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On the existence of maximal S-closed submodules
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Abstract – The goal of this paper is to characterize the right non-singular rings R for

which every non-singular right R-module contains a maximal S-closed submodule.

Several examples and related results are given.
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1. Introduction

The submodule Z.M/ D ¹x 2 M j xI D 0 for an essential right ideal I of Rº

of a right module M over a ring R is the singular submodule of M . The module

M is non-singular if Z.M/ D 0; it is singular if Z.M/ D M . The ring R is

right non-singular if Z.RR/ D 0. Every right non-singular ring has a right self-

injective regular maximal right ring of quotients Qr ([5] and[7]). Whenever U is

an essential submodule of M , then M=U is singular, and the converse holds if M is

non-singular. A submodule U of a module M is S-closed if M=U is non-singular.

The S-closure of a submodule U of a non-singular module M is the submodule

U � of M containing U such that U �=U D Z.M=U /.

A right R-module M has �nite Goldie-dimension if every direct sum of non-

zero submodules of M is �nite. The ring Qr is semi-simple Artinian if and only if

RR has �nite Goldie-dimension [7]. A ring R is a right Goldie-ring if it satis�es

the ascending chain condition for right annihilators and has �nite right Goldie-

dimension. Since all right annihilators in a right non-singular ring R are S-closed,

R is a right Goldie-ring if and only if its right Goldie-dimension is �nite [5].
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A non-zero module is uniform if all its non-zero submodules are essential.

Clearly, a proper S-closed submodule U of a non-singular module M is a max-

imal S-closed submodule if and only if M=U is uniform. When working with

torsion-free modules M over an integral domain, one often considers submodules

of M having co-rank 1, i.e. maximal S-closed submodules of M (e.g. [4] and [6]).

[1, Proposition 2.3] shows that every non-singular right R-module contains a max-

imal S-closed submodule if R is a right non-singular right Goldie-ring. Naturally,

the question arises if a right non-singular ring R has to be a right Goldie-ring if

all non-singular right R-modules contain maximal S-closed submodules.

This paper shows that this is not the case, and presents various character-

izations of right non-singular rings having this property in Section 2. Theo-

rem 2.1 also demonstrates that many of the basic properties usually associated with

torsion-free modules over integral domains remain valid for non-singular right R-

modules exactly if R is a right non-singular ring for which all non-singular right

R-modules contain maximal S-closed submodules. Reduced rings satisfying the

conditions of Theorem 2.1 are discussed in detail in Section 3. Finally, Section 4

investigates which additional conditions a ring R needs to satisfy to ensure that it is

a right Goldie-ring provided all non-singular modules contain maximal S-closed

submodules.

2. Maximal S-closed submodules

Let e be an idempotent of a ring R. It is primitive if it cannot be written as the

sum of two non-zero orthogonal idempotents. Therefore, e is primitive if and only

if eR is indecomposable. More generally, a direct summand U of a module M is

indecomposable if and only if it is of the form U D e.M/ for some primitive

idempotent e of the endomorphism ring EndR.M/ of M . On the other hand, an

R-module M is superdecomposable if it has no non-zero indecomposable direct

summands, i.e. its endomorphism ring contains no primitive idempotents.

If S is a subset of a right R-module M , then annR.S/ D ¹r 2 R j Sr D 0º is

the annihilator of S . In the case S � R, we use the symbols ann`
R.S/ and annr

R.S/

to distinguish between left and right annihilators. Finally, dimR M denotes the

Goldie-dimension of a �nite dimensional module M .

Theorem 2.1. The following conditions are equivalent for a right non-singular

ring R:

a) if e is a non-zero idempotent of Qr , then there are orthogonal idempotents

e1 and e2 of Qr such that e1 ¤ 0 is primitive and e D e1 C e2;

b) Qr does not have any superdecomposable direct summands;
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c) every proper S-closed submodule of a non-singular right R-module M is

contained in an S-closed submodule V of M such that M=V is uniform

(0 < dimR M=V < 1);

d) every non-zero non-singular right R-module M contains an S-closed sub-

module V of M such that M=V is uniform (0 < dimR M=V < 1);

e)
T

¹U j U is a maximal S-closed submodule of M º D 0 for all non-singular

right R-modules M ;

f ) every non-zero non-singular right R-module M contains a non-zero uniform

( �nite dimensional) submodule which can be chosen to be S-closed;

g) every non-zero non-singular right R-module M contains an essential sub-

module which is the direct sum of uniform ( �nite dimensional) modules.

