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On �F-supplemented subgroups of a �nite group

Zhang, Li (�) – Chen, Xiaoyu (��) – Guo, Wenbin (���)

Abstract – Let F be a class of groups and G a �nite group. A chief factor H=K of G is

called F-central in G provided .H=K/ Ì .G=CG.H=K// 2 F. A normal subgroup N

of G is said to be �F-hypercentral in G if every chief factor of G below N of order

divisible by at least one prime in � is F-central in G. The �F-hypercentre of G is the

product of all the normal �F-hypercentral subgroups of G. In this paper, we study the

structure of �nite groups by using the notion of �F-hypercentre. New characterizations

of some classes of �nite groups are obtained.
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1. Introduction

Throughout this paper, all groups considered are �nite. G always denotes a

group, p denotes a prime, and � denotes a non-empty subset of the set P of

all primes. Moreover, �.G/ denotes the set of all prime divisors of jGj and

�.F/ D
S

¹�.G/jG 2 Fº, where F is a non-empty class of �nite groups.

Let F be a class of groups. If 1 2 F, then we write GF to denote the intersection

of all normal subgroups N of G with G=N 2 F. A non-empty class F of groups

is called a formation if for every group G, every homomorphic image of G=GF
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belongs to F. A formation F is said to be (i) saturated if G 2 F whenever

G=ˆ.G/ 2 F; (ii) hereditary (normally hereditary) if H 2 F whenever H �

G 2 F (H E G 2 F, respectively). Note that the classes of all p-nilpotent groups

and all supersolvable groups are both saturated and hereditary. In the sequel, we

use U to denote the class of all supersolvable groups.

For a class F of groups, a chief factor H=K of G is called F-central in G

if .H=K/ Ì .G=CG.H=K// 2 F. Following [9], a normal subgroup N of G is

said to be �F-hypercentral in G if every chief factor of G below N of order

divisible by at least one prime in � is F-central in G. The symbol Z�F.G/ denotes

the �F-hypercentre of G, that is, the product of all normal �F-hypercentral

subgroups of G. When � D P is the set of all primes, ZPF.G/ is called the

F-hypercentre of G, and denoted by ZF.G/. Clearly, for any non-empty set �

of primes, ZF.G/ � Z�F.G/.

Applications of the �F-hypercentre are based on the following concept.

Definition 1.1. Let F be a non-empty class of groups. A subgroup H of G is

called �F-supplemented in G, if there exists a subgroup T of G such that G D HT

and .H \T /HG=HG � Z�F.G=HG/, where HG is the maximal normal subgroup

of G contained in H .

In this paper, we will study the structure of �nite groups by using the con-

cept of �F-supplemented subgroup. Now characterizations of p-nilpotency and

supersolvability of �nite groups are obtained, and a series of known results are

generalized.

All unexplained notations and terminologies are standard. The reader is re-

ferred to [6], [7], and [13].

2. Preliminaries

The following known results are helpful in our proof.

Lemma 2.1 ([9, Lemma 2.2] and [5, Lemma 2.8]). Let F be a saturated

formation and � � �.F/. Let N E G and A � G.

(1) Z�F.G/ is �F-hypercentral in G.

(2) Z�F.A/N=N � Z�F.AN=N /.

(3) If F is .normally/ hereditary and A is a .normal/ subgroup of G, then

Z�F.G/ \ A � Z�F.A/.
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Lemma 2.2. Let F be a saturated formation and H � K � G.

(1) H is �F-supplemented in G if and only if there exists a subgroup T of G

such that G D HT , HG � T and .H=HG/ \ .T=HG/ � Z�F.G=HG/.

(2) Suppose that H E G. Then K=H is �F-supplemented in G=H if and only if

K is �F-supplemented in G.

(3) Suppose that H E G. Then for every �F-supplemented subgroup E of G

satisfying .jEj; jH j/ D 1, EH=H is �F-supplemented in G=H .

(4) Suppose that H is �F-supplemented in G. If F is .normally/ hereditary and

K is a .normal/ subgroup of G, then H is �F-supplemented in K.

