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Hard Lefschetz theorem in p-adic cohomology

DANIEL CARO (%)

ABsTrRACT — In this paper, we give a p-adic analogue of the hard Lefschetz Theorem.
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Introduction

Let IF; be a finite field of characteristic p. In the context of Grothendieck’s /-adic
étale cohomology, with / # p, in using Weil conjecture and a generalization
of the theorem of Hadamard and de La Vallée Poussin, Deligne proved the so
called hard Lefschetz theorem for the constant coefficient in the case of a smooth
and projective variety of pure dimension over F,. Later, using Gabber’s purity
theorem and its consequences (e.g. the semi-simplicity of a pure perverse sheaf)
this has been extended to the relative case and for pure perverse sheaves in [5] (see
also [11, IV.4.1] for the essentially same proof but with a different presentation).
More precisely, let f: X — Y be a projective morphism defined over I, and
n be the Chern class of the relative line bundle in H2(X, Q;(1)). Let & be a
pure perverse sheaf on X. Then for every positive integer r, the homomorphisms
induced by 1" between the perverse cohomology groups

"HTR (&) — "H'R fx(E)(r)

are isomorphisms. The main purpose of this paper is to check a p-adic analogue
of this hard Lefschetz Theorem as follows: we replace “perverse sheaf” by “arith-
metic left (by default) D-module endowed with a Frobenius structure” and we use
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the push forward as defined in Berthelot’s theory of arithmetic D-modules. In par-
ticular, when Y = Speck, X is smooth and projective of pure dimension d, E is
a pure overconvergent F-isocrystal, we get the isomorphisms
HET(E) — HEFT(E)(r)

(see the Corollary 2.8 of the paper). Finally, we recall that in the context of
crystalline cohomology, which is the first attempt to get a nice p-adic cohomology
over varieties of characteristic p, Berthelot checked a weak Lefschetz theorem
(see [6]).

To check this p-adic analogue, we have followed the proof in the /-adic context
written in [11, IV.4.1] (just because the author prefers the exposition). As a p-adic
analogue of the original proof, two main ingredients of our proof are the semi-
simplicity of a pure arithmetic D-module (see [3, 4.3.1]) and the construction and
the properties of the trace map given in [1, 1.5]. Then, this paper can be considered
as a natural application of these works. We follow here their terminology and
notation.

Let us describe the contents of the paper. In the first chapter, we study the
properties of the Serre subcategory consisting of relative constant objects. In
the second chapter, we introduce the p-adic analogue of the Brylinsky—Radon
transform and use its properties to prove the hard Lefschetz Theorem. We have
tried to write the proofs only when the p-adic analogues were not straightforward.
Finally, in the last chapter, for the sake of completeness, we check the inversion
formula satisfied by Radon transform.
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Noration. In this paper, we fix a positive integer s, a complete discrete
valuation ring V of mixed characteristic (0, p). Its residue field is denoted by k,
and assume it to be perfect. We also suppose that there exists a lifting o: V Sv
of the s-th Frobenius automorphism of k. We put ¢ := p*, K := Frac(V). We fix
an isomorphism «: Q, = C.
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In this context, a realizable variety X will mean a k-variety such that there
exists an immersion of the form X <> P into a smooth proper p-adic formal
scheme over V. We denote by nghol(DT? ) the derived category of overholo-

nomic complexes of (left by default) D;’Q—modules (for the notion of overholo-
nomicity, see [7]). We denote the derived category of overholonomic complexes
of arithmetic ‘D-modules on X by D OvhOI(X /K). We recall that this is by defini-

tion the full subcategory of D ovhol(D Q) of complexes € such that IRF; (&) Se.
Up to a canonical equivalence of categories, this does not depend on the choice
of such an immersion X < P. From [3, 1.2], we have a canonical t-structure
on nghol(X /K), whose heart is denoted by Ovhol(X/K). We recall that, if 4 is
an open set of P containing X and such that X is closed in 4/, then a complex
€ e nghol(X / K) belong to Ovhol(X/K) if and only if €| is isomorphic to an
overholonomic DL,Q—module. Beware that an objet of Ovhol(X/K) is not neces-
sary an overholonomic @T q-module but is in general a object of nghol(ﬂ,},Q).
Following [3, 1.2], the i-th cohomologlcal space of an object € of Dovhol(X /K)
will be denoted by H: (&) € Ovhol(X/K). We will keep the notation concerning
cohomological operators as defined in [3, 1.1].

We will also use the categories defined in [2, 1.5]: let Holg (X /K)" be the
full subcategory of Ovhol(X/K) whose objects can be endowed with some
s’-th Frobenius structure for some integer s’ which is a multiple of s, and
let Holr (X/K) be the thick abelian subcategory generated by Holg(X/K) in
Ovhol(X/K). We denote by Db hol, 7 (X/K) the triangulated full subcategory of

Ovhol(X /K) such that the cohomologles are in Holp (X/K). For any integer
n, we define the twist of Tate over Dhol r(X/K) as follows: the twist (n) is the
identity (and then the forgetful functor F- Dhol r(X/K) — Dﬁol 7 (X/K) com-
mutes with the twist of Tate). For simplicity and if there is no risk of confusion
w1th the notion of holonomicity of Berthelot, we will write D} ol(X /K) instead of

hol 7 (X/K) and Hol(X/K) instead of Holr (X/K). With this notation, we get
F- nghol(X /K) = F-D) ,(X/K).Be careful that this notation is a bit misleading
since in general we do not know even with Frobenius structures if the notion of
holonomicity of Berthelot and the notion of overholonomicity coincide (but this
is not misleading with Frobenius structure in the case where we can embed the
variety into of smooth projective formal schemes over V; see [10]).
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1. Constant objects with respect to smooth P? -fibration morphisms

1.1. Let g:U — T be a morphism of realizable varieties. Let F, § €
(F-)Dﬁol(T/K). We have the morphisms
(1.1.1)
g g (P @gt(9) e gaE @@ (9 — g9 e gEF®9)

where proj (resp. adj) means the projection isomorphism constructed in [3, A.6]
(resp. the adjunction isomorphism corresponding to the adjoint functors (g1, g')).
Since the projection isomorphisms and adjunction isomorphisms are transitive,
then so is for € i.e., for any h: V' — T morphism of realizable varieties, the
diagram

B\ (F) @ ht g+ (S) —L h (') ® g7 (9) "L 1 (F® G)

(1.1.2) lw lw
(g0 )'(F) & (g 0 h)*(9) (go (T ®G)

is commutative.

