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Hard Lefschetz theorem in p-adic cohomology

Daniel Caro (�)

Abstract – In this paper, we give a p-adic analogue of the hard Lefschetz Theorem.
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Introduction

Let Fq be a �nite �eld of characteristic p. In the context of Grothendieck’s l-adic
étale cohomology, with l 6D p, in using Weil conjecture and a generalization
of the theorem of Hadamard and de La Vallée Poussin, Deligne proved the so
called hard Lefschetz theorem for the constant coe�cient in the case of a smooth
and projective variety of pure dimension over Fq . Later, using Gabber’s purity
theorem and its consequences (e.g. the semi-simplicity of a pure perverse sheaf)
this has been extended to the relative case and for pure perverse sheaves in [5] (see
also [11, IV.4.1] for the essentially same proof but with a di�erent presentation).
More precisely, let f WX ! Y be a projective morphism de�ned over Fq and
� be the Chern class of the relative line bundle in H 2.X; xQl.1//. Let E be a
pure perverse sheaf on X . Then for every positive integer r , the homomorphisms
induced by �r between the perverse cohomology groups

p
H�rRf�.E/ �!

p
H�rRf�.E/.r/

are isomorphisms. The main purpose of this paper is to check a p-adic analogue
of this hard Lefschetz Theorem as follows: we replace “perverse sheaf” by “arith-
metic left (by default) D-module endowed with a Frobenius structure” and we use
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the push forward as de�ned in Berthelot’s theory of arithmetic D-modules. In par-
ticular, when Y D Spec k, X is smooth and projective of pure dimension d , E is
a pure overconvergent F -isocrystal, we get the isomorphisms

Hd�r
rig .E/

�
�! HdCr

rig .E/.r/

(see the Corollary 2.8 of the paper). Finally, we recall that in the context of
crystalline cohomology, which is the �rst attempt to get a nice p-adic cohomology
over varieties of characteristic p, Berthelot checked a weak Lefschetz theorem
(see [6]).

To check this p-adic analogue, we have followed the proof in the l-adic context
written in [11, IV.4.1] (just because the author prefers the exposition). As a p-adic
analogue of the original proof, two main ingredients of our proof are the semi-
simplicity of a pure arithmetic D-module (see [3, 4.3.1]) and the construction and
the properties of the trace map given in [1, 1.5]. Then, this paper can be considered
as a natural application of these works. We follow here their terminology and
notation.

Let us describe the contents of the paper. In the �rst chapter, we study the
properties of the Serre subcategory consisting of relative constant objects. In
the second chapter, we introduce the p-adic analogue of the Brylinsky–Radon
transform and use its properties to prove the hard Lefschetz Theorem. We have
tried to write the proofs only when the p-adic analogues were not straightforward.
Finally, in the last chapter, for the sake of completeness, we check the inversion
formula satis�ed by Radon transform.
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the trace maps and their properties and Weizhe Zheng for his interest and questions
concerning a p-adic analogue of the hard Lefschetz Theorem.

Notation. In this paper, we �x a positive integer s, a complete discrete
valuation ring V of mixed characteristic .0; p/. Its residue �eld is denoted by k,
and assume it to be perfect. We also suppose that there exists a lifting � WV

�
! V

of the s-th Frobenius automorphism of k. We put q WD ps, K WD Frac.V/. We �x
an isomorphism �W xQp Š C.
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In this context, a realizable variety X will mean a k-variety such that there
exists an immersion of the form X ,! P into a smooth proper p-adic formal
scheme over V. We denote by Db

ovhol.D
�
P;Q/ the derived category of overholo-

nomic complexes of (left by default) D�
P;Q-modules (for the notion of overholo-

nomicity, see [7]). We denote the derived category of overholonomic complexes
of arithmetic D-modules on X by Db

ovhol.X=K/. We recall that this is by de�ni-

tion the full subcategory ofDb
ovhol.D

�
P;Q/ of complexes E such that R��

X .E/
�
! E.

Up to a canonical equivalence of categories, this does not depend on the choice
of such an immersion X ,! P. From [3, 1.2], we have a canonical t-structure
on Db

ovhol.X=K/, whose heart is denoted by Ovhol.X=K/. We recall that, if U is
an open set of P containing X and such that X is closed in U, then a complex
E 2 Db

ovhol.X=K/ belong to Ovhol.X=K/ if and only if EjU is isomorphic to an

overholonomic D
�
U;Q-module. Beware that an objet of Ovhol.X=K/ is not neces-

sary an overholonomic D
�
P;Q-module but is in general a object of Db

ovhol.D
�
P;Q/.

Following [3, 1.2], the i-th cohomological space of an object E of Db
ovhol.X=K/

will be denoted by Hi
t .E/ 2 Ovhol.X=K/. We will keep the notation concerning

cohomological operators as de�ned in [3, 1.1].
We will also use the categories de�ned in [2, 1.5]: let HolF .X=K/0 be the

full subcategory of Ovhol.X=K/ whose objects can be endowed with some
s0-th Frobenius structure for some integer s0 which is a multiple of s, and
let HolF .X=K/ be the thick abelian subcategory generated by HolF .X=K/0 in
Ovhol.X=K/. We denote by Db

hol;F .X=K/ the triangulated full subcategory of

Db
ovhol.X=K/ such that the cohomologies are in HolF .X=K/. For any integer

n, we de�ne the twist of Tate over Db
hol;F .X=K/ as follows: the twist .n/ is the

identity (and then the forgetful functor F -Db
hol;F .X=K/ ! Db

hol;F .X=K/ com-
mutes with the twist of Tate). For simplicity and if there is no risk of confusion
with the notion of holonomicity of Berthelot, we will writeDb

hol.X=K/ instead of
Db

hol;F .X=K/ and Hol.X=K/ instead of HolF .X=K/. With this notation, we get

F -Db
ovhol.X=K/ D F -Db

hol.X=K/. Be careful that this notation is a bit misleading
since in general we do not know even with Frobenius structures if the notion of
holonomicity of Berthelot and the notion of overholonomicity coincide (but this
is not misleading with Frobenius structure in the case where we can embed the
variety into of smooth projective formal schemes over V; see [10]).
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1. Constant objects with respect to smooth Pd -�bration morphisms

1.1. Let gWU ! T be a morphism of realizable varieties. Let F; G 2

.F -/Db
hol.T=K/. We have the morphisms

(1.1.1)

�g W g
Š.F/˝ gC.G/ �!

adj
gŠgŠ.g

Š.F/˝ gC.G//
�
�!
proj

gŠ.gŠg
Š.F/˝ G/ �!

adj
gŠ.F˝ G/

where proj (resp. adj) means the projection isomorphism constructed in [3, A.6]
(resp. the adjunction isomorphism corresponding to the adjoint functors .gŠ; g

Š/).
Since the projection isomorphisms and adjunction isomorphisms are transitive,
then so is for �g i.e., for any hWV ! T morphism of realizable varieties, the
diagram

(1.1.2)

hŠgŠ.F/˝ hCgC.G/

�

��

�h // hŠ.gŠ.F/˝ gC.G//
hŠ�g // hŠgŠ.F˝ G/

�

��
.g ı h/Š.F/˝ .g ı h/C.G/

�gıh // .g ı h/Š.F˝ G/

is commutative.

