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On 7 §-supplemented subgroups of a finite group

ZHANG, LI (¥) — CHEN, X1A0YU (k%) — GUO, WENBIN (k%3%)

ABSTRACT — Let § be a class of groups and G a finite group. A chief factor H/K of G is
called §-central in G provided (H/K) x (G/Cg(H/K)) € §. A normal subgroup N
of G is said to be w§-hypercentral in G if every chief factor of G below N of order
divisible by at least one prime in = is §-central in G. The w§-hypercentre of G is the
product of all the normal = F-hypercentral subgroups of G. In this paper, we study the
structure of finite groups by using the notion of & F-hypercentre. New characterizations
of some classes of finite groups are obtained.
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1. Introduction

Throughout this paper, all groups considered are finite. G always denotes a
group, p denotes a prime, and = denotes a non-empty subset of the set P of
all primes. Moreover, 7(G) denotes the set of all prime divisors of |G| and
7(F) = U{n(G)|G € F}, where § is a non-empty class of finite groups.

Let § be a class of groups. If 1 € §, then we write G to denote the intersection
of all normal subgroups N of G with G/N € §. A non-empty class § of groups
is called a formation if for every group G, every homomorphic image of G/GS
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belongs to §. A formation § is said to be (i) saturated if G € §F whenever
G/®(G) € 3§, (ii) hereditary (normally hereditary) it H € § whenever H <
G € § (H < G € §, respectively). Note that the classes of all p-nilpotent groups
and all supersolvable groups are both saturated and hereditary. In the sequel, we
use 4l to denote the class of all supersolvable groups.

For a class § of groups, a chief factor H/K of G is called §-central in G
if (H/K) % (G/Cg(H/K)) € §. Following [9], a normal subgroup N of G is
said to be n§-hypercentral in G if every chief factor of G below N of order
divisible by at least one prime in = is §-central in G. The symbol Z, z(G) denotes
the w§-hypercentre of G, that is, the product of all normal m§-hypercentral
subgroups of G. When = = P is the set of all primes, Zpz(G) is called the
S$-hypercentre of G, and denoted by Zz(G). Clearly, for any non-empty set &
of primes, Zz(G) < Z,5(G).

Applications of the 7 F-hypercentre are based on the following concept.

DEerintTION 1.1. Let § be a non-empty class of groups. A subgroup H of G is
called n§-supplemented in G, if there exists a subgroup 7 of G suchthat G = HT
and (HNT)Hg/Hg < Z,5(G/Hg), where Hg is the maximal normal subgroup
of G contained in H.

In this paper, we will study the structure of finite groups by using the con-
cept of w§-supplemented subgroup. Now characterizations of p-nilpotency and
supersolvability of finite groups are obtained, and a series of known results are
generalized.

All unexplained notations and terminologies are standard. The reader is re-
ferred to [6], [7], and [13].

2. Preliminaries

The following known results are helpful in our proof.

LemMa 2.1 ([9, Lemma 2.2] and [5, Lemma 2.8]). Let § be a saturated
Jormation and & C n(§). Let N < G and A < G.

(1) Zn3(G) is n§-hypercentral in G.
(2) Zz5(A)N/N < Z,5(AN/N).

) If § is (normally) hereditary and A is a (normal) subgroup of G, then
Zz5(G)NA < Zrz(A).
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LemMma 2.2. Let § be a saturated formation and H < K < G.

(1) H is n§-supplemented in G if and only if there exists a subgroup T of G
suchthat G = HT, Hg < T and (H/Hg) N (T/Hg) < Z,5(G/Hg).

(2) Suppose that H < G. Then K/H is n§-supplemented in G/H if and only if
K is n§-supplemented in G.

(3) Suppose that H < G. Then for every n§-supplemented subgroup E of G
satisfying (|E|,|H|) = 1, EH/H is n§-supplemented in G/H .

(4) Suppose that H is n§-supplemented in G. If § is (normally) hereditary and
K is a (normal) subgroup of G, then H is n§-supplemented in K.