1.2 (Poincaré duality). Let f: X — S be a smooth equidimensional morphism
of relative dimension d of realizable varieties. T. Abe has checked (see [1, 1.5.13])
that the morphism
(1.2.1) O fH1d] — f'[=d](=d).

which is induced by adjunction from the trace map Tr: fi f T[2d](d) — 1d, is
an isomorphism of t-exact functors (when f is moreover proper, this trace map
can be compared with that defined by Virrion in [13]). This isomorphism satisfies
several compatibility properties (see [1, 1.5]), e.g. it is transitive.

1.3. We keep the notation of 1.2. Let F, § € (F-)Dﬁol(S/K). Diagram 1 is
commutative. Indeed, the pentagon is commutative from [1, 1.5.1.Var5]. The other
parts of the diagram are commutative by definition and functoriality. Hence we
get the canonical commutative square:

[T @ 92d])(d) — fH(T[2d](d)) ® fT(9)
(1.3.1) efl~ 9f®1dl~
flF®9) 1@ (9.

This implies that the bottom morphism of (1.3.1) is also an isomorphism.

€r
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1.4 DEerintTION. Let f: X — S be an equidimensional smooth morphism of
relative dimension d of realizable varieties.

(1) The objects of the essential image of the functor
ST (F) DRy (S/K) — (F-) Dy (X/K)
are called constant (with respect to ).
(2) The objects of the essential image of the functor
fT[d]: (F-)Hol(S/K) — (F-)Hol(X/K)
are called constant (with respect to ). We denote by f T [d](F-) Hol(S/K)

its essential image.

1.5. Let X be a realizable k-variety and px: X — Speck be the structural
morphism. We denote by Ky := p; (K) the constant coefficient of X. The
complex Ky is the p-adic analogue of the constant sheaf ); over X. Let € €
DP (X/K). We notice that Ky ® € — €.

1.6 ProposITION. Let u:Y — X be a closed immersion of pure codimension

r in X of smooth realizable k-varieties. Let € € (F —)Dgol(X /K).
(1) There exists a natural functorial morphism of (F -)Dﬁol(Y / K) of the form

(1.6.1) B ut (&) — u' (&)[2r](r).

(2) If (locally on X)) the complex & is constant with respect to a smooth equidi-
mensional morphism f: X — S of realizable varieties such that f ou is also
smooth, then 0, is an isomorphism.

Proor. This can be checked as in [11, II.11.2]: with the notation and hypothesis
of the second part, putting g := f ou and d; := dimY — dim S, for any
X e (F—)Dﬁol(S/K), by using the isomorphism (1.2.1), we get the isomorphism

(162) G (f K)o ! (fH0[-2dg](dy) o ' (F T 2](r).
g u: s

In particular, we get

Ou:u™ (Kx) — u' (Kx)[2r](r).
We remark that

bu:ut (Kx) —> u' (Kx)[2r](r)

does not depend on the choice of f which can be for instance the structural
morphism of X (indeed, since Y is smooth, this is up to a shift a morphism of
overconvergent isocrystal on ¥ and then we can suppose S smooth ; then this is a
consequence of the transitivity of the isomorphisms of the form (1.2.1)).



ut fH K ®K)

ut fHE)@ut 1K)

0 l~ g 9g®1dl~
/w—\
Ou{ ' 1K ® K)[-2dg](dg) % w' (SO ® [T I0)[-2del(dg) ~—u' 1K) @ uT [ F(K)[-2de](dy)) u®Id

or T~ 9,/'®IdT“’ 9./‘®IdT“’

u' fHE @ I)[-2r](r) ———u' (fT(K) ® fHE)[-2r)(r) <——u' fH ) @ut fHEH)[-2r](r)

Diagram 2
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For any X, X' € (F—)Dﬁol(S/K), using (1.1.2) and (1.3.1), we check the
commutativity of Diagram 2, where €7, €, (and then ¢,) are some isomorphisms
because of the commutativity of (1.3.1).

More generally (in the context of the first part of the proposition), we define
Ou:ut (&) — u'(&)[2r](r) so that the diagram

~ ~

u+_(8) ut(Kx ® &) ut(Kx) @ u™ (&)
(1.6.3) ve 9u®1dl~
u' (&)[2r](r) =— u'(Kx ® &)[2r](r) <~ u' (Kx) @ ut(&)[2r](r),

where -
Ou:ut (Kx) —> u' (Kx)[2r](r)

is defined in (1.6.2) with f equal to the structural morphism of X, is commutative.

We go back to the second part of the proposition, i.e. suppose now that & =
f1(X). By using the commutativity of Diagram 2 applied to the case X’ := Ky,
the isomorphism 6,,: u™(€) 5 u'(&)[2r](r) defined in (1.6.2) is equal to that
defined in (1.6.3). Hence, 6, is indeed an isomorphism in this case. O

1.7. With the notation of (1.6.1), we get the morphism
w(0y): uu (&) — w' (&)[2r](r).

By adjunction, we have
uu' (&) — &,

which gives by composition
¢y = adjour(0,): uu™ (&) — E[2r](r).

The goal of this paragraph is to check that the diagram below

1.7.1) wut (&) 2wt (Ky) @ €

l‘ﬁu ld’u ®Id

E[2r](r) ——= Kx ® E[2r](r).

is commutative. It is sufficient to check the commutativity of Diagram 3.



proj

ugu+(€);>u!u+(l(x ®8);>u!(u+(l(x)®u+(€)) — u!u+(KX)®8
lu!(Qu) lu!(é’u) lu!(9u®1d) u!(9u)®1dl
o [ un ©)2r)(r) —= un! (Kx ® E)2r)(r) < ure(Ky) ® ut ()2r)(r) ~m upu! (Ky) ® E2r)(r) ) bu®1d

&2r](r) ———— Kx ® &[2r](r) Kx ® E[2r](r)

Diagram 3
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From (1.6.3), the middle upper square is commutative. The commutativity of
the other squares is checked by functoriality. It remains to check the commutativity
of the rectangle, which comes from the commutativity of Diagram 4.