1.2 (Poincaré duality). Let f WX ! S be a smooth equidimensional morphism
of relative dimension d of realizable varieties. T. Abe has checked (see [1, 1.5.13])
that the morphism

(1.2.1) �f W f
CŒd � �! f ŠŒ�d�.�d/;

which is induced by adjunction from the trace map TrW fŠf
CŒ2d �.d/ ! Id, is

an isomorphism of t-exact functors (when f is moreover proper, this trace map
can be compared with that de�ned by Virrion in [13]). This isomorphism satis�es
several compatibility properties (see [1, 1.5]), e.g. it is transitive.

1.3. We keep the notation of 1.2. Let F; G 2 .F -/Db
hol.S=K/. Diagram 1 is

commutative. Indeed, the pentagon is commutative from [1, 1.5.1.Var5]. The other
parts of the diagram are commutative by de�nition and functoriality. Hence we
get the canonical commutative square:

(1.3.1)

f C.F˝ G/Œ2d �.d/
� //

��f

��

f C.FŒ2d �.d//˝ f C.G/

��f ˝Id
��

f Š.F˝ G/ f Š.F/˝ f C.G/:
�f

oo

This implies that the bottom morphism of (1.3.1) is also an isomorphism.
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f C.F˝ G/Œ2d �.d /
� //

adj
��

f C.FŒ2d �.d //˝ f C.G/
adj //

adj
��

f ŠfŠf
C.FŒ2d �.d //˝ f C.G/

Tr ˝ Id //

adj

��

f Š.F/˝ f C.G/

�f

��

f ŠfŠf
C.F˝ G/Œ2d �.d /

� //

Tr

��

f ŠfŠ.f
C.FŒ2d �.d //˝ f C.G//

adj //

�proj
��

f ŠfŠ.f
ŠfŠf

C.FŒ2d �.d //˝ f C.G//

�proj
��

f Š.fŠf
C.FŒ2d �.d //˝ G/

adj //

❲

❲

❲

❲

❲

❲
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❲
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❲

❲

❲

❲
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❲
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❲

❲

❲

f Š.fŠf
ŠfŠf

C.FŒ2d �.d //˝ G/

adj

��
f Š.F˝ G/ f Š.fŠf

C.FŒ2d �.d //˝ G/
Tr ˝ Id

oo Tr˝ Id // f Š.F˝ G/

Diagram 1
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1.4 Definition. Let f WX ! S be an equidimensional smooth morphism of
relative dimension d of realizable varieties.

(1) The objects of the essential image of the functor

f CW .F -/Db
hol.S=K/ �! .F -/Db

hol.X=K/

are called constant (with respect to f ).

(2) The objects of the essential image of the functor

f CŒd �W .F -/Hol.S=K/ �! .F -/Hol.X=K/

are called constant (with respect to f ). We denote by f CŒd �.F -/Hol.S=K/
its essential image.

1.5. Let X be a realizable k-variety and pX WX ! Spec k be the structural
morphism. We denote by KX WD pC

X .K/ the constant coe�cient of X . The
complex KX is the p-adic analogue of the constant sheaf Ql over X . Let E 2
Db

hol.X=K/. We notice that KX ˝ E
�
! E.

1.6 Proposition. Let uWY ,! X be a closed immersion of pure codimension

r in X of smooth realizable k-varieties. Let E 2 .F -/Db
hol.X=K/.

(1) There exists a natural functorial morphism of .F -/Db
hol.Y=K/ of the form

(1.6.1) �uWu
C.E/ �! uŠ.E/Œ2r�.r/:

(2) If (locally on X) the complex E is constant with respect to a smooth equidi-

mensional morphism f WX ! S of realizable varieties such that f ıu is also

smooth, then �u is an isomorphism.

Proof. This can be checked as in [11, II.11.2]: with the notation and hypothesis
of the second part, putting g WD f ı u and dg WD dimY � dimS , for any
K 2 .F -/Db

hol.S=K/, by using the isomorphism (1.2.1), we get the isomorphism

(1.6.2) �uWu
C.f CK/

�
�!
�g

uŠ.f ŠK/Œ�2dg �.dg/
�

�����!
uŠ.��1

f
/

uŠ.f CK/Œ2r�.r/:

In particular, we get

�uWu
C.KX /

�
�! uŠ.KX/Œ2r�.r/:

We remark that
�uWu

C.KX /
�
�! uŠ.KX/Œ2r�.r/

does not depend on the choice of f which can be for instance the structural
morphism of X (indeed, since Y is smooth, this is up to a shift a morphism of
overconvergent isocrystal on Y and then we can suppose S smooth ; then this is a
consequence of the transitivity of the isomorphisms of the form (1.2.1)).
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uCf C.K0 ˝K/
� //

��g

��
�u

((

uCf C.K0/˝ uCf C.K/

��g˝Id

��
�u˝Id

uu

uŠf Š.K0 ˝K/Œ�2dg�.dg/ uŠ.f Š.K0/˝ f C.K//Œ�2dg�.dg/�f

�oo uŠf Š.K0/˝ uCf C.K/Œ�2dg�.dg/�u

�oo

�g

�qq

uŠf C.K0 ˝K/Œ�2r�.r/

��f

OO

� // uŠ.f C.K0/˝ f C.K//Œ�2r�.r/

��f ˝Id

OO

uŠf C.K0/˝ uCf C.K/Œ�2r�.r/

��f ˝Id

OO

�u

�oo

Diagram 2
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For any K;K0 2 .F -/Db
hol.S=K/, using (1.1.2) and (1.3.1), we check the

commutativity of Diagram 2, where �f , �g (and then �u) are some isomorphisms
because of the commutativity of (1.3.1).

More generally (in the context of the �rst part of the proposition), we de�ne
�uWu

C.E/! uŠ.E/Œ2r�.r/ so that the diagram

(1.6.3)

uC.E/
� //

�u

��

uC.KX ˝ E/
� // uC.KX /˝ u

C.E/

��u˝Id
��

uŠ.E/Œ2r�.r/ uŠ.KX ˝ E/Œ2r�.r/�
oo uŠ.KX/˝ u

C.E/Œ2r�.r/;
�u

oo

where
�uWu

C.KX /
�
�! uŠ.KX/Œ2r�.r/

is de�ned in (1.6.2) with f equal to the structural morphism ofX , is commutative.
We go back to the second part of the proposition, i.e. suppose now that E D

f C.K/. By using the commutativity of Diagram 2 applied to the case K0 WD KS ,
the isomorphism �uWu

C.E/
�
! uŠ.E/Œ2r�.r/ de�ned in (1.6.2) is equal to that

de�ned in (1.6.3). Hence, �u is indeed an isomorphism in this case. �

1.7. With the notation of (1.6.1), we get the morphism

uŠ.�u/WuŠu
C.E/ �! uŠu

Š.E/Œ2r�.r/:

By adjunction, we have
uŠu

Š.E/ �! E;

which gives by composition

�u WD adj ıuŠ.�u/WuŠu
C.E/ �! EŒ2r�.r/:

The goal of this paragraph is to check that the diagram below

(1.7.1) uŠu
C.E/

proj
�

//

�u

��

uŠu
C.KX/˝ E

�u˝Id
��

EŒ2r�.r/
� // KX ˝ EŒ2r�.r/:

is commutative. It is su�cient to check the commutativity of Diagram 3.
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uŠu
C.E/

� //

uŠ.�u/

��
�u

##

uŠu
C.KX ˝ E/

� //

uŠ.�u/

��

uŠ.u
C.KX /˝ u

C.E//
proj

�
//

uŠ.�u˝Id/

��

uŠu
C.KX /˝ E

uŠ.�u/˝Id
��

�u˝Id

vv

uŠu
Š.E/Œ2r�.r/

� //

adj

��

uŠu
Š.KX ˝ E/Œ2r�.r/

adj

��

uŠ.u
Š.KX/˝ u

C.E//Œ2r�.r/
�u

oo proj

�
// uŠu

Š.KX /˝ EŒ2r�.r/

adj

��
EŒ2r�.r/

� // KX ˝ EŒ2r�.r/ KX ˝ EŒ2r�.r/

Diagram 3
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From (1.6.3), the middle upper square is commutative. The commutativity of
the other squares is checked by functoriality. It remains to check the commutativity
of the rectangle, which comes from the commutativity of Diagram 4.

We end this paragraph with a remark: from the commutativity of (1.7.1), we
can construct the morphism

�uWuŠu
C.E/ �! EŒ2r�.r/

and then by adjunction

�uWu
C.E/ �! uŠ.E/Œ2r�.r/

from
�uWuŠu

C.KX/
�
�! KX Œ2r�.r/:

1.8. Let uWZ ,! X be a closed immersion of pure codimension r in X of
smooth realizable k-varieties. Let E 2 .F -/Db

hol.X=K/. From Proposition 1.6, we
have the morphism �uWu

CE! uŠEŒ2r�.r/. The composition of the following three
morphisms:

(1.8.1) �u;EWE
adj
�! uCu

CE
�
�! uŠu

CE
uŠ.�u/
����! uŠu

ŠEŒ2r�.r/
adj
�! EŒ2r�.r/

is an element of HomDb
hol.X=K/.E;EŒ2r�/ (resp. HomF -Db

hol.X=K/.E;EŒ2r�.r//).

By using the commutativity of (1.7.1), we check that

(1.8.2) �u;E D �u;KX
˝ IdE :

1.9 Remark. We keep the notation of 1.8. Following the notation of [1, 3.1.1
and 3.1.6], we put

H 2r
Z .X/.r/ WD Hom

Db
hol.X=K/

.KX ; uCu
ŠKX Œ2r�.r//

and
H 2r .X/.r/ WD Hom

Db
hol.X=K/

.KX ; KX Œ2r�.r//:

From [1, 3.1.6], the composition

uC.�u/ ı adjWKX �! uCu
ŠKX Œ2r�.r/

is called the cycle class of Y and is denoted by clX.Z/ 2 H 2r
Z .X/.r/. Since uŠ is

a left adjoint functor of uŠ and since uC
�
! uŠ, we get a canonical homomorphism

H 2r
Z .X/.r/! H 2r .X/.r/ which sends clX .Z/ to �u;KX

, see (1.8.1).
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uŠu
Š.KX ˝ E/Œ2r�.r/ uŠ.u

Š.KX /˝ u
C.E//Œ2r�.r/

�u

oo

adj

��
uŠu

Š.KX ˝ E/Œ2r�.r/

adj

��

uŠu
Š.uŠu

Š.KX /˝ E/Œ2r�.r/
adj

oo

adj

��

uŠu
ŠuŠ.u

Š.KX/˝ u
C.E//Œ2r�.r/

�

projoo

adj

��
KX ˝ EŒ2r�.r/ uŠu

Š.KX/˝ u
C.E//Œ2r�.r/

adj
oo uŠ.u

Š.KX /˝ u
C.E//Œ2r�.r/

�

projoo

Diagram 4
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In order to check Theorem 1.15 below we will need the following lemmas:

1.10 Lemma. Let

Z
� � u // X

Z0 �
� u0

//

g

OO

X 0

f

OO

be a cartesian square so that u and u0 are closed immersions of pure codimension

r of smooth realizable k-varieties. LetEX 2 .F -/Db
hol.X=K/ and EX 0 WD f C.EX /.

Let �u;EX
WEX ! EX Œ2r�.r/ and �u0;EX0 WEX 0 ! EX 0 Œ2r�.r/ be the morphisms as

de�ned in (1.8.1). Then we get f C.�u;EX
/ D �u0;EX0 .

Proof. Thanks to equation (1.8.2), we can suppose EX D KX . This comes
from [1, 3.2.6] (see also Remark 1.9). �

1.11 Lemma. Let � WPd ! Speck be the canonical projection. Let E 2

.F -/Db
hol.P

d=K/. LetH be the zero set of a section of the fundamental line bundle

OPd .1/ and uWH ,!Pd be the closed immersion. The morphism �u;EWE! EŒ2�.1/

as de�ned in (1.8.1) does not depend on the choice of the hyperplaneH and will

be denoted by ��;E.

Proof. We can suppose E D KX . Let H1; H2 be respectively the zero set
of two sections of OPd .1/. From (1.8.1), for i D 1; 2, the closed immersions
ui WHi ,! Pd induce the morphisms �i WKX ! KX Œ2�.1/. For i D 1; 2, we put

 i WK
adj
�! �C�

CK D �CKX

�C.�i /
�����! �CKX Œ2�.1/:

By adjunction, �1 D �2 if and only if  1 D  2. There exists an isomorphism
� WPd �

! Pd so that ��1.H1/ D H2. From Lemma 1.10, we get �C.�1/ D �2 and
then �C.�2/ D �1. Since � ı � D � , this implies that  2 D  1. �

1.12. Let S be a realizable variety, � WPd ! Spec k and �S WP
d
S ! S ,

f WPd
S ! Pd be the canonical projections. Let E 2 .F -/Db

hol.P
d
S=K/. With the

notation of Lemma 1.11, we put

(1.12.1) ��S ;E WD f
C.��;K

Pd
/˝ IdEWE �! EŒ2�.1/:

Let S 0 ! S be a morphism of realizable varieties and aWPd
S 0 ! Pd

S be the
induced morphism. Then, we remark that

(1.12.2) aC.��S ;E/ D ��S 0 ;aC.E/:
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1.13 Lemma. Let � WPd
S ! S be the canonical projection and �WPd 0

S ,! Pd
S

be a closed S -immersion such that � 0 WD � ı � is the canonical projection. Let

E 2 .F -/Db
hol.P

d
S=K/. We have the equality

(1.13.1) �C.��;E/ D ��0;�C.E/:

Proof. By construction, see (1.12.1), we can suppose E D KPd
S
. By us-

ing (1.12.2), we reduce to treat the case S D Speck. Then, this comes from
Lemma 1.10. �

1.14 Lemma. Let S be a realizable variety, qWX D Ad
S ! S be the canonical

projection. Let E 2 Hol.S=K/.

