp Z* exp Z)) &y.
Then, for each X € g¢ and each Z € D, we have

Sdry(X)(Z) = i{¥y(Z), X).
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(2) For each g € G and each Z € D, we have Wy (g - Z) = Ad*(g) ¥, (Z).
(3) The map Y, is a diffeomorphism from D onto O(§,).

In order to make the expression of ¥, more explicit, we introduce the following
notation. For ¢ € s*, let a(¢) be the unique element of s such that (¢, X) =
Tr(x(¢)X) for each X € s. In particular, one has o (pg) = %(i{)” —1'01,, ) Moreover,
foru = (x,X) € C** and u = (y, y) € C*>" we have

1 (—iyx" iyx!
Bl xu) = E(—iy‘)z’ igxt)’
Note also that 0 intertwines Ad* and Ad. Then we have the following result.

ProprosiTioN 4.3 ([15]). The map yry: D — O(&,) is given by

Wx(a(y’ Y)) = (_d(yl’)_}l)’ Vs go(y, Y))
where yy = (I, = YY) ' (y + Y §) and

(I, -YY) Y2 (1, - Y?)—1/2Y) 0
0

(p(_)/,Y) =-mAd ((In_}_;Y)—l/ZY (In—}_]Y)_l/z

~ L0 x 01 ).
Moreover, we have
alp(y. V) = -2 (_fy_‘y:ti fy_‘yi,) -2 ( A B(L)) |
Iy hn —B(Y) —A®Y)
where
AY) =l + YY), = YY) V2(1, = YY)~ V2,
B(Y):=—2Y(I, - YY) V*(1,—-YY) V2

Now we recall briefly the construction of the Stratonovich—Weyl correspon-
dence [20], [13], and [14]. Denote by £,(J(,) the space of all Hilbert-Schmidt
operators on J{, and by p, the G-invariant measure on D defined by du,(Z) =
cydi(Z). Then the map S, is a bounded operator from £,(3,) into L2(D, i)
which is one-to-one and has dense range [29], [32]. Moreover, the Berezin trans-
form is the operator on L?(D, u,) defined by By := S, Sy - We can easily verify
that we have the following integral formula for B,:

{ez. ew) I}

(ez.ez)ylew.ew)y

4.1) B,F(Z) = /@ F(W) duy (W)

(see [7], [32], and [33] for instance).
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Let p be the left-regular representation of G on L2(D, 115). As a consequence
of the equivariance property for S,, we see that B, commute with p(g) for each
geG.

Consider the polar decomposition of S, :

Sy = (SySH)V2Wy = BY2W,,

where Wy, := B, 129 4 is a unitary operator from £,(3,) onto L?(D, 11). Note
that, by (2) of Proposition 4.2, the measure o := (\P;l)*(ux) is a G-invariant
measure on O(&,). The following proposition is then immediate.

ProposITION 4.4. 1) The map Wy, : L2(Hy) — L%(D, uy) is a Stratonovich—
Weyl correspondence for the triple (G, y, D), that is, we have

(1) Wy(A*) = Wy(A4);
(2) Wy(rry(g) Amy(8)™NZ) = Wy(A)(g™" - Z);
(3) W, is unitary.
2) Similarly, the map Wy: L2(H,) — L*(O(&y), 1o) defined by
Wy(A4) = Wy(4) 0 0!

is a Stratonovich—Weyl correspondence for the triple (G, m,, O(&y)).

Note that we have relaxed here (1) of Definition 1.1 which is not adapted to the
present setting since [ is not Hilbert-Schmidt. However, this requirement should
be hold in some generalize sense, see for instance [22].

5. Extension of the Berezin transform

The aim of this section is to extend the Berezin transform to a class of functions
which contains S,(dm,(X)) for each X € g¢°, in order to define and study
Wy(dm,(X)). This question was already investigated in [14] in the case of a
reductive Lie group and in [17] in the case of the Jacobi group.

For Z, W € D, wesetlz(W) :=logn(expZ*expW) € p~.