Proof. (1) The su�ciency is clear. Now assume that H is �F-supplemented

in G. Then there exists a subgroup T of G such that G D HT and that

.H \ T /HG=HG � Z�F.G=HG/. Let T � D THG . Then G D HT �, HG � T �

and we obtain .H=HG/ \ .T �=HG/ D .H \ T /HG=HG � Z�F.G=HG/:

(2) First assume that K=H is �F-supplemented in G=H . Then by (1), G=H

has a subgroup T=H such that G=H D .K=H/.T=H/, KG=H � T=H and

..K=H/=.KG=H// \ ..T=H/=.KG=H// � Z�F..G=H/=.KG=H//. It follows

that .K=KG/ \ .T=KG/ � Z�F.G=KG/. Thus K is �F-supplemented in G.

Analogously, one can show that if K is �F-supplemented in G, then K=H is

�F-supplemented in G=H .

(3) By (1), there exists a subgroup T of G such that G D ET , EG � T

and .E=EG/ \ .T=EG/ � Z�F.G=EG/. In view of (2), we only need to prove

that EH is �F-supplemented in G. Since .jEj; jH j/ D 1, H � T , and so

EH \ T D .E \ T /H � ZH , where Z=EG D Z�F.G=EG/. Let D D .EH/G .

Then .EH=D/ \ .TD=D/ D .EH \ T /D=D � ZD=D � Z�F.G=D/ by

Lemma 2.1(2), and so EH is �F-supplemented in G.

(4) By (1), G has a subgroup T such that both G D HT , and HG � T , as well

as .H=HG/ \ .T=HG/ � Z�F.G=HG/. Let T � D K \ T . Since K D HT � and

.H=HG/ \ .T �=HG/ D .H \ T /=HG � Z�F.G=HG/ \ .K=HG/ � Z�F.K=HG/

by Lemma 2.1(3), H is �F-supplemented in K. �

Lemma 2.3 ([4, Lemma 2.12]). Let p be a prime divisor of jGj with

.jGj; .p � 1/.p2 � 1/ : : : .pn � 1// D 1 for some integer n � 1. If H E G

with pnC1 − jH j and G=H is p-nilpotent, then G is p-nilpotent. In particular,

if pnC1 − jGj, then G is p-nilpotent.

For any subgroup H of G, a subgroup T of G is called a supplement of H in

G if G D HT .
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Lemma 2.4 ([11, Lemma 2.12]). Let p be a prime divisor of G such that

.jGj; p � 1/ D 1. Suppose that P is a Sylow p-subgroup of G such that every

maximal subgroup of P has a p-nilpotent supplement in G, then G is p-nilpotent.

Lemma 2.5 ([8, Lemma 2.3]). Let F be a saturated formation containing U

and G a group with a normal subgroup E such that G=E 2 F. If E is cyclic, then

G 2 F.

The following facts about the generalized Fitting subgroup are useful in our

proof (see [14, Chapter X, Section 13] and [19, Lemmas 2.17–2.19]).

Lemma 2.6. (1) If N E G, then F �.N / D F �.G/ \ N .

(2) F �.G/ ¤ 1 if G ¤ 1.

(3) F �.F �.G// D F �.G/ � F.G/; if F �.G/ is solvable, then

F �.G/ D F.G/:

(4) F �.G/ D F.G/E.G/, ŒF.G/; E.G/� D 1, F.G/ \ E.G/ D Z.E.G// and

E.G/=Z.E.G// is the direct product of simple non-abelian groups, where E.G/

is the layer of G.

(5) CG.F �.G// � F.G/.

(6) If P is a normal p-subgroup of G, then F �.G=ˆ.P // D F �.G/=ˆ.P /.

(7) If P is a normal p-subgroup of G contained in Z.G/, then

F �.G=P / D F �.G/=P:

3. Characterizations of p-nilpotent groups

Recall that a chain H0 D H � H1 � � � � � Hn D G is a maximal chain if each Hi

is a maximal subgroup of HiC1 .i D 0; 1; : : : ; n � 1/. The subgroup H in such a

series is an n-maximal subgroup of G. The following proposition is the main step

in the proof of Theorem 3.2.

Proposition 3.1. Let p be a prime divisor of jGj such that

.jGj; .p � 1/.p2 � 1/ : : : .pn � 1// D 1

for some integer n � 1. If there exists a Sylow p-subgroup P of G such that

every n-maximal subgroup .if exists/ of P is pU-supplemented in G, then G is

p-nilpotent.
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Proof. Suppose that the assertion is false and let G be a counterexample of

minimal order. Clearly, pnC1jjGj by Lemma 2.3. We proceed via the following

steps.