Proor. (1) The sufficiency is clear. Now assume that H is 7 §-supplemented
in G. Then there exists a subgroup 7 of G such that G = HT and that
(HNT)Hg/Hg < Z,5(G/Hg). Let T* = THg. Then G = HT*, Hg < T*
and we obtain (H/Hg) N (T*/Hg) = (HNT)Hg/Hg < Z,35(G/Hg).

(2) First assume that K/H is nw§-supplemented in G/H. Then by (1), G/H
has a subgroup 7/H such that G/H = (K/H)(T/H), Kg/H < T/H and
(K/H)/(Kg/H)) N (T/H)/(Kg/H)) = Z5((G/H)/(Kg/H)). It follows
that (K/Kg) N (T/Kg) < Zp5(G/Kg). Thus K is nF-supplemented in G.
Analogously, one can show that if K is w§-supplemented in G, then K/H is
w§-supplemented in G/H .

(3) By (1), there exists a subgroup 7 of G such that G = ET, Eg < T
and (E/Eg) N (T/Eg) < Z,3(G/Eg). In view of (2), we only need to prove
that EH is nw§-supplemented in G. Since (|E|,|H|) = 1, H < T, and so
EHNT =(ENT)H <ZH,where Z/Eg = Z,3(G/Eg). Let D = (EH)g.
Then (EH/D) N (TD/D) = (EH NT)D/D < ZD/D < Z,3(G/D) by
Lemma 2.1(2), and so EH is n§-supplemented in G.

(4) By (1), G has a subgroup T such thatboth G = HT,and Hg < T, as well
as (H/Hg) N (T/Hg) < Z»5(G/Hg). Let T* = KN T.Since K = HT* and
(H/Hg) N (T*/Hg) = (H N T)/Hg < Z5(G/Hg) N (K/Hg) < Zng(K/Hg)
by Lemma 2.1(3), H is n§-supplemented in K. O

Lemma 2.3 ([4, Lemma 2.12]). Let p be a prime divisor of |G| with
(IGl.(p — D)(P? =1)...(p" = 1)) = 1 for some integern > 1.If H < G
with p"*1 } |H| and G/H is p-nilpotent, then G is p-nilpotent. In particular,
if p" T } |G|, then G is p-nilpotent.

For any subgroup H of G, a subgroup T of G is called a supplement of H in
GifG=HT.
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LemMma 2.4 ([11, Lemma 2.12]). Let p be a prime divisor of G such that
(|G|, p — 1) = 1. Suppose that P is a Sylow p-subgroup of G such that every
maximal subgroup of P has a p-nilpotent supplement in G, then G is p-nilpotent.

LemMma 2.5 ([8, Lemma 2.3]). Let § be a saturated formation containing 1
and G a group with a normal subgroup E such that G/E € §. If E is cyclic, then
G €5

The following facts about the generalized Fitting subgroup are useful in our
proof (see [14, Chapter X, Section 13] and [19, Lemmas 2.17-2.19]).

Lemma 2.6. (1) If N < G, then F*(N) = F*(G)N N.

Q) F*(G) #1ifG # 1.
(3) F*(F*(G)) = F*(G) = F(G); if F*(G) is solvable, then

F*(G) = F(G).

@) F*(G) = F(G)E(G), [F(G),E(G)] =1, F(G)NE(G) = Z(E(G)) and
E(G)/Z(E(G)) is the direct product of simple non-abelian groups, where E(G)
is the layer of G.

(5) Co(F*(G)) = F(G).
(6) If P is a normal p-subgroup of G, then F*(G/®(P)) = F*(G)/D(P).
(N If P is a normal p-subgroup of G contained in Z(G), then

F*(G/P) = F*(G)/P.

3. Characterizations of p-nilpotent groups

Recall that a chain Hy = H < H; < --- < H, = G is amaximal chain if each H;
is a maximal subgroup of H;+1 (i = 0,1,...,n — 1). The subgroup H in such a
series is an n-maximal subgroup of G. The following proposition is the main step
in the proof of Theorem 3.2.