Proof. Let M be a non-singular right R-module. Clearly, if M contains a sub-

module U with 0 < dimR U < 1, then U contains a non-zero uniform submodule

and an essential submodule which is a �nite direct sum of uniform submodules.

Thus, uniformity and �nite dimensionality are equivalent in conditions f) and g).

Moreover, if U is a proper S-closed submodule of M such that M=U has �nite

Goldie-dimension, then U is contained in a maximal S-closed submodule. To see

this, observe that M=U contains an S-closed submodule of the form V=U for some

submodule U � V � M such that ŒM=U �=ŒV=U � Š M=V is uniform. Therefore,

uniformity and �nite dimensionality are equivalent in conditions c) and d) too.

a/ H) c/. Let U be a proper S-closed submodule of a non-singular right

R-module M . Since M=U is non-singular, U cannot be essential in M . Choose

0 ¤ x 2 M such that U \ xR D 0. Because M is non-singular, we can

�nd a non-zero right ideal I of R such that annR.x/ \ I D 0. Then xI Š I .

If V is a submodule of M which contains U and is maximal with respect to the

property that V \ xI D 0, then V is S-closed and V ˚ xI is essential in M .

Hence, M=.V ˚ xI / Š ŒM=V �=Œ.V ˚ xI /=V � is singular. Since M=V is non-

singular, .V ˚ xI /=V Š I is an essential submodule of M=V . Therefore, M=V

is isomorphic to a submodule of Qr
R. Once we have shown that every non-zero

submodule A of Qr
R contains a maximal S-closed submodule, then we can select

an S-closed submodule W of M containing V such that ŒM=V �=ŒW=V � Š M=W

is uniform.

Let 0 ¤ A � Qr
R, and consider 0 ¤ a 2 A. Since Qr is a regular ring, we

can �nd an idempotent e of Qr such that aQr D eQr . By a), there are orthogonal

idempotents e1 and e2 such that e1 ¤ 0 is primitive and e D e1 C e2. We can �nd

an essential right ideal L of R such that 0 ¤ e1L � aR � A since aR is essential
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in aQr D e1Qr ˚ e2Qr . But e1L \ .e2Qr \ A/ D 0 yields that B D e2Qr \ A

is a proper submodule of A. It is S-closed in A since

A=B D A=.e2Qr \ A/ Š .A C e2Qr/=e2Qr � e1Qr

is non-singular.

It remains to show that e1Qr is uniform. If this is not the case, then we can

�nd 0 ¤ x; y 2 e1Qr with xR \ yR D 0. If z 2 xQr \ yQr , then there is

an essential right ideal K of R such that zK � xR \ yR D 0 since xR and

yR are essential in xQr and yQr respectively. Since Qr is non-singular, z D 0.

Because xQr ˚ yQr is a �nitely generated right ideal of the regular ring Qr ,

there is an idempotent f 2 Qr such that fQr D xQr ˚ yQr � e1Qr . Then

e1Qr D xQr ˚ yQr ˚ Œ.1 � f /Qr \ e1Qr � which contradicts the fact that e1Qr

is indecomposable. Therefore, e1Qr is a uniform R-module, and the same holds

for A=B .

Since c/ H) d/ is obvious, we consider d/ H) g/. Let M be a non-zero

non-singular R-module. By d), there is a proper S-closed submodule V of M

such that M=V is uniform. As before, we can �nd 0 ¤ x 2 M with xR \ V D 0.

Then, xR is uniform since it is isomorphic to a submodule of M=V , and the same

holds for its S-closure in M .

Let ¹Ui j i 2 I º be the collection of uniform submodules of M . Since

the set ¹J � I j †J Uj is directº is inductive, it contains a maximal element

J0. If W D
L

J0
Uj is not essential in M , then there is 0 ¤ y 2 M such

that yR \ W D 0. By the results of the last paragraph, xR contains a uniform

submodule Ui for some i … J0, which contradicts the maximality of J0.

