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Abstract – In the present note we give a new proof of a result due to Wiseman and

Wilson [13] which establishes an analogue of the Sylvester–Gallai theorem valid for

curves of degree two. The main ingredients of the proof come from algebraic geometry.

Speci�cally, we use Cremona transformation of the projective plane and Hirzebruch

inequality (1).
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1. Introduction

Con�gurations of lines and points are a classical subject of study and a source

of interesting results in combinatorics, geometry and algebra. One of the most

celebrated results in this area is the Sylvester–Gallai Theorem.

Theorem 1.1 (Sylvester–Gallai Theorem). Let P D ¹P1; : : : ; Psº be a �nite
number of points in the real projective plane. Then

a) either all points are collinear

b) or there exists a line passing through exactly two points in the set P1; : : : ; Ps.

Remark 1.2. The above result is of course also valid in the a�ne (euclidean)

real plane. We have chosen the projective setting since it allows a particularly

transparent proof of Theorem 1.4.

A line as in part b) of the above Theorem is called an ordinary line for the

set P. It is natural to wonder about the minimal number of ordinary lines in the

dependence on the number of points s. Melchior [10] showed that there are at least

3 such lines. It has been generalized to 3
7
s by Kelly and Moser, [9, Theorem 3.6]

and further improved by Csima and Sawyer [4, Theorem 2.15].

Theorem 1.3 (Kelly and Moser, Csima and Sawyer). For a set of s non-
collinear points in the real projective plane there are at least

3

7
s ordinary lines.

Moreover, if s ¤ 7, then the number of ordinary lines is at least 6
13

s.
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It has been conjectured by many authors that apart of the two cases constructed

by Kelly and Moser, and Csima and Sawyer, the number of ordinary lines is

bounded from below by 1
2
s. Recently, in a ground breaking paper [6], Green and

Tao proved that this is indeed the case for large values of s.

There is a number of variations and generalizations of the Sylvester–Gallai

Theorem, see e.g. [3], [2], [7]. In most generalizations only linear objects are

considered. This is in contrast with the following remarkable result proved in [13]

by Wiseman and Wilson.

Theorem 1.4 (a Sylvester Theorem for conic sections). Let P D ¹P1; : : : ; Psº

be a �nite number of points in the real projective plane. Then

a) either all points lie on a conic

b) or there exists a conic C passing through exactly �ve of the points in the set
P determined by these 5 points (i.e. C is the unique conic passing through
these 5 points).

Remark 1.5. A conic as in part b) of the above Theorem is called an ordinary
conic for the set P. It is irrelevant whether this conic is singular or not. In fact

it might happen that all ordinary conics for P are singular, see Example 4.1. The

other extreme of all smooth ordinary conics is also possible, see Example 4.2.

The proof of this result presented in [13] is quite involved. The purpose of

the present note is twofold. First, we provide a simpler and more streamlined

proof of Theorem 1.4. Second, it seems that the result of Wiseman and Wilson

has not attracted as much attention as it deserves, we want to change this state of

matters. In fact we �nd the result quite appealing and opening an unexplored path

of research, with high potential for substantial results. This �ts well the philosophy

presented in the recent survey by Tao [12], to the e�ect that there are more hidden

connections between various aspects of combinatorics and algebraic geometry.

In section 4 we discuss some of natural further generalizations and pose some

questions which hopefully will sparkle more interest and research in this direction.

2. Tools from algebraic geometry

The main tools we use in the proof of Theorem 1.4 are the Cremona transformation

and Hirzebruch inequality (1). In this section we recall brie�y these useful notions.
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We begin by the presentation of some basic properties of Cremona transforma-

tions. This part is valid over an arbitrary ground �eld. Let F; G; H be non-collinear

points in the projective plane P
2. Let h be the linear form de�ning the line deter-

mined by the points F and G and similarly: g by F; H and f by G and H . (By a

slight abuse of notation we denote the lines by the same letters as their equations.)

Then

P
2 3 .x W y W z/

'
7�! .g.x; y; z/ � h.x; y; z/ W f .x; y; z/ � h.x; y; z/ W f .x; y; z/ � g.x; y; z// 2 P

2

is a birational automorphism of P2 (i.e. it is a 1 W 1 map up to a codimension 1

subvariety). It is the Cremona transformation based at the points F; G and H .