We end this paragraph with a remark: from the commutativity of (1.7.1), we
can construct the morphism

pu ™ (&) —> E[2r](r)
and then by adjunction
Oz ut (&) — u' (&)[2r](r)

from
$uuu™ (Kx) — Kx[2r](r).

1.8. Let u: Z — X be a closed immersion of pure codimension r in X of
smooth realizable k-varieties. Let € € (F -)Dﬁol(X /K). From Proposition 1.6, we
have the morphism 6,,: u™& — u'&[2r](r). The composition of the following three
morphisms:

dj ~ 1(6y dj
(1.8.1) Nu,e: € =, usute — uute u ugu!8[2r](r) A, E2r](r)

is an element of HomDﬁol(X/K)(E, E[2r]) (resp. HomF_Dgol(X/K)(E,E[2r](r))).
By using the commutativity of (1.7.1), we check that

(1.8.2) Nu,e = Nu,ky @ Ide .

1.9 Remark. We keep the notation of 1.8. Following the notation of [1, 3.1.1
and 3.1.6], we put

HE (X)(r) = Hompy () (K, us' Kx [2r)(r))
and
H2r (X)(r) = Hole?ol(X/K) (Kx, Kx [2r](r)).
From [1, 3.1.6], the composition

us(6,) o adj: Ky —> uyu'Kx[2r](r)

is called the cycle class of Y and is denoted by cly(Z) € H %’ (X)(r). Since u; is

a left adjoint functor of u' and since u; — u,, we get a canonical homomorphism
HZ (X)(r) — H?"(X)(r) which sends cly (Z) to ny, &y, see (1.8.1).



und' (Ky ® &)[2r](r) u (' (Kx) @ ut(8)[2r](r)

€y

uu' (Kx ® E)2r](r) <TJ und' ' (Kx) ® o)2r](r) <— und'ui (' (Kx) ® u+(8))[2r](r)
ladj ladj \\

Kx ® E[2r)(r) <—— i (Kx) @ ut (@)[2r](r) <= — ' (Kx) ® ut )2r)()

Diagram 4
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In order to check Theorem 1.15 below we will need the following lemmas:

1.10 LEMMA. Let
AL e
]
FASLESS ¢
be a cartesian square so that u and u’ are closed immersions of pure codimension
r of smooth realizable k-varieties. Let Ex € (F—)Dﬁol(X/K) and Exr = fT(Ex).
Let ny,ey:Ex — Ex[2r](r) and ny e ,,: Ex — Ex/[2r](r) be the morphisms as
defined in (1.8.1). Then we get [+ (nu,ey) = Ny

Proor. Thanks to equation (1.8.2), we can suppose Ex = Kyx. This comes
from [1, 3.2.6] (see also Remark 1.9). O

1.11 Lemma. Let m:P¢ — Speck be the canonical projection. Let & &
(F —)Dﬁol(lPd/ K). Let H be the zero set of a section of the fundamental line bundle
Opa (1) and u: H <= P4 be the closed immersion. The morphismn, ¢: & — £[2](1)
as defined in (1.8.1) does not depend on the choice of the hyperplane H and will
be denoted by 1. ¢.

Proor. We can suppose &€ = Ky. Let Hy, H, be respectively the zero set
of two sections of Opas(1). From (1.8.1), for i = 1,2, the closed immersions
u;: H; < P4 induce the morphisms 7;: Kx — Kx[2](1). Fori = 1,2, we put

dj i)
Vi K25 mint K = ny Ky 2 nl Kx[2)(1).

By adjunction, n; = 7, if and only if ¥y = . There exists an isomorphism
0:P? — P4 so that 6! (H,) = H,. From Lemma 1.10, we get 0+ (57;) = 1, and
then o4 (172) = 1. Since & o 0 = m, this implies that ¥, = ;. O

1.12. Let S be a realizable variety, 7:P? — Speck and 75:P¢ — S,
f:P¢ — P4 be the canonical projections. Let & € (F-)Dp (P%/K). With the
notation of Lemma 1.11, we put

(1.12.1) Nrs.e = [ (k) ® de: € — E[2)(1).

Let S — S be a morphism of realizable varieties and a: P%, — IP”S’ be the
induced morphism. Then, we remark that

(1.12.2) a¥ (Nrs.e) = Nag at(e)-
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1.13 LEmMma. Let 7: IPg, — S be the canonical projection and t: ]P‘é/ > ]Pg,
be a closed S-immersion such that ©' := m ot is the canonical projection. Let
g e (F- )Dho1 ‘é/K). We have the equality

(1.13.1) F(re) = N it e)-

Proor. By construction, see (1.12.1), we can suppose £ = K]Pd By us-
ing (1.12.2), we reduce to treat the case S = Speck. Then, this comes from
Lemma 1.10. O

1.14 LemMMA. Let S be a realizable variety, g: X = A‘é — § be the canonical
projection. Let € € Hol(S/K).

(1) Foranyi # 0, we have Hiq1q* (&) = 0 and 7> qiq* (&) = 0.
(2) We have H0qq+ (&) = & and H2qiq* (&) = &€ in Hol(S/K).