Since g/ H) f / is obvious, we continue by showing f / H) e/. Suppose

that

V D
\

¹U j U is a maximal S-closed submodule of M º ¤ 0

for some non-singular module M . By f), V contains a non-zero uniform submod-

ule X . If W is a submodule of M which is maximal with respect to the property

X \ W D 0, then W is S-closed in M and X ˚ W is essential in M. Thus, the

module M=.X ˚ W / Š ŒM=W �=ŒX ˚ W /=W � is singular. Since M=W is non-

singular, .X ˚ W /=W Š X is a uniform essential submodule of M=W . Conse-

quently, M=W is uniform too. Therefore, V � W and 0 ¤ X D X \ W D 0,

a contradiction.

e/ H) b/. Let e be a non-zero idempotent of Qr . By e), the non-zero module

eQr has to contain a proper S-closed submodule U such that eQr=U is uniform
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since \
¹U j U is a maximal S-closed submodule of eQrº D 0:

We pick 0 ¤ x 2 eQr such that U \ xR D 0 which is possible since U cannot

be essential in eQr . Because Qr is regular, xQr D e1Qr for some non-zero

idempotent e1 2 Qr . Then e1Qr \ U D xQr \ U D 0 since RR is essential

in Qr
R. Because e1Qr Š Œe1Qr ˚ U �=U � eQr=U is uniform as an R-module,

e1Qr is indecomposable as a Qr -module. Since eQr D e1Qr˚Œ.1�e1/Qr\eQr �,

the module eQr cannot be superdecomposable.

b/ H) a/. Let e be a non-zero idempotent of Qr which is not primitive. Since

eQr is not superdecomposable, we can write eQr D U ˚V where U is a non-zero

indecomposable Qr -module. If e D u C v for some u 2 U and v 2 V , then u and

v are orthogonal idempotents of Qr with U D uQr and V D vQr . To see this,

observe that u D eu D u2 � vu yields u � u2 D vu 2 U \ V D 0. Hence, u D u2

and vu D 0. By symmetry, v D v2 and uv D 0. Thus, U D uQr and V D vQr .

Since U is indecomposable, u has to be primitive using the same arguments. �

Condition e) shows that if R satis�es the conditions of the last theorem then

every non-singular right R-module M contains many maximal S-closed submod-

ules unless M is uniform.

A non-singular ring R is a right Goldie-ring exactly if direct sums of non-

singular injectives are injective [7]. Similarly, we can describe the right non-

singular rings R satisfying the conditions of Theorem 2.1 in terms of the non-

singular injective right R-modules.

Corollary 2.2. The following conditions are equivalent for a right non-

singular ring R:

a) every non-zero non-singular right R-module M contains a maximal S-closed

submodule;

b) every non-zero non-singular injective right R-module has a non-zero inde-

composable direct summand;

c) every non-singular injective right R-module E is a direct summand of …I Ei

where each Ei is isomorphic to an indecomposable direct summand of Qr
R.

Proof. a/ H) c/. Let E be a non-zero non-singular injective right R-module.

By Theorem 2.1, E has an essential submodule of the form
L

I Ui such that each

Ui is uniform. Since E is injective, it contains an injective hull Ei of Ui which is

indecomposable since Ui is uniform. Therefore, …I Ei contains an injective hull of
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L
I Ui . Since E is an essential extension of this submodule, there is a monomor-

phism E ! …I Ei which splits since E is injective. It remains to show that each

Ei is isomorphic to a submodule of Qr . Since Ui is non-singular, there is a non-

zero right ideal Ji of R which is isomorphic to a submodule of Ui arguing as in

the proof of a/ H) c/ of Theorem 2.1. Since Ui is uniform, Ei is an injective

hull of Ji too, and hence is isomorphic to a direct summand of Qr
R.

c/ H) b/. Let E be a non-zero non-singular injective right R-module. By c),

E is isomorphic to a direct summand of …I Ei where each Ei is an indecompos-

able injective right R-module. We can �nd a projection map �j W …I Ei ! Ej such

that �j .E/ ¤ 0. Since Ej is uniform, U D U \ker �j is a maximal S-closed sub-

module of E. Then E contains an injective hull E 0 of U . Since E 0=U is singular,

and U is S-closed, U D E 0 and E D U ˚ E1. Because E=U is uniform, E1 is

indecomposable.

b/ H) a/. By b), Qr
R has an indecomposable direct summand E1. By Theo-

rem 2.1, a) holds. �

Corollary 2.2 not necessarily guarantees that every non-singular injective mod-

ule with an essential submodule, which is a direct sum of uniform submodules, is

itself a direct sum of uniform modules unless R is a right Goldie-ring as Exam-

ple 3.3 shows.