ProrosiTioN 3.1. Let p be a prime divisor of |G| such that

(Gl.(p=D(P*=1...(p" 1) =1

for some integer n > 1. If there exists a Sylow p-subgroup P of G such that
every n-maximal subgroup (if exists) of P is pi-supplemented in G, then G is
p-nilpotent.
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Proor. Suppose that the assertion is false and let G be a counterexample of
minimal order. Clearly, p"*!||G| by Lemma 2.3. We proceed via the following
steps.

(D Zpu(G) = L.

Proor. Suppose that Z,(G) # 1. Let N be a minimal normal subgroup of
G contained in Z,y(G). Clearly, either N is a p’-group or |[N| = p. By Lem-
mas 2.2(2) and (3), we see that G/N satisfies the hypothesis of the proposition.
Hence, G/N is p-nilpotent by the choice of G. If N is a p’-group, then G is
p-nilpotent, a contradiction. Thus |[N| = p. As (|G|, p — 1) = 1, we have that
N < Z(G), and so G is p-nilpotent, a contradiction too. Thus (1) holds. A

) If 0,(G) # 1, then Oy(G) is a minimal normal subgroup of G and
G = 0,(G) x M, where M is a p-nilpotent maximal subgroup of G.

Proor. Let N be a minimal normal subgroup of G contained in O,(G). Then
N is abelian. Similarly as in the proof of (1), we can show that G/ N is p-nilpotent.
Since the class of finite p-nilpotent groups is a saturated formation, N is the unique
minimal normal subgroup of G contained in O,(G) and N £ ®(G). It follows that
G = N x M for some maximal subgroup M of G. Thus M = G/N is p-nilpotent.
Clearly, 0,(G) " M < G. By the uniqueness of N, we have O,(G) N M = 1,
and so O,(G) = N(Op(G) N M) = N. Thus O,(G) = N is a minimal normal
subgroup of G. A

(3) The final contradiction.

Proor. Let P, be any n-maximal subgroup of P. Then (P,)g = 1 or O,(G)
by (2). If (Pn)¢ = 0,(G),then G = O,(G)M = P, M. Now assume that
(Py)e = 1. Since P, is pi-supplemented in G, G has a subgroup T such that
G = P,T and P, N T = 1by (1). Hence T is p-nilpotent by Lemma 2.3. This
shows that every n-maximal subgroup of P has a p-nilpotent supplement in G.
Consequently, G is p-nilpotent by Lemma 2.4. A

The final contradiction completes the proof. |

THEOREM 3.2. Let p be a prime divisor of |G| such that

(IGL.(p=D(P*=D...p" =) =1,

for some integer n > 1. Then G is p-nilpotent if and only if G has a normal
subgroup H such that G/H is p-nilpotent, and for any Sylow p-subgroup P of H,
every n-maximal subgroup (if exists) of P is p\-supplemented in G.
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Proor. The necessity is evident. We only need to prove the sufficiency.
By Lemma 2.2(4), every n-maximal subgroup of P is pil-supplemented in H.
Hence H is p-nilpotent by Proposition 3.1. Let H, be the normal Hall p’-subgroup
of H. Then obviously, H, < G. By Lemma 2.2(3), (G/H,/. H/H,) satisfies the
hypothesis of the theorem. If H,» # 1, then by induction, G/H, is p-nilpotent,
and so G is p-nilpotent.

Hence we may assume that H = P.Let K/ P be the normal Hall p’-subgroup
of G/P.By Lemma 2.2(4), every n-maximal subgroup of P is pi-supplemented
in K. Hence K is p-nilpotent by Proposition 3.1, and so K = P x K/, where K,/
is a Hall p’-subgroup of K. This implies that K,/ is a normal Hall p’-subgroup
of G. Therefore, G is p-nilpotent. O

THeEOREM 3.3. Let p be a prime divisor of |G|. Then G is p-nilpotent if and
only if there exists a normal subgroup H of G such that G/H is p-nilpotent, and
for any Sylow p-subgroup P of H, one of the following holds:

(D) (G|, (p=D(p?>=1)...(p" = 1)) = 1 for some integern > 1, p" > 2 and
every subgroup L of P of order p" is pi-supplemented in G;

(2) p =2, Pisabelian and every subgroup L of P of order 2 is 281-supplemented
in G;

(3) p =2, P isnon-abelian and every cyclic subgroup L of P of order?2 or 4 is
281-supplemented in G.