(1) For any i 6D 0, we have Hi
tqCq

C.E/ D 0 and H2d�i
t qŠq

C.E/ D 0.

(2) We have H0
t qCq

C.E/
�
! E and H2d

t qŠq
C.E/

�
! E in Hol.S=K/.

Proof. From (1.2.1), we can only consider the pushforward case. By tran-
sitivity of the pushforward, we reduce to the case where d D 1. The com-
plex qCq

C.E/ is isomorphic to the relative de Rham cohomology of A1
S=S of

qCŒd �.E/ 2 Hol.A1
S=K/. Then, this is an easy computation. �

1.15 Theorem. Let � WPn
S ! S be the canonical projection, �WX ,! Pn

S be

a closed immersion such that, for any closed point s of S , f �1.s/
�
! Pd

k.s/
where

k.s/ is the residue �eld of s and f WD � ı � (we might call such a morphism f a

Pd -�bration morphism). Let E 2 .F -/Db
hol.S=K/. With the notation of (1.12.1),

we put

� D �C��;�C.E/Œ�2�.�1/W f
C.E/Œ�2�.�1/ �! f C.E/:

By composition, for any integer i � 0, we get

�i W f C.E/Œ�2i�.�i/ �! f C.E/:

By adjunction, this is equivalent to have a morphism of the form

EŒ�2i�.�i/ �! fC ı f
C.E/;

which by abuse of notation will still be denoted by �i . The following map

(1.15.1)
Ld

iD0 �
i W

Ld
iD0 EŒ�2i�.�i/ �! fC ı f

C.E/

is an isomorphism.
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Proof. Diagram 5, where the vertical arrows of the top are the projection
isomorphisms (recall that since f is proper, we have fC

�
! fŠ), is commutative

(indeed, the commutativity of the square below comes from the de�nition (1.12.1),
that of the other square is functorial and that of the rectangle is left to the reader).
By using the commutativity of Diagram 5, we can suppose E D KS .

The fact that the morphism (1.15.1) is actually an isomorphism can be checked
after pulling back by the closed immersions induced by the closed points of S .
Hence, by using (1.12.2), we can suppose that S D Spec k and X D Pd . From
Lemma 1.13, we can suppose that d D n, i.e. � is the identity and f is the canonical
projection Pd ! Spec k.

We proceed by induction on d � 0. The case d D 0 is obvious. So, we
can suppose d � 1. Let qWAd ! Spec k the projection, H WD X n Ad be the
hyperplane at the in�nity, uWH ,! X the induced closed immersion, g WD f ı u.
We put Q�i WD uC.�i /W gC.K/Œ�2i�.�i/ ! gC.K/. Again by abuse of notation,
let Q�i WKŒ�2i�.�i/ ! gCg

C.K/ be the morphism induced by adjunction. From
the transitivity of the adjunction morphism, we get the commutativity of the left
square:

�i W KŒ�2i�.�i/
adj // fCf

C.K/Œ�2i�.�i/
fC.�i / //

adj
��

fCf
C.K/

adj
��

Q�i W KŒ�2i�.�i/
adj // fCuCu

Cf C.K/Œ�2i�.�i/
gC. Q�i /// fCuCu

Cf C.K/:

This induces the following commutative square

(1.15.2)

Ld�1
iD0 �

i W
Ld�1

iD0 KŒ�2i�.�i/
// fCf

C.K/

adj

��Ld�1
iD0 Q�

i W
Ld�1

iD0 KŒ�2i�.�i/
� // gCg

C.K/:

a) From (1.13.1), we get the equality Q� D �g;gC.K/. By using the induc-
tion hypothesis applied to g, the arrow of the bottom of the diagram (1.15.2) is
an isomorphism. We denote by ��2d�1 the truncation functor of the canonical
t-structure of [3]. Since we have the exact triangle of localization

qŠq
C.K/ �! fCf

C.K/ �! gCg
C.K/ �! C1

and Lemma 1.14, then after having applied the functor ��2d�1 to the right mor-
phism of (1.15.2) we get an isomorphism (for the degree 2d � 1, we use that
H2d�1

t gCg
C.K/ D 0). By considering (1.15.2), this implies that the truncation

��2d�1.˚
d
iD0�

i / of (1.15.1) is an isomorphism.
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KS ˝ E

�

��

adj ˝ IdE // fCf
C.KS/˝ E fC.KX /˝ E

fC.�/˝IdE //

�proj

��

fC.KX Œ2�.1//˝ E

�proj

��
fC.KX ˝ f

CE/
fC.�˝Id

f C.E/
/

//

�

��

fC.KX Œ2�.1/˝ f
C.E//

�

��
E

adj // fCf
C.E/

fC.�
f C.E/

/
// fCf

C.EŒ2�.1//

Diagram 5
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b) Now, consider Diagram 6, where the right arrow of the bottom is an iso-
morphism because of Proposition 1.6.(2); the commutativity of the right square
follows from the de�nition (1.8.1) and the notation (1.12.1). Hence, by using
the induction hypothesis, we check that after having applied the functor ��2d to
Diagram 6, the composition of the arrows of the bottom becomes an isomor-
phism. A cone of the right morphism of Diagram 6 is isomorphic to qCq

C.K/.
From (1.14), we get ��2d�1qCq

C.K/ D 0. Hence, by applying ��2d to the right
morphism of Diagram 6, we get an isomorphism. This implies that ��2d .�

d / is an
isomorphism. Hence, so is ��2d .

Ld
iD0 �

i /. Using the step a) of the proof, we can
conclude. �

1.16 Corollary. We keep the geometrical notation of (1.15) and we suppose

f smooth. Let E 2 F -Db
hol.S=K/

�0, F 2 F -Db
hol.S=K/

�0, G 2 Db
hol.S=K/

�0,

and H 2 Db
hol.S=K/

�0. Then

Hom
Db

hol.X=K/
.f C.G/; f C.H// D Hom

Db
hol.S=K/

.G;H/I

and

Hom
F -Db

hol.X=K/
.f C.E/; f C.F// D Hom

F -Db
hol.S=K/

.E;F/:(1.16.1)

Proof. Since E 2 F -Db
hol.S=K/

�0 and F 2 F -Db
hol.S=K/

�0, then

(1.16.2) Hom
F -Db

hol.S=K/
.E;F/ D Hom

F -Db
hol.S=K/

.H0
t E;H

0
t F/:

Since f is smooth, then the functor fCf
C preserves F -Db

hol.S=K/
�0. Hence, by

adjunction, we get

Hom
F -Db

hol.X=K/
.f C.E/; f C.F// D Hom

F -Db
hol.S=K/

.E; fCf
C.F//

D Hom
F -Db

hol.S=K/
.H0

t E;H
0
t fCf

C.F//:

With
H0

t F
�

��������!
Theorem 1.15

H0
t fC ı f

C.H0
t F/

�
�! H0

t fC ı f
C.F/;

then we obtain the last equality of (1.16.1). The proof without Frobenius is iden-
tical. �

1.17 Proposition. We keep the notation and hypotheses of Corollary 1.16.

(1) The functor f CŒd �W .F -/Hol.S=K/ ! .F -/Hol.X=K/ is t-exact and fully

faithful.