Proor. From (1.2.1), we can only consider the pushforward case. By tran-

sitivity of the pushforward, we reduce to the case where d = 1. The com-
plex g+q 7T (&) is isomorphic to the relative de Rham cohomology of A!S /S of
qt[d](é) € Hol(A /K). Then, this is an easy computation. O

1.15 TueOREM. Let m:IP’s — S be the canonical projection, 1: X — P’ be

a closed immersion such that, for any closed point s of S, f~'(s) 5 IPZ(S) where
k(s) is the residue field of s and f := 7 o (we might call such a morphism f a
P4 -fibration morphism). Let & € (F - )Dhol(S/K). With the notation of (1.12.1),
we put

N =10+ o21en: ST EF2(=1) — fH(8).
By composition, for any integer i > 0, we get
' fHEO2il(=i) — ().
By adjunction, this is equivalent to have a morphism of the form
E[-2i](=i) —> fr o fF(E),
which by abuse of notation will still be denoted by n'. The following map
(1.15.1) Do ' Big E[-21)(~i) — [0 fH(E)

is an isomorphism.
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Proor. Diagram 5, where the vertical arrows of the top are the projection
isomorphisms (recall that since f is proper, we have f S fy), is commutative
(indeed, the commutativity of the square below comes from the definition (1.12.1),
that of the other square is functorial and that of the rectangle is left to the reader).
By using the commutativity of Diagram 5, we can suppose & = K.

The fact that the morphism (1.15.1) is actually an isomorphism can be checked
after pulling back by the closed immersions induced by the closed points of S.
Hence, by using (1.12.2), we can suppose that S = Speck and X = P¢. From
Lemma 1.13, we can suppose that d = n, i.e. ¢ is the identity and f is the canonical
projection P4 — Speck.

We proceed by induction on d > 0. The case d = 0 is obvious. So, we
can suppose d > 1. Let g: A? — Speck the projection, H := X \ A< be the
hyperplane at the infinity, u: H < X the induced closed immersion, g := f ou.
We put i = ut(n): g7 (K)[-2i](—i) — gT(K). Again by abuse of notation,
let 7': K[-2i](—i) — g+g T (K) be the morphism induced by adjunction. From
the transitivity of the adjunction morphism, we get the commutativity of the left
square:

i K20l — e £ 201 — 2 f k)
A
i K200 =S faga 2000 S gt (k).

This induces the following commutative square
@ B K20l — fi fH(E)
(1.15.2) H ladj
@i B K20 —=ggT(K).
a) From (1.13.1), we get the equality 77 = 7, .+ k). By using the induc-
tion hypothesis applied to g, the arrow of the bottom of the diagram (1.15.2) is

an isomorphism. We denote by t<,4_; the truncation functor of the canonical
t-structure of [3]. Since we have the exact triangle of localization

g (K) — f+ fH(K) — g+gT (K) — +1

and Lemma 1.14, then after having applied the functor t<,4_; to the right mor-
phism of (1.15.2) we get an isomorphism (for the degree 2d — 1, we use that
H2d-lg, gﬂ[_( ) = 0). By considering (1.15.2), this implies that the truncation
T<2d—1 (@l‘.izon’) of (1.15.1) is an isomorphism.
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b) Now, consider Diagram 6, where the right arrow of the bottom is an iso-
morphism because of Proposition 1.6.(2); the commutativity of the right square
follows from the definition (1.8.1) and the notation (1.12.1). Hence, by using
the induction hypothesis, we check that after having applied the functor 75,4 to
Diagram 6, the composition of the arrows of the bottom becomes an isomor-
phism. A cone of the right morphism of Diagram 6 is isomorphic to g+¢™ (K).
From (1.14), we get 1524-19+9 1 (K) = 0. Hence, by applying 7>, to the right
morphism of Diagram 6, we get an isomorphism. This implies that ts,4 (%) is an
isomorphism. Hence, so is 124 (QB;LO n'). Using the step a) of the proof, we can
conclude. O

1.16 CoroLLARY. We keep the geometrical notation of (1.15) and we suppose
f smooth. Let & € F-DP (S/K)=°, F € F-DP (S/K)=°, G € DD ,(S/K)=",
and H € DP (S /K)=°. Then

Hompp /s (/ *(8). /#(30) = Hompp g, (9.90);
and

(1.16.1) HomF_Dgol(X/K)(fJ“(&), Y (9) = HomF_Dﬁol(S/K)(E,frr).
Proor. Since € € F-DP (S/K)=0and F € F-D{ ,(S/K)=°, then
(1.16.2) Homp_pv (s/k) (& F) = HomF_Dgol(S/K)(ﬂ-(?E,}C?S’).

Since f is smooth, then the functor f fF preserves F-DP (S /K)=°. Hence, by
adjunction, we get

HomF-Dﬁol(X/K)(f+(8)’ f+(3r)) = HomF—Dgol(S/K)(E’ f+f+(3r))
= HomF-Dgol(S/K)(J{?E’ J—(?f+f+(3r))_

With

HYF ———— 3 fy o fH(HIF) —> H) fr 0 fF(F),
Theorem 1.15

then we obtain the last equality of (1.16.1). The proof without Frobenius is iden-
tical. O

1.17 ProvrosiTioN. We keep the notation and hypotheses of Corollary 1.16.
(1) The functor f*[d]: (F-)Hol(S/K) — (F-)Hol(X/K) is t-exact and fully
faithful.
(2) Forany &,F € Hol(S/K), the functor f[d] induces the equality

(L17.1)  Exts k(€. F) = Extigx, k) (f T1A1(E). fHA1(5)).



S+

f+ /(K

K[-2d)(~d) — o ) 2d)(-d) — T gy R 20-1)
H ladj ladj
adj g+ ({11

K[-2d)(~d) —— fyuqut fH(E)[-2d)(~d) T frugt fHK)[2(-1)
ﬁd*l

Diagram 6

~

adjT

' 4 K
o0 Sruquw fT(K)
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Proor. Since f is smooth, the functor f*[d] is t-exact. From Corollary 1.16,
we get its full faithfulness. Since the canonical morphism F[1] — 7<¢ £+ f T(F[1])
is an isomorphism (use (1.15.1)), we get the second assertion (by using similar
techniques than in the proof of Corollary 1.16). |

1.18 ReEmark. We keep the notation and hypotheses of Corollary 1.16. Let
& € Hol(S/K). Since the pull back under Frobenius commutes with the functor
fT[d], then we get a bijection between Frobenius structures on € and Frobenius
structures on f T[d](€). Moreover, let F,§ € F-Hol(S/K) and ¢:F — G a
morphism of Hol(S/K). Then ¢ commutes with Frobenius if and only if so is

T1d1(9).