After a projective change of coordinates, one may assume that the points F , G

and H are the fundamental points (i.e. .1 W 0 W 0/, .0 W 1 W 0/ and .0 W 0 W 1/). Then

the mapping ' has a simple form

'WP2 3 .x W y W z/ 7�! .yz W xz W xy/ 2 P
2:

The planes before and after Cremona are schematically depicted in Figure 1 below.

F

fg

h G

H
RFH RGH

RF G

Figure 1. Cremona transformation

The next Proposition collects basic properties of the Cremona map, which are

relevant in the sequel. We refer to Dolgachev’s masterpiece [5] for proofs and

background. By a slight abuse of the notation the line de�ned by f is denoted by

f and similarly for g and h.
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Proposition 2.1. a) The Cremona map contracts the lines f; g; h to points
RGH , RFH , RF G respectively and it is 1 W 1 away of them.

b) The inverse mapping (in the category of birational maps) is also a Cremona
transformation based at points RF G D '.h/, RFH D '.g/ and RGH D '.f /.

c) Let D be an irreducible curve, di�erent from the three contracted lines, of
degree d with multiplicities m1 at F , m2 at G and m3 at H . Then its image '.D/

is an irreducible curve of degree 2d �m1�m2�m3 with multiplicities d �m2�m3

at RGH , d � m1 � m3 at RF G and d � m1 � m2 at RF G .

Now we pass to an inequality proved by Hirzebruch in the complex setting, see

[8, Section 3 and p. 140]. The inequality itself is based on a very deep result due to

Miyaoka, Yau, and Bogomolov, [11]. Of course it remains valid for a con�guration

of real lines. Let L be an arrangement of d lines. For k � 2, let tk.L/ denote the

number of points where exactly k lines from L meet.

Theorem 2.2 (Hirzebruch inequality). Let L be an arrangement of d lines in
the complex (or real) projective plane P

2. Then

(1) t2.L/ C t3.L/ � d C
X

k�5

.k � 4/tk.L/;

provided td D td�1 D 0.

In fact we will need the dual version of this inequality. To this end given a set

of s points in the projective plane let ti .P/ denote the number of lines determined

by this set (i.e. by pairs of points in the set), which pass through exactly i points.

Theorem 2.3 (Dual Hirzebruch inequality). Let P be a set of s distinct points.
Assume that not all points are collinear and also not all but one point are collinear,
then

(2) t2.P/ C t3.P/ � s C
X

k�5

.k � 4/tk.P/;

There is a similar inequality

(3) t2.P/ � 3 C
X

k�4

.k � 3/tk.P/ for P � P
2.R/;

which was established by Melchior [10] using Euler formula applied to the parti-

tion of the real projective plane given by the arrangement of lines. In the argument

given in the next section one could work with this inequality instead of (2). How-

ever, in the view of Problem 4.4 we prefer to work with a more general tool.
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3. Proof of Theorem 1.4

We begin by the following very useful observation.

Lemma 3.1 (main cases). Let P D ¹P1; : : : ; Psº be a �nite set of points in the
real projective plane P

2.R/. Then one of the following holds:

a) all points in P are collinear (i.e. ts.P/ D 1), or

b) there is a line which contains exactly 3 points from the set P (i.e. t3.P/ � 1),
or

c) there is a pair of ordinary lines intersecting in a point from P.

Proof. If a) holds, then we are done. So suppose that the points in P are not

collinear. If c) holds, then we are done again. So we are left with the situation

when any two ordinary lines are disjoint (note that such con�gurations of points

exist, see [2, Figure 7]). However then the number of ordinary lines is at most
�

s
2

˘

.

Inequality (2) implies then t3.P/ � 1. �

Our proof of Theorem 1.4 splits into three cases distinguished in Lemma 3.1.

If the set P consists of collinear points, then they are also contained in a conic and

we are done. The next Lemma shows that the Theorem holds also in case b) of

Lemma 3.1.

Lemma 3.2 (triple line). LetP be a �nite set in the real projective plane P2.R/.
If there is a line L containing exactly 3 points from P, then Theorem 1.4 holds.