(2) For any E;F 2 Hol.S=K/, the functor f CŒd � induces the equality

(1.17.1) Ext1Hol.S=K/.E;F/ D Ext1Hol.X=K/.f
CŒd �.E/; f CŒd �.F//:



H
ard

L
efschetz

theorem
in
p

-adic
cohom

ology
2
4
1

KŒ�2d �.�d/
adj // fCf

C.K/Œ�2d �.�d/
fC.�d�1/ //

adj

��

fCf
C.K/Œ�2�.�1/

adj

��

fC.�/ // fCf
C.K/

KŒ�2d �.�d/
adj //

Q�d�1

33
fCuCu

Cf C.K/Œ�2d �.�d/
gC. Q�d�1/ // fCuCu

Cf C.K/Œ�2�.�1/
�

gC.�u/

// fCuCu
Šf C.K/

adj

OO

Diagram 6
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Proof. Since f is smooth, the functor f CŒd � is t-exact. From Corollary 1.16,
we get its full faithfulness. Since the canonical morphism FŒ1�! ��0fCf

C.FŒ1�/

is an isomorphism (use (1.15.1)), we get the second assertion (by using similar
techniques than in the proof of Corollary 1.16). �

1.18 Remark. We keep the notation and hypotheses of Corollary 1.16. Let
E 2 Hol.S=K/. Since the pull back under Frobenius commutes with the functor
f CŒd �, then we get a bijection between Frobenius structures on E and Frobenius
structures on f CŒd �.E/. Moreover, let F;G 2 F - Hol.S=K/ and �WF ! G a
morphism of Hol.S=K/. Then � commutes with Frobenius if and only if so is
f CŒd �.�/.

1.19 Proposition. We keep the notation and hypotheses of Corollary 1.16.

We suppose furthermore that the morphism f has locally a section.

(1) The functor f CŒd �W .F -/Hol.S=K/! .F -/Hol.X=K/ sends simple objects

to simple objects.

(2) The functor f CŒd �W .F -/Hol.S=K/! .F -/Hol.X=K/ has the right adjoint

functor H�d
t ı fCW .F -/Hol.X=K/ ! .F -/Hol.S=K/ and the left adjoint

functor Hd
t ı fŠ.d/W .F -/Hol.X=K/! .F -/Hol.S=K/.

Proof. LetE be a simple object of .F -/Hol.S=K/. From [3, 1.4.9.(i)] (without
Frobenius structures, use the fact that Isoc��.S=K/\Hol.S=K/ is a Serre subcat-
egory of Hol.S=K/, where Isoc��.S=K/ is constructed in [9]) there exist an open
dense smooth subscheme S 0 of S , an irreducible object E0 2 .F -/Hol.S 0=K/

which is also an object of .F -/ Isoc��.S 0=K/ such that E
�
! uŠC.E

0/ where
uWS 0 ,! S is the inclusion. Put X 0 WD f �1.S 0/, f 0WX 0 ! S 0, vWX 0 ,! X .
By adjunction, we remark that the canonical morphism uŠ.E

0/ ! uC.E
0/ is the

only one so that we get the identity over S 0. With this remark, since

f CŒd � ı uŠ.E
0/

�
�! vŠ ı f

0CŒd �.E0/;

and

f CŒd � ı uC.E
0/

�
�! f ŠŒ�d�.�d/ ı uC.E

0/
�
�! vC ı f

0ŠŒ�d�.�d/.E0/

�
�! vC ı f

0CŒd �.E0/;

since the functors f CŒd � and f 0CŒd � are t-exact, then after applying H0
t to these

isomorphisms we get the isomorphism

f CŒd � ı uŠC.E
0/

�
�! vŠC ı f

0CŒd �.E0/:
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Since the functor vŠC preserves the irreducibility, then we reduce to the case where
S is a�ne, smooth, irreducible, and where moreover E 2 .F -/ Isoc��.S=K/.
Hence

f CŒd �.E/ 2 .F -/ Isoc��.X=K/ \ .F -/Hol.X=K/:

Let 0 6D G 2 .F -/Hol.X=K/ be a subobject of f CŒd �.E/. Since the category
.F -/ Isoc��.X=K/ \ .F -/Hol.X=K/ is a Serre subcategory of .F -/Hol.X=K/,
thenG 2 .F -/ Isoc��.X=K/. Since the generic rank of an overconvergent isocrystal
is preserved under pull-backs, since f has locally a section, sinceX is irreducible
(because the �bers of f are irreducible) then we can conclude that G D f CŒd �.E/

and hence f CŒd �.E/ is a simple object.
The last part comes from the left t-exactness of fCŒ�d� and the right t-exact-

ness of fŠŒd �.d/, from the fact that the couples .f CŒd �; fCŒ�d�/ and .fŠŒd �.d/,
f ŠŒ�d�.�d// are adjoint functors, and from the isomorphism

f CŒd �
�
�! f ŠŒ�d�.�d/

of (1.2.1). �

1.20 Proposition. We keep the notation and hypotheses of Proposition 1.19.

Let E 2 .F -/Hol.X=K/.

(1) The category of constant objects with respect to f is a thick subcategory of

.F -/Hol.X=K/.

(2) The object

H0
t ı f

C ı fC.E/ D f
CŒd � ı .H�d

t fC/.E/

is the largest constant with respect to f subobject of E in the category

.F -/Hol.X=K/.

(3) The object

H2d
t ı f

C ı fŠ.E.d// D f
CŒd � ı .Hd

t fŠ/.E.d//

is the largest constant with respect to f quotient object of E in the category

.F -/Hol.X=K/.

Proof. The thickness of the category of constant objects without Frobenius
structures comes from the equality (1.17.1). With Remark 1.18, we get the thickness
with Frobenius structures. The rest is similar to the proof of [11, III.11.3] i.e. this
comes from the general fact [11, III.11.1] and from Proposition 1.19. �
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2. The Brylinski–Radon transform and the Hard Lefschetz Theorem

Let d � 1 be an integer andPd be the d -dimensional projective space de�ned over
k, let {Pd be the dual projective space over k, which parameterizes the hyperplanes
in Pd , let H be the universal incidence relation, i.e. the closed subvariety of
Pd � {Pd so that .x; h/ 2 H if and only if the point x 2 h. Let Y be a realizable
k-variety. We denote by

i WH � Y ,�! Pd � {Pd � Y

the canonical immersion and by

p1WP
d � {Pd � Y �! Pd � Y; p2WP

d � {Pd � Y �! {Pd � Y;

Qp1W {P
d � Y �! Y; Qp2WP

d � Y �! Y

the canonical projections, and we set �1 WD p1 ı i , �2 WD p2 ı i .