Proor. The necessity is obvious. We only need to prove the sufficiency. Sup-
pose that this is false and let (G, H) be a counterexample for which |G| is minimal.
We proceed via the following steps.

(D |P| = p"th.
Proor. It follows from Lemma 2.3. A

(2) G = P x Q, where P is a normal Sylow p-subgroup of G and Q a cyclic
Sylow q-subgroup of G (p # q), P/®(P) is a chief factor of G, and the exponent
of P is p or 4 (when P is a non-abelian 2-subgroup).

Proor. Let M be any maximal subgroup of G. Then by Lemma 2.2(4),
(M, M N H) satisfies the hypothesis of the theorem. The choice of (G, H) im-
plies that M is p-nilpotent, and so G is a minimal non- p-nilpotent group. Hence,
by [13, IV, Satz 5.4] and [18, Theorem 1.1], G = G, x O, where G, = G™ is the
normal Sylow p-subgroup of G and Q a cyclic Sylow g-subgroup of G (¢ # p),
G,/ P(Gp) is a chief factor of G, and the exponent of G, is p or 4(when G, is
a non-abelian 2-subgroup). Note that G < H. Therefore, G, = P and (2)
holds. A



On 7 F-supplemented subgroups 181

(3) P has a proper subgroup L of order p" or 4 (when P is a non-abelian
2-subgroup) such that L £ ®(P) and L is pil-supplemented in G.

Proor. Take an element x € P \ ®(P) and let E = (x). Then |E| = por4
(when p = 2 and P is non-abelian) by (2). It follows that there exists a subgroup
L of P of order p” or 4 (when p = 2, n = 1 and P is nonablian, we may
take L = FE) such that E < L. By the hypothesis, L is pi-supplemented in G.
Moreover, if L = P, then |P| = 4 since |P| > p"*! by (1). This implies that P
is abelian, a contradiction. Thus L < P. A

(4) The final contradiction.

Proor. By (3), there exists a subgroup 7 of G such that G = LT and
(LN T)Lg/Lec = Zpu(G/Lg). Since P/®(P) is a chief factor of G by
2), (P NT)P(P)/D(P) Q G/P(P), and so (P N T)P(P) = O(P) or P.
P NT)P(P) = &(P),then PNT < ®(P), and thereby P = PN LT =
L(PNT) < L®(P) # P unless L = P, a contradiction. We may, there-
fore, assume that (P N T)®(P) = P. Thenwe get P < T,andso T = G.
Thus L/Lg < Z,y(G/Lg). Since P/®(P) is a chief factor of G by (2),
®(P)Lg = ®(P)or P. If &(P)Lg = P, then L = P, which contra-
dicts (3). Therefore, ®(P)Lg = ®(P), and so Lg < P(P). If P/P(P) <
Zpu(G/®(P)), then |P/P(P)| = p,and so P = LP(P) = L, a contradic-
tion. Thus Z,(G/®(P)) N (P/P(P)) = 1 by (2). It follows from Lemma 2.1(2)
that L&(P)/P(P) =< Zpu(G/P(P)) N (P/P(P)) = 1. This implies that
L < ®(P). A

The final contradiction completes the proof. |

4. Characterizations of supersolvable groups

In order to prove Theorem 4.2, we first establish the following proposition.

ProrosiTionN 4.1. Forany p € n(G), if every maximal subgroup of every non-
cyclic Sylow p-subgroup P of G is p\-supplemented in G, then G is a Sylow
tower group of supersolvable type.

Proor. Let p be the smallest prime dividing |G| and P a Sylow p-subgroup
of G. If P is cyclic, then G is p-nilpotent (see [17, (10.1.9)]). Otherwise, G is
p-nilpotent by Proposition 3.1. Let V be the normal Hall p’-subgroup of G. Hence
by Lemma 2.2(4), V satisfies the hypothesis of the proposition. Therefore, by
induction, we obtain that G is a Sylow tower group of supersolvable type. O
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THeEOREM 4.2. G is supersolvable if and only if G has a normal subgroup H
such that G/ H is supersolvable, and every maximal subgroup of every non-cyclic
Sylow p-subgroup of H is pi-supplemented in G, for any prime p € w(H).