1.19 Provrosition. We keep the notation and hypotheses of Corollary 1.16.
We suppose furthermore that the morphism f has locally a section.
(1) The functor f*[d]: (F-)Hol(S/K) — (F-)Hol(X/K) sends simple objects
to simple objects.
(2) The functor f*[d]: (F-)Hol(S/K) — (F-)Hol(X/K) has the right adjoint
functor H;4 o fi:(F-)Hol(X/K) — (F-)Hol(S/K) and the left adjoint
functor H¢ o fi(d): (F-)Hol(X/K) — (F-)Hol(S/K).

Proor. Let & be a simple object of (F-) Hol(S/K). From [3,1.4.9.(i)] (without
Frobenius structures, use the fact that Isoc™" (S /K) N Hol(S/K) is a Serre subcat-
egory of Hol(S/K), where Isoc™ (S /K) is constructed in [9]) there exist an open
dense smooth subscheme S’ of S, an irreducible object & € (F-)Hol(S’/K)
which is also an object of (F-)Isoc'"(S’/K) such that & = w4 (&) where
u: S’ < S is the inclusion. Put X' := f~1(§'), f: X' — S, v: X' < X.
By adjunction, we remark that the canonical morphism u;(€’) — u4(&’) is the
only one so that we get the identity over S’. With this remark, since

fHdlow(€) — vio fHdI(E),
and

fHdlous(€) — f'l=dl(=d) ous(&) — vy o f'[~d](—d)(E")
> vy 0 fH)(E),

since the functors f[d] and f'*[d] are t-exact, then after applying H? to these
isomorphisms we get the isomorphism

[Hd) ot (€) — vig o fF[d](E).
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Since the functor v+ preserves the irreducibility, then we reduce to the case where
S is affine, smooth, irreducible, and where moreover & € (F-)Isoc'T(S/K).
Hence

F1d1(E) e (F-)Isoc™(X/K) N (F-)Hol(X/K).

Let 0 # G € (F-)Hol(X/K) be a subobject of fT[d](€). Since the category
(F-)Isoc™(X/K) N (F-)Hol(X/K) is a Serre subcategory of (F-)Hol(X/K),
then§ € (F-)Isoc' (X /K). Since the generic rank of an overconvergent isocrystal
is preserved under pull-backs, since f has locally a section, since X is irreducible
(because the fibers of f are irreducible) then we can conclude that G = £ [d](€)
and hence f*[d](€) is a simple object.

The last part comes from the left t-exactness of f4[—d] and the right t-exact-
ness of f1[d](d), from the fact that the couples (f*[d], f+[-d]) and (A[d](d),
f'[=d](—d)) are adjoint functors, and from the isomorphism

fHdl = fil=dl(=d)
of (1.2.1). O
1.20 ProrposiTioN. We keep the notation and hypotheses of Proposition 1.19.

Let € € (F-)Hol(X/K).

(1) The category of constant objects with respect to f is a thick subcategory of
(F-)Hol(X/K).

(2) The object

Ho f*o f1(&) = fT[d]o (3 f1)(€)

is the largest constant with respect to [ subobject of £ in the category
(F-)Hol(X/K).

(3) The object

Hi? o f*o fil€d) = fH1d] o (H] fi)(E(d))

is the largest constant with respect to [ quotient object of € in the category
(F-)Hol(X/K).

Proor. The thickness of the category of constant objects without Frobenius
structures comes from the equality (1.17.1). With Remark 1.18, we get the thickness
with Frobenius structures. The rest is similar to the proof of [11, III.11.3] i.e. this
comes from the general fact [11, I1I.11.1] and from Proposition 1.19. |
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2. The Brylinski—-Radon transform and the Hard Lefschetz Theorem

Letd > 1be aninteger and P? be the d -dimensional projective space defined over
k, let P4 be the dual projective space over k, which parameterizes the hyperplanes
in P4, let H be the universal incidence relation, i.e. the closed subvariety of

P9 x P4 so that (x,h) € H if and only if the point x € h. Let Y be a realizable
k-variety. We denote by

itHxY —>P4xP?xYy
the canonical immersion and by
pl:]de]VdeY—ﬂdeY, pz:]de]?’de—ﬂdexY,
ﬁl:IdexY—>Y, ﬁz:IdeY—>Y
the canonical projections, and we set 7y := pj oi, my := pyoi.
2.1 DeriniTioN. We define the Brylinski-Radon transform
Rad: F-D (P4 x Y/K) — F-D{,(P? x Y/K)
by posing, for any € € F-DP (P4 x Y/K),
(2.1.1) Rad(€) := maqm;H (E)[d — 1].
For any n € Z, we put Rad” := H? o Rad.

2.2 DerntTiON. Let U be the open complement of the closed subvariety H xY
inlP? xP9xY.Let j: U < P4 xP?xY be the open immersion and ¢; := pyo,
g2 = p2 o j. We define the modified Radon transform

Rady: F-DY(P? x Y/K) — F-D2 (P9 x Y/K)
by posing, for any € € F-DP (P4 x Y/K),
(2.2.1) Radi(€) := g2 0 ¢ [d](€).

For any integer n € Z, we put Rady (&) := H” Rad,(&).
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2.3. (1) Since the functor qf'[d ] is t-exact and the functor g5, is left t-exact
(because ¢ is affine, e.g. see [3, 1.3.13] but this is obvious here since ¢, is
moreover smooth) then Rad, is left t-exact.

(2) The exact triangle
iyoit[-1]— jijT —Id — i oi™
induces for any € € F-DP (P4 x Y/K) the exact triangle
(2.3.1) Rad(€) — Radi(&) — p2+pi|_[d]((°,) — Rad(&)[1].
2.4 LEMMA. Let & € F—Dﬁol(IPd x Y/K).

(1) We have the isomorphism

E[-2d](—=d) — quqi ().
(2) We have the isomorphism
Pr+(Rady(€)) — par (E)[-d](~d).
(3) If€ € (F-)DZ%(P¢ x Y/K), then

P1+(Radi(8)) € (F-)D=°(Y/K).