(1) ZpU.G/ D 1.

Proof. Suppose that ZpU.G/ ¤ 1. Let N be a minimal normal subgroup of

G contained in ZpU.G/. Clearly, either N is a p0-group or jN j D p. By Lem-

mas 2.2(2) and (3), we see that G=N satis�es the hypothesis of the proposition.

Hence, G=N is p-nilpotent by the choice of G. If N is a p0-group, then G is

p-nilpotent, a contradiction. Thus jN j D p. As .jGj; p � 1/ D 1, we have that

N � Z.G/, and so G is p-nilpotent, a contradiction too. Thus (1) holds. 4

(2) If Op.G/ ¤ 1, then Op.G/ is a minimal normal subgroup of G and

G D Op.G/ Ì M , where M is a p-nilpotent maximal subgroup of G.

Proof. Let N be a minimal normal subgroup of G contained in Op.G/. Then

N is abelian. Similarly as in the proof of (1), we can show that G=N is p-nilpotent.

Since the class of �nite p-nilpotent groups is a saturated formation, N is the unique

minimal normal subgroup of G contained in Op.G/ and N — ˆ.G/. It follows that

G D N ÌM for some maximal subgroup M of G. Thus M Š G=N is p-nilpotent.

Clearly, Op.G/ \ M E G. By the uniqueness of N , we have Op.G/ \ M D 1,

and so Op.G/ D N.Op.G/ \ M/ D N . Thus Op.G/ D N is a minimal normal

subgroup of G. 4

(3) The �nal contradiction.

Proof. Let Pn be any n-maximal subgroup of P . Then .Pn/G D 1 or Op.G/

by (2). If .Pn/G D Op.G/, then G D Op.G/M D PnM . Now assume that

.Pn/G D 1. Since Pn is pU-supplemented in G, G has a subgroup T such that

G D PnT and Pn \ T D 1 by (1). Hence T is p-nilpotent by Lemma 2.3. This

shows that every n-maximal subgroup of P has a p-nilpotent supplement in G.

Consequently, G is p-nilpotent by Lemma 2.4. 4

The �nal contradiction completes the proof. �

Theorem 3.2. Let p be a prime divisor of jGj such that

.jGj; .p � 1/.p2 � 1/ : : : .pn � 1// D 1;

for some integer n � 1. Then G is p-nilpotent if and only if G has a normal

subgroup H such that G=H is p-nilpotent, and for any Sylow p-subgroup P of H ,

every n-maximal subgroup .if exists/ of P is pU-supplemented in G.
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Proof. The necessity is evident. We only need to prove the su�ciency.

By Lemma 2.2(4), every n-maximal subgroup of P is pU-supplemented in H .

Hence H is p-nilpotent by Proposition 3.1. Let Hp0 be the normal Hall p0-subgroup

of H . Then obviously, Hp0 E G. By Lemma 2.2(3), .G=Hp0 ; H=Hp0/ satis�es the

hypothesis of the theorem. If Hp0 ¤ 1, then by induction, G=Hp0 is p-nilpotent,

and so G is p-nilpotent.

Hence we may assume that H D P . Let K=P be the normal Hall p0-subgroup

of G=P . By Lemma 2.2(4), every n-maximal subgroup of P is pU-supplemented

in K. Hence K is p-nilpotent by Proposition 3.1, and so K D P � Kp0 , where Kp0

is a Hall p0-subgroup of K. This implies that Kp0 is a normal Hall p0-subgroup

of G. Therefore, G is p-nilpotent. �

Theorem 3.3. Let p be a prime divisor of jGj. Then G is p-nilpotent if and

only if there exists a normal subgroup H of G such that G=H is p-nilpotent, and

for any Sylow p-subgroup P of H , one of the following holds:

(1) .jGj; .p � 1/.p2 � 1/ : : : .pn � 1// D 1 for some integer n � 1, pn > 2 and

every subgroup L of P of order pn is pU-supplemented in G;

(2) p D 2, P is abelian and every subgroup L of P of order 2 is 2U-supplemented

in G;

(3) p D 2, P is non-abelian and every cyclic subgroup L of P of order 2 or 4 is

2U-supplemented in G.