Proor. The necessity is obvious. We only need to prove the sufficiency.
Suppose that the result is false and let (G, H) be a counterexample for which |G|
is minimal.

(1) Let g be the largest prime divisor of |H | and Q a Sylow q-subgroup of H.
Then Q <G.

Proor. By Lemma 2.2(4) and Proposition 4.1, H is a Sylow tower group of
supersolvable type. This implies that 0 < G. A

(2) Q is a non-cyclic minimal normal subgroup of G.

Proor. Let N be a minimal normal subgroup of G contained in Q, then N
is an elementary abelian group. By Lemmas 2.2(2) and (3), the hypothesis of the
theorem holds for (G/N, H/N). The choice of G implies that G/N € 4l. Since Llis
a saturated formation, N is the unique minimal normal subgroup of G contained
in Q and N £ ®(G). It follows that G has a maximal subgroup M such that
G = N x M. Itis easy to see that 0 N M < G, and so Q N M = 1. Therefore,
0 = N(Q N M) = N is a minimal normal subgroup of G. If Q is cyclic, then
G € {1 by Lemma 2.5, which is impossible. Thus Q is non-cyclic. A

(3) The final contradiction.

Proor. Let Q; be a maximal subgroup of Q. Then (Q1); = 1 by (2).
By the hypothesis, there exists a subgroup 7" of G such that G = Q7T and
O01NT < Zyu(G). Notethat ONT I G.By (2, 0NT = 1lor Q. If
ONT =1,then Q = 01(Q NT) = Q1, acontradiction. Hence we may assume
that ONT = Q. ThenT = G, andso Q1 < Z,4(G) N Q. Since Q is a minimal
normal subgroup of G, Z;4(G) N Q = 1 or Q. It follows that either Q1 = 1 or
0 < Z44(G). In both cases, we have that Q is cyclic. A

The final contradiction completes the proof. O

The next proposition is useful in the proof of Theorem 4.4.

Prorosition 4.3. G is supersolvable if and only if there exists a solvable
normal subgroup H of G such that G/H is supersolvable, and every maximal
subgroup of every non-cyclic Sylow p-subgroup of F(H) is ps\l-supplemented in
G, forany p € n(F(H)).
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Proor. The necessity is clear. We only need to prove the sufficiency. Suppose
that this is false and let (G, H) be a counterexample for which |G| is minimal.

(1) ®(G) N F(H) = 1.

Proor. Assume that ®(G)N F(H) # 1, and let P; be a Sylow p-subgroup of
®(G)N F(H) for some prime p € 7(P(G) N F(H)). Then clearly, P; < G. Note
that F(H/Py) = F(H)/P; by [6, Chapter A, Theorem 9.3(c)]. It is easy to see
that (G/ Py, H/ Py) satisfies the hypothesis of the proposition by Lemmas 2.2(2)
and (3). Thus, the choice of (G, H) implies that G/P; € 4, and so G € 4,
a contradiction. Thus (1) holds. A

2)F(H) = Ny x Ny X --- X Ny, where t > 1 is an integer, and N;
(i =1,2,...,t) is a minimal normal subgroup of G of prime order.

Proor. Since H # 1 is solvable, F(H) # 1. By (1) and [13, Chapter III,
Theorem 4.5], F(H) = Ny X N X -+ X Ny, where N; (i = 1,2,...,t)is a
minimal normal subgroup of G. Without loss of generality, we may assume that
P = Ny X Nyx---x Ng (s <t)isaSylow p-subgroup of F(H). We claim
that [N;| = p forany i = 1,2,...,s. Otherwise, without loss of generality,
we may assume that [N;| > p. Then P is non-cyclic. Let N;" be a maximal
subgroup of Ny and P* = NN, ... N;. Then P* is a maximal subgroup of P and
(P*)G = N, ... Ns. By the hypothesis and Lemma 2.2(1), there exists a subgroup
T of G suchthat G = P*T, (P*)g < T and (P*/(P*)g) N (T/(P*)g) <
Zpu(G/(P*)g).Since PNT < G and P/(P*)g is achief factorof G, PNT =
(P*)gor P.If PNT = (P*)g,then PNT < P*,andso P = P*(PNT) = P*,
a contradiction. Hence we may assume that P N7 = P. Then T = G. This
implies that P*/(P*)g < Z,u(G/(P*)g) N (P/(P*)g). Since P*/(P*)g # 1,
P/(P*)g < Zp(G/(P*)g), and so |N;| = p. This contradiction shows that (2)
holds. A