ProOF. We putn =1, .+, and 7t := it (n"). In order to check the
first isomorphism, by 1.5 and the projection formula (see [3, A.6]) we get

angy (&) — qu(gf (Kv) ® 47 (£)) — quqi (Kv) ® €.

Hence, we can suppose & = Kpay. Then, by using a base change theorem, we
can suppose Y = Speck. We put § = Kpa[—d] € F-Hol(P4/K). Consider the
diagram below

adj L. +
q4; (§) ———— p1+p{ () ——— pi4+i+i T pf (§) ——
(2.4.1) NT@f‘Lo n' ~T®§t& i

§[—2d)(—d) —= B §[-2i)(—i) —= B=q §[-2i)(—i) ——,
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where the rows are exact triangles and where we keep the abuse of notation
in Theorem 1.15, i.e. the morphism 7’ (resp. /') means the morphism induced
by adjunction with respect to the couple (p;, p1+) (resp. (¢;,¢1+)) from n’
(resp. 7i'). By transitivity of the adjunction, we get that the square of (2.4.1)
is commutative. Moreover, we recall that the vertical arrows are isomorphisms
thanks to (1.15.1). By applying the functor 7,4 to the diagram (2.4.1), we get

ang; (§) ————— 122491147 (9)
Lemma 1.14

> 2a P14 P (G) <— To2a B G[-2i](—i) <— G[-2d](~d),

which finishes the proof of the first isomorphism. We get the second isomorphism
from the first one by composition:

p1+(Radi(€)) — pr1ogaroqy[d](€)
— paoqunogi[dl(€) — pau(&)—d](—d).

Finally, since p,i1[—d] is left t-exact, we obtain the third property from the second
one. O

2.5 Lemma. Let & € (F-)DZ°(P¢ x Y/K). Then Rad( (&) is left reduced
with respect to p, i.e. does not have any nontrivial constant with respect to p,
subobject.

Proor. The proof is the same than [11, IV.2.7]: from Proposition 1.20 we re-
duce to prove that ;¢ 51+ (Rad} (€)) = 0. Since Rad,(€) (F—)DZO(IVPd xY/K)
(see the property 2.3.(1)), since ﬂ-(t_d P1+ is left t-exact, then we get the isomor-
phism

H;9 pro (Rad? () — H; ¢ p14 (Rad(€)).

We conclude by using 2.4.(3) |

2.6. Let f: X — Y be a projective morphism of realizable varieties. Let
S F-Dﬁol(X/K). A morphism n: € — &[2](1) is called a “Chern class of
a relative hyperplane for the projective morphism f if there exists a closed
immersion ¢: X < IP‘I’; so that f = 7 o, where 7: IP‘% — Y is the canonical
projection, and so that, with the notation 1.12,

n= Idg ®L+(7]7[,K]Pd )
Y

By using the projection isomorphisms (see [3, A.6]), we remark that the map
L+ (M 14+(&) = 14-(€)[2](1) is canonically isomorphic to Id, | () MKy -
Y
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2.7 Tueorem (hard Lefschetz Theorem). We suppose here that k is a fi-
nite field with p’ elements. Let f: X — Y be a projective morphism of realiz-
able varieties. Let & € F-Hol(X/K) be an t-pure module and n: &€ — E[2](1)
be a Chern class of a relative hyperplane for f (see the definition in 2.6).
For any positive integer r, we obtain by composition n": & — E[2r](r). We get
the homomorphism

2.7.1) FC S+ [ () — HE S+ () ().

The homomorphism (2.7.1) is an isomorphism.

Proor. We follow the proof of the hard Lefschetz Theorem of [11, IV.4.1]
which is similar to that of [5].

0. Since the assertion is local on Y, one can suppose Y affine and smooth.
Using 2.6, we reduce to the case where f is the projection ]P‘I’; — Y and
n =1de ®ny, Kpg - Then we keep the notation of Section 2 of our paper.

Y

1. In this step, we treat the case r = 1. We put
G = p;[d)(€) € F-Hol(P? x P? x Y/K).

Following (1.8.1), we get from the closed immersion i: H x ¥ <> P4 x P4 x Y
the morphism

¢ = mi,g:9— S[2(1).
a) Let Speck < P4 be a rational point,
1Y —>P?¥xY and s:PYxY —PIxPIxy

the induced closed immersions. Since s™'(H x Y) is an hyperplane of P x Y,
since s is a section of py, using Lemma 1.10 we get sT[—d](¢) = 7. Since

+ s+ P P
P2+P; — Dy P2+ and  parysT —> 17 poy,

since the functor s [—d] (resp. t T[—d]) is acyclique for the constant objects with
respect to pp (resp. pp), we get that

T [=d1H, P () — 3 s T [=d1©) = 3 o ().

Hence, this is enough to check that H; ! poy (): H; 1 p2r4(G) — Hlpa4(9)(1) is
an isomorphism. For simplicity, we denote this morphism ¢.
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b) Consider Diagram 7, where
G = pf[d](D(€)) € F-Hol(P? x P4 x Y/K),

the horizontal isomorphisms of the middle square are constructed using the com-
mutativity of the dual functor with the functor pf[d ] (this is the Poincare du-
ality (1.2.1)) and with proper push-forwards, where the right square is the dual
of the left square used for D(E) instead of &, is commutative. By transitivity of
the relative duality isomorphism and by definition of the adjunction morphisms,
we get the commutativity of the middle square. The commutativity of the other
squares of Diagram 7 are tautological (e.g. for the second square, this is the con-
struction (1.8.1)). Moreover, the second left arrow of the bottom row is indeed an
isomorphism because of Proposition 1.6.(2).