Proof. The necessity is obvious. We only need to prove the su�ciency. Sup-

pose that this is false and let .G; H/ be a counterexample for which jGj is minimal.

We proceed via the following steps.

(1) jP j � pnC1.

Proof. It follows from Lemma 2.3. 4

(2) G D P Ì Q, where P is a normal Sylow p-subgroup of G and Q a cyclic

Sylow q-subgroup of G (p ¤ q), P=ˆ.P / is a chief factor of G, and the exponent

of P is p or 4 (when P is a non-abelian 2-subgroup).

Proof. Let M be any maximal subgroup of G. Then by Lemma 2.2(4),

.M; M \ H/ satis�es the hypothesis of the theorem. The choice of .G; H/ im-

plies that M is p-nilpotent, and so G is a minimal non-p-nilpotent group. Hence,

by [13, IV, Satz 5.4] and [18, Theorem 1.1], G D Gp Ì Q, where Gp D GNp

is the

normal Sylow p-subgroup of G and Q a cyclic Sylow q-subgroup of G (q ¤ p),

Gp=ˆ.Gp/ is a chief factor of G, and the exponent of Gp is p or 4(when Gp is

a non-abelian 2-subgroup). Note that GNp

� H . Therefore, Gp D P and (2)

holds. 4
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(3) P has a proper subgroup L of order pn or 4 (when P is a non-abelian

2-subgroup) such that L — ˆ.P / and L is pU-supplemented in G.

Proof. Take an element x 2 P n ˆ.P / and let E D hxi. Then jEj D p or 4

(when p D 2 and P is non-abelian) by (2). It follows that there exists a subgroup

L of P of order pn or 4 (when p D 2, n D 1 and P is nonablian, we may

take L D E) such that E � L. By the hypothesis, L is pU-supplemented in G.

Moreover, if L D P , then jP j D 4 since jP j � pnC1 by (1). This implies that P

is abelian, a contradiction. Thus L < P . 4

(4) The �nal contradiction.

Proof. By (3), there exists a subgroup T of G such that G D LT and

.L \ T /LG=LG � ZpU.G=LG/. Since P=ˆ.P / is a chief factor of G by

(2), .P \ T /ˆ.P /=ˆ.P / E G=ˆ.P /, and so .P \ T /ˆ.P / D ˆ.P / or P .

If .P \ T /ˆ.P / D ˆ.P /, then P \ T � ˆ.P /, and thereby P D P \ LT D

L.P \ T / � Lˆ.P / ¤ P unless L D P , a contradiction. We may, there-

fore, assume that .P \ T /ˆ.P / D P . Then we get P � T , and so T D G.

Thus L=LG � ZpU.G=LG/. Since P=ˆ.P / is a chief factor of G by (2),

ˆ.P /LG D ˆ.P / or P . If ˆ.P /LG D P , then L D P , which contra-

dicts (3). Therefore, ˆ.P /LG D ˆ.P /, and so LG � ˆ.P /. If P=ˆ.P / �

ZpU.G=ˆ.P //, then jP=ˆ.P /j D p, and so P D Lˆ.P / D L, a contradic-

tion. Thus ZpU.G=ˆ.P // \ .P=ˆ.P // D 1 by (2). It follows from Lemma 2.1(2)

that Lˆ.P /=ˆ.P / � ZpU.G=ˆ.P // \ .P=ˆ.P // D 1. This implies that

L � ˆ.P /. 4

The �nal contradiction completes the proof. �

4. Characterizations of supersolvable groups

In order to prove Theorem 4.2, we �rst establish the following proposition.

Proposition 4.1. For any p 2 �.G/, if every maximal subgroup of every non-

cyclic Sylow p-subgroup P of G is pU-supplemented in G, then G is a Sylow

tower group of supersolvable type.

Proof. Let p be the smallest prime dividing jGj and P a Sylow p-subgroup

of G. If P is cyclic, then G is p-nilpotent (see [17, (10.1.9)]). Otherwise, G is

p-nilpotent by Proposition 3.1. Let V be the normal Hall p0-subgroup of G. Hence

by Lemma 2.2(4), V satis�es the hypothesis of the proposition. Therefore, by

induction, we obtain that G is a Sylow tower group of supersolvable type. �
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Theorem 4.2. G is supersolvable if and only if G has a normal subgroup H

such that G=H is supersolvable, and every maximal subgroup of every non-cyclic

Sylow p-subgroup of H is pU-supplemented in G, for any prime p 2 �.H/.