We continue with a �rst example of a right non-singular ring of in�nite Goldie-

dimension such that all non-singular right R-modules contain maximal S-closed

submodules.

Example 2.3. The endomorphism ring R of an in�nite dimensional vector-

space V is a right sel�njective regular ring, and therefore is its own maximal right

ring of quotients. If e is any non-zero idempotent of R, then V D e.V /˚.1�e/.V /

and e.V / D U ˚ W where dim U D 1. Arguing as in the proof of b/ H) a/ of

Theorem 2.1, we can �nd two orthogonal idempotents eU and eW of R such that

e D eU C eW and eU .V / D U . Clearly, eU is primitive.

Further examples of rings satifying the conditions of Theorem 2.1 can be

constructed using the next result:

Corollary 2.4. Let R be a right non-singular ring such that every non-

singular R-module contains a maximal S-closed submodule. Every ring S which

is Morita-equivalent to R has this property too.
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Proof. Let FWMR ! MS be a category equivalence with inverse G. If E ¤ 0

is a non-singular injective S -module, then G.E/ is a non-zero non-singular injec-

tive R-module since both non-singularity and injectivity are Morita-equivalent.

By Theorem 2.1, G.E/ has a non-zero indecomposable summand E1. Then F.E1/

is a non-zero indecomposable summand of FG.E/ Š E. Another application of

Theorem 2.1 yields that every non-zero non-singular S -module contains a maxi-

mal S-closed submodule. �

A right non-singular ring R is a right Utumi-ring if every S-closed right

ideal is the right annihilator of some subset of R. The right and left Utumi-rings

are precisely the right and left non-singular rings for which Q` D Qr . Since

Condition a) of Theorem 2.1 is right-left symmetric, we obtain

Corollary 2.5. Let R be a right and left Utumi-ring. If every non-zero non-

singular right R-module contains a maximal S-closed submodule, then the same

holds for all non-zero non-singular left R-modules.

On the other hand, the conditions in Theorem 2.1 need not be right-left sym-

metric if R is a not a right and left Utumi-ring. For instance, there exist rings R

without zero divisors which have in�nite right Goldie-dimension, but have left

Goldie-dimension 1, see [2]. Clearly, no non-zero submodule of RR can be uni-

form.

Corollary 2.6. Let R be a ring without zero-divisors. Every non-singular

right R-module contains a maximal S-closed submodule if and only if Qr is a

division algebra.

Proof. By [2], RR has either in�nite Goldie-dimension or dimR RR D 1. �

3. Reduced rings

A ring R is reduced if it contains no nilpotent elements. Therefore, the ring in

Example 2.3 is not reduced. The idempotents of a reduced ring are central [7].

Theorem 3.1. The following conditions are equivalent for a right non-singular

ring R:

a) Qr is a reduced ring, and every non-singular R-module contains a maximal

S-closed submodule;

b) Qr Š …I Di where each Di is a division algebra.
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Proof. a/ H) b/. By Theorem 2.1, Qr
R has an essential submodule U of

the form
L

I Di where each Di is uniform. Since Qr
R is injective, it contains

a copy of the injective hull, E.Di /, of Di , which is an essential extension of Di .

Therefore, we may assume that each Di is injective, and hence is a direct summand

of Qr
R. If x 2 Di and q 2 Qr , then there exits an essential right ideal I of

R such that qI � R. Then .xq/I D x.qI / � Di . Since Di is S-closed in

Qr , we obtain xq 2 Di . Therefore, DiQ
r D Di for all i 2 I . Because of

Qr Š EndQr .Qr/ D EndR.Qr/, there exit idempotents ei 2 Qr such that

Di D eiQ
r for all i 2 I . Since Qr is reduced, each ei is central. Therefore,

eiej 2 eiQ
r \ ej Qr D 0 for i ¤ j so that ¹ei j i 2 I º is a family of orthogonal

idempotents.

Observe that eiQ
rei D eiQ

r since ei is central. Therefore, each Di is a subring

of Qr with identity ei . To show that Di is a division algebra, let 0 ¤ x 2 Di . Then

xQr � Di , and there is an idempotent e 2 Qr with xQr D eQr because Qr is

regular. Since e is central, we have

Di D eiQ
r D eieQr ˚ ei .1 � e/Qr D eQr ˚ .ei � e/Qr D xQr ˚ .ei � e/Qr :

However, Di is uniform, so that Di D xQr D .eix/Qr D x.eiQ
r / D xDi . Thus,

there is y 2 Di with xy D ei , and Di is a division algebra.