(3) The final contradiction.
Proor. By (2), G/Cg(N;) is a cyclic group for any 1 < i < ¢. Hence
G/Cg(F(H)) = G/(ﬂf~=1 Cg(N;)) € U Consequently, G/ F(H) € 4. It follows

from Theorem 4.2 that G € 4l. A

The final contradiction completes the proof. O
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THeEOREM 4.4. G is supersolvable if and only if there exists a normal subgroup
H of G such that G/H is supersolvable, and every maximal subgroup of every
non-cyclic Sylow p-subgroup of F*(H) is pi-supplemented in G, for any prime
p en(F*(H)).

Proor. The necessity is clear. We only need to prove the sufficiency. Suppose
that the result is false and let (G, H) be a counterexample for which |G| is minimal.

() H = G and F*(G) = F(G) # 1.

Proor. By Lemma 2.2(4) and Theorem 4.2, F*(H) € $l. Hence by Lem-
mas 2.6(2) and (3), F*(H) = F(H) # 1. Obviously, (H, H) satisfies the hypoth-
esis of the theorem by Lemma 2.2(4). If H < G, then the choice of (G, H) implies
that H € . Hence G € 4l by Proposition 4.3, a contradiction. Thus H = G. A

(2) Each proper normal subgroup of G containing F(G) is supersolvable.

Proor. Let F(G) < N < G with N < G. Then by Lemmas 2.6(1) and
3), F*(G) = F*(F*(G)) < F*(N) < F*(G), and so F*(G) = F*(N). By
Lemma 2.2(4), (N, N) satisfies the hypothesis of the theorem. Therefore, N € &l
by the choice of (G, H). A

(3) F(G) is elementary abelian and Cg (F(G)) = F(G).

Proor. Assume ®(0,(G)) # 1 for some p € n(F(G)). By Lemma 2.6(6),
F*(G/®(0,(G))) = F*(G)/®(0p(G)). Then (G/®(0y(G)). G/P(0,(G)))
satisfies the hypothesis of the theorem by Lemmas 2.2(2) and (3). The choice of
(G, H) implies that G/ ®(0,(G)) € 4, and so G € 4, a contradiction. Therefore,
®(0,(G)) = 1 for any p € n(F(G)), and thereby F(G) is elementary abelian.
By Lemma 2.6(5), we obtain that Cg (F(G)) = F(G). A

(4) There exists no normal subgroup of G of prime order contained in F(G).

Proor. Suppose that G has a normal subgroup L contained in F(G) such that
|L| = p. Then clearly, G/Cg (L) is cyclic and F(G) < Cg(L). If Cg(L) < G,
then Cg(L) € U by (2). It follows that G is solvable, and so G € 4 by Proposi-
tion 4.3, a contradiction. Hence Cg (L) = G, and consequently L < Z(G). Then
by Lemma 2.6(7), F*(G/L) = F*(G)/L. It follows from Lemmas 2.2(2) and (3)
that (G/L, G/L) satisfies the hypothesis of the theorem. Therefore, G/L € i
by the choice of (G, H). Thus G € { by Lemma 2.5, a contradiction. Thus (4)
holds. A
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(5) Let P be a nontrivial Sylow p-subgroup of F(G). Then P is non-cyclic and
PN®G) # 1.