2.1 Definition. We de�ne the Brylinski–Radon transform

RadWF -Db
hol.P

d � Y=K/ �! F -Db
hol.
{Pd � Y=K/

by posing, for any E 2 F -Db
hol.P

d � Y=K/,

(2.1.1) Rad.E/ WD �2C�
C
1 .E/Œd � 1�:

For any n 2 Z, we put Radn WD Hn
t ı Rad.

2.2 Definition. LetU be the open complement of the closed subvarietyH�Y
in Pd � {Pd �Y . Let j WU ,! Pd � {Pd �Y be the open immersion and q1 WD p1ıj ,
q2 WD p2 ı j . We de�ne the modi�ed Radon transform

RadŠWF -Db
hol.P

d � Y=K/ �! F -Db
hol.
{Pd � Y=K/

by posing, for any E 2 F -Db
hol.P

d � Y=K/,

(2.2.1) RadŠ.E/ WD q2Š ı q
C
1 Œd �.E/:

For any integer n 2 Z, we put Radn
Š .E/ WD Hn

t RadŠ.E/.
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2.3. (1) Since the functor qC
1 Œd � is t-exact and the functor q2Š is left t-exact

(because q2 is a�ne, e.g. see [3, 1.3.13] but this is obvious here since q2 is
moreover smooth) then RadŠ is left t-exact.

(2) The exact triangle

iC ı i
CŒ�1� �! jŠj

C �! Id �! iC ı i
C

induces for any E 2 F -Db
hol.P

d � Y=K/ the exact triangle

(2.3.1) Rad.E/ �! RadŠ.E/ �! p2Cp
C
1 Œd �.E/ �! Rad.E/Œ1�:

2.4 Lemma. Let E 2 F -Db
hol.P

d � Y=K/.

(1) We have the isomorphism

EŒ�2d�.�d/
�
�! q1Šq

C
1 .E/:

(2) We have the isomorphism

Qp1C.RadŠ.E//
�
�! Qp2C.E/Œ�d�.�d/:

(3) If E 2 .F -/D�0.Pd � Y=K/, then

Qp1C.RadŠ.E// 2 .F -/D�0.Y=K/:

Proof. We put � D �
p1;p

C
1

.E/Œ�2�.�1/
and Q�i WD iC.�i/. In order to check the

�rst isomorphism, by 1.5 and the projection formula (see [3, A.6]) we get

q1Šq
C
1 .E/

�
�! q1Š.q

C
1 .KU /˝ q

C
1 .E//

�
�! q1Šq

C
1 .KU /˝ E:

Hence, we can suppose E D KPd �Y . Then, by using a base change theorem, we
can suppose Y D Spec k. We put G D KPd Œ�d� 2 F - Hol.Pd=K/. Consider the
diagram below

(2.4.1)

q1Šq
C
1 .G/

// p1Cp
C
1 .G/

adj // p1CiCi
CpC

1 .G/
C //

GŒ�2d�.�d/ //
Ld

iD0 GŒ�2i�.�i/
//

Ld
iD0 �i�

OO

Ld�1
iD0 GŒ�2i�.�i/

Ld�1
iD0 Q�i�

OO

C // ;
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where the rows are exact triangles and where we keep the abuse of notation
in Theorem 1.15, i.e. the morphism �i (resp. Q�i ) means the morphism induced
by adjunction with respect to the couple .pC

1 ; p1C/ (resp. .qC
1 ; q1C/) from �i

(resp. Q�i ). By transitivity of the adjunction, we get that the square of (2.4.1)

is commutative. Moreover, we recall that the vertical arrows are isomorphisms
thanks to (1.15.1). By applying the functor ��2d to the diagram (2.4.1), we get

q1Šq
C
1 .G/

�
�������!
Lemma 1.14

��2dq1Šq
C
1 .G/

�
�! ��2dp1Cp

C
1 .G/

�
 � ��2d

Ld
iD0 GŒ�2i�.�i/

�
 � GŒ�2d�.�d/;

which �nishes the proof of the �rst isomorphism. We get the second isomorphism
from the �rst one by composition:

Qp1C.RadŠ.E//
�
�! Qp1Š ı q2Š ı q

C
1 Œd �.E/

�
�! Qp2Š ı q1Š ı q

C
1 Œd �.E/

�
�! Qp2Š.E/Œ�d�.�d/:

Finally, since Qp2ŠŒ�d� is left t-exact, we obtain the third property from the second
one. �

2.5 Lemma. Let E 2 .F -/D�0.Pd � Y=K/. Then Rad0
Š .E/ is left reduced

with respect to Qp1, i.e. does not have any nontrivial constant with respect to Qp1

subobject.

Proof. The proof is the same than [11, IV.2.7]: from Proposition 1.20 we re-
duce to prove thatH�d

t Qp1C.Rad0
Š .E// D 0. Since RadŠ.E/ 2 .F -/D�0.{Pd�Y=K/

(see the property 2.3.(1)), since H�d
t Qp1C is left t-exact, then we get the isomor-

phism
H�d

t Qp1C.Rad0
Š .E//

�
�! H�d

t Qp1C.RadŠ.E//:

We conclude by using 2.4.(3) �

2.6. Let f WX ! Y be a projective morphism of realizable varieties. Let
E 2 F -Db

hol.X=K/. A morphism �WE ! EŒ2�.1/ is called a “Chern class of
a relative hyperplane for the projective morphism f ” if there exists a closed
immersion �WX ,! Pd

Y so that f D � ı �, where � WPd
Y ! Y is the canonical

projection, and so that, with the notation 1.12,

� D IdE˝�
C.��;K

P
d
Y

/:

By using the projection isomorphisms (see [3, A.6]), we remark that the map
�C.�/W �C.E/! �C.E/Œ2�.1/ is canonically isomorphic to Id�C.E/˝��;K

P
d
Y

.
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2.7 Theorem (hard Lefschetz Theorem). We suppose here that k is a �-

nite �eld with ps elements. Let f WX ! Y be a projective morphism of realiz-

able varieties. Let E 2 F - Hol.X=K/ be an �-pure module and �WE ! EŒ2�.1/

be a Chern class of a relative hyperplane for f (see the de�nition in 2.6).

For any positive integer r , we obtain by composition �r WE ! EŒ2r�.r/. We get

the homomorphism

(2.7.1) H�r
t fC.�

r/WH�r
t fC.E/ �! Hr

t fC.E/.r/:

The homomorphism (2.7.1) is an isomorphism.

Proof. We follow the proof of the hard Lefschetz Theorem of [11, IV.4.1]
which is similar to that of [5].

0. Since the assertion is local on Y , one can suppose Y a�ne and smooth.
Using 2.6, we reduce to the case where f is the projection Pd

Y ! Y and
� D IdE˝�f;K

P
d
Y

. Then we keep the notation of Section 2 of our paper.