Let S be the ring …I Di , and de�ne an R-module homomorphism ˛W Qr ! S

by ˛.q/ D .eiq/i2I for q 2 Qr . Observe that ˛ is a ring homomorphism too

because ei is central for all i 2 I . Since the idempotents ¹ei j i 2 I º are

orthogonal, ˛.ei / has ei as an entry in the i th-coordinate, while all its other

coordinates are 0. Therefore, ˛.U / D
L

I Di � …I Di . For 0 ¤ q 2 Qr ,

choose r 2 R with 0 ¤ qr 2 U which is possible because U is an essential

submodule of Qr
R. There are i1; : : : ; im 2 I and q1; : : : qm 2 Qr such that

qr D ei1q1 C � � � C eimqm and eij qj ¤ 0 for all j D 1; : : : ; m. Since ˛.qr/ has

eij qj ¤ 0 as its ij
th-coordinate for j D 1; : : : ; m, we obtain ˛.q/r D ˛.qr/ ¤ 0;

and ˛ is a monomorphism.

Consequently, the subring ˛.Qr/ of S is isomorphic to Qr and has the prop-

erties ˛.1Qr / D .ei /i2I D 1S and
L

I Di � ˛.Qr/. In particular, ˛.Qr/ is right

self-injective. Therefore, ˛.Qr/ is a direct summand of S when the latter is viewed

as an ˛.Qr/-module. On the other hand, for every non-zero a 2 …I Di , there is

an idempotent b 2
L

I Di � ˛.Qr/ such that 0 ¤ ab 2
L

I Di � ˛.Qr/. There-

fore, ˛.Qr/ also is an essential ˛.Qr/-submodule of S when the latter is viewed

as a right module over ˛.Qr/. However, this is only possible if ˛.Qr/ D S .

b/ H) a/. The ring …I Di clearly satis�es the idempotent condition of Part a)

of Theorem 2.1, and has no nilpotent elements. Hence, a) holds. �
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A commutative ring is non-singular if and only if it is semi-prime [2] in which

case Q D Qr is commutative too.

Corollary 3.2. The following conditions are equivalent for a semi-prime

commutative ring R:

a) every non-singular R-module contains a maximal S-closed submodule;

b) Q Š …I Fi where each Fi is a �eld.

Non-commutative examples of rings with in�nite Goldie-dimension satisfying

the conditions of Theorem 2.1 can be constructed by combining Theorem 3.1 or

Corollary 3.2 with Corollary 2.4.

We now give an example that demonstrates that the idempotents of Qr and not

those of R play the decise role in our discussion.

Example 3.3. Let I be an index-set and R be an integral domain with �eld

of quotients F . For each i 2 I , choose a non-zero proper ideal Ji of R. Inside

Q D F I , consider the subrings S1 D R1Q C R.I/ and S2 D R1Q C
L

I Ji which

are both semi-prime, and have Q as its maximal ring of quotients. Therefore, both

S1 and S2 satisfy the conditions of Theorem 2.1. The ring S1 has the same primitive

idempotents as Q, while S2 has only the trivial idempotents 0 and 1R.

However, there exist reduced rings R which do not satisfy the conditions of

Theorem 2.1.

Example 3.4. Let F be a �eld, and consider the rings Q D F I as in Exam-

ple 3.3 and xQ D Q=F .I/. For x D .xi / 2 Q, let spt.x/ D ¹i 2 I j xi ¤ 0º.

Every non-empty subset J of I induces an idempotent eJ by setting eJ .i/ D 1 if

i 2 J and eJ .i/ D 0 otherwise. For every non-zero x 2 Q, there is a unique

x0 2 Q with spt.x0/ D spt.x/ and xx0 D espt.x/. To simplify our notation,

we write Nx for the coset x C F .I/. Since Q is regular, the same holds for xQ.

Clearly, any non-zero idempotent e of xQ is of the form SeJ for some in�nite subset

J of I . Partitioning J into two disjoint in�nite subsets J1 and J2 yields two non-

zero orthogonal idempotents fi D SeJi
of xQ with e D f1 C f2. Therefore, e is not

primitive.