LemMA 5.1. (1) Foreach Z, W € D and V € p*, we have

4 W +tV)‘
dt ¢z =0

= —ez0) (W o peo) (120, V) + 3 lIz9). 11z 09). V1))
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(2) Foreach Z, W € Dand V € p™, we have

d
Stz 00| _ = gy (UzO9). V4 Sz 00). 1z 00), V1)

(3) Foreach iy, iy, ... ,iqg € Jand Z € D, the function (0;,0;, ... 0;,ez)(W) is
of the form ez(W)Q(Iz(W)) where Q is a polynomial on p~ of degree < 2q.

(4) For each X1, X5, ..., Xy € ¢°, the function Sy(dm(X1X2 ... X)) (Z) is
a sum of terms of the form P(Z)Q(lz(Z)) where P and Q are polynomials of
degree < 2q.

Proor. The proof of this lemma is similar to those of Lemma 6.2 of [14] and
Lemma 5.2 of [17]. Note that the proof of (1) is essentially based on Lemma 3.3,
that (3) is a consequence of (1) and (2) and, finally, that (4) follows from (3) and
Proposition 3.5. U

We can then establish the main result of this section.

ProprosiTiOoN 5.2. If ¢ < (1/4)(—m — 2n) then for each X1, X», ..., X4 € ¢¢,
the Berezin transform of Sy(dny(X1X2 ... Xy)) is well-defined.

Proor. First, we fix Z € D and we make the change of variables W — gz -W
in (4.1). Then we obtain

(B,F)2) = [ Flgz - W)lew.ew)y" diey (W)
We take F' = S, (dmy(X1X> ... Xy) and we set
Y 1= Ad(gz") Xk
fork =1,2,...,q. Then, by G-invariance of S,, we have
F(gz -W)=8,dn,(Y1Y,...Yy)(W)
for each W e D. Recall that, by the preceding lemma, the function
Sy(dmy(Y1Ya...Yy) (W)

is a sum of terms of the form P(W)Q(Iw (W)) where P and Q are polynomials
of degree < 2¢. Then we have to prove that, for each ¢ < (1/4)(—m — 2n) and
each polynomials P and Q of degree < 24, the integral

I = /D POW)Q Uy (W) ew. ew);" dity (W)

is convergent.
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First, we note that if W = a(y, Y) then

_ _ _ = O 0
Iy (W) = ((0,—(1n—YY) G+ ).0 (—(1,,—17Y)‘117 0))

Thus we have

I=c, /D PG YOIy~ TY) G + Ty).—(In — T¥)'T)

exp (- L@ (1, - 717
3 Uy =TV Ty + 5V (I = T1)7'))
Det(l, — YY) ™ " 2dur(y,Y).
As in the proof of Proposition 3.2, we make the change of variables
Y (I, —YY)2y

and we find that

I =CX/ P((I — YT)/2y,Y)
D
O(—Iy = YY) V25 +Yy). (I, —YY)7'Y)
exp (_%(Zy’y' +y'Yy+ y"Yy_)) Det(l, —=YY)™ " dur(y.Y).

Now we make the following remarks.

(1) Since P is a polynomial of degree < 2¢g and B is bounded, there exists a
constant Cog > 0 such that

|P((In = YY) 2y V)| <Co Y Iyl
r<2q
foreach (y,Y) € C" x B.

(2) By using the classical formula for the inverse of a matrix, for each Y € B
we have
(I,-YY) ! =Det(l, - YY) 'C(I, - YY)

where C(A) denotes the cofactor matrix of a matrix A. From this we deduce that
there exists a constant C > 0 such that

10(~(Iy = YY) "Ly = YYV)2(G + ¥ y), ~(L, = YY) ')

< CoDet(l, — YY) 3 " |yl
r<2q

foreach (y,Y) € C" x B.
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(3) For each (y,Y) € C" x B, we have
29'5 +y' Yy + 7 Y5 =2(0'y +Re(y' V) = 2(1 — | Y )y

Here || - | denotes the operator norm corresponding to the Hermitian norm on C”.
By using these remarks, we can reduce the study of the convergence of / to
that of the integral

I = /D Det(l, — Y ¥) 2471y 4= @/2PA=IYD gy (y,y),

We set

1Y) = /@ Iy |* =5 PA-IYI) g4,

and, passing to spherical coordinates, we see that there exists some constants
C, C’ > 0 such that, for each Y € B, we have