Proof. The necessity is obvious. We only need to prove the su�ciency.

Suppose that the result is false and let .G; H/ be a counterexample for which jGj

is minimal.

(1) Let q be the largest prime divisor of jH j and Q a Sylow q-subgroup of H .

Then Q E G.

Proof. By Lemma 2.2(4) and Proposition 4.1, H is a Sylow tower group of

supersolvable type. This implies that Q E G. 4

(2) Q is a non-cyclic minimal normal subgroup of G.

Proof. Let N be a minimal normal subgroup of G contained in Q, then N

is an elementary abelian group. By Lemmas 2.2(2) and (3), the hypothesis of the

theorem holds for (G=N , H=N ). The choice of G implies that G=N 2 U. SinceU is

a saturated formation, N is the unique minimal normal subgroup of G contained

in Q and N — ˆ.G/. It follows that G has a maximal subgroup M such that

G D N Ì M . It is easy to see that Q \ M E G, and so Q \ M D 1. Therefore,

Q D N.Q \ M/ D N is a minimal normal subgroup of G. If Q is cyclic, then

G 2 U by Lemma 2.5, which is impossible. Thus Q is non-cyclic. 4

(3) The �nal contradiction.

Proof. Let Q1 be a maximal subgroup of Q. Then .Q1/G D 1 by (2).

By the hypothesis, there exists a subgroup T of G such that G D Q1T and

Q1 \ T � ZqU.G/. Note that Q \ T E G. By (2), Q \ T D 1 or Q. If

Q \ T D 1, then Q D Q1.Q \ T / D Q1, a contradiction. Hence we may assume

that Q \ T D Q. Then T D G, and so Q1 � ZqU.G/ \ Q. Since Q is a minimal

normal subgroup of G, ZqU.G/ \ Q D 1 or Q. It follows that either Q1 D 1 or

Q � ZqU.G/. In both cases, we have that Q is cyclic. 4

The �nal contradiction completes the proof. �

The next proposition is useful in the proof of Theorem 4.4.

Proposition 4.3. G is supersolvable if and only if there exists a solvable

normal subgroup H of G such that G=H is supersolvable, and every maximal

subgroup of every non-cyclic Sylow p-subgroup of F.H/ is pU-supplemented in

G, for any p 2 �.F.H//.
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Proof. The necessity is clear. We only need to prove the su�ciency. Suppose

that this is false and let .G; H/ be a counterexample for which jGj is minimal.

(1) ˆ.G/ \ F.H/ D 1.

Proof. Assume that ˆ.G/ \ F.H/ ¤ 1, and let P1 be a Sylow p-subgroup of

ˆ.G/\F.H/ for some prime p 2 �.ˆ.G/\F.H//. Then clearly, P1 E G. Note

that F.H=P1/ D F.H/=P1 by [6, Chapter A, Theorem 9.3(c)]. It is easy to see

that .G=P1; H=P1/ satis�es the hypothesis of the proposition by Lemmas 2.2(2)

and (3). Thus, the choice of .G; H/ implies that G=P1 2 U, and so G 2 U,

a contradiction. Thus (1) holds. 4

(2) F.H/ D N1 � N2 � � � � � Nt , where t � 1 is an integer, and Ni

.i D 1; 2; : : : ; t / is a minimal normal subgroup of G of prime order.

Proof. Since H ¤ 1 is solvable, F.H/ ¤ 1. By (1) and [13, Chapter III,

Theorem 4.5], F.H/ D N1 � N2 � � � � � Nt , where Ni .i D 1; 2; : : : ; t / is a

minimal normal subgroup of G. Without loss of generality, we may assume that

P D N1 � N2 � � � � � Ns .s � t / is a Sylow p-subgroup of F.H/. We claim

that jNi j D p for any i D 1; 2; : : : ; s. Otherwise, without loss of generality,

we may assume that jN1j > p. Then P is non-cyclic. Let N �

1 be a maximal

subgroup of N1 and P � D N �

1 N2 : : : Ns . Then P � is a maximal subgroup of P and

.P �/G D N2 : : : Ns . By the hypothesis and Lemma 2.2(1), there exists a subgroup