To see that xQ does not satisfy the conditions of Theorem 2.1, consider a proper

S-closed ideal I of xQ. Since I is not essential, there is x 2 xQ such that x xQ\I D 0.

Because xQ is regular, we can �nd an idempotent e 2 xQ with x xQ D e xQ. By the

last paragraph, e xQ D f1
xQ˚f2

xQ for non-zero orthogonal idempotents f1 and f2.

Thus, xQ=I has Goldie-dimension at least 2, and I cannot be maximal S-closed in
xQ. Thus, xQ does not contain any maximal S-closed submodules.
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Replacing F by an integral domain R which is not a �eld yields an example

of a ring without primitive idempotents which is not regular.

To illustrate the signi�cance of the idempotent condition in Theorem 2.1 fur-

ther, we consider the following result.

Proposition 3.5. Let R be a right non-singular ring such that every non-zero

non-singular right R-module contains a maximal S-closed submodule. A non-

singular right R-module M with dimR M > 1 is injective if all its maximal

S-closed submodules are injective. However, this may fail if R does not satisfy

the conditions of Theorem 2.1.

Proof. Select a maximal S-closed submodule U of M . Because U is injective,

M D U ˚ V for some uniform submodule V of M . However, V is contained in a

maximal S-closed submodule W of M , which also is injective. Hence, W contains

an injective hull E of V . Since V is S-closed in M , we have V D E, and M is

injective.

To see that this result may fail if R does not satisfy the conditions of Theo-

rem 2.1, observe that the ring xQ in Example 3.4 is not semi-simple Artinian since

it does not contain any primitive idempotents. Therefore, it contains a proper es-

sential right ideal I . If J is any proper S-closed submodule of I , then there is an

element x 2 I with J \ x xQ D 0. However, we can argue as in Example 3.4

to show that x xQ has Goldie-dimension at least 2 because xQ is regular. Thus,

I does not contain any maximal S-closed submodules. Therefore, I is not an in-

jective xQ-module although all its maximal S-closed submodules (there are none!)

are injective. �

4. Right Goldie-rings

In this section, we investigate which additional conditions a ring R with the prop-

erty that all non-singular right R-modules contain maximal S-closed submodules

needs to satisfy to ensure that R is a right Goldie-ring. We want to remind the

reader that a ring satis�es the ascending chain condition (ACC) for annihilators

on one side if and only if it satis�es the descending chain condition (DCC) for

annihilators on the other side [2].

Our �rst result illustrates how [1, Proposition 2.3] �ts into the framework of

Theorem 2.1.

Corollary 4.1. If R is right non-singular right Goldie-ring, then every non-

zero non-singular module contains a maximal S-closed submodule.
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Proof. By [7], Qr is semi-simple Artinian. Therefore, every non-zero idem-

potent of Qr is a sum of primitive idempotents. �

The next result shows that a ring R satisfying any of the conditions of Theo-

rem 2.1 is a right Goldie-ring if Qr does not have too many primitive idempotents.

However, Example 3.4 shows that a ring may not contain any primitive idempo-

tents although it contains in�nite families of orthogonal idempotents.

Theorem 4.2. A right non-singular ring R is a right Goldie-ring if it satis�es

any one of the following conditions:

a) Qr has no in�nite family of orthogonal primitive idempotents, and every non-

zero non-singular right R-module M contains a maximal S-closed submod-

ule;

b) R is a right Utumi-ring which satis�es the ACC or DCC for right annihila-

tors, and every non-zero non-singular right R-module M contains a maximal

S-closed submodule;

c) RR is essential in RQr , and R satis�es the ACC or DCC for right annihila-

tors.

Proof. a) By Theorem 2.1, Qr D e1Qr ˚.1�e1/Qr for some primitive idem-

potent e1 of Qr . Applying Theorem 2.1 again yields 1 � e1 is either primitive or

1 � e1 D e2 C f where e2 is primitive and f an idempotent of Qr with

fe2 D e2f D 0. Repeating the process, we eventually obtain 1 D e1 C � � � C en

for orthogonal primitive idempotents e1; : : : ; en of Qr since Qr does not contain

any in�nite family of orthogonal primitive idempotents. Because Ei D eiQ
r is

an indecomposable injective, it is uniform arguing as in the proof of Theorem 2.1.