+
IY)=C / OOx44+2n—1e—(V/Z)(l—”Yll)xz dx = C/(l _ ”Y”)—Zq—n‘
0
Then we have to study the integral
1" := / Det(l, — YY) 2™ =11 —|Y|)~2¢"dY.
B

Now denote by A;(Y Y) the maximum of the eigenvalues of Y'Y and recall that
|Y||?> = As(YY). Then we have

Det(l, — YY) < 1-A,(YY)=1—||Y|*> =2(1— Y
for each Y € B. Thus we obtain
Det(l, — YY) "= (1 — |y |)724™" < 2*4*" Det(l, — YY)~ *—m2"~1

for each Y € B. But by Lemma 3.1, we see that J,,(—4g —m —2n — 1) hence I”
converges if g < %(—m — 2n). This ends the proof. O

6. Stratonovich—Weyl symbols of derived representation operators

Here we assume that —m > 2n + 4. Then, by Proposition 5.2, B, (Sy(dm,(X)))
is well-defined for each X € g°. We aim to define also W, (d,(X)) for X € g°.
To this goal, we first introduce a space of functions on D which is stable under B,
and contains S, (dm, (X)) for each X € g¢.
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Recall that, by Proposition 4.2 we have Sy (d 7, (X))(Z) =i g(Ad(gEI)X ) for
each X € g° and Z € D. This leads us to introduce the vector space § generated
by the functions Z — ¢y (Ad(g}l)X ) where X € g° and ¢ is an element
of (g°)* which is Ad*(K)-invariant. Such elements ¢, were determined in [15],

see Lemma 2.1 above. The following proposition is analogous to Proposition 6.2
of [17].

ProrosiTiON 6.1. Let ¢: D x g¢ — C be a function such that
(i) foreach Z € D, the map X — ¢(Z, X) is linear;
(ii) foreach X € g¢, g € Gand Z € D,wehave p(g-Z,X) = ¢(Z, Ad(g™ 1) X).
Then

(1) the element ¢o of (g°)* defined by po(X) := ¢(0, X) is fixed by K
(2) foreach X € g° and Z € D, we have
$(Z, X) = do(Ad(g7")X)
and
$(Z, X) = po(Ad({(exp Z* exp Z) " exp Z*) X)
= (¢ho © pec)(Ad(¢(exp Z* exp Z) ™' exp Z*) X);
(3) foreach X € g¢, the function y: D x g¢ — C given by
V(. X) = By(¢(. X))
is well-defined and satisfies (i) and (ii);

(4) the vector space S is generated by all the functions Z — ¢(Z, X) for ¢ as
above and X € g°. Moreover, § is stable under B,.

Proor. (1) By (ii), for each k € K and X € g¢, we have
(Ad* (k)¢o)(X) = po(Ad(k™")X) = ¢(0, Ad(k™") X)
=¢(k-0,X) =¢(0,X) = Po(X).
Then ¢y is fixed by K.

(2) The first assertion follows from (ii). To prove the second assertion, recall
that by [15], there exists kz € K such that gz = exp(—Z*){(expZ*exp Z )k}l.
Then we have

P(Z,X) = dpo(Ad(kzL(exp Z* exp Z) ™' exp Z*)X)
= ¢o(Ad(¢(exp Z* exp Z) ' exp Z*)X)
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and, noting that ¢o|,+ = 0 by Lemma 2.1, we can conclude that

$(Z.X) = (o 0 pec) (Ad(C (exp Z* exp Z) ™ exp Z*)X).

(3) By using the same arguments as in the proof of Proposition 5.2, we can
verify that, for each X € g€, the Berezin transform of ¢ (-, X) is well-defined. The

second assertion follows from the fact that B, commutes to the p(g), g € G.

(4) This follows from the preceding statements.

Now we need the following lemmas.