¢) Since 7 is smooth of relative dimension d — 1 and 7w, is proper, we get
DRad’(D(€)) — Rad’(€). From both properties of 2.3, we get the first exact
sequence

(2.7.2) 0 — K™ pay pH(€) — Rad®(€) — Rad{(&);
the second one is induced by duality:
(2.7.3) DRad{(D€) — Rad’(&) — DHI ! pyy pf(DE) — 0,

By construction, the first morphism of (2.7.2) and the last one of (2.7.3) are
respectively the left vertical arrow and the right vertical arrow of Diagram 7.
Using Lemma 2.5 we check that Rad} (€) (resp. D Rad{ (D€)) is left (resp. right)
reduced with respect to pp, i.e. does not have any nontrivial constant with re-
spect to p; subobject (resp. quotient). This implies that 3¢~ p, pr(S) (resp.
DHI pyy pi(DE)) is the maximal constant with respect to j; subobject (resp.
quotient) of Rad®(€).

d) Since my is smooth, 7, is proper and & is ¢-pure then so is RadO(E).
Hence Rad®(€) is semi-simple in the category Hol(P9 x Y/K) (see [3, 4.3.1]).
By considering Diagram 7 and using the step 1.c), this implies that the morphism

CH ! ot (§) — H; par (9)(1)

is an isomorphism in Hol(ﬁ’d x Y /K). Since ¢ is also a morphism of the category
F-Hol(P? x Y/K), then ¢ is an isomorphism of F-Hol(P¢ x Y/K).



HI pyt pi (€) === 3 21 (§) — = H oy (9)(1) ———= DH; ! poy (§)(1) === DHI ™ poy p} (DE))(1)

| AT |

Rad”(€) <——=—— 3" patitit(§) — = 3} payipi'(9)(1) ——=DIG ! payii T (§)(1) <———— DRad’(D(E))(1)

Diagram 7

K3o[owoyos o1pe-d ur WaIoay) Z}9Yosjo| pIeH

61¢C



250 D. Caro
2. We proceed by induction on r. Suppose r > 2. We put
§:=iT(Q)-1] = = [d —1](©).
The morphism ¢ induces by pull-back
=i (ETHEES — S0,

Consider Diagram 8, which is commutative and where the middle arrow of the
middle row is an isomorphism because of Proposition 1.6.(2). By considering the
long exact sequence induced by the exact triangle (2.3.1), since Rad; is left exact
and r > 2, we check that the adjunction morphism

H; " p2s(9) — H; " payiri™(9)

is an isomorphism. This implies that the right vertical arrow of Diagram 8 is an
isomorphism. To check that the arrow of the bottom of Diagram 8 is an isomor-
phism, it is sufficient to prove that 1+ [—d]H; "™V, (£7~1) is an isomorphism
(the rational point Spec k — P4 can vary).

We put

sV HxY)—PixY, §s ' (HxY)— HxY,
and
7~T2 = ﬁz o5.
From Lemma 1.10, since s*[-d](G) — &, we have s*[—d](¢) = n;e. Hence,
since 7 is a closed immersion induced by an hyperplane of P4 x Y, putting

€ :=1*[-1](&) € F-Hol(s"'(H)/K),

we remark that B N
7= =1]sF[=d](0): € — E[2](1)

is a Chern class of a relative hyperplane for the projective morphism 7,. Hence,

since € is pure, by using the induction hypothesis, we get that 9[,_(’_1)7?2+ @Gh

is an isomorphism. Finally, with the same arguments than in the step 1.a), we check
the first isomorphism:

1 =d)3G " V() 5 3GV 5 )Y
= 30, " Vit 5 =d)i T > 3G PV iy [ 1s =] ()
= 3G V(7.

which implies that t+[—d]H; "™V, (£7~1) is also an isomorphism. O



r—1

H7 P2t (G) — > HE 2 py () —— > HT pr(9)(1) ————> DI pay (5)(1)

ladj ladj adjT ]D(adj)T
r—1

_ . ¢ _ . ~ o ~ _ ax
Hy " pagigiT(§) ——H 2 pativit(9) — H, payigi'(§)(1) ——= DH;" payiyit(G)(1)

4D @) a1y, §)

Diagram 8

K3o[owoyos o1pe-d ur WaIoay) Z}9Yosjo| pIeH

16¢
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2.8 CoroLLARY. We suppose here that k is a finite field with p° elements. Let
f:X — Speck be a smooth and projective morphism with X of pure dimension
d. Let E is a pure overconvergent F-isocrystal. Then for every positive integer r,
we get the isomorphisms Hr‘fg_’ (E) > Hr‘fg“ (E)(r).

Proor. In this context, we can use the comparison theorem between the rigid
cohomology and the push forward as defined in the theory of arithmetic D-mod-
ules, see for instance [4, 5.9]. O

2.9 Remark. (1) In the context of Corollary 2.8, we need the hypothesis that
X is smooth because otherwise we do not know how to get an equivalence between
the category of overconvergent F-isocrystal over X as defined by Berthelot and
some coefficients defined in the framework of arithmetic ‘D-modules (one might
hope to remove the smoothness condition: see the question [1, 1.3.11]).

(2) Thanks to a very recent preprint of Christopher Lazda (see for instance
Lemma [12, 5.5]), one should get some relative version of Corollary 2.8, i.e. in the
case where f: X — Y is a smooth and projective morphism of realizable varieties
with Y no necessary equal to Spec k.

3. The dual Brylinski-Radon and the inversion formula

We keep the notation Section 2 of our paper.

3.1 DeriniTioN. We define the dual Brylinski—Radon transform
Rad”: F-D2 (PY x Y/K) — F-D (P4 x Y/K)
by posing, for any & € F-DP (P4 x Y/K),
(3.1.1) Rad¥ (&) := my75 (E)[d — 1].

3.2 Lemma. Let X = (H xps H) x Y < P4 x P4 x P4 x Y be the
canonical embedding, p13:P? x P9 xP?xY — P4 x P9 xY be the projection
and w = pizot. Let A:P? x Y « P4 x P4 x Y be the diagonal immersion (and
the identity over Y). Let F € F-Dﬁol(IPd x P4 x Y/K). We have the isomorphism
of F-DY (P9 x P? x Y/K) of the form

At o AHH[2—2d](1 —d) & B3 FI-2i)(—i) — 77t (D),
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Proor. By using the projection isomorphisms (see [3, A.6]), we can suppose
F = Kpaypaxy- Hence, by using some base change theorems (induced by the
projection ¥ — Speck), we can suppose ¥ = Speck. We put K := Kpaypa.
Consider the following cartesian squares

/_\

T
X pd  pd 5 pd L8 pd o pd

(3.2.1) Zj o j o AJ\

XL opdxpd 2L pd

/1

Put 7 1= p1 o0, 1= " p13,Kpy 5apa A0 7= T py Ky g - From (1.12.2),

we check AT(p) = 7. By using the construction of Theorem 1.15, we get the
morphism

(3.2.2) 42 pi 2 R[2i)(—i) —> mpnt(K).