Thus, Qr and R have Goldie-dimension n.

b) Since every right R-module contains a maximal S-closed submodule, we

can �nd a descending chain R D I0 © I1 © � � � © In © � � � of S-closed right

ideals such that In=InC1 is uniform. By Theorem 2.1, we also obtain an ascending

chain 0 D J0 ¨ J1 ¨ � � � ¨ Jn ¨ � � � of S-closed right ideals such that JnC1=Jn

is uniform. Since R is right Utumi, In and Jn are right annihilators for all n < !.

Because R satis�es the ACC or the DCC for right annihilators, at least one of

these two chains has to terminate, i.e. either Im D 0 or Jm D R for some m < !.

In either case, R has �nite right Goldie-dimension.

c) For q 2 Qr , choose an essential right ideal I of R such that qI � R.

Then ann`
R.qI / D ann`

Qr .qQr/ \ R since if x 2 R satis�es xqI D 0, then

xq D 0 because Qr
R is non-singular. Thus, every left ideal of R of the form

ann`
Qr .qQr/ \ R is the left annihilator of some subset of R.
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Let e and f be non-zero orthogonal idempotents of Qr , and select an essential

right ideal I of R such that eI; f I � R. Since .e C f /Qr D eQr ˚ fQr ,

we have

ann`
R..e C f /I / D ann`

Qr ..e C f /Qr/ \ R � ann`
Qr .eQr/ \ R D ann`

R.eI /:

Suppose ann`
R..e C f /I / D ann`

R.eI /, and observe 0 ¤ Rf � annQr .eQr/.

Since RR is essential in RQr , we can �nd a non-zero r 2 R such that 0 ¤ rf 2 R.

Then

rf 2 annQr .eQr/ \ R D ann`
R.eI / D ann`

R..e C f /I /

yields 0 D rf .e C f / D rf 2 D rf , a contradiction; and ann`
R..e C f /I / ¨

ann`
R.eI /.

If Qr does not contain any in�nite family of orthogonal idempotents, then

there are primitive idempotents e1; : : : ; en of Qr such that 1 D e1 C � � � C en.

Because eiQ
r is an indecomposable injective module, it has Goldie-dimension 1

for i D 1; : : : ; n. Then Qr
R D e1Qr ˚ � � � ˚ enQr yields dimR R D n < 1.

Therefore, suppose that Qr contains an in�nite family of orthogonal idem-

potents ¹en j n < !º. If R satis�es the ACC for right annihilators, then setting

fn D e1 C� � �Cen induces a strictly descending chain ¹ann`
Qr .fnQr/\R j n < !º

of left annihilators of R. This is not possible since R also satis�es the DCC for

left annihilators.

On the other hand, if R satis�es the DCC for right annihilators, then we

consider the idempotents fn D 1 � .e1 C � � � C en/ instead. We obtain the strictly

ascending chain ¹ann`
Qr .fnQr / \ R j n < !º of left annihilators of R since

fnC1 C en D fn for all n < !, which contradicts the fact that R also satis�es the

DCC for right annihilators. �

The endomorphism ring R of an in�nite dimensional vector-space is a regular

right self-injective ring which is not left self-injective. Thus, R is its own maximal

right ring of quotients, but cannot be its left ring of quotients. Therefore, the fact

that RR is essential in RQr does not imply that R is right and left Utumi in general.

The examples in Sections 2 and 3 also show that the chain conditions on the right

annihilators cannot be omitted from Parts b) and c) of the last theorem.

Rings similar to those discussed in the third part of the last theorem were

investigated by Faith in [3, Theorem 2.14A and Theorem 2.14B]. However, our

result does not assume a priori that R is right and left Utumi in contrast to [3].

A right Goldie-ring R such that RR is essential in RQr has to be right and left

Utumi since the fact that Qr is semi-simple Artininan yields that Qr is also the

maximal left ring of quotients of R. Combining this observation with Theorem 4.2

yields the equivalence of a) and b) in
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Corollary 4.3. The following conditions are equivalent for a right non-

singular ring R:

a) R is a right and left Utumi right and left Goldie-ring;

b) R satis�es the ACC or DCC for right annihilators and has the property that

RR is essential in RQr ;

c) R is a right and left Utumi-ring such that every subset X of R for which

annr
R.X/ D 0 contains a �nite subset X 0 with annr

R.X 0/ D 0 [3].

Proof. The equivalence of a) and c) is a direct consequence of [3, Theo-

rem 2.14A and Theorem 2.14B]. �
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