LemMA 6.2. ForeachY € B, we have

hyi= [ yrexn (=5 @54y Ty 4 Y5) ) dy

-2 (21) Det(I, — YY) ' /2 Tr((I, - YY)™)
14

y
L(Y): = 'y Y (oyt5 7y +5Y5))d
2(1):= | ¥ Tyexp (= (2'F+yTy+575))dy

- 3(2—”) Det(ly = Y¥)™2(n = Tr((Ln = Y¥)™").
Yy

Proor. Fors € [0,1] and Y € B, let us introduce

Yoot _ -
Js(Y) = /@ exp (- 7@ Yy + SF'Y 7)) dy.
By [21], p. 258, we have
2 n —
Jo(Y) = (—”) Det(1, — s2Y ¥)~1/2.
Y
Then, by computing the derivative of J;(Y) at s = 1, we get
_ _ _ y _ _ _ _
/ 0Ty + 7Y 7 exp (- 7@y Yyt 7Y ) dy
Cn
4,2 _ -
_ __(—”)" Det(l, — Y¥)~ V2 Tr((I, — Y 7)Y 7).
y\y

Thus we have

O

6.1) I(Y) + L(Y) = —;(27”) Det(l, — YV) V2 Tr(—I, + (I, — YT)7 ).
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On the other hand, by integrating by parts, we get

Ji(Y) = —/@n yk%(eXp (— %(Zy’ﬁ +y'Yy +y"Yy'))) dy

y B} - Yoo i o
1 / Qi +2et ¥ y) eXP(- Z(2y’y +y'Yy+ y’Yy))dy

foreachk = 1,2,..., k. By summing up over k, we obtain
(6.2) nh(¥) = L) + b,

This last equation implies that /,(Y) is real since J;(Y) and I;(Y) are real.
Consequently, (6.1) gives the desired value for I,(Y) hence (6.2) provides the
desired value for /;(Y). O

The following lemma gives a useful expression for K, (Z, Z) which will be
used in the proof of Proposition 6.4 .

LemMa 6.3. Foreach Z = a(y,Y), let zo := (I, — YY) ' (y + Y ). Then we
have

Ky(Z.Z) = exp (%(22320 2 ¥zo— EO’YEO)) Det(, — YYV)™.

Proor. The result follows from Proposition 3.2 by a routine computation.
Alternatively, by [14], Lemma 4.1, we have

(ez.ez)y = (eg,0.€5,0)x = (J(gz,0)m(gz)eo, J(gz,0)(gz)e0)«
= |J(gz.0)* = |x(k(g2))?

and, by taking into account the expressions of y and gz, we then recover the
desired formula for K, (Z, Z). |

Let us introduce the following integral of Hua’s type:
Kn(A) := / Tr((I, — YY) Y Det(l, — YY) aY.
B

Since the maximum of the eigenvalues of (I, — YY) !is (1—A,(YY))™!, we have
Tr((I, — YY) ™) <n(1=A,(YY)) ! <nDet(l, — YY) !

and then we see that K, (1) converges for A > 2 since J,, (1) converges for A > 1,
see Lemma 3.1.

Also, we denote by ¢! and ¢? the elements of § defined by ¢y = (0, 1,0) and
#2 = (0,0, o). We are now in position to establish the following proposition.
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ProposITION 6.4. Let

o= ) b (n-0-)

2cy (2m\" 3
Vp 1= —l—l—ﬁ(—n) Kn(—m—n——).
n \y 2

Let ¢ € 8 defined by ¢9 = (0,d, rpo) with d,A € C. Let ¥ € & such that
V(. X) = By(¢(-, X)) for each X € g°. Then we have Yo = (0,d, du, + Avy).

Proor. We will use the formula
Yo(X) = /D Bo(Ad(g5) X)K(Z, Z) cydpt(Z)

in order to compute the Berezin transforms ! (-, X) and ¥2(-, X) of ¢ (-, X) and
¢*(, X).

We write ¥ = (0,d1, 2190) with d1, A1 € C. Let Hy := ((0,0), 1,0). Then
we have Ad(g,')H1 = H; hence ¢}(Ad(g;')H1) = 1 for each Z € D. This
gives

i) = /@ Ky(Z.2) " eydu(Z) = 1.