Proof. LetP0 D PnL. If the setP0 is contained in a line M , thenP is contained

in the union L [ M , hence in a conic. Otherwise, there exists an ordinary line M

for P0. In that case, we take also C D L[M . There are exactly 5 points from P on

C and C is uniquely determined by these points, since neither L, nor M contains

4 points from P. Note that it is irrelevant if the intersection point L \ M belongs

to P or not. �

The rest of the proof deals with case c) of Lemma 3.1. The key idea here is to

reduce the statement to Sylvester–Gallai theorem for lines applying the Cremona

transformation based at the three points from P on the intersecting ordinary lines.

The argument splits into several cases.

Let F G and FH be ordinary lines for P (intersecting in the point F ). If their

union contains the whole set P, then we are done. So we assume that this is not

the case. We denote by P
00 all points in P contained in the union of the three

lines determined by the points F; G and H . In particular we have F; G; H 2 P
00.
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We call the residual set P0, i.e. P0 D P n P
00. If P0 is empty, then P is contained

in the union of the line GH and any line through the point F , hence in a conic.

So we assume that the set P0 is non-empty.

Let ' be the Cremona transformation based on the points F; G and H and let

R D '.P0/. In particular R is non-empty.

Case 1. We assume that all points in R are collinear, contained in a line L. If

the line L is not uniquely determined, i.e. if there is just one point in R, then we

take L as in Subcase 1.b.

Subcase 1.a. The line L omits the points RF G ; RFH and RGH (so in partic-

ular there are at least two points in R). Then by Proposition 2.1 c) the preimage of

L under ' is a smooth conic D passing through the points F; G and H . The set P

is contained in the union of the four curves (3 lines and the conic D) indicated in

the picture below.

F G

H

S

T

U

D

RFH RGH

RF G

'.S/

'.T /

L D '.D/

Figure 2. Subcase 1.a

If the line GH is also an ordinary line for P, then all points in P are on the

conic D and we are done. Otherwise, there is a point U 2 P on the line GH as in

the Figure 2.

There are at least two points S; T in P
0. These points lie then on D. If the points

S; T; U are not collinear, then there is a single conic C determined by the points

S; T; U; F and G and these are the only points in P on C . So we are done.

Note that C is the union of lines if points S; T; U are collinear and it is smooth

otherwise.
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Subcase 1.b. The line L goes through one of the points RF G ; RFH or RGH .

Note that L cannot pass through any pair of these points, because the lines

joining RF G ; RFH and RGH are not contained in the image of the Cremona

transformation '.

We assume �rst that L goes through RGH . Then by Proposition 2.1 c) the

preimage D of L is a line passing through the point F as indicated in the Figure

below.

F G

H

D

RFH RGH

RF G

L D '.D/

Figure 3. Subcase 1.b

In this situation P is contained in the union of the line D and the line GH .

Subcase 1.c. Now suppose that L goes through the point RF G (the case RFH

is analogous). Then its preimage is a line D passing through H . If GH is an

ordinary line for P, then P is contained in the union of D and the line F G. If GH

contains exactly 3 points from P, then we are done by Lemma 3.2. In the remaining

case GH contains at least two points U; V from P distinct from the points G and

H . Also on D there are at least two points S; T from P distinct from the point H .

Then the conic C through F; U; V; S and T has these 5 points in common with P

and it is determined by these points.

Case 2. We assume now that not all points in R are collinear. Hence there

exists an ordinary line L for R. Let '.S/ and '.T / be the points in R determin-

ing L.
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F G

H

S

T

U

V

D

RFH RGH

RF G

L D '.D/

'.S/

'.T /

Figure 4. Subcase 1.c

Subcase 2.a. We assume that L does not pass through any of the points

RF G ; RFH and RGH . This is the easiest case, since then Proposition 2.1 c) implies

that the preimage of L under ' is an irreducible conic C passing through points

S; T; F; G and H and there are no more points from P on C .

Subcase 2.b. Now we assume that L goes through the point RF G (the case

when L goes through RFH is analogous). Then its preimage D is a line passing

through the point H . There are exactly 3 points from P on D, namely: S; T and

H . Note that the intersection point of D with the line F G does not belong to P

(since F G is an ordinary line). Thus we are done by Lemma 3.2.

F G

H

S

T

D

RFH RGH

RF G

L D '.D/

'.S/

'.T /

Figure 5. Subcase 2.b
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Subcase 2.c. Thus we are left with the situation that all ordinary lines for

R go through the point RGH . Note that this point is not contained in the set R.