1. In this step, we treat the case r D 1. We put

G D pC
1 Œd �.E/ 2 F - Hol.Pd � {Pd � Y=K/:

Following (1.8.1), we get from the closed immersion i WH � Y ,! Pd � {Pd � Y

the morphism

� WD �i;GWG! GŒ2�.1/:

a) Let Speck ,! {Pd be a rational point,

t WY ,�! {Pd � Y and sWPd � Y ,�! Pd � {Pd � Y

the induced closed immersions. Since s�1.H � Y / is an hyperplane of Pd � Y ,
since s is a section of p1, using Lemma 1.10 we get sCŒ�d�.�/ D �. Since

p2Cp
C
1

�
�! QpC

1 Qp2C and Qp2Cs
C �
�! tCp2C;

since the functor sCŒ�d� (resp. tCŒ�d�) is acyclique for the constant objects with
respect to p1 (resp. Qp1), we get that

tCŒ�d�H�1
t p2C.�/

�
�! H�1

t Qp2Cs
CŒ�d�.�/ D H�1

t Qp2C.�/:

Hence, this is enough to check that H�1
t p2C.�/WH

�1
t p2C.G/ ! H1

t p2C.G/.1/ is
an isomorphism. For simplicity, we denote this morphism �.
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b) Consider Diagram 7, where

{G D pC
1 Œd �.D.E// 2 F - Hol.Pd � {Pd � Y=K/;

the horizontal isomorphisms of the middle square are constructed using the com-
mutativity of the dual functor with the functor pC

1 Œd � (this is the Poincare du-
ality (1.2.1)) and with proper push-forwards, where the right square is the dual
of the left square used for D.E/ instead of E, is commutative. By transitivity of
the relative duality isomorphism and by de�nition of the adjunction morphisms,
we get the commutativity of the middle square. The commutativity of the other
squares of Diagram 7 are tautological (e.g. for the second square, this is the con-
struction (1.8.1)). Moreover, the second left arrow of the bottom row is indeed an
isomorphism because of Proposition 1.6.(2).

c) Since �1 is smooth of relative dimension d � 1 and �2 is proper, we get
DRad0.D.E//

�
! Rad0.E/. From both properties of 2.3, we get the �rst exact

sequence

(2.7.2) 0 �! Hd�1
t p2Cp

C
1 .E/ �! Rad0.E/ �! Rad0

Š .E/I

the second one is induced by duality:

(2.7.3) DRad0
Š .DE/ �! Rad0.E/ �! DHd�1

t p2Cp
C
1 .DE/ �! 0;

By construction, the �rst morphism of (2.7.2) and the last one of (2.7.3) are
respectively the left vertical arrow and the right vertical arrow of Diagram 7.
Using Lemma 2.5 we check that Rad0

Š .E/ (resp. DRad0
Š .DE/) is left (resp. right)

reduced with respect to Qp1, i.e. does not have any nontrivial constant with re-
spect to Qp1 subobject (resp. quotient). This implies that Hd�1

t p2Cp
C
1 .E/ (resp.

DHd�1
t p2Cp

C
1 .DE/) is the maximal constant with respect to Qp1 subobject (resp.

quotient) of Rad0.E/.

d) Since �1 is smooth, �2 is proper and E is �-pure then so is Rad0.E/.
Hence Rad0.E/ is semi-simple in the category Hol.{Pd � Y=K/ (see [3, 4.3.1]).
By considering Diagram 7 and using the step 1.c), this implies that the morphism

�WH�1
t p2C.G/ �! H1

t p2C.G/.1/

is an isomorphism in Hol.{Pd �Y=K/. Since � is also a morphism of the category
F - Hol.{Pd � Y=K/, then � is an isomorphism of F - Hol.{Pd � Y=K/.
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Hd�1
t p2Cp

C
1
.E/

��

H�1
t p2C.G/

� //

adj

��

H1
t p2C.G/.1/

� // DH�1
t p2C.{G/.1/ DHd�1

t p2Cp
C
1
.D.E//.1/

Rad0.E/ H�1
t p2CiCi

C.G/
�

�i

//
�

oo H1
t p2CiCi

Š.G/.1/

adj

OO

� // DH�1
t p2CiCi

C.{G/.1/

D.adj/

OO

DRad0.D.E//.1/

OO

�
oo

Diagram 7
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2. We proceed by induction on r . Suppose r � 2. We put

zG WD iC.G/Œ�1�
�
�! �C

1 Œd � 1�.E/:

The morphism � induces by pull-back

Q�r�1 WD iC.�r�1/Œ�1�W zG �! zGŒ2r�.r/:

Consider Diagram 8, which is commutative and where the middle arrow of the
middle row is an isomorphism because of Proposition 1.6.(2). By considering the
long exact sequence induced by the exact triangle (2.3.1), since RadŠ is left exact
and r � 2, we check that the adjunction morphism

H�r
t p2C.G/ �! H�r

t p2CiCi
C.G/

is an isomorphism. This implies that the right vertical arrow of Diagram 8 is an
isomorphism. To check that the arrow of the bottom of Diagram 8 is an isomor-
phism, it is su�cient to prove that tCŒ�d�H�.r�1/

t �2C. Q�
r�1/ is an isomorphism

(the rational point Spec k ,! {Pd can vary).
We put

Q{W s�1.H � Y / ,�! Pd � Y; QsW s�1.H � Y / ,�! H � Y;

and
Q�2 WD Qp2 ı Qs:

From Lemma 1.10, since sCŒ�d�.G/
�
! E, we have sCŒ�d�.�/ D �Q{;E. Hence,

since Q{ is a closed immersion induced by an hyperplane of Pd � Y , putting

zE WD Q{CŒ�1�.E/ 2 F - Hol.s�1.H/=K/;

we remark that
Q� WD Q{CŒ�1�sCŒ�d�.�/W zE �! zEŒ2�.1/

is a Chern class of a relative hyperplane for the projective morphism Q�2. Hence,
since zE is pure, by using the induction hypothesis, we get that H�.r�1/

t Q�2C. Q�
r�1/

is an isomorphism. Finally, with the same arguments than in the step 1.a), we check
the �rst isomorphism:

tCŒ�d�H
�.r�1/
t �2C. Q�

r�1/
�
�! H

�.r�1/
t Q�2C Qs

CŒ�d�. Q�r�1/

D H
�.r�1/
t Q�2C Qs

CŒ�d�iCŒ�1�.�r�1/
�
�! H

�.r�1/
t Q�2CQ{

CŒ�1�sCŒ�d�.�r�1/

�
�! H

�.r�1/
t Q�2C. Q�

r�1/;

which implies that tCŒ�d�H�.r�1/
t �2C. Q�

r�1/ is also an isomorphism. �
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H�r
t p2C.G/

�r�1

//

adj

��

Hr�2
t p2C.G/

� //

adj

��

Hr
t p2C.G/.1/

� // DH�r
t p2C.{G/.1/

H�r
t p2CiCi

C.G/
�r�1

//

�

��

Hr�2
t p2CiCi

C.G/
�

�i

//

�

��

Hr
t p2CiCi

Š.G/.1/

adj

OO

� // DH�r
t p2CiCi

C.{G/.1/

D.adj/

OO

H
�.r�1/
t �2C.zG/

Q�r�1

// Hr�1
t �2C.zG/

Diagram 8
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2.8 Corollary. We suppose here that k is a �nite �eld with ps elements. Let

f WX ! Speck be a smooth and projective morphism with X of pure dimension

d . Let E is a pure overconvergent F -isocrystal. Then for every positive integer r ,

we get the isomorphisms Hd�r
rig .E/

�
! HdCr

rig .E/.r/.