Proor. If P is cyclic, then by (3), P is elementary abelian, and so |P| = p,
which contradicts (4). Hence P is non-cyclic. Suppose that P N ®(G) = 1. Then
by [13, Chapter III, Theorem 4.5], P = Ry X Ry X ---x Ry, where Ry, ..., R; are
minimal normal subgroups of G. By discussing similarly as step (2) in Proposi-
tion 4.3, we have that |R;| = p foranyi = 1,2, ...,¢, contrary to (4). Therefore,
PNdG) #1. A

(6) There exists a unique normal subgroup L of G contained in P.

Proor. In view of (5), let L be a minimal normal subgroup of G contained
in PN®(G)and E/L = E(G/L), where E(G/L) is the layer of G/L. Then by
Lemma 2.6(4), F*(G/L) = F(G)E/L and [F(G), E] < L. Let N be a minimal
normal subgroup of G containedin P suchthat N # L.Then[N, E] < NNL =1,
andso E < Cg(N).If Cg(N) < G, then E < Cg(N) € U by (2). Consequently,
F*(G/L) = F(G)/L.Hence (G/L, G/L) satisfies the hypothesis of the theorem
by Lemmas 2.2(2) and (3). The choice of (G, H) implies G/L € Sl This yields
that G € 4, which is impossible. Hence Cg(N) = G, contrary to (4). Thus L is
the unique normal subgroup of G contained in P. A

(7) The final contradiction.

Proor. By (3), P is elementary abelian. Let S be a complement of L in P, L*
be a maximal subgroup of L and P* = L*S. Then P* is a maximal subgroup of
P, andclearly (P*)g = 1 by (6). By the hypothesis, P* is pil-supplementedin G.
Then there exists a subgroup 7" of G suchthat G = P*T and P*NT < Z,y(G).
If P*NT # 1,then L < Z,4(G) by (6). Therefore, |L| = p. This contradiction
showsthat P*NT = 1,andso |[PNT| < p.If PNT = 1,then P = P*, which
is impossible. Thus PN T # 1.Since PNT < G, L < PN T by (6). This yields
that |L| = p, which contradicts (4). A

The proof is thus completed. O

THeEOREM 4.5. G is supersolvable if and only if there exists a normal subgroup
H of G such that G/H is supersolvable, and every cyclic subgroup of H of order
p or order 4 (if H has a non-abelian Sylow 2-subgroup) is pi\-supplemented in
G, for any prime p € w(H).
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Proor. We only need to prove the sufficiency. Suppose that this is false and
let (G, H) be a counterexample with |G| + | H| is minimal.

(1) H = G* is a p-group for some prime p, H/®(H) is a chief factor of G,
and the exponent of H is p or 4 (when H is a non-abelian 2-subgroup).

Proor. Obviously, GY < H.If GY < H,then (G, GY) satisfies the hypothesis
of the theorem, and so G € &l by the choice of (G, H), a contradiction. Thus
H = G*. Now let M be any maximal subgroup of G. Then it is easy to check
that the hypothesis of the theorem holds for (M, M N H) by Lemma 2.2(4). Hence
M < 3L by the choice of (G, H). This shows that G is a minimal non-supersolvable
group. Consequently, G is solvable by [17, (10.3.4)]. Now by [18, Theorem 1.1], H
is a p-group for some prime p, H/®(H) is a chief factor of G, and the exponent
of H is p or 4 (when H is a non-abelian 2-subgroup). A

(2) |H/®(H)| = p.

Proor. If not, then we may take a subgroup X/®(H) of H/®(H) of
order p and an element x € X \ ®(H). Then L = (x) is a cyclic group of
order p or 4 (when H is a non-abelian 2-subgroup) by (1), and L®(H) = X.
If L 9 G,then X < G,and so H = X by (1). It follows that H/®(H)
is cyclic. Thus |H/®(H)| = p, a contradiction. Hence L # G, and so
Lg < ®(H). By the hypothesis, there exists a subgroup 7" such that G = LT
and (LN T)Lg/Lg < Zpy(G/Lg). By Lemma 2.12), (LN T)®(H)/P(H) <
Zpyy(G/P(H)) N (H/P(H)). If H/®(H) < Zpu(G/P(H)), then one has
|H/®(H)| = p, a contradiction. Thus Z,y(G/®(H)) N (H/P(H)) = 1, and
thereby L N T < ®(H). This implies that T < G. Since (H N T)®(H) < G,
(HNT)P(H) = Hor ®(H) by (). f (HNT)P(H) = H,then H < T,
and so T = G, a contradiction. Therefore, H N T < ®(H). It follows that
H = L(H NT)= L, also acontradiction. Thus |H/®(H)| = p. A