Let t be the number of points in R. Then by Theorem 1.3 there are at least 3
7
t

ordinary lines for R. Each of these lines contains 2 points from R, so that there

are altogether at least 6
7
t points from R on the union of these lines. Call this set

W. Now, we consider the set R0 D R [ ¹RGH º. All ordinary lines for R0 must be

of the form: a line joining RGH with a point in R n W. This implies that there are

at most 1
7
t such lines, which contradicts Theorem 1.3 for the set R0 consisting of

t C 1 points. Hence this subcase is not possible and the whole proof is �nished.

4. Examples and further questions

We begin with an example of a set of points P such that every ordinary conic for

P is singular. This shows that one cannot hope for Theorem 1.4 to hold assuming

C smooth.

Example 4.1 (only singular ordinary conics). Let C be a smooth conic and

let S be a point not on C . Let L1; L2; L3 be three mutually distinct lines through

S intersecting C in pairs of points P1; P2, Q1; Q2 and R1; R2 as indicated in the

�gure below.

C

S

P2

Q2

R2

P1
Q1 R1

Figure 6

Then all ordinary conics for P D ¹S; P1; P2; Q1; Q2; R1; R2º split into a pair

of lines through S . Indeed, an ordinary conic C must pass through the point S

and, since it contains altogether 5 points from P, it must also pass through at least

one pair of points on a line L through S . But then C and L have at least 3 points

in common. By Bezout’s Theorem, L must be then a component of C , hence C is

a singular conic.
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On the other hand it might easily happen that all ordinary conics for some set

of points are smooth.

Example 4.2 (only smooth ordinary conics). LetP be a set of points in general
position in the plane. Then there is an ordinary conic through any 5 points from P

and all these conics are smooth (this is more or less the de�nition of the ”general

position”).

The Sylvester–Gallai Theorem fails in the �nite characteristic. This is also the

case for Theorem 1.4. The simplest counterexample is the following.

Example 4.3 (failure of the theorem in �nite characteristic). Let F denote the

�eld with 5 elements. Then P
2.F/ consists of 31 points. We consider the set P

consisting of all points in P
2.F/. Then any conic C containing 5 points from P

must contain at least one more point. Indeed, if C is non-singular (and has � 5

points in P
2.F/), then it consists of exactly 6 points. If it is singular, then it splits

into two lines, each of them through 6 points, so that there are altogether 11 points

from P on C .

The Sylvester–Gallai Theorem 1.1 fails also over complex numbers. The sim-

plest example is provided by the Hesse con�guration, see [1] for details.

We have expected that there exists also a complex counterexample to Theo-

rem 1.4. However there are strong indications that this might not be the case. Of

course, our proof of Theorem 1.4 presented here, relies strongly on Theorem 1.1,

so that it cannot be used in the complex case. It would be very interesting to know

an answer to the following question.

Problem 4.4. Decide if Theorem 1.4 is valid or not for points in the complex

projective plane.

Once the problem is settled for curves of degree 1 and 2, it is natural to wonder

what the situation is for curves of higher degree. Thus we repeat here the question

which concludes article [13].

Problem 4.5 (curves of higher degree). Let P be a �nite set of points in the

projective plane and let d be a positive integer. Does then one of the following

hold:

a) either P is contained in a curve of degree d

b) or there exists a curve C passing through exactly .dC1/.dC2/
2

� 1 points in P

and determined by these points?
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This is not completely obvious if Problem 4.5 is the right generalization of

Theorems 1.1 and 1.4. For example, for d D 3 one might wonder instead if either

P is contained in a single cubic curve singular in a point from P or there exists

such a curve determined by P.

Remark 4.6 (importance of the determined condition). Note that any line

is determined by 2 distinct points, so that it is not necessary to emphasize this

condition in case b) of Theorem 1.1. This is no more the case for conics. In fact, it

is very easy to show, that if not all points in a �nite set P are contained in a conic,

then there exists a conic through exactly 5 points in P. So that the critical point of

Theorem 1.4 is that there exist �ve points in P which determine a single conic.

Strangely enough the claim in the preceding Remark seems not easy to prove

for curves of higher degree. So the following question can be viewed as the �rst

step towards understanding Problem 4.5.

Problem 4.7. Let P be a �nite set of points in the projective plane not con-

tained in a curve of degree d . Is there a curve of degree d passing through exactly
.dC1/.dC2/

2
� 1 points in P?
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