Since 7 is outside A(]Pd )a P92 _fibration, from Theorem 1.15, we deduce that

the morphism (3.2.2) is an isomorphism outside A(PP?). Hence, a cone of (3.2.2)
is in the essential image of A . Since

Atriat(K) = 7 ATnT(K) = 7.7 TAT(K),
by applying A" to the morphism 3.2.2, we get
(3.2.3) P2 @I ATK[-2i(—i) — 7e7TAT(K).
Since 7 is a P9~ !-fibration, from Theorem 1.15, we remark that the cone of
the morphism (3.2.3) is isomorphic to AT (K)[2 — 2d](1 — d). Moreover, using
Theorem 1.15 again we build the morphism
Atriat(K) — AT (K)[2—2d](1—d)

and by adjunction the second morphism of the sequence in F —Dﬁ’ol (P4 x P4/ K):

(3.2.4) P22 K[-2i)(—i) - it (K) = Ay o AT (K)[2 —2d](1 — d).
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Since 747 (K) is t-pure, then w47+ (K) is semisimple in DY (P4 x P4 /K)
(see [3, 4.3.6]). Then, we get the isomorphism

At o AT(K)2—2d](1 - d) & P25 K[-2i)(~i) — 77t (K)

in Dﬁol(IPd x P / K') which induces the morphisms of (3.2.4). Foranyi = 0, ...,
d — 2, we have

Hompy (papa, (B4 © AT (K)[2 - 2d], K[-2i])
— Hompy pa, ) (AT (K)[2 — 2d]. A'K[-2i])

(,; D HomDEOI(]Pd/K)(A!(E)[Z], A'K[-2i]) =0

and
Hompp (paypa 11 (K[-2i], Ay o AT(K)[2—2d))
= Hompp (pa 1 (ATK[=2i], AT(K)[2—2d]) = 0.
Hence, we get the compatibility with Frobenius. |

3.3 ProrositioN (Radon inversion formula). Let € € F —Dgol(IPd x Y/K).
Then the following formula holds

(3.3.1) Rad" oRad(&) — &(1 —d) & p;F [d](¢(8)).
where $(€) := @5 pa+(E)ld — 2 —2i] ().
Proor. With the notation of Lemma 3.2, let respectively
u,v:]de]Pd xY —P¢xy

be the left and middle projection. Then, by using the base change theorem, more
precisely, look at the cartesian square defining the fibered product

= (H X Y) Xpa,y (HxY),

we get
Rad” oRad(&) — vpmyntut(&)[2d —2].
Hence we obtain:
Rad" oRad(€)
———— v Ay o AT (€)1 - d) & By vt (©)2d — 2i —2)(~i)

Lemma 3.2

= e(1—d) & @y 5 [d1pr+(O)ld — 2i —2](—i). 0



(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

Hard Lefschetz theorem in p-adic cohomology 255
REFERENCES

T. ABE, Langlands correspondence for isocrystals and existence of crystalline com-
panion for curves, preprint 2013, arXiv:1310.0528 [math.AG]

T. ABE — D. Caro, On Beilinson’s equivalence for p-adic cohomology, preprint 2013.
arXiv:1309.4517 [math.AG]

T. ABE — D. Caro, Theory of weights in p-adic cohomology, preprint 2013.
arXiv:1303.0662 [math.AG]

T. ABE, Explicit calculation of Frobenius isomorphisms and Poincaré duality in
the theory of arithmetic D-modules, Rend. Semin. Mat. Univ. Padova 131 (2014),
pp. 89-149.

A. A. BEfLINsON — J. BERNSTEIN — P. DELIGNE, Faisceaux pervers, in Analysis
and topology on singular spaces, 1 (Luminy, 1981), Astérisque, vol. 100, Soc. Math.
France, Paris, 1982, pp. 5-171.

P. BERTHELOT, Sur le “théoréme de Lefschetz faible” en cohomologie cristalline,
C. R. Acad. Sci. Paris Sér. A-B 277 (1973), pp. A955-A958.

D. Caro, D-modules arithmétiques surholonomes, Ann. Sci. Ec. Norm. Supér. (4) 42
(2009), no. 1, pp. 141-192.

D. Caro, Holonomie sans structure de Frobenius et critéres d’holonomie, Ann. Inst.
Fourier (Grenoble) 61 (2011), no. 4, pp. 1437-1454.

D. Caro, Pleine fidélité sans structure de Frobenius et isocristaux partiellement
surconvergents, Math. Ann. 349 (2011), no. 4, pp. 747-805.

D. Caro, Stabilité de I’holonomie sur les variétés quasi-projectives, Compos.
Math. 147 (2011), no. 6, pp. 1772-1792.

KienL — WEISSAUER, Weil conjectures, perverse sheaves and |’adic Fourier trans-
form, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. A Series of Modern Sur-
veys in Mathematics, 42, Springer, Berlin etc., 2001.

CH. Lazpa, Incarnations of Berthelot’s conjecture, J. Number Theory 166 (2016),
pp. 137-157.

A. VIRRION, Trace et dualité relative pour les D-modules arithmétiques, in Geometric
aspects of Dwork theory, Vol. 1, II, Walter de Gruyter, Berlin, 2004, pp. 1039-1112.

Manoscritto pervenuto in redazione il 6 marzo 2015.


http://arxiv.org/abs/1310.0528
http://arxiv.org/abs/1309.4517
http://arxiv.org/abs/1303.0662

	Constant objects with respect to smooth ¶d-fibration morphisms
	The Brylinski–Radon transform and the Hard Lefschetz Theorem
	The dual Brylinski–Radon and the inversion formula
	References