(3) The final contradiction.
Proor. In view of (2), G/®(H) € U by Lemma 2.5, and thus G € 4. A

The final contradiction ends the proof. O
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5. Some Applications

Recall that a subgroup H of G is said to be §-supplemented [8] in G, if there
exists a subgroup 7 of G suchthat G = HT and (H NT)Hg/Hg < Zz(G/Hg).
Moreover, many authors introduced various concepts, such as, c-normal subgroup
(see [20]), c-supplemented subgroup (see [3]), il.-normal subgroup (see [1]),
§-z-supplemented subgroup (see [10]).

It is easy to see that, all these subgroups, whether they are c-normal, c-sup-
plemented, (.-normal, {-supplemented or (-z-supplemented, are all 7w 4{-supple-
mented subgroups for some set of primes 7. However, a wil-supplemented sub-
group is not necessarily a i(-supplemented subgroup as the following example
illustrates.

ExampLE 5.1. Let G = A4 and H = {1, (12)(34)} be a subgroup of G of
order 2. Clearly, Hg = 1. It is easy to check that Z¢(G) = 1 and Z34(G) = G.
Now we show that the subgroup H is 3i-supplemented, but not {I-supplemented
in G. In fact, if H is Y-supplemented in G, then there exists a subgroup T of G
suchthat G = HT and H N T < Zy(G) = 1. Therefore, |T| = 6. But A4 has no
subgroup of order 6, a contradiction. Clearly, H is 34-supplemented in G.

In the literature, one can find a large number of special cases of our theorems.
We now list only a small part of them.

CoroLLARY 5.2 ([12, Theorem 3.4]). Let p be the smallest prime dividing |G|
and P a Sylow p-subgroup of G. If every maximal subgroup of P is c-supple-
mented in G, then G is p-nilpotent.

CoroLLARY 5.3 ([10, Theorem 3.2]). Let P be a Sylow p-subgroup of G, where
p is a prime divisor of G with (|G|, p — 1) = 1. If every maximal subgroup of P is
MNP -z-supplemented in G, where NP denotes the class of all p-nilpotent groups,
then G is p-nilpotent.

CoroLLARY 5.4 ([2, Lemma 3.1]). Let p be the smallest prime dividing |G|
and let P be a Sylow p-subgroup of G. If all subgroups of P of order p or order 4
are c-normal in G, then G is p-nilpotent.

CoroLLARY 5.5 ([15, Theorem 3.3]). Let N be a normal subgroup of G such
that G/ N is supersolvable, and Py is c-normal in G for every Sylow subgroup P
of N and every maximal subgroup P1 of P. Then G is supersolvable.
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CoroLLARY 5.6 ([16, Theorem 2]). Let G be a solvable group. If H is a normal
subgroup of G such that G/H is supersolvable and all maximal subgroups of any
Sylow subgroup of F(H) are c-normal in G, then G is supersolvable.

CoroLLARY 5.7 ([8, Corollary 3.1.1]). G is supersolvable if and only if every
maximal subgroup of every non-cyclic Sylow subgroup of G is {-supplemented
in G.

CoroLLaRY 5.8 ([10, Theorem 3.3]). G is supersolvable if and only if there
exists a normal subgroup N such that G/ N is supersolvable and every maximal
subgroup of every Sylow subgroup of N is \I-z-supplemented in G.

CoROLLARY 5.9 ([3, Theorem 4.1]). Let K be the supersolvable residual G
of G. Suppose that every cyclic subgroup of K of prime order or order 4 is
c-supplemented in G. Then G is supersolvable.

CoroLLARyY 5.10 ([1, Corollary 1.5]). G is supersolvable if and only if all cyclic
subgroups of G with prime order or order 4 are 31.-normal in G.
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