Proof. In this context, we can use the comparison theorem between the rigid
cohomology and the push forward as de�ned in the theory of arithmetic D-mod-
ules, see for instance [4, 5.9]. �

2.9 Remark. (1) In the context of Corollary 2.8, we need the hypothesis that
X is smooth because otherwise we do not know how to get an equivalence between
the category of overconvergent F -isocrystal over X as de�ned by Berthelot and
some coe�cients de�ned in the framework of arithmetic D-modules (one might
hope to remove the smoothness condition: see the question [1, 1.3.11]).

(2) Thanks to a very recent preprint of Christopher Lazda (see for instance
Lemma [12, 5.5]), one should get some relative version of Corollary 2.8, i.e. in the
case where f WX ! Y is a smooth and projective morphism of realizable varieties
with Y no necessary equal to Spec k.

3. The dual Brylinski–Radon and the inversion formula

We keep the notation Section 2 of our paper.

3.1 Definition. We de�ne the dual Brylinski–Radon transform

Rad_WF -Db
hol.
{Pd � Y=K/ �! F -Db

hol.P
d � Y=K/

by posing, for any {E 2 F -Db
hol.
{Pd � Y=K/,

(3.1.1) Rad_.{E/ WD �1C�
C
2 .
{E/Œd � 1�:

3.2 Lemma. Let �WX WD .H �{Pd
{H/ � Y ,! Pd � {Pd � Pd � Y be the

canonical embedding, p13WP
d � {Pd �Pd � Y ! Pd �Pd � Y be the projection

and � D p13 ı �. Let�WPd � Y ,! Pd �Pd � Y be the diagonal immersion (and

the identity over Y ). Let F 2 F -Db
hol.P

d �Pd � Y=K/. We have the isomorphism

of F -Db
hol.P

d � Pd � Y=K/ of the form

�C ı�
C.F/Œ2 � 2d�.1� d/˚

Ld�2
iD0 FŒ�2i�.�i/

�
�! �C�

C.F/:
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Proof. By using the projection isomorphisms (see [3, A.6]), we can suppose
F D KPd �Pd �Y . Hence, by using some base change theorems (induced by the
projection Y ! Speck), we can suppose Y D Spec k. We put zK WD KPd �Pd .
Consider the following cartesian squares

(3.2.1)

X
� � � //

�

� **
Pd � {Pd � Pd p13 //

�

Pd � Pd

zX
� � Q� //

?�

z�

OO

Q�

55Pd � {Pd p1 //
?�

OO

Pd :
?�

�

OO

Put Q� WD p1 ı Q�, � WD �C�p13;K
Pd �{Pd �Pd

and Q� WD Q�C�p1;K
Pd �{Pd

. From (1.12.2),

we check z�C.�/ D Q�. By using the construction of Theorem 1.15, we get the
morphism

(3.2.2)
Ld�2

iD0 �
i W

Ld�2
iD0
zKŒ�2i�.�i/ �! �C�

C. zK/:

Since � is outside �.Pd / a Pd�2-�bration, from Theorem 1.15, we deduce that
the morphism (3.2.2) is an isomorphism outside �.Pd /. Hence, a cone of (3.2.2)

is in the essential image of �C. Since

�C�C�
C. zK/

�
�! Q�C

z�C�C. zK/
�
�! Q�C Q�

C�C. zK/;

by applying �C to the morphism 3.2.2, we get

(3.2.3)
Ld�2

iD0 Q�
i W

Ld�2
iD0 �

C zKŒ�2i�.�i/ �! Q�C Q�
C�C. zK/:

Since Q� is a Pd�1-�bration, from Theorem 1.15, we remark that the cone of
the morphism (3.2.3) is isomorphic to �C. zK/Œ2 � 2d�.1 � d/. Moreover, using
Theorem 1.15 again we build the morphism

�C�C�
C. zK/ �! �C. zK/Œ2� 2d�.1� d/

and by adjunction the second morphism of the sequence in F -Db
hol.P

d �Pd=K/:

(3.2.4)
Ld�2

iD0
zKŒ�2i�.�i/ ����!

(3.2.2)
�C�

C. zK/! �C ı�
C. zK/Œ2� 2d�.1� d/:
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Since �C�
C. zK/ is �-pure, then �C�

C. zK/ is semisimple in Db
hol.P

d � Pd=K/

(see [3, 4.3.6]). Then, we get the isomorphism

�C ı�
C. zK/Œ2� 2d�.1� d/˚

Ld�2
iD0
zKŒ�2i�.�i/

�
�! �C�

C. zK/

in Db
hol.P

d �Pd=K/ which induces the morphisms of (3.2.4). For any i D 0; : : : ,
d � 2, we have

Hom
Db

hol.P
d �Pd =K/

.�C ı�
C. zK/Œ2� 2d�; zKŒ�2i�/

�
�! HomDb

hol.P
d =K/.�

C. zK/Œ2� 2d�; �Š zKŒ�2i�/

�
����!
(1.6.1)

Hom
Db

hol.P
d =K/

.�Š. zK/Œ2�; �Š zKŒ�2i�/ D 0

and

Hom
Db

hol.P
d �Pd =K/

. zKŒ�2i�; �C ı�
C. zK/Œ2� 2d�/

�
�! Hom

Db
hol.P

d =K/
.�C zKŒ�2i�; �C. zK/Œ2� 2d�/ D 0:

Hence, we get the compatibility with Frobenius. �

3.3 Proposition (Radon inversion formula). Let E 2 F -Db
hol.P

d � Y=K/.

Then the following formula holds

(3.3.1) Rad_ ıRad.E/
�
�! E.1� d/˚ QpC

2 Œd �.�.E//;

where �.E/ WD
Ld�2

iD0 Qp2C.E/Œd � 2� 2i�.�i/:

Proof. With the notation of Lemma 3.2, let respectively

u; vWPd � Pd � Y �! Pd � Y

be the left and middle projection. Then, by using the base change theorem, more
precisely, look at the cartesian square de�ning the �bered product

X D .H � Y / �{Pd �Y
. {H � Y /;

we get
Rad_ ıRad.E/

�
�! vC�C�

CuC.E/Œ2d � 2�:

Hence we obtain:

Rad_ ıRad.E/
�

�������!
Lemma 3.2

vC�C ı�
C.uC.E//.1� d/˚

Ld�2
iD0 vCu

C.E/Œ2d � 2i � 2�.�i/

�
�! E.1� d/˚

Ld�2
iD0 Qp

C
2 Œd � Qp2C.E/Œd � 2i � 2�.�i/: �
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