T of G such that G D P �T , .P �/G � T and .P �=.P �/G/ \ .T=.P �/G/ �

ZpU.G=.P �/G/. Since P \ T E G and P=.P �/G is a chief factor of G, P \ T D

.P �/G or P . If P \T D .P �/G , then P \T � P �, and so P D P �.P \T / D P �,

a contradiction. Hence we may assume that P \ T D P . Then T D G. This

implies that P �=.P �/G � ZpU.G=.P �/G/ \ .P=.P �/G/. Since P �=.P �/G ¤ 1,

P=.P �/G � ZpU.G=.P �/G/, and so jN1j D p. This contradiction shows that (2)

holds. 4

(3) The �nal contradiction.

Proof. By (2), G=CG.Ni / is a cyclic group for any 1 � i � t . Hence

G=CG.F.H// D G=.
Tt

iD1 CG.Ni // 2 U. Consequently, G=F.H/ 2 U. It follows

from Theorem 4.2 that G 2 U. 4

The �nal contradiction completes the proof. �
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Theorem 4.4. G is supersolvable if and only if there exists a normal subgroup

H of G such that G=H is supersolvable, and every maximal subgroup of every

non-cyclic Sylow p-subgroup of F �.H/ is pU-supplemented in G, for any prime

p 2 �.F �.H//.

Proof. The necessity is clear. We only need to prove the su�ciency. Suppose

that the result is false and let .G; H/ be a counterexample for which jGj is minimal.

(1) H D G and F �.G/ D F.G/ ¤ 1.

Proof. By Lemma 2.2(4) and Theorem 4.2, F �.H/ 2 U. Hence by Lem-

mas 2.6(2) and (3), F �.H/ D F.H/ ¤ 1. Obviously, .H; H/ satis�es the hypoth-

esis of the theorem by Lemma 2.2(4). If H < G, then the choice of .G; H/ implies

that H 2 U. Hence G 2 U by Proposition 4.3, a contradiction. Thus H D G. 4

(2) Each proper normal subgroup of G containing F.G/ is supersolvable.

Proof. Let F.G/ � N E G with N < G. Then by Lemmas 2.6(1) and

(3), F �.G/ D F �.F �.G// � F �.N / � F �.G/, and so F �.G/ D F �.N /. By

Lemma 2.2(4), .N; N / satis�es the hypothesis of the theorem. Therefore, N 2 U

by the choice of .G; H/. 4

(3) F.G/ is elementary abelian and CG.F.G// D F.G/.

Proof. Assume ˆ.Op.G// ¤ 1 for some p 2 �.F.G//. By Lemma 2.6(6),

F �.G=ˆ.Op.G/// D F �.G/=ˆ.Op.G//. Then .G=ˆ.Op.G//; G=ˆ.Op.G///

satis�es the hypothesis of the theorem by Lemmas 2.2(2) and (3). The choice of

.G; H/ implies that G=ˆ.Op.G// 2 U, and so G 2 U, a contradiction. Therefore,

ˆ.Op.G// D 1 for any p 2 �.F.G//, and thereby F.G/ is elementary abelian.

By Lemma 2.6(5), we obtain that CG.F.G// D F.G/. 4

(4) There exists no normal subgroup of G of prime order contained in F.G/.

Proof. Suppose that G has a normal subgroup L contained in F.G/ such that

jLj D p. Then clearly, G=CG.L/ is cyclic and F.G/ � CG.L/. If CG.L/ < G,

then CG.L/ 2 U by (2). It follows that G is solvable, and so G 2 U by Proposi-

tion 4.3, a contradiction. Hence CG.L/ D G, and consequently L � Z.G/. Then

by Lemma 2.6(7), F �.G=L/ D F �.G/=L. It follows from Lemmas 2.2(2) and (3)

that .G=L; G=L/ satis�es the hypothesis of the theorem. Therefore, G=L 2 U

by the choice of .G; H/. Thus G 2 U by Lemma 2.5, a contradiction. Thus (4)

holds. 4
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(5) Let P be a nontrivial Sylow p-subgroup of F.G/. Then P is non-cyclic and

P \ ˆ.G/ ¤ 1.