On the other hand, we also have ¥} (H1) = d;. Then we find d; = 1.
Now, let H := ((0,0),0, (% _(}n )). Then, for each Z € D, we have

Uﬁ—Y?Y*Un+YY)*))

* *

_ i, _
Ad(g7" ) Hy = (*, 52620, (

where, as usual, zo = (I, — YY)~!(y + Y ). Consequently, we have
i

$o(Ad(g7") Hy) = 52650-

Thus, by Lemma 6.3, we get

ic _ _ = ~ oo
w(} (Hy) = =X / ZZ0 EXP ( — Z(22(’)20 —zbYzo — ZOtYZ())>
2 Jp 4
Det(l, —YY)™ " 2dydY
and we make the change of variables

y:ZO—YE()
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whose Jacobian is Det(1, — Y Y). Hence, by using Lemma 6.2, we obtain
VH) = (PN k(e
Vo (Ha) = y(y)KJ m—n->).
On the other hand, it is clear that 1//& (H») = iAn. Finally, we find that
_Cy (2m\" 3\
Al_ny()/) K,,( m-—n 2)—un.

Similarly, we write ¥§ = (0, d2, A2¢9). Since we have ¢Z(Ad(g;')Hy) = 0
for each Z € D, we first obtain dy = 1//3(H1) = 0. Moreover, for each Z =
a(y,Y) € D, we also have

p3(Ad(gz VHy) =i Tr(l, — YY) ' (I, + YY)
=i(-n+2Tr((In —YY)™")).

Then, changing variables y — (I, — Y Y)'/2y, we get

VA7 1) = —in +2icy [
BxC"n

Te((I, — YY) Y)Det(Il, — YY) ™ " 1dydy.

exp (=L (25 45Ty +575))

Thus, by using [21], p. 248, we obtain

wg(Ad(ggl)Hz) =—in+ 2icx(27n)nKn(— m—n— %)

Also, we have Y2 (Ad(g;')H>) = i Aon. This gives
2cy (2 \" 3
This finishes the proof. O

Recall that ¢, can be expressed in terms of the Hua’s integral J,,(—m—n—3/2)
which can be explicitly computed, see Proposition 3.2 and Lemma 3.1. However,
it seems difficult to compute K, (—m —n — 3/2) similarly.

Now we give the matrix of B, in a suitable basis of 8. First, we consider the
basis of g¢ consisting of the elements

Xi = ((eia O)’ 0, 0)’

Y; = ((0,¢/),0,0),
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Fyj = ((o 0),0, (8 ’f;))
6y = (000.(z )

Hl = ((0’ 0)’ 1,0),

i = ((O 0.0 (EO —gﬁ))’

fori,j =1,2,...,n, E;; denoting the n x n complex matrix whose ij-th entry is
1 and all of whose other entries are 0.

Note that ¢2(-, X;) = ¢2(-,Y;) = ¢>(-, H;) = 0. Then, from the preceding
proposition, we easily deduce the following result.

CoroLLARY 6.5. The functions ¢ (-, X;), ¢'(-,Y;), ¢'(, Hy), ¢'(, Fij),
¢, Gij), dLC, Aij), $2C, Fij), ¢%(-, Gij) and ¢*(-, Aij) form a basis for § in

which By has matrix
I2p+1 0 0
o 15,2 o

O pnls2 vuls,e2

Recall that for each X € g, we have S,(dn, (X)) € 8. Consequently, we see
that W (d (X)) = By "/*(S,(dm,(X))) is well-defined. Moreover, we have the
following proposition.

ProrosiTION 6.6. For each X € Spang{H;,X;.Y;, 1 <1i,j < n}, we have
Wy(dmy (X)) = Sy(dmy(X)). For each X € Spanc{Fj;.Gij, Aij, 1 <i,j < nj},
we have

Wildmy(X)) = Syldme (X)) i1 = ) (722 4 m )42 C. ).

Proor. Foreach X € g° we have

Sy(dmy(X)) = dy(Ad(gz")X) = iy¢' (. X) —imp>(, X).

Now, by using the preceding corollary, we see that the matrix of B;l/ 2

to the above basis of § is

with respect

Iopt1 0 0
0 Iy 0
p-1/2
o Hn o2,

1+v1/2
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This implies that for X € {H;, X;.Y;, 1 <i,j < n}, we have W, (dm, (X)) =
Sy(dmny (X)) and, for X € {F;;, Gij, Aij, 1 <i,j < n}, we have

MnVy

Wy (X) = i (9 X) =2 1/2¢(X)) vy 292, X).

Hence the result follows. O
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