Proof. If P is cyclic, then by (3), P is elementary abelian, and so jP j D p,

which contradicts (4). Hence P is non-cyclic. Suppose that P \ ˆ.G/ D 1. Then

by [13, Chapter III, Theorem 4.5], P D R1 � R2 � � � � � Rt , where R1; : : : ; Rt are

minimal normal subgroups of G. By discussing similarly as step (2) in Proposi-

tion 4.3, we have that jRi j D p for any i D 1; 2; : : : ; t , contrary to (4). Therefore,

P \ ˆ.G/ ¤ 1. 4

(6) There exists a unique normal subgroup L of G contained in P .

Proof. In view of (5), let L be a minimal normal subgroup of G contained

in P \ ˆ.G/ and E=L D E.G=L/, where E.G=L/ is the layer of G=L. Then by

Lemma 2.6(4), F �.G=L/ D F.G/E=L and ŒF.G/; E� � L. Let N be a minimal

normal subgroup of G contained in P such that N ¤ L. Then ŒN; E� � N \L D 1,

and so E � CG.N /. If CG.N / < G, then E � CG.N / 2 U by (2). Consequently,

F �.G=L/ D F.G/=L. Hence .G=L; G=L/ satis�es the hypothesis of the theorem

by Lemmas 2.2(2) and (3). The choice of .G; H/ implies G=L 2 U. This yields

that G 2 U, which is impossible. Hence CG.N / D G, contrary to (4). Thus L is

the unique normal subgroup of G contained in P . 4

(7) The �nal contradiction.

Proof. By (3), P is elementary abelian. Let S be a complement of L in P , L�

be a maximal subgroup of L and P � D L�S . Then P � is a maximal subgroup of

P , and clearly .P �/G D 1 by (6). By the hypothesis, P � is pU-supplemented in G.

Then there exists a subgroup T of G such that G D P �T and P � \ T � ZpU.G/.

If P � \ T ¤ 1, then L � ZpU.G/ by (6). Therefore, jLj D p. This contradiction

shows that P � \ T D 1, and so jP \ T j � p. If P \ T D 1, then P D P �, which

is impossible. Thus P \ T ¤ 1. Since P \ T E G, L � P \ T by (6). This yields

that jLj D p, which contradicts (4). 4

The proof is thus completed. �

Theorem 4.5. G is supersolvable if and only if there exists a normal subgroup

H of G such that G=H is supersolvable, and every cyclic subgroup of H of order

p or order 4 .if H has a non-abelian Sylow 2-subgroup/ is pU-supplemented in

G, for any prime p 2 �.H/.
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Proof. We only need to prove the su�ciency. Suppose that this is false and

let .G; H/ be a counterexample with jGj C jH j is minimal.

(1) H D GU is a p-group for some prime p, H=ˆ.H/ is a chief factor of G,

and the exponent of H is p or 4 (when H is a non-abelian 2-subgroup).

Proof. Obviously, GU � H . If GU < H , then .G; GU/ satis�es the hypothesis

of the theorem, and so G 2 U by the choice of .G; H/, a contradiction. Thus

H D GU. Now let M be any maximal subgroup of G. Then it is easy to check

that the hypothesis of the theorem holds for .M; M \H/ by Lemma 2.2(4). Hence

M 2 U by the choice of .G; H/. This shows that G is a minimal non-supersolvable

group. Consequently, G is solvable by [17, (10.3.4)]. Now by [18, Theorem 1.1], H

is a p-group for some prime p, H=ˆ.H/ is a chief factor of G, and the exponent

of H is p or 4 (when H is a non-abelian 2-subgroup). 4

(2) jH=ˆ.H/j D p.

Proof. If not, then we may take a subgroup X=ˆ.H/ of H=ˆ.H/ of

order p and an element x 2 X n ˆ.H/. Then L D hxi is a cyclic group of

order p or 4 (when H is a non-abelian 2-subgroup) by (1), and Lˆ.H/ D X .

If L E G, then X E G, and so H D X by (1). It follows that H=ˆ.H/

is cyclic. Thus jH=ˆ.H/j D p, a contradiction. Hence L 6µ G, and so

LG � ˆ.H/. By the hypothesis, there exists a subgroup T such that G D LT

and .L \ T /LG=LG � ZpU.G=LG/. By Lemma 2.1(2), .L \ T /ˆ.H/=ˆ.H/ �

ZpU.G=ˆ.H// \ .H=ˆ.H//. If H=ˆ.H/ � ZpU.G=ˆ.H//, then one has

jH=ˆ.H/j D p, a contradiction. Thus ZpU.G=ˆ.H// \ .H=ˆ.H// D 1, and

thereby L \ T � ˆ.H/. This implies that T < G. Since .H \ T /ˆ.H/ E G,

.H \ T /ˆ.H/ D H or ˆ.H/ by (1). If .H \ T /ˆ.H/ D H , then H � T ,

and so T D G, a contradiction. Therefore, H \ T � ˆ.H/. It follows that

H D L.H \ T / D L, also a contradiction. Thus jH=ˆ.H/j D p. 4

(3) The �nal contradiction.

Proof. In view of (2), G=ˆ.H/ 2 U by Lemma 2.5, and thus G 2 U. 4

The �nal contradiction ends the proof. �
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5. Some Applications

Recall that a subgroup H of G is said to be F-supplemented [8] in G, if there

exists a subgroup T of G such that G D HT and .H \T /HG=HG � ZF.G=HG/.

Moreover, many authors introduced various concepts, such as, c-normal subgroup

(see [20]), c-supplemented subgroup (see [3]), Uc-normal subgroup (see [1]),

F-z-supplemented subgroup (see [10]).

It is easy to see that, all these subgroups, whether they are c-normal, c-sup-

plemented, Uc-normal, U-supplemented or U-z-supplemented, are all �U-supple-

mented subgroups for some set of primes � . However, a �U-supplemented sub-

group is not necessarily a U-supplemented subgroup as the following example

illustrates.

Example 5.1. Let G D A4 and H D ¹1; .12/.34/º be a subgroup of G of

order 2. Clearly, HG D 1. It is easy to check that ZU.G/ D 1 and Z3U.G/ D G.

Now we show that the subgroup H is 3U-supplemented, but not U-supplemented

in G. In fact, if H is U-supplemented in G, then there exists a subgroup T of G

such that G D HT and H \ T � ZU.G/ D 1. Therefore, jT j D 6. But A4 has no

subgroup of order 6, a contradiction. Clearly, H is 3U-supplemented in G.

In the literature, one can �nd a large number of special cases of our theorems.

We now list only a small part of them.

Corollary 5.2 ([12, Theorem 3.4]). Let p be the smallest prime dividing jGj

and P a Sylow p-subgroup of G. If every maximal subgroup of P is c-supple-

mented in G, then G is p-nilpotent.

Corollary 5.3 ([10, Theorem 3.2]). Let P be a Sylow p-subgroup of G, where

p is a prime divisor of G with .jGj; p �1/ D 1. If every maximal subgroup of P is

Np-z-supplemented in G, where Np denotes the class of all p-nilpotent groups,

then G is p-nilpotent.

Corollary 5.4 ([2, Lemma 3.1]). Let p be the smallest prime dividing jGj

and let P be a Sylow p-subgroup of G. If all subgroups of P of order p or order 4

are c-normal in G, then G is p-nilpotent.

Corollary 5.5 ([15, Theorem 3.3]). Let N be a normal subgroup of G such

that G=N is supersolvable, and P1 is c-normal in G for every Sylow subgroup P

of N and every maximal subgroup P1 of P . Then G is supersolvable.
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Corollary 5.6 ([16, Theorem 2]). Let G be a solvable group. If H is a normal

subgroup of G such that G=H is supersolvable and all maximal subgroups of any

Sylow subgroup of F.H/ are c-normal in G, then G is supersolvable.

Corollary 5.7 ([8, Corollary 3.1.1]). G is supersolvable if and only if every

maximal subgroup of every non-cyclic Sylow subgroup of G is U-supplemented

in G.

Corollary 5.8 ([10, Theorem 3.3]). G is supersolvable if and only if there

exists a normal subgroup N such that G=N is supersolvable and every maximal

subgroup of every Sylow subgroup of N is U-z-supplemented in G.

Corollary 5.9 ([3, Theorem 4.1]). Let K be the supersolvable residual GU

of G. Suppose that every cyclic subgroup of K of prime order or order 4 is

c-supplemented in G. Then G is supersolvable.

Corollary 5.10 ([1, Corollary 1.5]). G is supersolvable if and only if all cyclic

subgroups of G with prime order or order 4 are Uc-normal in G.
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